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Lasing thresholds and photon statistics in high-β buried multiple
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We investigate the lasing thresholds and photon statistics of buried multiple quantum well (MQW) photonic
crystal (PhC) lasers with a high spontaneous emission coupling coefficient β and a large carrier transparency
number N0. Using measured input-output curves and delay-dependent second-order photon correlations g(2)(τ ),
we estimate that our population inversion threshold is near the kink threshold of the input-output curve, which
indicates that the buried MQW PhC lasers operate close to the “lasers without inversion” (intensity jump without
inversion) regime proposed by Yamamoto and Björk. With respect to static photon statistics g(2)(0), the super-
Poissonian photon statistics g(2)(0) > 1 are observed even one order of magnitude above the kink threshold.
The super-Poissonian photon statistics are specific to the class-B lasers where the photon decay rate γc is much
larger than that of carriers γ‖ and the relaxation oscillation occurs. We also propose that the pump power needed
to maximize the damping time of the relaxation oscillation could be the noise threshold at which the photon
statistics change from thermal to Poissonian.
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I. INTRODUCTION

Advances in nanotechnology have moved cavity quantum
electrodynamics (cavity-QED) into the world of semiconduc-
tor nanostructures. By combining high-Q photonic crystal
(PhC) microcavities with semiconductor active gain mate-
rials, photons confined in a cavity interact efficiently with
matter. One of the achievements in the weak-coupling cavity-
QED regime is thresholdless lasers, where conventional lasing
thresholds disappear due to a spontaneous emission coupling
factor β of near unity [1,2]. Recently, we succeeded in com-
bining a multiquantum well (MQW) and a high-Q photonic
crystal (PhC) nanocavity and realized the Purcell enhance-
ment of the carrier decay rate [3], lasing with current injection
[4], and even thresholdless lasing at cryogenic temperatures
[5].

Although there have been many experimental and theoret-
ical studies on the lasing properties and photon statistics of
high-β lasers [6–21], most experiments have been using lasers
with quantum dots (QDs). The lasing thresholds and photon
statistics of high-β nanocavity lasers with MQW have not
yet been discussed in detail. Of particular interest is the large
active mode volume of the MQW structure, which gives rise
to a non-negligible carrier transparency number N0(� 104).
Therefore, our system is very different from QDs where a
only small number of emitters (typically 10∼500 emitters) are
involved in lasing. In fact, our buried MQW PhC structure is
one of few systems that can realize a high β and a large N0 si-
multaneously [4,15,22], and N0 is estimated to be about 10000
in our system. The physics of lasers in high-β and large-N0

regimes is an interesting field but very little is known because
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of the difficulty involved in experimental work. For example,
the definition of lasing threshold needs to be reconsidered in
this region [23]: the widely used gain-loss balance threshold is
unsatisfactory. Moreover, in this context, one interesting phe-
nomenon is “lasers without inversion” (intensity jump without
inversion), which was proposed by Yamamoto and Björk [24].
When β is close to unity while N0 remains large, the pump-
input and light-output curve exhibits a thresholdlike kink with
a pump power that is insufficient to reach population inver-
sion. Furthermore, the photon-statistical properties of lasers
in the high-β and large-N0 regime have not yet been studied
intensively. In this paper, we study the lasing thresholds and
photon statistics of buried MQW PhC nanocavity lasers and
analyze the measured results with simple theoretical models.

First, we estimate physical parameters such as β and N0

based on measured input-output curves and delay-dependent
second-order photon correlation functions g(2)(τ ). In partic-
ular, we make use of the damped oscillatory behavior of
g(2)(τ ) that originates from the commonly observed relaxation
oscillation in semiconductor lasers [25,26]. The oscillation
frequency and the damping time of g(2)(τ ) are very sensitive
to β and N0 and provide information on the dynamical prop-
erties of lasers. The estimated parameters indicate that, in the
measured buried MQW PhC laser, the pump power needed
to create a population inversion is comparable to the kink
threshold of the input-output curve. This is in striking contrast
to conventional low-β lasers where the population inversion
is created far below the kink threshold of the input-output
curves. Thus, we argue that our laser is very close to the
intensity jump without inversion regime due to its high β and
large N0.

Second, we discuss in detail the photon statistics g(2)(0) of
the buried MQW PhC lasers. We observe the super-Poissonian
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photon statistics [g(2)(0) > 1] that remain even far above the
kink threshold of the input-output curve. These are character-
istic photon statistics when the photon decay rate γc is much
larger than the carrier rate γ‖: γc/γ‖ � 1, which is the photon
statistics in the class-B limit studied in Refs. [8,27–31]. The
super-Poissonian photon statistics even high above the kink
threshold may result from the relaxation oscillation with a
long damping time.

Finally, we propose a photon statistics noise threshold with
respect to the damping time of the relaxation oscillation.
In class-B lasers, no previously proposed definition of the
lasing threshold has been able to predict the noise threshold
pump power where g(2)(0) changes from thermal to Poisso-
nian statistics. We find that the threshold of g(2)(0) at which
g(2)(0) changes from thermal to Poissonian statistics might be
characterized as the pump power at which the damping time
of the relaxation oscillation reaches maximum.

The outline of this paper is as follows. The theoretical
model is introduced in Sec. II. The various definitions of las-
ing threshold are discussed in Sec. III. We present and analyze
our experimental results in Sec. IV. Section V discusses the
noise threshold. Finally, Sec. VI provides our conclusions.

II. THEORY

A. Rate equations

To analyze the measurements presented in the next section,
we use conventional rate equations, which are a very simple
and standard model but have many nontrivial consequences
[2,7,8,10,12,20,32]. The rate equations for semiconductor
lasers with a linear gain are given by

ṅ = −γcn + βγ‖N + βγ‖Nn − βγ‖N0n (1)

Ṅ = −γ‖N − βγ‖Nn + βγ‖N0n + P. (2)

where n and N are photon and carrier numbers, respectively.
The terms βγ‖N , βγ‖Nn, and βγ‖N0n, respectively, represent
the spontaneous, stimulated, and absorption with a finite car-
rier transparency number. The photon decay rate is given by
γc. Meanwhile, the carrier decay rate γ‖ and the spontaneous
coupling coefficient β are, respectively, defined as [7]

γ‖ ≡ γN + 4g2

γ⊥ + δ2/γ⊥
(3)

and

β ≡ 4g2

γ‖(γ⊥ + δ2/γ⊥)
=

4g2

γ⊥+δ2/γ⊥

γN + 4g2

γ⊥+δ2/γ⊥

. (4)

Here, γN is the decay rate of carriers without a photon
emission to the cavity mode and γ⊥ is the dephasing rate.
The constant g represents the coupling strength between the
polarization of the gain medium and the cavity photons and
δ is the energy detuning between the cavity and the gain
medium. When deriving the rate equations, the polarization
degree of freedom is adiabatically eliminated by assuming
that the dephasing rate is much larger than the other decay
rates: γ⊥ � γc, γN . Since γN includes all carrier decay pro-
cesses that do not emit photons to the cavity mode, in our

definition, γN includes both the radiative and nonradiative
decay rates. When the decay rates satisfy γc � γ‖, lasers are
called class-B lasers [33–35], which is the case for most
semiconductor lasers. Meanwhile, when the photon lifetime
is larger than the carrier lifetime, lasers will be categorized
as class-A lasers. We note that, in some articles, γN does not
include the nonradiative decay rate and it appears explicitly in
the rate equations, thus the definition of β in these articles is
different from ours. From Eq. (4), the spontaneous coupling
factor β is viewed as a fraction of the carrier decay into the
lasing mode (cavity mode). When β = 1, all spontaneously
emitted photons are coupled to the cavity. In fact, β = 1 is
achieved when γN = 0, where carriers decay only through
cavity decay via the light-matter interaction.

We also note that, as represented in Eq. (3), γ‖ is the
enhanced carrier decay rate caused by the coupling between
the gain medium and the cavity photons g. Actually, the
enhancement factor 4g2/(γ⊥ + δ2/γ⊥) is the large dephasing
limit (γ⊥ � γc) of the generalized Purcell enhancement factor
[36]. It is known that when the large dephasing γ⊥ is domi-
nant, the Purcell enhancement does not depend on the cavity
decay rate (Q factor) [37]. This Purcell enhancement of γ‖
will be important at cryogenic temperatures, while, at room
temperatures, this effect is modest or negligible. In fact, at
cryogenic temperatures, we observed the Purcell enhancement
with the same structure as in this paper [3], while at room
temperatures we could not.

