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Optical cavities can induce photon-mediated interactions among intracavity-trapped atoms. Multimode
cavities provide the ability to tune the form of these interactions, e.g., by inducing a nonlocal sign-changing
term to the interaction. By accounting for the Gouy phase shifts of the modes in a nearly degenerate, confocal,
Fabry-Pérot cavity, we provide a theoretical description of this interaction, along with additional experimental
confirmation to complement that presented in the companion paper [Y. Guo et al., Phys. Rev. Lett. 122, 193601
(2019)]. Furthermore, we show that this interaction should be written in terms of a complex order parameter,
allowing for a U(1) symmetry to emerge. This symmetry corresponds to the phase of the atomic density wave
arising from self-organization when the cavity is transversely pumped above a critical threshold power. We
show theoretically and experimentally how this phase depends on the position of the Bose-Einstein condensate
within the cavity and discuss mechanisms that break the U(1) symmetry and lock this phase. We then consider
alternative Fabry-Pérot multimode cavity geometries (i.e., beyond the confocal) and schemes with more than
one pump laser and show that these provide additional capabilities for tuning the cavity-meditated interaction
among atoms, including the ability to restore the U(1) symmetry despite the presence of symmetry-breaking
effects. These photon-mediated interactions may be exploited for realizing quantum liquid crystalline states and
spin glasses using multimode optical cavities.
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I. INTRODUCTION

The cavity QED system of quantum degenerate atoms
trapped inside an optical cavity opens numerous possibilities
for studying quantum many-body systems in a driven dissi-
pative setting [1]. Recent advances include demonstration of
supersolidity [2], supermode-polariton condensation [3], and
spinor self-ordering [4]. Beyond the traditional single-mode-
cavity system, degenerate multimode cavities have emerged
as promising platforms for realizing nontrivial interactions
among trapped atoms [5] and exotic photonic matter [6].
Simultaneously addressing the multiple degenerate (or nearly
degenerate) modes of a cavity, which may have distinct and
incommensurate transverse spatial profiles, greatly expands
the number of transverse degrees of the freedom in the cavity.
This in turn provides the ability to engineer tunable-range
cavity-photon-mediated interactions, as described in our pre-
vious work of Ref. [5].

A less-studied and subtle point is the role of the differing
longitudinal profiles of these degenerate modes, particularly
the effect of the Gouy-phase-shift contribution [7].1 As briefly
mentioned in Ref. [5] and presented more extensively in the

*Present address: School of Physics and Astronomy, Cardiff Uni-
versity, Cardiff CF24 3AA, United Kingdom.

1The many interpretations of the Gouy phase shift are discussed in
Refs. [8–12].

companion paper of Ref. [13], the Gouy phase shifts affect
how different transverse modes sum to produce an effective
nonlocal and sign-changing cavity-mediated interaction in the
transverse direction. The present work explores the origin of
this effect and its consequences.

For a Bose-Einstein condensate (BEC) trapped in a trans-
versely pumped cavity, atoms will start to self-organize coin-
ciding with the superradiant emission of cavity photons; i.e.,
atoms will form a density wave commensurate with the optical
lattice due to the dynamically generated cavity light when the
cavity-mediated interaction overcomes the kinetic energy cost
of the associated density wave [1,3,5,14–16]. Compared to the
case of a single-mode cavity [16], where the density wave
is forced to conform to the shape of the single cavity mode
and the transition is adequately described by the Hepp-Lieb-
Dicke model [1,17], atoms in a degenerate cavity have more
freedom. The interference of many transverse modes allows
the atoms to adopt a far wider range of shapes, which can
induce a more exotic phase transition [18,19]. Moreover, the
intracavity photons can be in a superposition of many modes,
leading to a localized photonic wave packet. This induces
a localized short-range photon-mediated interaction between
atoms [5]. In addition, the distinct longitudinal profiles of the
transverse modes, due to Gouy phase shifts, result in a phase
degree of freedom of the density wave. That is, not only the
amplitude, but also the phase of the atomic density wave can
vary across the cavity and can in principle become free [in the
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sense of a U(1) symmetry] under special conditions. These
features, especially the enhanced phase space of the order
parameter, greatly enrich the physics of the self-organization
transition.

In this paper we present a detailed theoretical and experi-
mental study of how Gouy phase shifts induce this nonlocal
interaction and determine the atomic-density-wave phase de-
gree of freedom through this interaction. Section II presents
a general derivation of cavity-mediated interactions, comple-
menting that first discussed in our Ref. [5], while also deriving
a general form of the nonlocal interaction studied in the
companion paper [13]. Section III A then discusses how these
interactions determine the density-wave state arising from
the Dicke superradiant, self-ordering density-wave transition
studied in the companion paper [13]. We also show how the
spatial structure of the field emitted from the cavity reveals
important information about the phase of the atomic density
wave. Restricting the study to an ideal confocal cavity, we
show that the atomic density wave possesses a continuous
degree of phase freedom and a U(1) symmetry emerges at
special positions in the cavity. Section IV discusses this U(1)
symmetry in an ideal confocal cavity. We provide a qualitative
discussion of the physical picture behind cavity-mediated
interactions in Sec. III B. Section V describes the mechanisms
that break this symmetry in realistic confocal cavities coupled
to BECs of finite size. Results of experiments that image cav-
ity field emission are presented, demonstrating this symmetry
breaking. Section VI then describes the consequences of this
symmetry breaking for realizing various quantum many-body
systems such as quantum liquid crystalline states [18,19].
Section VII presents a proposal for a pumping scheme that
restores the U(1) symmetry and is robust against various pos-
sible symmetry-breaking effects. Generalization of the cavity-
mediated interaction to three dimensions is also discussed
in Sec. VIII. Finally, before concluding remarks, we derive
in Sec. IX the form that cavity-induced interactions take
in Fabry-Pérot multimode cavities with geometries beyond
the confocal.

II. CAVITY-MEDIATED INTERACTION
AND SELF-ORGANIZATION

We start by introducing a model of N atoms in a BEC
with wave function �(x) and interacting with cavity modes
described by annihilation operators âμ,Q. The cavity axis is
taken to lie along ẑ, while the transverse standing-wave pump
field is oriented along x̂. The Hamiltonian for this can be
written as

H = −
∑
μ,Q

�μ,Qâ†
μ,Qâμ,Q

+ N
∫

d3x �∗(x)

(
−∇2

2m
+ V (x) + U

2
|�(x)|2

)
�(x)

+ N

�a

∫
d3x �∗(x)|φ̂|2�(x). (1)

For compactness, we index the transverse modes with the
single variable μ, rather than separate indices l and m for
the Hermite-Gauss functions of the x and y coordinates. We
thus use μ = (l, m) to label the transverse electric electro-

magnetic mode function TEMμ ≡ TEMl,m and define the
total mode family index nμ = l + m. The index Q defines
the longitudinal mode number; we keep the dependence on
this explicit for now. When we later consider a given family
of degenerate modes in a confocal or equivalent cavity, the
longitudinal and transverse mode numbers are related to one
another. This behavior is discussed in detail for general cases
of multimode cavity geometries in Sec. IX.

The first term in Eq. (1) is the Hamiltonian of the cavity
modes with detuning from the transverse pump field �μ,Q.
The second line is the standard Hamiltonian for a weakly
interacting BEC with contact interactions of strength U in an
external trap V (x). The final line is the optical potential from
the Stark shift, proportional to 1/�a, due to the combined
cavity and pump light. The light field φ̂ thus consists of the
standing-wave pump and a sum over all cavity modes with
their transverse and longitudinal spatial dependence [8],

φ̂(r) = � cos(krx)

+ g0

∑
μ,Q

âμ,Q�μ(r) cos

[
kr

(
z + r2

R(z)

)
− θμ,Q(z)

]
.