B. Steady state

Let us consider the steady-state properties of the rate equa-
tions. Putting ṅ = 0 and Ṅ = 0 in Eq. (1) and (2), respectively,
the steady-state solutions of the photon n̄ and carrier number
N̄ are given by

n̄ = 1

2β
[−(ξ (1 − β ) + 1 − βP/γc)

+
√

(ξ (1 − β ) + 1 − βP/γc)2 + 4β2P/γc ] (5)

and

N̄ =
(

γc

γ‖

)
ξ n̄ + P/γc

1 + βn̄

= N0 +
(

γc

γ‖

)
P/γc − ξ/β

1 + βn̄
. (6)

Here, the dimensionless parameter ξ is associated both with
the carrier transparency number N0 and the spontaneous emis-
sion coupling factor β as [2]

ξ = βN0

(
γ‖
γc

)
. (7)

The parameter ξ also denotes the photon number when N̄ =
N0 is achieved [2]. Moreover, we found that Eq. (5) is further
simplified by introducing a new parameter β̃ defined as

β̃ = β

ξ (1 − β ) + 1
. (8)
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FIG. 1. (a), (d) Steady-state photon n̄ and (b), (e) carrier number N̄ as a function of pump power normalized by the kink threshold Pkink
th ,

which are based on the steady-state solutions of the rate equations. (c), (f) Calculated g(2)(0) based on stochastic numerical simulations of
the master equation. (a), (b), (c) are plots for low-β lasers with low-Q cavities where β = 10−3, 1/γc = 1.0 ps, 1/γ‖ = 3.0 ns, and N0 =
5.0 × 105, thus, ξ = 0.17. (d), (e), (f) are for high-β lasers with large-N0 and high-Q cavities where β = 0.8, 1/γc = 50 ps, 1/γ‖ = 3.0 ns,
and N0 = 1.0 × 104, thus ξ = 133. The blue, green, black, and red vertical dashed lines, respectively, represent the inversion Pinv

th , quantum
Pqu

th , kink Pkink
th , and gain-loss balance Pbal

th thresholds. In the low-β lasers (a), (b), (c), the black and red lines overlap Pkink
th � Pbal

th , whereas
in the high-β lasers (d), (e), (f) the blue and red lines overlap Pinv

th � Pbal
th . The yellow vertical dashed lines in (c), (f) represent the noise

threshold Pnoise
th defined and explained in Sec. V. The two horizontal dotted lines in (a), (d) represent the photon number of unity and β̃−1/2.

The horizontal dotted lines in (b), (c) represent the carrier transparency numbers N0. The inset in (e) is an enlarged figure and plots the carrier
number simulated with the birth-death master equation (blue curve) and with the rate equations (black curve), which shows the blue curve
reaches N0 with a smaller pump power than the black line.

With β̃, the steady-state photon number n̄ [Eq. (5)] is reduced
to

n̄ = 1

2β̃
[−(1 − β̃P/γc) +

√
(1 − β̃P/γc)2 + 4β̃2P/γc ],

(9)

which has the same form as the input-output curve without
the carrier transparency number ξ = 0 (N0 = 0). The con-
sequence of Eq. (9) is very important because β and N0

cannot be extracted solely by the fitting of input-output curves.
Instead, the fitting of input-output curves gives the parameter
β̃. We note that N0 � 0 is reasonable for some gas and solid-
state lasers [8], which could be modeled as four-level lasers.
Meanwhile, N0 � 0 is not realistic in semiconductor lasers.

Now, we briefly discuss the effect of the carrier trans-
parency number N0 on the photon lifetime and β. As the
photon rate equation Eq. (1) indicates, far below the kink
threshold, assuming N � 0, photon decay rate is effectively
enhanced as γc → γ eff

c = γc(1 + ξ ). Actually, this argument
is the same as the widely known fact that the effective Q value
is limited by carrier absorption. Additionally, N0 effectively
decreases β as β → β̃. The clear kink of the pump-input and
light-output curve in Fig. 1(a) is due to N0. Around and above
the kink threshold, the effect of N0 is very complicated and

numerical simulations are necessary for each case. Roughly
speaking, ξ works as a measure of the effect of the carrier
transparency number on lasing properties. When ξ is large,
N0 modifies the behavior of a laser a lot. Namely, a large
kink will appear in a pump-input and light-output curve and
a relaxation oscillation will have a high oscillation frequency
and a large damping rate. Appendix B includes simulations
with and without N0 for low- and high-β lasers.

C. Birth-death master equation

To simulate the photon statistical property of lasers, we
employ the birth-death master equation approach that was
developed for class-B lasers [7,21,38,39]. The rate equations
(1) and (2) are reinterpreted as a birth-death master equation
[7,38]:

ṗn,N = −γc[npn,N − (n + 1)pn+1,N ]

−βγ‖[(n + 1)N pn,N − n(N + 1)pn−1,N+1]

− (1 − β )γ‖[N pn,N − (N + 1)pn,N+1]

−βγ‖N0[npn,N − (n + 1)pn+1,N−1]

− P[pn,N − pn,N−1], (10)
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which is the equation of motion for the probability pn,N (t ) of
finding n photons and N carriers in the system at time t . In
other words, pn,N is the diagonal part of the density matrix of
the system. Since pn,N is the probability, it satisfies the nor-
malization condition

∑
n′,N ′ pn′,N ′ = 1. All physical observ-

ables are calculated as statistical averages. For example, the
photon number 〈n〉 and carrier number 〈N〉 are calculated as
〈n〉 = ∑

n′,N ′ n′ pn′,N ′ and 〈N〉 = ∑
n′,N ′ N ′ pn′,N ′ , respectively.

The simulated 〈n〉 and 〈N〉 qualitatively give the same results
as the mean-field results Eq. (1) and (2).

Strictly speaking, the carrier number N has an upper limit,
which is very important in lasers with a few quantum dots. In
the atomic picture, the upper limit is the number of emitters.
In the many-body electron-hole picture, the upper limit is due
to the phase space filling associated with the Pauli blocking
[10]. The model used in Ref. [20] is similar to ours, but they
considered the upper limit of the carrier number in a few QDs
lasers. In our paper, for simplicity, we neglect the upper limit
of the carrier number. In particular, in high-β and large-N0

lasers, the carrier number saturates before reaching the upper-
limit. The inclusion of the upper limit of N in the simulation
of the birth-death master equation may not be difficult and an
interesting direction.

D. Monte Carlo simulation

Although the master equation (10) can be numerically
integrated by treating pn,N as a vector, the length of the
vector, which is given by n × N , is usually too large for
computations. Therefore, we overcome this problem by per-
forming Monte Carlo simulations [12,26,39,40] based on the
Gillespie algorithm [39,41,42], which was originally invented
for simulating chemical master equations. The main idea of
the Gillespie algorithm is to stochastically calculate the time
of the next event and determine which event will occur. As we
can see from the master equation (10), there are five events
in our simulation. We calculate the probability of the five
events aν {ν=1,··· ,5} at time t as a1 = γcn, a2 = βγ‖(n + 1)N ,
a3 = (1 − β )γ‖N , a4 = βγ‖N0n, and a5 = P. In the Gillespie
algorithm, the next event takes place at time t + τ j , where the
interval time τ j is computed as τ j = (1/a0) ln(1/r1). Here,
r1 is a uniformly distributed random number ranging from
0–1 and a0 = ∑5

ν=1 aν . Then, we determine which event will
occur. The index of the next event μ is chosen to satisfy
the condition:

∑
ν aμ−1

ν < a0r2 � ∑
ν aμ

ν , where r2 is another
uniformly distributed random number ranging from 0–1. By
repeating the above procedure thousands of times, all physical
quantities are calculated as statistical averages.

E. Second-order photon correlation

Now we explain the second-order photon correlation func-
tion. In time-independent systems, the second-order correla-
tion g(2)(τ ) is defined as

g(2)(τ ) ≡ G(2)(τ )

〈n̂〉2
, (11)

where 〈n̂〉 is the mean photon number and G(2)(τ ) is the non-
normalized second-order photon correlation function given by

[43,44]

G(2)(τ ) ≡ tr{ρ̂(0)â†(0)â†(τ )â(τ )â(0)}
= tr{Û (τ )âρ̂(0)â†Û †(τ )â†â}. (12)

Here, Û (τ ) is the Liouvillian time evolution operator from
time t = 0 to t = τ and we assume â(0) = â. For the deriva-
tion of Eq. (12), we used the relation â(τ ) = Û †(τ )âÛ (τ ) and
the invariance of trace under cyclic permutations. Equation
(12) indicates that a single photon detector annihilates one
photon at time t = 0 as ρ̂(0) → âρ̂(0)â† and, after the de-
tection, the diagonal part of the density matrix evolves again
according to the master equation [Eq. (10)] until the final
photon detection measurement at time t = τ . If the single
photon annihilation at time t = 0 is interpreted as a pertur-
bation that drives the system out of equilibrium as ρ̂(0) →
âρ̂(0)â†, the function g(2)(τ ) represents the relaxation process
of a perturbed system to a steady state [45]. Therefore, the
dynamics of g(2)(τ ) is the quantum counterpart of the relax-
ation oscillation obtained with the conventional small signal
analysis.