(2)

Here � is the pump’s Rabi frequency, kr is the recoil mo-
mentum of the atom, g0 is the bare atom-cavity coupling
strength defined for an atom coupled to the peak intracavity
field of the TEM00 mode, and �μ(r) are Hermite-Gauss mode
functions of the cavity. We have restricted the sum in this
expression to run over those cavity photon modes that are near
resonance with the pump, and hence the longitudinal wave
vector is also set to kr . Only these modes can be populated
by scattering from the pump. In writing in Eq. (2) we have
included the radial dependence of the phase r2/R(z), where
R(z) = z + z2

R/z is the radius of curvature of the phase fronts
at longitudinal position z and zR is the Rayleigh length. When
we consider atoms near the cavity midplane z = 0, we have
that R(z) → ∞, so the phase fronts become flat and this
contribution to the phase can be neglected. The form of Eq. (2)
results in a spatially varying single-photon Rabi frequency
g0�μ(r)/�00(0) for the mode μ (assuming atoms are located
at the antinodal planes along the cavity). Note that here and in
the following we use r to denote the coordinate in the plane
transverse to the cavity axis.

The cosine appearing in Eq. (2) also contains the term
θμ,Q(z), which describes terms varying slowly compared to
krz. The subscripts indicate that this term depends on both the
transverse index μ and the longitudinal mode number Q. We
may write this term as [8]

θμ,Q(z) = ψ (z) + nμ[ψ (L/2) + ψ (z)] − ξμ,Q. (3)

We note that because we have not yet assumed a confocal
cavity, the structure of this term is in general more complex
than the analogous expression in our previous work [5]. This
term accounts for several effects. First, in order to satisfy
Maxwell’s equations, terms which vary faster in the transverse
plane must vary more slowly along the cavity axis. Thus, the z
dependence of the phase is given by (nμ + 1)ψ (z), where we
have ψ (z) = arctan(z/zR). The existence of this extra phase
evolution, known as the Gouy phase shift or phase anomaly
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[7,8], and particularly its nμ dependence (i.e., the phase shift
increases for greater nμ), is the source of the rich physics
discussed in this paper. The other term contained in Eq. (3),
nμψ (L/2) − ξμ,Q, describes phase offsets required for the
cosine function to match boundary conditions at the mirrors
(which are assumed to be placed at z = ±L/2). The division
of this phase shift into the two terms nμψ (L/2) and ξμ,Q

will simplify the expressions when we consider a degenerate
cavity below.

As noted earlier, atoms subject to transverse pumping, as
described by Eq. (1), will undergo self-organization to form
an atomic density wave commensurate with the optical lattice
due to the pump and cavity light. To describe this transition,
we need to write the motional wave function of the atoms,
allowing for scattering of atoms by the combined pump and
cavity lattices. We assume that most of the condensate is
in the ground state, with a small fraction having undergone
a momentum kick from either scattering a photon from the
retroreflected transverse pump into the cavity or vice versa.
Hence, we write

�(x) = Z (z − z0)
√

ρ(r)[ψ0 +
√

2 cos(krx)

× {ψc cos(krz + δ) + ψs sin(krz + δ)}], (4)

where Z (z) is an envelope function which describes the con-
finement of the gas at a position z0 along the ẑ direction, ρ(r)
is the density profile of the atoms in the cavity transverse
plane, ψ0 is the amplitude of the ground-state condensate
wave function of the gas, and ψc,s are the amplitudes of the
parts of the gas that have been scattered into two out-of-phase
density profiles. The separable form of this ansatz relies on
the assumption that the atoms are confined tightly enough in
the z direction that we can neglect variation of the Gouy phase
across the cloud, i.e., that the extent in z is much smaller than
the Rayleigh length and that the atom density profile ρ(r) is
smooth on the scale of a wavelength. We have written two
independent components ψc and ψs to allow us to describe
an emergent freedom between the amplitudes of these two
components. The fixed phase offset δ is introduced for later
convenience; in the following we will choose a value which
enables us to simplify overlaps with the light field. We may
also consider ψc and ψs as being the real and imaginary

components of a complex order parameter describing the
atomic density wave, i.e., using ψ1 = ψc + iψs and thus writ-
ing

�(x) = Z (z − z0)
√

ρ(r)[ψ0 +
√

2 cos(krx)Re{ψ1eikr z+δ}].
We can now use Eq. (1) to find the mean-field equations of
motion for ψ0,c,s and αμ,Q ≡ 〈âμ,Q〉. It is convenient to write
equations in terms of only the transverse coordinates r, for
which we must perform the z integral in Eq. (1). This can be
done straightforwardly in the limit where we assume that Z (z)
has a width wz and that λ 
 wz 
 zR. The first inequality
allows us to drop any terms oscillating at wave vector kr or
2kr ; this imposes momentum conservation so that recoiling
atoms pick up the difference of pump and cavity momenta.
The second condition means that we can evaluate the slowly
varying phase terms as being effectively constant over the
width of the gas: We can approximate θμ,Q(z) � θμ,Q(z0).
Both conditions are well satisfied in typical experiments [5].

In this paper we will consider the onset of self-
organization, where the ψc,s become nonzero, leading to an
atomic density wave with an associated occupation of the
cavity modes. To understand the transition to this state and
the patterns of atomic density waves which become occupied,
we focus on linear stability of the normal state. That is, we
linearize in the variables ψc, ψs, and αμ. In this linearized
treatment, we find that all the relevant z integrals involve a
cross term between pump light and cavity light that causes
scattering between at-rest atoms ψ0 and ψc,s. We then find
that the z integrals yield two possible overlap values

Oσ
μ,Q =

{
cos[θμ,Q(z0) − δ], σ = c

sin[θμ,Q(z0) − δ], σ = s,
(5)

where the superscript σ distinguishes between two possible
out-of-phase density waves ψc,s. In Sec. IX we will revisit
the assumption that we may approximate the z dependence
of θμ,Q by its value at z = z0 and consider the leading-order
corrections to this result.

In the linearized regime, we need only consider equations
for ψσ and αμ,Q because the ground-state amplitude ψ0 can
be considered constant. Using the above overlaps, we find that
the linearized equations take the form

i∂tαμ,Q = −(�μ,Q + iκ )αμ,Q − g2
0N

2�a

∑
ν

∫
dr|ψ0|2ρ(r)�μ(r)�ν (r)αν,Q′(ν)

− g0N�

2
√

2�a

∫
dr �μ(r)ρ(r)

∑
σ=c,s

[ψ∗
0 ψσ + ψ0ψ

∗
σ ]Oσ

μ,Q, (6)

i∂tψσ =
∫

dr(μ + 2ωr )ρ(r)ψσ + 1

2

∫
dr Uψ2

0 ψ∗
σ ρ(r) − g0�

2
√

2�a

∫
dr

∑
μ,Q

(α∗
μ,Q + αμ,Q)�μ(r)ψ0ρ(r)Oσ

μ,Q, (7)

where we have included the photon loss rate 2κ , μ is the
chemical potential of the ground-state condensate (when not
used as an index), and ωr is the recoil energy k2

r /2m. The
chemical potential is introduced purely to eliminate the time
dependence of the condensate wave function. In writing
these equations, we have dropped fast oscillating terms due

to the pump since the atomic density profile extends over
several optical wavelengths λ. The subscript Q′(ν) appear-
ing on the amplitude α in the first expression indicates the
fact that, since we restrict the summation to include cavity
modes nearly resonant with the pump, the allowed longi-
tudinal mode numbers Q′ and transverse modes ν in the
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sum are not independent. The precise restriction on how Q′
relates to ν depends on the degeneracy of the cavity and is
discussed further in the following section when we consider a
confocal cavity.

Since we expect the cavity field to reach a steady state
on a timescale much faster than the atomic motion, we adi-
abatically eliminate the photons by setting the time derivative
in Eq. (6) to zero and solve for αμ,Q. We also neglect the
corrections to the bare cavity modes caused by the ground-
state atomic gas; i.e., the term proportional to the integral of
|ψ0|2 is neglected. Substituting αμ,Q back into the equation of
motion of the atomic condensate gives

i∂tψσ =
∫

dr(μ + 2ωr )ρ(r)ψσ + 1

2

∫
dr Uψ2

0 ψ∗
σ ρ(r)

+ g2
0�

2N

2�2
a�μ0,Q0

∫
dr

∫
dr′ ∑

τ=c,s

Re{Dστ (r, r′)}

× ρ(r)ρ(r′)|ψ0|2[ψτ + ψ∗
τ ], (8)

where �μ0,Q0 is taken as the detuning of some reference
mode (which later we will take as the fundamental mode in a
degenerate family) and the cavity-mediated interaction takes
the form

Dστ (r, r′) = �μ0,Q0

∑
μ,Q

�μ(r)�μ(r′)
�μ,Q + iκ

Oσ
μ,QOτ

μ,Q. (9)

This interaction matrix describes the interaction in terms of
the real and imaginary components ψτ of the complex order
parameter describing atomic density waves, with freedom of
both density-wave amplitude and phase.