For zero delay time τ = 0, the second-order photon corre-
lation function reads

g(2)(0) ≡ 〈n̂(n̂ − 1)〉
〈n̂〉2

, (13)

which represents photon fluctuation. When g(2)(0) > 1,
g(2)(0) = 1, and g(2)(0) < 1, photon statistics are categorized
as the super-Poissonian, Poissonian, and sub-Poissonian, re-
spectively. Normally, lasers present the transition from g(0) =
2 (thermal) to 1 (Poissonian) with an increase in pump power.
We note that the normalized second-order photon correlation
function g(2)(τ ) is unchanged by the linear photon losses and
finite quantum efficiencies of detectors [46]. The robustness
of g(2)(τ ) against linear losses is the major advantage of mea-
suring the second-order photon correlation instead of other
photon statistical quantities.

Finally, we comment on the calculation of laser linewidth.
Since linewidth is associated to the first-order photon correla-
tion G(1)(τ ) ≡ tr{ρ̂â†(τ )â(0)} and its calculation requires the
off-diagonal part of the density matrix that is not captured in
the birth-death master equation, linewidth is beyond the scope
of this paper.

III. LASING THRESHOLDS

In this section, we discuss the definitions of lasing thresh-
old. Based on the steady-state solutions of the rate equations
(5) and (6), in Fig. 1, we plot the steady-state photon n̄
and carrier number N̄ as a function of the pump power for
two cases. The first case [Figs. 1(a)–1(c)] is a low-β laser
with a low-Q cavity, which has the parameters β = 10−3,
N0 = 5.0 × 105, 1/γc = 1.0 ps, and 1/γ‖ = 3.0 ns. These
parameters result in ξ = 0.17. The second case [Figs. 1(d)–
1(f)] is for a high-β laser with a high-Q cavity where β = 0.8,
1/γc = 50 ps, 1/γ‖ = 3.0 ns, and N0 = 104, thus ξ = 133.
We also present g(2)(0) in Figs. 1(c) and 1(f) with a stochastic
simulation of the master equation.
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A. Various definitions of lasing threshold

As discussed in Refs. [2,23] for the first time, there is more
than one definition of the lasing threshold. In the following,
we review four different definitions of lasing threshold that
are plotted as colored vertical dashed lines in Fig. 1.

(i) Kink threshold. First, from the steady-state photon
number Eq. (9), we consider a lasing threshold defined as

Pkink
th = γc

β̃
= γc

ξ (1 − β ) + 1

β
. (14)

As displayed in Fig. 1, this is the pump power at which
the kink of an input-output curve in a log-log scale curve
appears, where the photon number is β̃−1/2. Thus, we refer
to Pkink

th as the kink threshold, which is easily accessible in
measurements. In terms of carriers, the carrier number starts
to saturate at the kink threshold, which is the origin of the
appearance of the nonlinear buildup of an input-output curve.
The kink threshold was introduced by Rice and Carmichael
but without the carrier transparency number N0 = 0 [7]. The
kink threshold is well defined even in a high-β and a large-N0

regime.
(ii) Gain-loss balance threshold. Second, we introduce a

widely used definition of lasing threshold, which states that
the threshold is where the gain is equal to the cavity loss
βγ‖(N̄ − N0) = γc. As explained in Ref. [2], strictly speak-
ing, this balance between gain and loss is achieved with an
infinite photon number. Approximating the carrier number
N̄ [Eq. (6)] as N̄ � P/γ‖, we obtain an approximated gain
βγ‖(N̄ − N0) � βP − γcξ ≡ Gap. With the condition Gap =
γc, the gain-loss balance threshold pump power reads

Pbal
th = γc

1 + ξ

β
. (15)

As we can easily find, when β and ξ are small, the gain-loss
balance threshold almost coincides with the kink threshold
Pbal

th � Pkink
th . Therefore, in conventional low-β lasers with

low-Q cavities, this conventional definition of lasing threshold
agrees well with the kink of the input-output curves, which
leads to the overlap of the red and black vertical dashed line
in Figs. 1(a)–1(c). On the other hand, this definition fails
when β approaches a unity because the spontaneous emission
contribution is neglected, which will be detailed in Sec. III B.

(iii) Inversion threshold. The third lasing threshold is called
the inversion threshold and is given by

Pinv
th = γc

ξ

β
, (16)

which represents the pump power at which a population
inversion is created. Interestingly, the inversion threshold can
be higher than the kink threshold (Pkink

th < Pinv
th ) when β and

ξ are sufficiently large, which is an unconventional regime
that will be explained later in terms of intensity jump without
inversion. When the mean carrier number 〈N〉 is calculated
with the birth-death master equation, 〈N〉 reaches N0 with a
smaller inversion threshold pump power than Pinv

th due to the
photon-carrier correlation 〈nN〉 �= 〈n〉〈N〉 [7]. In the master
equation approach, Pinv

th represents the pump power where
quantum gain 〈G0〉 = 〈(N − N0)n〉/〈n〉 becomes zero. We
explain this point in detail later.

(iv) Quantum threshold. Finally, we explain the quantum
threshold proposed in Refs. [2,23], which is defined as the
pump power at which the photon number inside the cavity
becomes unity. The quantum threshold is expressed as

Pqu
th = γc

1 + β̃

2β̃
= 1

2
Pkink

th + γc

2
. (17)

As shown in Fig. 1, the quantum threshold is located at
beginning of the nonlinear buildup of input-output curves. The
quantum threshold also represents the pump power where the
stimulated emission βγ‖n̄N̄ exceeds the spontaneous emission
βγ‖N̄ .

B. Intensity jump without inversion (lasers without inversion)

We compare the four definitions of lasing threshold in
detail by using the plots shown in Fig. 1. Let us start with
the low-β laser with a low-Q cavity [see Figs. 1(a)–1(c)].
In this case, the lowest threshold is the inversion threshold,
which is much lower than even the quantum threshold. Thus,
in conventional low-β lasers with low-Q cavities, a population
inversion is created before the photon number inside the cavity
reaches unity. Additionally, the gain-loss balance threshold
agrees well with the kink threshold. Thus, in low-β low-Q
lasers, the widely used definition of lasing threshold works
very well: the threshold is where the gain is equal to the
photon loss.

On the other hand, when a laser has a high β, high Q,
and moderate N0(= 104), the results are completely different.
Figures 1(d)–1(f) show that the inversion threshold is much
higher than the kink threshold. This regime was called lasers
without inversion by Yamamoto and Björk, but we name it as
intensity jump without inversion to avoid confusion with other
lasing without inversion phenomena such as lasing in EIT
systems [47,48] and polariton lasers [49–51]. Furthermore,
another reason to use the term intensity jump without inver-
sion is because the Poissonian photon statistics g(2)(0) � 1
and linewidth narrowing must be confirmed for a claim of
lasing.

Moreover, in the intensity jump without inversion regime,
the widely used gain-loss balance threshold Pbal

th fails and it
deviates from the kink threshold. To understand the origin of
the breakdown of Pbal

th , we define the gain G0 as

G0 = βγ‖(N̄ − N0) (18)

and the photon increase rate due to the spontaneous emission
divided by a mean photon number as

S0 = βγ‖N̄/n̄. (19)

As easily found from the photon rate equations Eq. (1), in a
steady state (ṅ = 0),

G0 + S0 = γc (20)

is satisfied. This indicates that, in a steady state, the photon
loss is compensated by G0 and S0. In Fig. 2, we plot G0 and S0

for the low-β [Fig. 2(a)] and high-β [Fig. 2(b)] lasers, where
the parameters are the same as in Fig. 1. Additionally, the
dashed curves in Fig. 2 represent the approximated gain

Gap = (βP − γcξ ), (21)
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FIG. 2. G0 and S0 values defined in Eq. (18) and (19), respec-
tively. The parameters for (a) and (b) are the same as in Figs. 1(a)–
1(c) and 1(d)–1(f), respectively. The unit of y axis is the cavity decay
rate γc. The bottom figure in (b) is the enlarged figure of the top one,
which clearly shows the cross of G0 and S0. For any pump power
G0 + S0 = γc is satisfied. The colored vertical dashed lines represent
various thresholds and are defined in Fig. 1.

which was already used in the definition of the gain-loss
balance threshold. At the kink threshold of the low-β laser
[see Fig. 2(a)], the gain G0 is dominant and the spontaneous
emission S0 is negligible G0 � S0(� 0). Furthermore, the
dashed curve in Fig. 2(a) indicates that the approximated gain