Expression (9) captures the general cavity-mediated inter-
action between the two density-wave components without any
assumptions about the structure of the cavity modes or their
degeneracies. In the following sections we will focus on a
confocal cavity, where many modes are degenerate (or nearly
so in realistic cavities), and restrict our attention to that family
of nearly resonant modes closest to the pump frequency, with
all other mode families being relatively far detuned.

III. CAVITY-MEDIATED INTERACTIONS
IN A CONFOCAL CAVITY

A. Derivation of interaction for a confocal cavity

In this section we consider how the general results of
the preceding section apply for a confocal cavity. As noted
in the Introduction and preceding section, for a degenerate
cavity, the existence of many degenerate modes allows for
both transverse spatial variation of the light and for transverse
variation of whether it couples to sine or cosine atomic
density waves. To explore this, we will examine how the
effective cavity-mediated interaction matrix behaves in the
confocal limit.

We first summarize the standard results [8] for the parame-
ters defining the mode functions in a confocal cavity; a general
derivation of equivalent results for all degenerate Fabry-Pérot
cavities is given in Sec. IX. A confocal cavity is defined by
the cavity geometry R = L, where R is the radius of curvature
of the mirrors and L is the length of the cavity. Matching
the curvature of phase fronts with the radius of curvature of

the mirrors, we find that the Rayleigh length zR = L/2. This
means that ψ (±L/2) = ±π/4 and so we may evaluate the
phase difference between the two ends of the cavity as

Qπ = krL − [θμ,Q(L/2) − θμ,Q(−L/2)]

= krL − (nμ + 1)π/2. (10)

We thus see that for a given family of degenerate modes,
i.e., having fixed wave vector kr , the longitudinal mode
number Q is locked to μ via Q = Q0 − (nμ − η)/2, where
Q0 determines the longitudinal mode number of the lowest
transverse mode within a given degenerate family and η = 0
or 1. As expected for a confocal cavity, this formula leads to
separately resonant families of odd and even transverse modes
as selected by η. We consider a regime where one specific
degenerate family is near resonant with the pump laser and
all other degenerate frequencies can be neglected. Because
of this, we can suppress the Q dependence of the formulas
written in Sec. II and sum only over transverse modes. We can
however allow small deviations from confocality, by consider-
ing the detunings within the near-resonant family to take the
form �μ,Q → �μ = �Q0 + nμε, where �Q0 is the detuning
of the fundamental mode in a given family and ε describes the
residual splitting of near-degenerate mode frequencies [5].

With this restriction to a single degenerate family, we can
also simplify the overlap factors. Because Q and μ are locked,
we find that within a given degenerate family, the phase
shift ξμ,Q required to match boundary conditions becomes
constant, i.e., ξμ,Q = ξQ0 . The expression θμ,Q appearing in
the cosine to give the slow phase dependence can be split
into two parts independent of nμ and dependent on nμ, i.e.
θμ,Q(z0) = �Q0 (z0) + nμθ0(z0). For the confocal case, using
zR = L/2, we explicitly have that

θ0(z0) = π/4 + arctan(z0/zR) (11)

and �Q0 (z) = ψ (z) − ξQ0 . We may also note that ξQ0 =
(π/2)(Q0 + 1) for even-parity modes, so the longitudinal
profiles of the modes one free spectral range (FSR) apart
are phase shifted by a quarter period. Furthermore, we may
now choose the phase offsets of the atomic density waves as
δ = �Q0 , simplifying the overlap factors as

Oσ
μ,Q =

{
cos(nμθ0), σ = c
sin(nμθ0), σ = s.

(12)

For brevity, we have suppressed the z0 dependence of θ0 here
and in the following expressions.

In this confocal limit, where sums are restricted to modes
within a given family, we may simplify the interaction matrix
in Eq. (9) significantly. Since, as already noted, a confocal
cavity only supports degenerate families with the same parity,
to find the cavity-mediated interaction, summation over trans-
verse modes should be restricted to nμ being either even or
odd. This can be done by introducing an appropriate factor Sμ

in Eq. (9) to cancel unwanted modes in a particular confocal
cavity family; the sum is then made to be over all transverse
modes. This factor should be chosen as

S±
μ = [1 ± (−1)nμ ]/2 (13)

for even (+) or odd (−) nμ families. For simplicity, in the sub-
sequent discussion, we will focus on even resonance families.
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Thus, we consider the interaction

D+
στ (r, r′, z0) = �Q0

∑
μ

�μ(r)�μ(r′)
�μ + iκ

Oσ
μOτ

μS+
μ . (14)

To evaluate the sums over Gauss-Hermite functions appearing
here, we will make repeated use of the Green’s function of
the harmonic oscillator, which can be written as a sum over
Gauss-Hermite functions, namely,

G(r, r′, ϕ) ≡
∑

μ

�μ(r)�μ(r′)e−nμϕ = 1

π (1 − e−2ϕ )
exp

[
− (r2 + r′2)/w2

0

tanh(ϕ)
+ 2r · r′/w2

0

sinh(ϕ)

]

= eϕ

2π sinh(ϕ)
exp

[
− (r − r′)2/w2

0

2 tanh(ϕ/2)
− (r + r′)2/w2

0

2 coth(ϕ/2)

]
. (15)

We can then rewrite the expressions actually required in Eq. (14) in terms of this closed-form expression. First, to account for
the denominator present in Eq. (14), we define a modified Green’s function as

G(r, r′, ϕ) =
∑

μ

�μ(r)�μ(r′)e−nμϕ

1 + ε̃nμ + iκ̃
=

∫ ∞

0
dλ e−λ(1+iκ̃ )G(r, r′, ϕ + ε̃λ), (16)

with ε̃ = ε/�Q0 and κ̃ = κ/�Q0 . Second, to account for the factor S± in the sum, we can note that �μ(−r′) = �μ(r′)(−1)nμ ,
and so we define

G+(r, r′, ϕ) = G(r, r′, ϕ) + G(r,−r′, ϕ). (17)

Using these results, we can also include the phase factors arising from the overlaps Oσ
μ to obtain D+ in matrix form

4D+(r, r′, z0) = 1G+(r, r′, 0) + σ z

2
[G+(r, r′,−2iθ0) + G+(r, r′, 2iθ0)] + σ x

2i
[G+(r, r′,−2iθ0) − G+(r, r′, 2iθ0)], (18)

where 1, σ z, and σ x are the standard Pauli matrices and the z0 dependence of this expression comes from the form of θ0.
As discussed in our previous work [5] and explored in the companion paper [13], G+(r, r′, 0) corresponds to the local part

of the interaction, while the terms involving G+(r, r′,±2iθ0) give rise to a sign-changing nonlocal interaction. On the midplane
of the cavity where θ0 = π/4, this interaction is proportional to cos(2r · r′/w2

0 ). There are two consequences of the existence of
the nonlocal interaction: (i) Different phases of the atomic density wave are preferred at different locations in the cavity due to
the spatial dependence of G+(r, r′, 2iθ0[z0]) and (ii) coupling between ψc,s is introduced by the nonlocal interaction and atoms
may adopt intermediate phases between cos(krz + δ) and sin(krz + δ).