Gap well extrapolates G0. Therefore, the gain-loss balance
threshold Pbal

th correctly represents the pump power at which
G0 approximately balances the loss γc. In contrast, at the
kink threshold of the high-β laser [see Fig. 2(b)], the gain
is negative G0 < 0, thus G0 works as an absorption, while
the spontaneous emission contribution S0 has a large positive
value. This indicates that the nonlinear buildup of the light-
output is induced by the spontaneous emission S0, which is
a nontrivial regime. Furthermore, the approximated gain Gap

fails to extrapolate the gain, which leads to the failure of the
gain-loss balance threshold Pbal

th .
Additionally, Fig. 2 clarifies the meaning of the inversion

threshold Pinv
th and the quantum threshold Pqu

th . Even though
the mean carrier number 〈N〉 calculated with the birth-death
master equation (10) reaches N0 below Pinv

th [see the difference
of two lines in the inset of Fig. 1(e)], when we calculate
quantum gain as 〈G0〉 = 〈(N − N0)n〉/〈n〉 with the master
equation, 〈G0〉 almost coincides with the Fig. 2 and crosses
zero at P = Pinv

th . Thus, in the master equation calculation, the
creation of the population inversion 〈N〉 > N0 does not accord
with the sign change of 〈G0〉. This paradox originates from the
fact that the photon-carrier correlation cannot be factorized
in the master equation calculation: 〈Nn〉 �= 〈N〉〈n〉. Therefore,
strictly speaking, in the birth-death master equation approach,
the inversion threshold Pinv

th represents not the creation of a
population inversion but the pump power where the quantum
gain 〈G0〉 becomes positive. Second, the quantum threshold
Pqu

th represents the pump power where the stimulated emission
βγ‖N̄ n̄ becomes equal to the spontaneous emission βγ‖N̄
because the photon number becomes a unity at P = Pqu

th .
Furthermore, if ξ is smaller than a unity, G0 � S0 holds at
P = Pqu

th . We should also stress that, in the master equation,
the stimulated emission process is present even when G0 < 0.
For instance, even if G0 = 0, both the stimulated emission
and the absorption processes are present and they give rise to
fluctuations, which is very important when photon statistics
are concerned.

Finally, we discuss the requirements for the intensity jump
without inversion. This regime defined as Pkink

th < Pinv
th require

the condition βξ > 1, which is written as

β2N0

(
γ‖
γc

)
> 1. (22)

This formula indicates that not only a high β and large N0 but
also the ratio γ‖/γc are crucial for the intensity jump without
inversion. The ratio γ‖/γc increases both with increases in
the Q value of a cavity and the enhancement of γ‖ by the
Purcell effect as indicated by Eq. (3). On the other hand, if
we define the intensity jump without inversion as Pqu

th < Pinv
th ,

the required condition is

(1 + β )(1 − ξ ) < 1. (23)

This condition is much easier to realize than the former one
[Eq. (22)] because ξ > 1 is sufficient for the intensity jump
without inversion.

C. Photon statistics and thresholds

We discuss the relation between the various thresholds
and photon statistics g(2)(0). As Figs. 1(c) and 1(f) show, the

053820-6



LASING THRESHOLDS AND PHOTON STATISTICS IN … PHYSICAL REVIEW A 99, 053820 (2019)

situation is very complicated: both figures exhibit the super-
Poissonian photon statistics [g(2)(0) > 1] even at high pump
powers, but none of the four thresholds can predict the transi-
tion of g(2)(0) from the thermal to the Poissonian statistics. In
particular, the long-tailed super-Poissonian photon statistics
of the low-β laser [Fig. 1(f)] are counterintuitive because the
input-output curve has the sharp kink threshold. We argue
that these long-tailed super-Poissonian photon statistics result
from the fact that the photon decay rate is much larger than
that of carriers: γc � γ‖. We call this region class-B limit.
This is in stark contrast to low-β class-A lasers (γc < γ‖) that
present a sharp transition of the photon statistics from thermal
to Poissonian at the kink threshold (see Appendix B). In fact,
Druten and Lien have demonstrated that when γc � γ‖, the
photon statistics remain super-Poissonian far above the kink
threshold even with a class-B laser with a very low β (β =
10−5) and N0 � 0 [8,27]. Their argument is that when γc �
γ‖, “the inversion dynamics are too slow to efficiently damp
the effects of the quantum-noise source.” [8] Another possible
interpretation of the supper-Poissonian tail is associated to
the saturation of the carrier number and spontaneous emis-
sion. As we find from Eq. (6), the saturated carrier number
becomes larger with the increase of the ratio γc/γ‖. Since
the spontaneous emission rate into the cavity per photon is
given by βγ‖N̄/n̄(= S0), a large ratio γc/γ‖(� 1) may give
rise to an extra spontaneous emission noise and the super-
Poissonian tail above the kink threshold. This interpretation
is detailed in Appendix B 1. Furthermore, Chow, Jahnke,
and Gies have simulated QD lasers with low-Q cavities and
found the super-Poissonian tail [52]. Their interpretation is
that lasers become LED-like with the decreases of the photon
lifetime. In summary, in class-B lasers, the thermal photon
emission remains high even above the kink threshold and
previously proposed thresholds do not indicate the inflection
point of g(2)(0). In Sec. V, we attempt to propose a possible
definition of noise threshold based on the damping time of the
relaxation oscillation within a small signal analysis.

Additionally, it is interesting to ask whether or not it is
possible to reach g(2)(0) � 1 before reaching the inversion
threshold P = Pinv

th . Although, in Fig. 1(f), g(2)(0) is only
about 1.4 at the pump power P = Pinv

th , in Fig. 12(a) in
Appendix B, g(2)(0) � 1 is achieved with a much lower pump
power than Pinv

th . Therefore, with optimized parameters, it
would be possible to obtain the Poissonian photon statistics
below the inversion threshold. In Appendix B, we also provide
the physical interpretation of this phenomenon.

IV. EXPERIMENT

A. Experimental setup

Here, we describe our experimental setup, which is
schematically illustrated in Fig. 3. The nanocavity laser is
composed of an InP photonic crystal (PhC) cavity and three
buried InGaAsP/InGaAs multiquantum wells (MQWs) [5].
The PhC slab has a two-dimensional (2D) hexagonal lattice
with a lattice constant of 424 nm and its thickness is 245 nm.
The PhC cavity consists of three missing air holes with two
end holes shifted by 106 nm and this is called an L3 cavity.
The MQW region with a volume of 0.30 × 1.25 × 0.145 μm3

FIG. 3. Scanning electron microscope (SEM) image and struc-
ture of a PhC nanocavity laser with an MQW (top). Schematic of
experimental setup (bottom).

is embedded in the cavity region with the regrowth method
[4]. All experiments are carried out at room temperature.
The PhC nanocavity laser is pumped with a continuous wave
(CW) semiconductor laser operating at 640 nm. The laser
outputs from the sample are carried to superconducting single
photon detectors (SSPDs) through single-mode optical fibers,
which select a single transverse mode. Additionally, a single
longitudinal lasing mode is extracted with an interference
filter. To measure the second-order photon correlation g(2)(τ ),
we employ a conventional Hanbury-brown Twiss (HBT) inter-
ferometer. We assume that the resolution time of the SSPDs,
which is about 30 ps, is fast enough to measure the second-
order photon correlation, which has a typical width of 100 ps.

B. Pump-input and light-output curve

First, in Fig. 4(a), we show the output photon number as
a function of the pump input, which is called an pump-input
and light-output (input-output) curve. Figure 4(b) shows the
linewidth of the emission, which reveals that the linewidth
decreases below the spectral resolution of the spectrometer.
The kink of the input-output curve and the narrowing of the
linewidth displayed in Fig. 4(b) imply a lasing transition. We
fit the input-output curve with the steady-state photon number
Eq. (9). From the fitting, we find β̃ = 0.019. The vertical
dashed black lines in Fig. 4 show the kink threshold Pkink

th ,
which corresponds to an excitation light power of 0.127 mW.