The additional freedom in the atomic density wave can be seen directly through the observed light field above the
self-organization transition threshold. To show why, we must determine the light field in the cavity and extract the forward-
propagating part, since we only image the field emitted from one side of the cavity. From Eq. (6) we see that within the
approximation that allows us to perform adiabatic elimination of cavity modes, the amplitudes of these modes take the form

αμ = �g0N

2
√

2�a

∫
dr′ �μ(r′)

�μ + iκ
ρ(r′)

∑
σ=c,s

Oσ
μχσ , (19)

where we have defined χσ ≡ ψ0ψ
∗
σ + ψ∗

0 ψσ . We can then write the spatially varying light field in the cavity as

α̃(r, z) ≡
∑

μ

αμ�μ(r) cos(krz − �Q0 − nμθ0) = �g0N

2
√

2�a

∫
dr′ ∑

μ,σ=c,s

�μ(r)�μ(r′)
�μ + iκ

cos(krz − �Q0 − nμθ0)Oσ
μχσρ(r′)

∝ 1

2
ei(kr z−�Q0 )

∫
dr′{χc[G+(r, r′, 0) + G+(r, r′,−2iθ0)] + iχs[G+(r, r′, 0) − G+(r, r′,−2iθ0)]}ρ(r′)

+ 1

2
e−i(kr z−�Q0 )

∫
dr′{χc[G+(r, r′, 0) + G+(r, r′, 2iθ0)] − iχs[G+(r, r′, 0) − G+(r, r′, 2iθ0)]}ρ(r′), (20)

where again we have used Eq. (16) to rewrite the sum over
transverse modes. The forward-traveling component of the
light field can then be rewritten as

α̃F (r) ∝
∫

dr′ρ(r′)G+(r, r′, 0)

+ e−i2φA

∫
dr′ρ(r′)G+(r, r′,−2iθ0), (21)

where φA = arg[χc + iχs]. Thus, while the light inside the
cavity is purely real, the forward-traveling wave, and thus the
cavity light emitted out of one side of the cavity, contains im-
portant phase information. Physically, φA corresponds to the
phase of the density wave adopted by the atoms. In the cavity
output field, G+(r, r′, 0) and G+(r, r′,−2iθ0) correspond to
two distinct spatial features: The former results in an intense
localized spot at the position of the atoms, while the latter
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gives rise to an weak oscillating background cos(2r · r′/w2
0 ),

as shown below. Both have been observed [5,13]. Therefore,
measuring the phase difference between these two parts of
imaged light field, �φ = −2φA, reveals the phase offset of the
atomic density wave relative to the cavity modes, as explored
in the companion paper [13].

B. Physical picture for photon-mediated interactions
in confocal cavities

This section provides an intuitive physical picture for the
cavity-mediated atom-atom interactions in a confocal cavity
based on a combination of ray-tracing, Gaussian optics, and
scattering pictures. The local part of the interactions induced
by a confocal cavity arise from mode superposition. That is,
they arise from the superposition of transverse modes into
which each atom scatters a pump photon. The superposition of
Hermite-Gaussian TEMl,m mode functions leads to a photon
wave packet localized transverse to the cavity axis and cen-
tered around the scattering atom. Before these photons leak
out of the cavity, they may be exchanged between atoms that
reside within the volume of the wave packet. This leads to an
atom-atom interaction. Summing over all transverse modes,
this mode superposition gives an interaction that decays as
e−�r/ξ /

√
�r/ξ in the transverse plane [5]. Here �r is the

transverse distance between the scattering atoms and the
length scale ξ is inversely proportional to the number of
modes in the superposition.

The interaction range in the longitudinal direction re-
mains very long, however, and is typically longer than the
atomic gas. This is because the Rayleigh length of a confocal
cavity is equal to half the cavity length and consequently
the differential phase advance of the Gouy phase anomalies
varies only slowly with distance. This leads to negligible
longitudinal destructive interference, as is also the case for
near-planar cavities and interactions mediated by a single
mirror [20]. By contrast, near-concentric cavities allow for
significant destructive longitudinal interference because their
modes’ Rayleigh lengths are far shorter than the cavity length:
Concentric cavities support both transverse and longitudinal
local cavity-photon-mediated interactions.

Neither near-concentric nor near-planar cavities provide
nonlocal interactions. This is because they support all trans-
verse modes (up to finite-size limitations). In confocal cavi-
ties, however, nonlocal interactions arise because Gouy phase
shifts cause a subset of modes within a degenerate resonance
to acquire different longitudinal phase shifts,2 changing how
modes couple at the position of the atoms. Thus, in a confocal
cavity, and focusing attention on atoms at the cavity center for
simplicity, each atom couples to either the l + m mod 4 = 0
modes or the l + m mod 4 = 2 modes [13], depending which
mode family is involved. Superimposing a set of TEMl,m

modes with a subset missing induces constructive interference

2There are no Gouy phase shifts in planar cavities because the
beams do not propagate through a focus. Though modes propagate
through a focus in a concentric cavity, they all undergo a multiple of
2π Gouy phase shifts per round-trip and so are resonant regardless.

revivals at locations in the transverse plane. The field from
those revivals augments the scattered photon wave packet with
a nonlocal cosinelike contribution [see Fig. 1(d) in Ref. [13]].
The crossing diagonal rays in the bow tie pattern of the ray-
tracing picture represent this portion of the field.

The origin and form of this pattern may be understood
from the propagation of Gaussian beams. The field of the local
wave packet around the scattering atom at z = 0 forms a spot.
This field propagates to and from a mirror a total distance R.
Because the mirror has radius of curvature R, it acts as a lens
with focal length R/2 that projects the Fourier plane exactly
back onto the object plane at z = 0 where the atoms lie. Thus,
the interference pattern is the field from the cosinelike Fourier
transform of a spot at position r.

Putting the above together, the light emitted from the
cavity, after propagating through a lens, contains two bright
spots and an interference pattern at the image plane. This is
the image of the intracavity field at the object plane of the
atoms (z = 0).3 The two bright spots are from the atom and
its mirror image at r = −r in the transverse plane. The mirror
image arises because each confocal resonance is composed
of either even- or odd-parity modes, leading to construc-
tive interference revival at −r; the photon wave packet has
support around both r and −r and can mediate atom-atom
interactions at either location, as demonstrated in Ref. [5].
The fringe field between them is their Fourier transform.
The cos(2r · r′/w2

0 ) nonlocal interaction term therefore arises
from the exchange of photons in the part of the photon
wave packet associated with the Fourier transform of its
local part.

We note that atoms away from the cavity center would
exchange an out-of-focus version of this nonlocal field. The
form of the nonlocal interaction away from z = 0 is presented
in Sec. IX B for general multimode Fabry-Pérot cavities.
Indeed, the nonlocal interaction contains terms that look like
the Airy rings produced by out-of-focus images.

IV. U(1) SYMMETRY IN AN IDEAL CONFOCAL CAVITY

We now consider the case of an ideal confocal cavity (i.e.,
all modes are perfectly degenerate ε = 0) and show the emer-
gence of a U(1) symmetry for the phase of the density waves
in the self-organization transition. Moreover, we will consider
the case where there is no cavity loss (κ = 0). Together, these
allow the replacement of G+ in the preceding section with the
symmetrized, bare harmonic-oscillator Green’s function

G+(r, r′, ϕ) = G(r, r′, ϕ) + G(r,−r′, ϕ), (22)

with G(r, r′, ϕ) as defined in Eq. (15). We note that for atoms
trapped at the midplane of the cavity, z0 = 0 so θ0 = π/4, and
so the nonlocal interaction now reduces to G+(r, r′, iπ/2) and
can be directly evaluated using Eq. (15) as

G+(r, r′, iπ/2) = 1

π
cos

(
2r · r′

w2
0

)
, (23)

which is the nonlocal interaction studied in the companion
paper [13]. This expression is purely real, and so by inserting

3Actually, it is only the forward-propagating part of this field.
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this into Eq. (18) we see that there is no σ x term. Moreover,
at 2r2/w2

0 = (n + 1/2)π , with integer n, the self-interaction
4 Re{D+(r, r)} = 1G+(r, r, 0) will become proportional to
the identity matrix, indicating complete freedom about what
the relative amplitudes of the sine and cosine components
of the density wave can be. That is, these two density-wave
patterns become degenerate.