Now, we attempt to calculate the conventional spontaneous
coupling coefficient β from the measured input-output curve.
For this purpose, β is inversely solved from Eq. (7) together
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FIG. 4. Measured output photon number (input-output curve)
(a) and linewidth (b) as a function of pump power. In (a), the output
photon number in the y axis is estimated from the fitting of the
measured light output intensity and pump light intensity curve with
Eq. (9). The linewidth measurement is limited by the resolution of
the spectrometer, which is represented by the blue shaded area. The
pump power is normalized by the kink threshold of the input-output
curve, which is represented by the vertical dashed lines. The blue
solid line in (a) is a fitting with Eq. (9), which gives β̃ = 0.019. The
inset in (b) is the emission spectrum at P/Pkink

th = 0.9.

with Eq. (8) as

β = 1

2β̃C

[
−(1 − β̃C) +

√
(1 − β̃C)2 + 4β̃2C

]
,

(24)

where C = (γ‖/γc)N0 and N0 �= 0. This equation indicates
that, to obtain β from β̃, we need to know three parameters:
γc, γ‖, and N0. First, the carrier lifetime of III–V QW at
room temperature 1/γ‖ is of the order of a few nanoseconds:
1/γ‖ = 3–10 ns [53–55]. We performed the time resolved
measurement of the carrier decay with a bare QW at room
temperatures and the measured carrier lifetime was 4.6 ns (not
shown). On the other hand, the photon lifetime γc is related to
the Q value as 1/γc = Qλ/2πc, where c is the speed of light.
We need the Q value of the L3 InP PhC cavity without carrier
absorption in the MQW, but unfortunately, experimentally we
can only measure the decreased Q value with the carrier ab-
sorption, which is typically a few thousands: Qabs = 1000 ∼
7000 [5]. Finally, the carrier transparency number N0 is given
by N0 = n3DVact, where n3D ∼ 1018 cm−3 is the 3D carrier
transparency density [5] and Vact is the active mode volume.
When we take the volume of the three quantum wells buried in
the L3 cavity into account, we obtain Vact = 7.4 × 10−15 cm3,
which leads to N0 = n3DVact ∼ 6.0 × 103. Meanwhile, if we
use the 2D carrier transparency density of a quantum well

n2D ∼ 1.5 × 1012 cm−2 [56], we estimate the carrier trans-
parency number as N0 = n2DSact ∼ 1.7 × 104, where Sact =
1.1 × 10−8 cm2 are the areas of the three quantum wells. To
summarize, the carrier transparency number is estimated to be
N0 = 6.0 × 103 ∼ 1.7 × 104.

As we see, these are very crude estimations, and the infor-
mation obtained from the light-input and light-output curve is
very limited. Therefore, additional information is required if
we are to more precisely determine the parameters. For this
purpose, in Sec. IV C, we make use of the delay-dependent
second-order correlation function.

C. Second-order photon correlation

We discuss not only the second-order photon correlation
function at a zero time delay g(2)(0) but also the delay-
dependent function g(2)(τ ). The measurement of g(2)(0) is
commonly performed to confirm a lasing transition, whereas
the time delay dependence of g(2)(τ ) is rarely studied. We
carried out systemic measurements of g(2)(τ ) and show that
the delay dependence of g(2)(τ ) is useful for determining such
parameters as β and N0.

We present measured g(2)(τ ) values for three different
pump powers in Fig. 5(d). First, we find that the bunch-
ing behavior of g(2)(τ ) gradually disappears as the pump
power increases. Figure 5(a) shows measured g(2)(0) as a
function of pump power, which presents a gradual transition
from thermal [g(2)(0) = 2] to Poissonian [g(2)(0) = 1] photon
statistics. Second, let us focus on the time delay dependence
of the measured g(2)(τ ). Clearly, g(2)(τ ) for P/Pkink

th = 2.7 [see
Fig. 5(d)] clearly shows damped oscillatory behavior, which
can be fitted as

g(2)(τ ) = 1 + [g(2)(0) − 1]e−γr |τ | cos(ωr |τ | + φ). (25)

The measured oscillation frequencies ωr and damping times
1/γr are plotted as red dots in Figs. 5(b) and 5(c), respectively.
As already mentioned in Sec. II E, a single photon annihila-
tion drives the system out of equilibrium as ρ̂ → âρ̂â† and
the perturbed system relaxes again into a steady state [45].
Thus, the dynamics of the second-order photon correlation
g(2)(τ ) represent the relaxation process. We find that the
oscillation ωr becomes faster with increases in pump power
[see Fig. 5(b)], whereas the maximum damping time 1/γr ∼
0.25 ns is identified around P/Pkink

th ∼ 3 [see Fig. 5(c)]. This
maximum damping time is used later in the context of the
noise threshold. Since this damped oscillatory behavior of the
second-order photon correlation is analogous to the relaxation
oscillation commonly observed in class-B lasers, the oscilla-
tion frequency and the damping time could be approximately
calculated with the conventional small signal analysis. In a
small signal analysis, the relaxation oscillation is analyzed
with the linearization of a small fluctuation around a steady
state, which provides analytical formulas of the relaxation
oscillation frequency ωr and damping rate γr [8,25]:

ωro =
√

βγ‖γc(n̄ − ξ ) − 1

4

{
−γ‖(1 + βn̄) + γc(1 + ξ )

1 + n̄

}2

(26)
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FIG. 5. Second-order photon correlation function g(2)(τ ) measurements performed with a Hanbury Brown-Twiss (HBT) interferometer
and superconducting single photon detectors (SSPDs). g(2)(0) (a), the oscillation frequency ωr , (b) and the damping time 1/γr (c) of g(2)(τ )
are shown as a function of the pump power normalized by the kink threshold. The blue solid lines (a) and (b), (c) are the results of a stochastic
simulation of the birth-death master equation and the small signal analysis, respectively. For these simulations and plots, 1/γc = 25 ps, 1/γ‖ =
4.5 ns, β = 0.16, and N0 = 10000 are used. These parameters lead to ξ = 8.7. Examples of the measured (d) and simulated (e) second-order
photon correlation functions.

and

γro = 1

2

{
γ‖(1 + βn̄) + γc(1 + ξ )

1 + n̄

}
. (27)

The small signal analysis is explained in detail in Appendix A.
Strictly speaking, the linearization procedure is not applicable
at the lasing threshold because of the enhanced fluctuations
associated and the small number of photons [38]. This implies
that we should extract ωr and γr from the simulated g(2)(τ )
based on the master equation. However, since the Monte Carlo
simulation of g(2) requires a lot of computation time, we do not
employ this method. In fact, it is known that even around the
lasing threshold, ωr and γr given by the small signal analysis
approximately agree with those based on the master equation
[20,23] [see also Fig. 7(d)].

Figure 6 shows g(2)(0), the oscillation frequency ωr , and
the damping time γr of g(2)(τ ) for various combinations of β

and N0 that satisfy the same input-output curve. While g(2)(0)
is calculated with a stochastic simulation of the master equa-
tion, ωr and γr are based on the small signal analysis Eq. (26)
and (27). In Fig. 6, the photon and carrier lifetimes are fixed
as 1/γc = 25 ps and 1/γ‖ = 4.5 ns, respectively. As Figs. 6(c)
and 6(d) clearly show, ωr and γr are very sensitive to the β and
N0 values in contrast to g(2)(0) that does not vary greatly when
the β and N0 values are changed [see Fig. 6(b)]. Comparing
the plotted ωr and γr with the experiments, we estimate the
carrier transparency number and the spontaneous coupling
coefficient as N ∼ 10000 and β ∼ 0.16, respectively, which
leads to ξ ∼ 8.7. Of course, since they also depend on the

photon 1/γc and carrier 1/γ‖ lifetimes, we need to repeat the
same plots as Fig. 6 for various 1/γc and 1/γ‖ values. In fact,
after repeating these plots, we found that 1/γc ∼ 25 ps and
1/γ‖ ∼ 4.5 ns is one of the best combinations for reproducing
the measured results. We note that these parameters agree with
the crude estimations obtained in the previous subsection.
For the Q value, since the photon decay rate is effectively
enhanced as γ eff

c = (1 + ξ )γc, the photon lifetime with the
carrier absorption is about 2.6 ps and the corresponding
Q value with absorption becomes Qabs ∼ 3.2 × 103, which
agrees well with the previously measured Q value [5].

Finally, we comment on the usefulness of a delay-
dependent g(2)(τ ) measurement from a technical standpoint.
The oscillation frequency ωr and the damping rate γr of
g(2)(τ ) could be obtained with turn-on delay measurements.
However, since a step-function-like pump pulse is necessary,
whose modulation time must be faster than the oscillation
frequency and the damping time, turn-on delay measurements
are not always easy to perform. Instead, a delay-dependent
g(2)(τ ) measurement can be performed under continuous wave
operation without any pump modulation.