If we return to consider a general value θ0, and thus a
general longitudinal location z0 of the atomic gas, we can
explore how these zeros of the nonlocal interaction matrix
evolve. We consider here the case of a single atomic cloud
where the Thomas-Fermi radius of the cloud is much smaller
than the cavity waist w0. Since we have already integrated out
all fast oscillations at the cavity wave vector, this assumption
allows us in the remaining equations to approximate the
atomic density profile ρ(r) as a δ function when evaluating
terms that vary on the scale of w0. For a cloud centered at
location z0 and r0, with density profile δ(r − r0) in the cavity
transverse plane, the interaction matrix is given by

4 Re{D+(r0, r0, z0)} = 1G+(r0, r0, 0)

+ σ zRe{G+(r0, r0,−2iθ0)}
+ σ xIm{G+(r0, r0,−2iθ0)}. (24)

Note here that we have used that G+(r0, r0,−2iθ0)∗ =
G+(r0, r0, 2iθ0), a result that holds for the bare Green’s func-
tion G+(r0, r0, ϕ) but does not directly hold for the general
form G(r0, r0, ϕ); we return to this point below. As such, we
note that a degeneracy between ψc and ψs occurs when

|G+(r0, r0, 2iθ0)| = 0. (25)

Neglecting all prefactors, we find this condition equivalent to∣∣e−i2r2
0 tan(θ0 )/w2

0 + e+i2r2
0 cot(θ0 )/w2

0
∣∣ = 0. (26)

Using the fact that

tan[θ0(z0)] = tan

[
π

4
+ arctan

(
z0

zR

)]
= zR + z0

zR − z0
, (27)

we can directly find the equation for radii at which degeneracy
between the sine and cosine density-wave patterns occurs,

√
2r0/w0 =

√[
z2

R − z2
0

z2
R + z2

0

]
π (n + 1/2), (28)

where n is a non-negative integer that indexes the family of
possible radii. We readily see that for z0 = 0 this reproduces
the zeros of cos(2r2/w2

0 ). The contours for other positions z0

are illustrated in Fig. 1.
To understand the consequence of such degeneracy, it is

useful to consider the effective Hamiltonian corresponding to
Eq. (8). Neglecting the bare atomic Hamiltonian, at a radius
r0 satisfying Eq. (28), the effective Hamiltonian describing the
cavity-mediated interaction is given by

Heff ∝ (χc χs)

(
G+(r0, r0, 0) 0

0 G+(r0, r0, 0)

)(
χc

χs

)
.

(29)
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FIG. 1. Magnitude of |G+(r0, r0, 2iθ0(z0))| as a function of ra-
dius r0 (vertical axis) and distance along the cavity z (horizontal
axis). Red dashed lines mark solutions to Eq. (28), indicating con-
tours at which there is a degeneracy between the sine and cosine
density-wave patterns.

We can now see that the Hamiltonian is invariant under the
transformation(

ψc

ψs

)
→ R(φ)

(
ψc

ψs.

)
, R(φ) ≡

(
cos φ − sin φ

sin φ cos φ

)
. (30)

Physically, the transformation corresponds to the freedom in
the phase of the atomic density wave, i.e., any density wave
cos(kz + δ) with arbitrary δ is allowed. This degeneracy is
analogous to the situation in a recent experimental realization
of a supersolid via the coupling of a BEC to two crossed
cavities [2]. The spontaneous breaking of this U(1) symmetry
can be directly observed by imaging the phase of the forward-
traveling component of the cavity light field, as can be seen
from Eq. (21).

So far we have only shown that the symmetry exists when
we ignore the contribution quadratic in the light field �μ(r)
in the equation of motion. As such, one may question whether
the symmetry should survive far above threshold, where there
is scattering between different cavity modes [in the second
term on the right-hand side of Eq. (6)]. As we will show next,
the symmetry in fact exists even when such coupling terms are
included, as long as we remain in the confocal limit. To see
this, we rewrite the initial atom-cavity Hamiltonian in terms
of new photon field operators. Specifically, we define the new
operators

âc,s = 1√
Nc,s

∑
μ

âμ�μ(r0)S+
μ ×

{
cos(nμθ0)
sin(nμθ0),

where r0 is the position of the atomic cloud. The normaliza-
tion factor Nc,s is required to impose bosonic commutation
relations on the cavity modes. Computing the commutation
relations, we obtain

[âc, â†
s ] = 1

2
√
NcNs

Im{G+(r0, r0, 2iθ0)},

[âc, â†
c] = 1

2N 2
c

[G+(r0, r0, 0) + Re{G+(r0, r0, 2iθ0)}], (31)

[âs, â†
s ] = 1

2N 2
s

[G+(r0, r0, 0) − Re{G+(r0, r0, 2iθ0)}].
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We may now observe that the cross-commutator necessarily
vanishes when the location r0 of the atoms satisfies the condi-
tion in Eq. (25), |G+(r0, r0, i2θ0)| = 0. This implies that the
normalizations required to satisfy the other two commutation
relations are equal, Ns = Nc. We will see that this equality
leads to the emergence of the U(1) symmetry of interest.

Using the above definitions, along with the parametrization
in Eq. (4), we can rewrite the matter-light coupling terms in
the original Hamiltonian (1) as

Hcoupling = g0N�

2
√

2�a

∑
σ=c,s

√
Nσψ0(ψ∗

σ + ψσ )(â†
σ + âσ )

+ g2
0N

2�a

[
Ncâ†

c âc
(
ψ2

0 + 3
4 |ψc|2 + 1

4 |ψs|2
)

+ Nsâ
†
s âs

(
ψ2

0 + 3
4 |ψs|2 + 1

4 |ψc|2
)

+ 1
4

√
NcNs(ψ

∗
c ψs + ψ∗

s ψc)(â†
c âs + â†

s âc)
]
. (32)

The various factors of 1/4 and 3/4 come from the terms
〈cos4(krz)〉 = 〈sin4(krz)〉 = 3/8 and 〈cos2(krz) sin2(krz)〉 =
1/8 encountered when taking the averages of the Stark shifts.
When Ns = Nc = N , we can rewrite the term in square
brackets as

N
[
(â†

c âc + â†
s âs)

(
ψ2

0 + 1
2 |ψc|2 + 1

2 |ψs|2
)

+ 1
4 (â†

c âc − â†
s âs)(|ψc|2 − |ψs|2)

+ 1
4 (ψ∗

c ψs + ψ∗
s ψc)(â†

c âs + â†
s âc)

]
and then readily verify that the Hamiltonian is invariant under
the combined rotation(

ac

as

)
→ R(φ)

(
ac

as

)
,

(
ψc

ψs

)
→ R(φ)

(
ψc

ψs

)
. (33)

Hence, it appears that the U(1) symmetry remains robust in
a perfect confocal cavity even when including the nonlinear
terms that are relevant far above threshold.

V. BREAKING OF EMERGENT U(1) SYMMETRY

The preceding section assumes a perfect confocal cavity,
with no loss and no transverse mode dispersion. In that case,
we anticipated perfect U(1) symmetry at special radii. Exper-
imentally, this should correspond to a shot-to-shot fluctuating
density-wave phase for these radii. As discussed below, this
is not seen experimentally. Instead, there is a window where
the phase of the density wave evolves smoothly and determin-
istically from φA = 0 to φA = π/2. To understand this, we
next discuss the effects beyond the ideal solution, specifically
effects of a finite cloud size, effects of displacement from the
midpoint of the cavity, and effects of a small mode splitting ε

and cavity loss κ .
To study the emergence of symmetry-breaking terms, we

consider the scenario where a single BEC is placed at a radius
r0 in the cavity transverse plane and we determine the phase
of density wave formed in the self-organization transition
from the eigenvectors of the effective interaction matrix. The
effective interaction matrix is the generalization of Eq. (18)
to include the aforementioned deviations from an ideal
confocal cavity.

A. Displacement from midplane of cavity z0 = 0

Displacing the BEC from the midpoint z0 = 0 of the
cavity induces a density wave that is in general of neither
a purely sine nor cosine pattern except at special positions
where complete phase freedom [U(1) symmetry] is restored.
Admixtures of sine and cosine patterns are favored at po-
sitions where G+(r0, r0, 2iθ0) is complex. This function is
complex at all points in the cavity except at its midpoint
where G+(r0, r0, iπ/2) is purely real, as well as at the
points indicated by the red dashed line contours in Fig. 1
where G+(r0, r0, 2iθ0) = 0, resulting in positions of restored
phase freedom. As such, displacement from the midplane
of the cavity does not break the U(1) symmetry at these
specific radii.