D. Lasing thresholds

Here, we discuss the four thresholds introduced in Sec. III
with respect to a measured buried MQW PhC laser. Based on
the estimated parameters 1/γc = 25 ps, 1/γ‖ = 4.5 ns, N0 =
10000, and β = 0.16, we show the four thresholds in Fig. 7
and 8 as colored vertical dashed lines. Even though the values
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FIG. 6. Fixing 1/γc = 25 ps, 1/γ‖ = 4.5 ns, and β̃ = 0.019, we
plot (a) the steady-state carrier number, (b) g(2)(0), (c) the oscillation
frequency ωr , and (d) the damping rate γr of g(2)(τ ) for four different
combinations of N0 and β. The colored lines represent N = 5000
(β = 0.04), 10000 (0.16), 15000 (0.39), and 20000 (0.54), which
respectively correspond to ξ = 1.0, 8.7, 33, and 60. While (a) and
(b) are based on a stochastic simulation of the master equation,
(c) and (d) are plotted with the analytical solution of a small signal
analysis.

of these thresholds contain errors due to the uncertainties
of the estimations of parameters, these errors do not greatly
affect the following discussion. Figure 7 indicates that the
gain-loss balance threshold (the red vertical dashed line) is
close to the kink threshold (the black vertical dashed line)
Pbal

th � Pkink
th . Thus, it may appear that our buried MQW PhC

laser can be categorized as a conventional laser, but this is not

FIG. 7. (a) Simulated input-output curve and (b) carrier number,
(c) g(2)(0), (d) damping time γr of g(2)(τ ), and (e) the Fano factor
for 1/γc = 25 ps, 1/γ‖ = 4.5 ns, β = 0.16, and N0 = 10000. These
parameters are the same as those used in Fig. 5. The simulations
are based on the birth-death master equation. The blue line in (b) is
the damping time of the relaxation oscillation with the small signal
analysis Eq. (27), whereas the blue filled circle is based on the direct
fitting of simulated g(2)(τ ). The blue, green, black, and red vertical
dashed lines, respectively, represent the inversion Pinv

th , quantum Pqu
th ,

kink Pkink
th , and gain-loss balance Pbal

th thresholds. The yellow vertical
dashed line is the noise threshold Pnoise

th defined in Eq. (30). The
two horizontal dotted lines in (a) represent photon numbers of unity
and β̃−1/2. The horizontal dotted line in (b) represents the carrier
transparency number N0 = 10000.
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FIG. 8. G0 and S0 values are plotted based on the parameters used
in Fig. 7. G0 and S0 are defined respectively in Eq. (18) and (19). The
definition of the colored vertical dashed lines is the same as in Fig. 7.

true with respect to the inversion threshold. We find that the
inversion threshold Pinv

th is larger than the quantum threshold
(Pqu

th < Pinv
th ) and, additionally, Pinv

th is very close to the kink
threshold (Pkink

th � Pinv
th ). Recalling that the inversion threshold

is much lower than the quantum threshold in conventional
low-β lasers [see Fig. 1(a)], we notice that the threshold
behavior of our laser is unconventional. With the estimated
parameters, Fig. 8 plots the values of G0 and S0 defined as
Eq. (18) and (19), respectively. This figure clearly shows that
the spontaneous emission S0 dominates over the gain G0 at the
kink threshold. Furthermore, since Gap does not extrapolate
G0 well (see the dashed curve in the top figure of Fig. 8),
we argue that the gain-loss balance threshold fails in our
laser. In Fig. 7(c), the Poissonian light emission g(2)(0) � 1
is achieved above the inversion threshold P = Pinv

th , which is
the same as conventional lasers. Further increases of β, N0,
and the photon lifetime will be interesting direction to achieve
the more interesting region where Poissonian light is emitted
below the inversion threshold. In any case, we could argue
that our laser exhibits an unconventional threshold behavior
associated with a high β and large N0 and may fall within the
intensity jump without inversion regime.

V. NOISE THRESHOLD

Here, we focus on photon statistics represented by g(2)(0).
As we have already discussed, no definition of lasing thresh-
old predicts the transition of photon statistics from the thermal
[g(2)(0) = 2] to the Poissonian [g(2)(0) = 1]. The inflection
point of g(2)(0)(∼ π/2 ∼ 1.5) [57] is located above all the
four thresholds, which is about three times higher than the

kink threshold. Furthermore, g(2)(0) = 1 is achieved at a pump
power that is ten times higher than the kink threshold. In fact,
as already discussed in Sec. III C, the measured long-tailed
bunching of g(2)(0) is the typical photon statistics of lasers
in the class-B limit γc/γ‖ � 1: the slow damping relaxation
oscillation provides excess noise. Since we obtain γc/γ‖ =
180(� 1) with the estimated parameters, our laser is evidently
classified as a laser within the class-B limit.

Finally, we propose a possible definition for noise thresh-
old. The main idea is that the maximum damping time of
the relaxation oscillation [see the τr peak in Fig. 5(c)] could
be interpreted as the noise threshold at which the thermal
to Poissonian transition of g(2)(0) appears (noise threshold).
Although this is simply an empirical idea and has not yet been
proved rigorously, we can intuitively illustrate it as follows.
Since the damping time τr characterizes the lifetime of a
fluctuation, a longer τr would lead to a larger amount of noise
due to noise accumulation. Recalling the noise enhancement
around the critical points of phase transitions, the maximum
value of τr would represent both the maximum noise and noise
threshold. Furthermore, the enhanced damping time at the
noise threshold might be interpreted as the critical slowing
down of the amplitude mode in terms of the laser-phase
transition analogy [58,59]. Within the small signal analysis,
from Eq. (27), when the photon number is

nd =
√

γc(1 + ξ )

βγ‖
− 1, (28)

τr reaches its maximum (γr is minimum)

τr,max = 1

(1 − β )γ‖/2 + √
βγcγ‖(1 + ξ )

. (29)

From the steady-state solutions of the rate equations, the pump
power when n̄ = nd is easily calculated as

Pnoise
th = γc

β

[
nd

1 + nd
(1 + ξ )(1 + βnd ) − ξβnd

]
, (30)

at which point the transition of the photon statistics from
thermal to Poissonian will occur g(2)(0) ∼ 1.5. As Figs. 5
and 7 show, both the experiment and the simulation result
in g(2)(0) ∼ 1.5 where the damping time of the relaxation
oscillation becomes maximum. Additionally, in Fig. 7(e) we
show the Fano factor defined as

F ≡ (n)2

〈n̂〉 = 1 + 〈n̂〉[g(2)(0) − 1], (31)

which represents the photon number variance divided by the
mean photon number. The peak of the Fano factor at around
the noise threshold Pnoise

th illustrates the enhancement of the
photon noise at the maximum damping time of the relaxation
oscillation. We found that the noise threshold Eq. (30) charac-
terizes the inflection point of g(2)(0) in a wide range of param-
eters in class-B lasers [see Figs. 1(c)–1(f) and Appendix B].
However, we note that Eq. (30) cannot be used in class-A
lasers because the small signal analysis fails, but the noise
threshold will be still the pump power at which the damping
time of g(2)(τ ) is at its maximum (see Appendix. B). The
lasing thresholds and photon statistics of high-β lasers in the
class-A regime will be the subjects of future investigations.
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The interesting application of the noise threshold is to the
thresholdless lasers (β = 1). As is well known, input-output
curves become thresholdless when β is unity, but g(2)(0)
provides a thresholdlike transition if the lasers are class B.
Even in these class-B thresholdless lasers, the damping time
of the relaxation oscillation exhibits a peak and the noise
threshold Eq. (30) can predict the noise threshold of g(2)(0)
[for example, see Fig. 11(b) and Fig. 12(b) in Appendix B].

VI. CONCLUSION

We have investigated the lasing thresholds and photon
statistics of buried multiple quantum well (MQW) photonic
crystal (PhC) nanocavity lasers. Since our buried MQW PhC
has a high spontaneous emission coupling coefficient β and a
large carrier transparency number N0, the definitions of lasing
thresholds and photon statistics become nontrivial. For an
analysis of lasing thresholds, we need to estimate physical
parameters such as β and N0. Together with the fitting of
an input-output curve, we used delay-dependent second-order
photon correlations g(2)(τ ) that provide information on the
dynamical properties of lasers. Finally, we estimated that our
buried MQW PhC laser had N0 ∼ 104 and β ∼ 0.16, which
imply that a population inversion is created around the kink
threshold of the input-output curve. Since in conventional
low-β lasers, the population inversion is formed far below
the kink threshold, our laser is operating in an unconventional
regime and very close to the lasers without inversion (intensity
jump without inversion) regime proposed by Yamamoto and
Björk.

We also discussed the photon statistics of the buried MQW
PhC lasers and the noise threshold. The measured g(2)(0)
showed that the super-Poissonian photon statistics remained
even far above the kink threshold and were found to be the
characteristic photon statistics of lasers in the class-B limit,
in which region the excess noise is driven by a slow damping
relaxation oscillation. Since previously proposed definitions
of lasing threshold cannot predict the noise threshold of g(2)(0)
in class-B lasers, we proposed a possible definition of the
noise threshold that is defined as the pump power where the
damping time of the relaxation oscillation reaches its max-
imum. Our proposed noise threshold explains the measured
photon statistical behaviors.