In the following we will see that finite cloud size and
nonconfocality can alter this picture. These nonidealities lift
the pattern degeneracy even at these special positions. What
is left is instead a smooth deterministic evolution of density-
wave phase with no U(1) symmetry points. The exception
to this is at midplane z0 = 0. That is, despite these nonide-
alities, the interaction remains purely real at the midpoint
of the cavity because θ0 = π/4 at z0 = 0. Therefore, at the
midplane of the cavity, there continue to exist special radii
where the U(1) symmetry is expected even under conditions
of finite cloud size and nonconfocality.

We will focus on the nonlocal contribution G+(r0, r0, 2iθ0)
to the self-interaction since the effects of nonconfocality on
the local interaction G+(r0, r0, 0) have been studied in detail
in Ref. [5]. Moreover, as seen in Eq. (18), the density-wave
phase is determined not by the local terms, which scale the
components of the identity matrix, but by the nonlocal terms
that determine the σ x and σ z parts of the interaction matrix.

B. Nonconfocality

To consider nonconfocality, we return to using the Green’s
functions defined in Eq. (16), i.e., allowing for nonzero ε and
κ . We first note that by using this Green’s function, the matrix
form of the nonlocal cavity-mediated interaction (18) can be
put into the form

4D+
nonlocal(r0, z0)

=
∫ ∞

0
dλ e−λ(1+iκ̃ )[σ zRe{G+(r0, r0, λε̃ − 2iθ0)}

+ σ xIm{G+(r0, r0, λε̃ − 2iθ0)}], (34)

where once again we note that the z0 dependence comes from
the form of θ0. We further note that away from θ0(0) = π/4,
the quantity G+(r0, r0,−2iθ0) is complex, so both compo-
nents exist (except at the special points mentioned above
where it is zero). We can simplify this further, since the actual
interaction appearing in Eq. (8) involves Re{D+}. Since the
term in square brackets in Eq. (34) is by definition real, taking
the real part thus replaces e−iλκ̃ with cos(κ̃λ). We can then
write the final form for the relevant part of the interaction as

4 Re{D+
nonlocal(r0, z0)} = σ zRe{G̃+(r0, r0,−2iθ0)}

+ σ xIm{G̃+(r0, r0,−2iθ0)}, (35)
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where we have defined a nonconfocal Green’s function

G̃+(r, r′, ϕ) =
∫ ∞

0
dλ e−λ cos(κ̃λ)G+(r, r′, ε̃λ + ϕ). (36)

From this expression, we can see that we still have an inter-
action that is purely of σ z form at θ0 = π/4. To see this, we
note that

Im{G+(r, r′, ε̃λ − iπ/2)}

≡ Im

{∑
μ

�μ(r)�μ(r′)S+
μ e−nμ(ϕ−iπ/2)

}

=
∑

μ

�μ(r)�μ(r′)S+
μ e−nμϕ sin(nμπ/2).

Because S+
μ restricts the sum to even terms, we immediately

see that sin(nμπ/2) = 0 for these terms, so all terms vanish.
The vanishing imaginary part then means that the interaction
matrix becomes purely diagonal and points still exist where
the interaction is proportional to the identity matrix, giving
degeneracy and the U(1) symmetry. However, away from
θ0 = π/4, one can readily check that |G̃+(r0, r0, 2iθ0)| does
not vanish, i.e., the real and imaginary parts of this function
no longer vanish at the same points. As a result, there would
be a deterministic phase at all radii (other than those at the
midpoint), with the sense of phase winding dependent on the
displacement from the midpoint of the cavity.

C. Finite transverse size of atomic gas

A second effect that also leads to a deterministic phase
winding is the finite size of the condensate. To capture this,
we consider averaging the interaction matrix over the spatial
profile of the cloud. That is, we define an averaged function

G+
avg(r0, ϕ) ≡

∫
dr

∫
dr′ρ(r′)G+(r, r′, ϕ)ρ(r) (37)

and then define the corresponding interaction matrix, de-
scribing the self-interaction due to the nonlocal part of the
interaction

4 Re{D+
avg,nonlocal(r0, z0)} = σ zRe{G+

avg(r0, r0,−2iθ0)}
+ σ xIm{G+

avg(r0, r0,−2iθ0)},
(38)

where once again the z0 dependence comes from the form
of θ0.

The integral over coordinates r and r′ can be evaluated by
using a Gaussian density profile

ρ(r − r0) = 1

2πσ 2
A

exp

(−(r − r0)2

2σ 2
A

)
, (39)

where σA is the BEC width, and by making use of the
harmonic-oscillator Green’s function (15). We find that the
integral over radius yields

G+
avg(r0, ϕ) = A/π

1 − e−2ϕ

{
exp

[
− 2r2

0

2σ 2
A + coth(ϕ/2)w2

0

]
+ exp

[
− 2r2

0

2σ 2
A + tanh(ϕ/2)w2

0

]}
,

0.0 0.5 1.0 1.5√
2r/w0

−0.2

−0.1

0.0

0.1

0.2

0.3

Re{G+
avg}

Im{G+
avg}

FIG. 2. Real (blue solid line) and imaginary (orange dotted line)
parts of G+

avg for a BEC at a transverse plane (z0/zR = 0.3) located
away from the cavity midplane and with a Gaussian width of
σA/w0 = 0.1. The black dashed line marks zero. Note that Re{G+

avg}
and Im{G+

avg} do not vanish at the same point.

where the prefactor A takes the form

A =
[(

1 + 2σ 2
A

w2
0 coth(ϕ/2)

)(
1 + 2σ 2

A

w2
0 tanh(ϕ/2)

)]−1

. (40)

One can then combine the effects of nonconfocality with
finite cloud size by using G̃(r, r′, ϕ) in the right-hand side of
Eq. (37). In practice, one first performs the Gaussian integral
defined above and then defines

G̃+
avg(r0, ϕ) =

∫ ∞

0
dλ e−λ cos(κ̃λ)G+

avg(r0, ε̃λ + ϕ), (41)

which can be inserted into Eq. (38) to find the effective
interaction. The final integral over λ is performed numerically.
We note that even when ε̃ = 0, the finite extent σA of the
atoms already has the effect of turning G+

avg(r0,−2iθ0) into a
complex quantity and ensuring that |G+

avg(r0,−2iθ0)| does not
vanish when away from the cavity midplane. Figure 2 plots
the real and imaginary parts of G+

avg(−2iθ0) for atoms located
at z0/zR = 0.3. Crucially, the real part and the imaginary part
do not vanish at the same point; therefore there is always a
preferred phase of the atomic density wave and consequently
no emergent U(1) symmetry.

D. Comparison to experiment

To confirm the existence of U(1) symmetry breaking, we
perform an experiment similar in method to those reported
in our works in Refs. [5,13]. In brief, we create a BEC
of 87Rb with population 2.5(3)×105 inside the cavity (see
Ref. [21] for technical details). The BEC is confined in
an optical tweezers trap of trap frequencies (ωx, ωy, ωz ) =
2π × [189(2), 134(1), 90(1)] Hz and Thomas-Fermi radii
(Rx, Ry, Rz ) = [4.2(1), 5.8(3), 8.9(1)] μm. Due to experi-
mental constraints,4 the BEC is fixed at a position of

4Geometrical constraints imposed by the vacuum chamber pre-
vented the trapping of the BEC at the exact cavity midplane.
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FIG. 3. (a) Example of the experimental phase and amplitude of
the cavity emission. The waist w0 of the TEM00 in the image plane
is indicated. Here �φ = −2φA is computed from the difference in
phase between the regions marked by the black circle and the average
phase of the gray rectangular region. They correspond, respectively,
to the local G+(r, r′, 0) and nonlocal G+(r, r′, 2iθ0 ) contributions to
the light field in Eq. (21). (b) Color wheel for illustrating the electric
field amplitude and phase. (c) Measured phase difference between
the local and nonlocal contributions to the cavity field as a function
of the distance r of a single BEC from the cavity axis. The data shown
here are taken with cavity detuning �Q0 = −120 MHz. The distance
is extracted by fitting to the amplitude of the measured field. The path
of r taken in the x-y plane from the cavity axis is shown as an black
dashed arrow in (a).

z0 ≈ 240 μm from the cavity midplane. The tweezers allows
us to control r0 by moving the BEC in the transverse plane.
The confocal cavity has length L = 1 cm and TEM00 mode
waist w0 = 35 μm. For this system, g0 = 2π × 1.47(3) MHz
and κ = 2π × 167(4) kHz.