We believe that our results will trigger a reconsideration
of the definitions of thresholds and photon statistics of lasers
with a high β and large N0 and cast light on the physics of
cavity-QED lasers.

Note added in proof. Recently we became aware of a paper
with a similar motivation [60].
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APPENDIX A: SMALL SIGNAL ANALYSIS

In this Appendix, we analyze the relaxation oscillation
with a conventional linearization method called a small sig-
nal analysis [8,14,20,25,28,32]. Although the linearization

is inapplicable to the lasing operation near the threshold in
a strict sense, a small signal analysis is a very convenient
and intuitive method and it gives approximately the same
results as the birth-death master equation of class-B lasers.
First, we write the photon and carrier numbers as n = n̄ + δn
and N = N̄ + δN , respectively, and substitute them into the
rate equations (1) and (2). Here, n̄ and N̄ are the steady-
state photon and carrier numbers given in Eqs. (5) and (6),
respectively, whereas δn and δN , respectively, are photon and
carrier fluctuations around the steady states. Taking only the
linear terms of the fluctuations, the equations of motion of δn
and δN follow

d

dt

(
δn
δN

)
= M

(
δn
δN

)
, (A1)

where the matrix M reads

M =
(−γc + βγ‖(N̄ − N0) βγ‖(1 + n̄)

−βγ‖(N̄ − N0) −γ‖(1 + βn̄)

)
. (A2)

From the real and imaginary parts of the eigenvalues of the
matrix in Eq. (A2), the relaxation oscillation frequency ωro

and the damping rate γro are, respectively, obtained as

ωro =
[
βγ‖γcn̄ − β2γ 2

‖ N0

− 1

4

(
−γ‖(1 + βn̄) + γc + βγ‖N0

1 + n̄

)2] 1
2

(A3)

and

γro = 1

2

{
γ‖(1 + βn̄) + γc + βγ‖N0

1 + n̄

}
, (A4)

where N̄ is eliminated with Eq. (6) and n̄ is given by Eq. (5).
Rewriting N0 with ξ , we can obtain Eqs. (26) and (27) in
the main text. Using ωro and γro, within the framework of
the small signal analysis, the decay process of the small
fluctuation of photons δn(t ) is approximated as

δn(t ) � δn(0)e−γrot cos(ωrot + φ). (A5)

Interestingly, the small signal analysis qualitatively well re-
produces the oscillation frequency and the damping time of
the second-order photon correlation function g(2)(τ ) that can
be simulated based on the birth-death master equation. This is
because, as discussed in the main text, g(2)(τ ) also represents
the relaxation process of the system driven by a single photon
annihilation. The relation between g(2)(τ ) and δn(τ ) could
also be understood in the framework of Onsager’s regres-
sion hypothesis, which states that the equilibrium correlation
functions follow the same equations of motion as those of
the nonequilibrium deviation δn(t ). With this assumption, the
correlation functions satisfy [61]

d

dt

( 〈n(0)n(t )〉
〈N (0)n(t )〉

)
= M

( 〈n(0)n(t )〉
〈N (0)n(t )〉

)
, (A6)
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where M is the same matrix as Eq. (A2). Thus, g(2)(τ ) can be
approximated as

g(2)(τ ) = 1 + 〈n(0)n(τ )〉
n̄2

� 1 + n2

n̄2
e−γroτ cos(ωroτ + φ), (A7)

where n2 = 〈n(0)n(0)〉. The above equation indicates
that the oscillation frequency and the decay rate of the second-
order correlation are approximated, respectively, as ωro and
ωro, which are given in Eqs. (A3) and (A4).

APPENDIX B: SIMULATIONS WITH VARIOUS
PARAMETERS

Here, we perform simulations with a wide range of pa-
rameters. Our objective is not to cover all different parameter
regimes but to support the arguments in the main text. Our
main purposes are to (i) show the simulations of class-A
lasers and to (ii) confirm the validity of the noise threshold
introduced in Sec. V.

We note that in the class-A limit γc/γ‖  1 without a car-
rier transparency number (N0 = 0), the adiabatic elimination
of the carrier degree of freedom may allow us to obtain the
master equation only of photons. This photon master equation
could be analytically solved by the detailed balance condition
and we may obtain an analytical photon distribution as [48,62]

pn = (P/γc)n�(1/β )

1F1(1; 1/β; P/γc)�(n + 1/β )
, (B1)

where 1F1(a; b; z) is the confluent hypergeometric function
and �(x) is the Gamma function. The details of this approach
will be discussed elsewhere. Instead, in this Appendix, we
directly simulate the birth-death master equation (10).

1. Low-β lasers

First, we simulate low-β lasers (β = 0.001) without a car-
rier transparency number (N0 = 0) in Fig. 9, where Fig. 9(a)
and 9(b) are simulations, respectively, for class-A (γc/γ‖ =
0.1) and class-B (γc/γ‖ = 103) parameters. For Fig. 9(a),
1/γc = 1 ns, 1/γ‖ = 0.1 ns, β = 0.001, and N0 = 0 are used.
For Fig. 9(b), 1/γc = 1 ps, 1/γ‖ = 1 ns, β = 0.001, and
N0 = 0 are used. As we briefly mentioned in Sec. III B,
the zero carrier transparency number is impossible with an
ensemble of two-level atoms and unrealistic in conventional
semiconductor lasers. However, N0 � 0 is, in principle, pos-
sible for example with an ensemble of four-level atoms. In
fact, it is known that, in some gas and solid-state lasers [8],
the approximation N0 � 0 is reasonable. The second-order
photon correlations at a zero delay in Fig. 9 indicate the
sharp transition of photon statistics from thermal g2(0) = 2 to
Poissonian g2(0) = 1 at the kink threshold P = Pkink

th for the
class-A laser, whereas, for the class-B laser, the tail of super-
Poissonian photon statistics [g2(0) > 1] is present above the
kink threshold. In the main text, we have already discussed
this long-tailed super-Poissonian photon statistics. Figure 9
clarifies that the super-Poissonian tail is associated to the ratio
γc/γ‖. Comparing the carrier numbers in Fig. 9(a) and 9(b),
we find a very large difference. The saturated carrier number

FIG. 9. Simulations for low-β (β = 0.001) (a) class-A and
(b) class-B lasers without a carrier transparency number (N0 = 0).
Top figures: carrier number N̄ (black line) and photon n̄ (blue line).
Middle figures: g(2)(0) (black line) and the Fano factor (blue line).
Bottom figures: the damping time (black line or filled circles) and
oscillation frequency of g(2)(τ ) (blue line). In the bottom figures, the
black line is the result of the small signal analysis [Eq. (27)], while
the black filled circles are obtained by the fitting of simulated g(2)(τ ).
The black and yellow vertical dashed lines respectively represent the
kink Pkink

th and noise Pnoise
th thresholds. The lifetimes are 1/γc = 1 ns,

1/γ‖ = 0.1 ns for (a), while 1/γc = 1 ps, 1/γ‖ = 1 ns for (b).

in Fig. 9(a) is just around 100, while the saturated carrier
number in Fig. 9(b) is around 106. On the other hand, there
is no difference between the two pump-input and light-output
curves in Figs. 9(a) and 9(b), whose shapes are determined by
β̃. Therefore, even above the kink threshold, the spontaneous
emission rate into the cavity per photon βγ‖N̄/n̄(= S0) is
much larger in Fig. 9(b) than in Fig. 9(a). Therefore, the
supper-Poissonian tail of g(2)(0) in Fig. 9(b) may originate
from the strong spontaneous emission noise associated to
the large carrier number above the kink threshold. Now, we
discuss the damping times of the second-order correlations
g(2)(τ ) and the noise threshold. For the class-B laser, the
solid line in the bottom figure of Fig. 9(b) is the small signal
analysis result given by Eq. (27). Meanwhile, for the class-A
laser, the filled black circles in the bottom figure of Fig. 9(a)
are based on the fitting of simulated g(2)(τ ) because the small
signal analysis fails in class-A regime. In the low-β class-B
laser [Fig. 9(b)], the noise threshold Pnoise

th , which is defined
as Eq. (30) and represented by the yellow dashed vertical
line, works very well. The noise threshold Pnoise

th perfectly
agrees with the peak of the Fano factor and represents the
inflection point of g2(0). On the other hand, in the low-β
class-A laser [Fig. 9(a)], we do not plot the noise threshold
calculated as Eq. (30) due to the failure of the small signal
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FIG. 10. Same as Fig. 9 but for low-β (β = 0.001) (a) class-A
and (b) class-B lasers with a carrier transparency number N0 = 103.
The black, blue, and yellow vertical dashed lines, respectively, rep-
resent the kink Pkink

th , inversion Pinv
th and noise Pnoise

th thresholds. The
lifetimes are 1/γc = 1 ns, 1/γ‖ = 0.1 ns for (a), while 1/γc = 1 ps,
1/γ‖ = 1 ns for (b). These parameters lead to β̃ = 9.1 × 10−5 and
ξ = 10 for (a), while β̃ = 0.001 and ξ = 0.001 for (b).

analysis. Interestingly, even though the small signal analysis
fails, the damping time of g2(τ ) behaves in the similar way as
the Fano factor [compare the middle and the bottom figures
in Fig. 9(a)] and the both reach their maxima at the kink
threshold. Actually, in Fig. 9(a), the noise threshold is the kink
threshold: Pnoise

th = Pkink
th . The sharp change of g2(0) at the

intensity kink has been experimentally confirmed in He:Ne
lasers [63,64] and regarded as a textbooklike behavior [65,66].