To measure the U(1) symmetry breaking, we observe the
phase difference �φ between the cavity emission arising from
the local versus nonlocal interaction terms while moving a
single BEC across a node of the oscillatory cosine pattern due
to G+(r, r′, 2iθ0). The amplitude and phase of the cavity field
emission are detected through the holographic reconstruction
of a spatial heterodyne measurement (see Refs. [4,13] for
details). The detection of the density-wave phase relies on the
fact that the phase difference �φ is related to the density-
wave pattern through �φ = −2φA using Eq. (21). That is,
the observable �φ is directly related to the phase of the
density wave.

Figure 3 shows the results of such measurements. An ex-
ample of a holographically reconstructed cavity emission field
is shown in Fig. 3(a). The two orange spots are the emission
due to the local interaction term G+(r, r′, 0) centered about
the real and mirror images of the BEC in the object plane,

while the orange and blue striped oscillation arises from the
nonlocal term G+(r, r′, 2iθ0).

Figure 3(c) shows how �φ evolves versus r. A particular
direction of the phase winding is preferred as the BEC is
gradually moved away from the cavity midplane. As dis-
cussed in the beginning of this section, rather than observe
a point of random shot-to-shot density-wave phase due to a
U(1) symmetry, we observe that the phase smoothly winds
from 0 to −π as the BEC crosses the node at the point√

2r/w0 ≈ √
π/2 ≈ 1.25, as expected from Eq. (28). The

orange solid line is the predicted theoretical phase difference
taking into account (i) the finite mode dispersion ε̃, (ii) the
finite size σA of the cloud in the transverse plane, and (iii) the
aforementioned displacement z0 of the atoms in ẑ from the
cavity midplane.

Our theory could not reproduce the width of the tran-
sition region in the density-wave phase. We attribute this
discrepancy to the coupling between density waves through
the nonlinear atom-cavity coupling term that is proportional to
g2

0/�a in Eq. (6), which is not taken into account at the current
level of our theory. However, our experimental data are taken
above the self-organization transition threshold with a macro-
scopic population of cavity photons. In this regime, scattering
between different cavity modes is no longer negligible. We
also note that we have assumed paraxial optics and only taken
into account the linear dispersion between transverse modes.
Contributions from cavity mirror aberrations (e.g., spherical
aberration) could further complicate the phase dependence
of transverse modes beyond the included Gouy phase shifts.
Finally, we note that the finite extent of the BEC along the
cavity axis could play a role. We leave a discussion of this
effect to the Appendixes.

VI. DETERMINISTIC EVOLUTION
OF THE DENSITY-WAVE PHASE

We report the direct observation of the smooth evolution of
the density-wave phase versus transverse position. We use a
BEC with a width sufficiently large to span two antinodes in
the nonlocal interaction and observe a smooth phase evolution
of the density waves within the BEC. That is, we do not
observe special U(1) symmetry points at which there is a
phase freedom because of the expected symmetry breaking.
Rather, the phase smoothly evolves from 0 to π as shown
in Fig. 4.

To observe this, we prepare a BEC that is elongated
along one direction using a dithered optical tweezers beam
to make an elongated trap. The mean position of the BEC is
placed away from the center of the cavity transverse plane.
Figure 4 shows the cavity field emission above the self-
organization transition threshold. As mentioned above, we
observe a smooth phase variation from 0 to π across the
BEC straddling the two antinodes of the cavity emission
that arises from the nonlocal interaction term. This phase
evolution is reminiscent of the “spoiled helix” state arising
in a single-component Mattis model. Such systems exhibit
a ferromagnetic state wherein the spin locally breaks a Z2

symmetry but with a local rotation of the definition of up and
down spin versus position [22].
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FIG. 4. (a) Reconstructed cavity superradiance from a BEC with
length on the order of the cavity waist w0. The phase of the atomic
density wave varies smoothly from one side of a node to the other.
Note that the gas is positioned to only one side of the cavity axis.
(b) Line cut of the phase winding as indicated by white dashed line
in (a). Here r denotes the distance from the cavity axis.

While this directly indicates that the phase of the density
wave formed in the self-organization transition is no longer
restricted to be the same in the entire atomic gas, as was
predicted in Ref. [5], we do not observe any shot-to-shot
fluctuations in this phase evolution pattern. The phase evo-
lution is deterministic, by which we mean that the phase
winds with the same pattern from experimental shot to shot
and is predictable by accounting for the effects discussed
in the preceding section. That is, there is no fluctuation of
the phase or change of the winding orientation indicative
of an underlying U(1) symmetry at these special radii. By
contrast, such fluctuations in the self-organized density wave
are expected in a multimode cavity of the ideal concen-
tric configuration [18,19]. Those works showed how such
fluctuations of a density wave primarily along the cavity
axis could lead to a quantum Brazovskii transition in trans-
versely pumped concentric multimode cavity QED systems.
That is, such fluctuations could drive the system from a
Dicke-like superradiant, self-ordering phase transition into a
Brazovskii-like superradiant self-ordering transition, as dis-
cussed in Refs. [18,19]. [The Brazovskii transition [23,24] is
a weakly-first-order fluctuation-induced transition that would
result in a superfluid smectic (supersmectic) state. The Dicke
transition, by contrast, is a second-order mean-field transition
to a supersolid state [25].]

The deterministic phase variation we observe in Fig. 4
illustrates that the preferred density-wave phase is different
at different locations, but there are no fluctuations in this
nonideal confocal cavity. Moreover, such fluctuations in the
longitudinal direction are not likely to be possible in even an
ideal confocal cavity due to the long Rayleigh length of the
modes in such a cavity. In summary, various corrections to
D+

nonlocal in a nonideal confocal cavity lift the expected U(1)
symmetry at all positions in the multimode cavity other than
the ones in the midplane. This symmetry breaking will hamper
one’s ability to observe Brazovskii physics in a nonideal
confocal cavity pumped with a single field.

The next section proposes a pumping scheme that restores
this U(1) symmetry and thus reintroduces the possibility
that fluctuations in the phase of the atomic density waves

can drive the system to a supersmectic state via a quantum
Brazovskii transition.

VII. PROPOSAL FOR RESTORATION OF U(1) SYMMETRY

The aforementioned rigidity in the allowed phase of the
density wave is a direct result of the nonlocal interaction. We
now propose a pumping scheme, involving two degenerate
resonances in a confocal cavity, for eliminating the D+

nonlocal
term from the cavity-mediated interaction. This would restore
the full phase freedom in the atomic density wave, perhaps
allowing Brazovskii physics to be explored in a confocal
cavity, even a nonideal one.

We suggest adding a second transverse pump at a fre-
quency near a confocal resonance one FSR away from the first
pump. As noted in Eq. (2), the phase variation of different
transverse modes depends on the longitudinal index. For a
resonance one FSR away, the longitudinal index Q changes
by 1. Thus, in this additionally driven set of degenerate mode
family resonances, the μ-independent part of the slowly vary-
ing phase changes from �Q0 to �Q0 + π/2. Since the atomic-
density-wave offset δ can only be adjusted to match one
family, we find that for this second mode family, computing
the overlap factors as in Eq. (12) gives

O′σ
μ =

{− sin [nμθ0(z)], σ = c

cos [nμθ0(z)], σ = s.
(42)

Since these are two nearby resonances within the same cavity,
it is reasonable to assume that they have the same coupling
g0 and residual mode splittings ε. Thus, if we choose the two
pumps to have the same effective detuning �Q0 and the same
pumping strength �2/�2

a, the relevant total cavity-mediated
interaction T is simply the sum of the contribution from
individual resonances

Tστ = �Q0

∑
μ

�μ(r)�μ(r′)
�μ + iκ

(
Oσ

μOτ
μ + O′σ

μ O′τ
μ

)
S+

μ

∝ 1G+(r, r′, 0). (43)

This identity holds because the sign change in O′c
μO′s

μ versus
Oc

μOs
μ cancels the off-diagonal components. Therefore, the

combined interaction T is now diagonal in the basis of ψc,s

and the system exhibits a U(1) symmetry in the entirety of the
cavity’s transverse plane. We note that this result is general
and does not rely on an ideal cavity or the atoms being at
special radii in the midplane of the cavity. Combined with
a short-range local interaction G+(r, r′, 0), observation of
fluctuations in atomic density wave in a large BEC should be
possible, which may in turn lead to a Brazovskii transition.