Second, we carry out simulations with a finite carrier trans-
parency number (N0 = 103) and show the results for class-A
[Fig. 10(a)] and class-B [Fig. 10(b)] lasers in Fig. 10. Except
the carrier transparency number N0, all the other parameters
are the same as in Fig. 9. We note that the inversion thresholds
are located much lower than the kink thresholds Pinv

th  Pkink
th

and they do not appear in the x-axis ranges of Fig. 10. Com-
paring Figs. 9 and 10, we find that N0 does not modify photon
statistics of the low-β laser a lot. For the class-B laser [see
Fig. 10(b)], the negligible effect of N0 is intuitive because the
parameter ξ = 0.001 is very small. For the class-A laser [see
Fig. 10(a)], ξ = 10 is not small, but N0 does not modify the
behavior of photon statistics and the sharp transition of g(2)(0)
still exists. In the low-β class-A laser, the main effect of N0 is
the effective decrease of β. In fact, β effectively decreases
by one order of magnitude as β → β̃ � 0.0001. Thus, in
Fig. 10(a), the kink of the pump-input and light-output curve
is larger than that in Fig. 9(a).

In summary, in low-β lasers, the pump power dependence
of g(2)(0) is determined mainly by the ratio γc/γ‖. In class-A

FIG. 11. Simulations for high-β (β = 0.8) (a) class-A and
(b) class-B lasers without a carrier transparency number (N0 = 0).
Top figures: carrier number N̄ (black line) and photon n̄ (blue line).
Middle figures: g(2)(0) (black line) and the Fano factor (blue line).
Bottom figures: the damping time (black line or filled circles) and
oscillation frequency of g(2)(τ ) (blue line). In the bottom figures, the
black line is the result of the small signal analysis [Eq. (27)], while
the black filled circles are obtained by the fitting of simulated g(2)(τ ).
The black and yellow vertical dashed lines respectively represent the
kink Pkink

th and noise Pnoise
th thresholds. The lifetimes are 1/γc = 1 ns,

1/γ‖ = 0.1 ns for (a), while 1/γc = 1 ps, 1/γ‖ = 1 ns for (b).

parameters, photon statistics sharply change from thermal to
Poissonian at the kink threshold, while in class-B parameters,
super-Poissonian photon statistics are present above the kink
threshold.

2. High-β lasers

Now, we consider high-β lasers (β = 0.8). We show that
both the ratio γc/γ‖ and the carrier transparency number N0

dramatically affect the lasing behavior of high-β lasers.
First, Fig. 11 displays the simulations of high-β class-

A (γc/γ‖ = 0.1) [Fig. 11(a)] and class-B (γc/γ‖ = 103)
[Fig. 11(b)] lasers without a carrier transparency number
(N0 = 0). For Fig. 11(a), the parameters are 1/γc = 1 ns,
1/γ‖ = 0.1 ns, β = 0.8, and N0 = 0. For Fig. 11(b), the pa-
rameters are 1/γc = 1 ps, 1/γ‖ = 1 ns, β = 0.8, and N0 = 0.
Figure 11(a) indicates that the photon statistics of the high-β
class-A laser without a carrier transparency number are very
unconventional in that thermal photon statistics [g(2)(0) = 2]
are not recovered even far below the kink threshold. For
example, even at P = 0.1Pkink

th , g(2)(0) is only around 1.2.
The noise threshold also completely fails in Fig. 11(a). These
photon statistics have been already mentioned in some articles
in the context of high-β QD lasers with extremely high-Q
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FIG. 12. Same as Fig. 11 but for high-β (β = 0.8) (a) class-A
and (b) class-B lasers with a carrier transparency number N0 = 103.
The black, blue, and yellow vertical dashed lines, respectively, rep-
resent the kink Pkink

th , inversion Pinv
th , and noise Pnoise

th thresholds. The
lifetimes are 1/γc = 1 ns, 1/γ‖ = 0.1 ns for (a), while 1/γc = 1 ps,
1/γ‖ = 1 ns for (b). These parameters lead to β̃ = 5.0 × 10−4 and
ξ = 8000 for (a), while β̃ = 0.7 and ξ = 0.8 for (b).

cavities [7,9,21]. The photon statistical behavior in Fig. 11(a)
is attractive because the Poissonian light emission seems to
be possible with an ultralow pump power. However, it will be
very difficult to realize this parameter regime. The difficulty
lies in that even a very small carrier transparency number
breaks the photon statistical behavior shown in Fig. 11(a). For
example, just with N0 = 50, a class-A high-β laser will emit
thermal light g(2)(0) = 2 below the kink threshold. Therefore,
the photon statistics of actual high-β and high-Q QD lasers
are not like in Fig. 11(a) but will show the transition from
g(2)(0) = 2–1 [17,18]. Actually, later in Fig. 12(a), we show
simulations with N0 = 103 and a transition from g(2)(0) = 2–
1. On the other hand, the photon statistical property of the
high-β class-B laser without a carrier transparency number

[see Fig. 11(b)] is more familiar for us because we have
already discussed the super-Poissonian tail of class-B lasers.
Similarly to Fig. 7 in the main text, in the bottom figure of
Fig. 11(b), the black solid line (small signal analysis) slightly
deviates from the black filled circles [the fitting of g(2)(τ )].
This deviation originates from the imperfection of the small
signal analysis. Due to this difference, the noise threshold
Pnoise

th underestimates the true noise threshold, but Pnoise
th ap-

proximately works well. The most important consequence of
Fig. 11(b) may be the fact that even though the pump-input
and light-output curve is almost thresholdless, g(2)(0) has a
threshold.

Second, we introduce a finite carrier transparency number.
Figure 12 shows the simulations of high-β class-A [Fig. 12(a)]
and class-B [Fig. 12(b)] lasers with N0 = 103. All the pa-
rameters except the carrier transparency number N0 are the
same as in Fig. 11. In the class-B laser [see Fig. 12(b)], since
ξ = 0.8 is small, the carrier transparency number N0 = 103

does not modify the lasing properties a lot [cf. Fig. 11(b)
and Fig. 12(b)]. We note that the parameter regime used in
Fig. 12(b) is close to our previous experiment of the high-β
buried MQW PhC laser at cryogenic temperatures [5]. Mean-
while, for the class-A laser [see Fig. 12(a)], the introduction
of a finite N0 dramatically changes both the pump-input and
light-output curve and photon statistics. First, in spite of the
very high β(= 0.8), a sharp kink appears in the pump-input
and light-output curve due to the small β̃(= 5.0 × 10−4)
[see the top figure of Fig. 12(a)]. Additionally, the inversion
threshold Pinv

th [blue dashed vertical line in Fig. 12(a)] is
located clearly above the kink threshold, which is the intensity
jump without inversion discussed in the main text. In terms
of photon statistics, in contrast to Fig. 11(a), g(2)(0) sharply
drops from 2 to 1 at the kink threshold in Fig. 12(a). Interest-
ingly, g(2)(0) reaches a unity with a lower pump power than
the inversion threshold (Pnoise

th < Pinv
th ). Therefore, the laser

shown in Fig. 12(a) could be called a laser without inversion
in terms not only of the intensity jump but also of photon
statistics. In order to understand this phenomenon, we need
to recall the fact that, in the master equation, the stimulated
emission itself exists even when G0 < 0. Since the stimulated
emission term βγ ‖N̄ n̄ exceeds the spontaneous emission term
βγ ‖N̄ at the quantum threshold, the stimulated emission
can dominate over the spontaneous emission even when the
G0 is negative, which makes g(2)(0) � 1 possible below the
inversion threshold. In this argument, we are assuming that the
absorption process associated to βγ‖N0n̄ term does not affect
the photon statistics.
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