VIII. CAVITY-MEDIATED INTERACTION
IN THREE DIMENSIONS

In the discussion so far, we have assumed that the cavity
couples to atomic density waves. Under this assumption,
combined with the restriction of atoms to a thin cloud with
wz 
 zR, we could ignore the z dependence of the cavity-
mediated interaction and replace it with the matrix structure in
terms of sine and cosine quadratures of atomic density waves.
In order to be able to apply the results discussed here to spin
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models (where atoms could in principle be placed at arbitrary
positions r and z), such as that recently realized in a BEC
system [4], it is useful to also present the cavity-mediated
interaction with its z dependence included. That is, we allow
for interactions between atoms at distinct longitudinal coordi-
nates z and z′. We thus consider

D+
3D(r, r′, z, z′) =

∑
μ

�μ(r, z)�μ(r′, z′)
1 + ε̃nμ + iκ̃

S+
μ , (44)

where �μ(r, z) = �μ(r) cos[krz − �Q0 (z) − nμθ0(z)] is the
full mode function. One may see that this takes the form

D+
3D(r, r′, z, z′) = 1

4

∑
τ,τ ′=±

G(r, r′,−i[τθ0(z) + τ ′θ0(z′)])

× eikr (τ z+τ ′z′ )−i[τ�Q0 (z)+τ ′�Q0 (z′ )]. (45)

This expression represents the most general cavity-mediated
interaction in a near-confocal cavity.

Moreover, we can now transform this expression into the
form used in the companion paper [13]. To do so, we should
consider this expression under the special condition that we
work near the midpoint of the cavity so that the z separation
between atoms is small compared to the Rayleigh length. We
may then neglect the z dependence of θ0 and �Q0 and use
G(r, r′,−iπ/2) = G(r, r′, iπ/2) to write

D+
3D(r, r′, z, z′) = 1

2 {G(r, r′, 0) cos[kr (z − z′)]

+ G(r, r′,−2iθ0) cos[kr (z + z′) − 2�Q0 ]}.
(46)

For even cavities, �Q0 is an integer multiple of π and thus we
can write

D+
3D(r, r′, z, z′) = 1

2 {Glocal(r, r′) cos[kr (z − z′)]

± Gnonlocal(r, r′) cos[kr (z + z′)]}. (47)

This expression matches the form of the interaction intro-
duced in the companion paper [13]. Integrating this over
atomic density waves naturally recovers the interaction matrix
discussed in Sec. III A, while for spin degrees of freedom, this
expression can be directly applied, depending on the locations
of trapped spinful atoms.

IX. BEYOND CONFOCAL CAVITIES

All the results so far are based on cavity configurations
near the confocal geometrical configuration. However, there
exists a much wider set of Fabry-Pérot cavity configurations
with resonances at which multiple modes become degenerate.
To describe these cases, let us note that we can consider
all degeneracies as arising from the way the frequencies of
different transverse modes shift and cross as one varies the
length of the cavity from a short (nearly planar) configuration
of L 
 R, past the confocal point of L = R, and toward the
concentric limit of L = 2R. This is illustrated in Fig. 5. In the
following we first review the basic physics of higher-order
degeneracies, generalizing the discussion of Ref. [8]. We
provide the following summary here for completeness.

Planar

M/N=1/3
Confocal

FSR

Concentric

FIG. 5. Diagram illustrating evolution of cavity frequencies ver-
sus changing cavity length. Black vertical lines at the top of the
panel indicate different longitudinal resonances, separated by one
free spectral range. As one moves from the planar limit (top, L 
 R)
to the concentric limit (bottom, L = 2R), the different transverse
modes within a given mode family split and cross those from higher
longitudinal families. Some degenerate configurations are indicated
by horizontal blue lines.

A. Generalized degeneracy conditions

The cavity lengths at which degeneracies occur can be
understood by considering the frequency at which the funda-
mental (i.e., TEM00 mode) of one family is crossed by the
N th transverse modes of a family that is M FSRs away. That
is to say, the nμ = 0 mode of one family (with longitudinal
mode number Q0) is degenerate with the modes nμ = N from
a different family with longitudinal mode number Q0 − M.
We refer to these as M/N resonances. For example, the
confocal situation corresponds to M/N = 1/2 and concentric
to M/N = 1. Due to the linearity of the frequency shifts with
mode index, we may note that at the M/N degeneracy, as well
as the nμ = 0 mode of one family being degenerate with the
nμ = N mode of the family M FSRs away, it is also degenerate
with the nμ = 2N th mode of the family 2M away, and so on.
Therefore, the cavity becomes highly degenerate. Moreover,
the first-order transverse modes of a given family will be
degenerate with the (N + 1)th modes of the family M away,
etc. Thus, there are N distinct types of degenerate points,
generalizing the two odd and even sets of degenerate families
of the confocal case.

The condition on cavity length and mirror curvature re-
quired for such a degeneracy can be found by requiring equal
wave vectors between pairs of modes indexed as described
above. Using the mode functions as written in Eq. (2) and in
particular the phase θμ,Q(z) written in Eq. (3), we find that to
match the boundary conditions for which cavity light vanishes
on axis at the mirrors at z = ±L/2, we require that

−kμ,Q
L

2
− θμ,Q(−L/2) = π

2
, (48)

kμ,Q
L

2
− θμ,Q(L/2) = π

2
+ Qπ, (49)

where kμ,Q is the wave vector associated with the mode
with transverse index μ and longitudinal mode number Q.
Note that, as per its definition, Q counts the phase difference
between the mirrors, thus labeling the longitudinal mode
number. In addition, to match the boundary condition across
the transverse plane of the mirrors, we require that the radius
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of curvature R(z) at the mirror locations z = ±L/2 should
match the mirror curvature R.

To solve Eqs. (48) and (49), we take sums and differences.
Using the definition of θμ,Q(z) in Eq. (3), these yield the
following equations:

kμ,QL = Qπ + 2ψ (L/2)(1 + nμ), (50)

2ξμ,Q = (Q + 1)π + 2nμψ (L/2). (51)

Equation (50) is the condition to solve for degenerate points.
Specifically, our M/N resonance means that the values of
kμ,Q should be equal for (nμ, Q) and (nμ + N, Q − M ). The
condition for this to occur is thus Mπ = 2Nψ (L/2). Using the
definition of ψ (z), we may regard this condition as defining zR

in terms of L/2 to ensure resonance. We can then use this,
combined with the definition of R(z), to find the radius of
curvature at the mirrors. We thus find that the M/N resonance
corresponds to

zR = L

2
cot

(
Mπ

2N

)
, R = L

2
cosec2

(
Mπ

2N

)
.

From this condition we may note that even with a small range
of tunability of cavity length L, one can nonetheless realize
high-order resonances by finding irreducible fractions M/N
near the confocal point of M/N = 1/2.

We may note that since the degeneracy is between trans-
verse modes with total index nμ separated by N , there will
be N separate degeneracies, corresponding to η = nμ mod N ,
with η ∈ {0, . . . , N − 1}. Each of these families has an off-
set cosine along the longitudinal direction. To see this, one
may note that from the degeneracy condition between modes
(nμ, Q) and (nμ + N, Q − M ), we may thus label nμ = η +
PN and Q = Q0 − PM for integer P, where Q0 is the longitu-
dinal mode number of the lowest transverse mode in the given
family. As a result, ξμ,Q = ξQ0 = (π/2)(Q0 + 1 + ηM/N ) is
constant within a given degenerate family. We also see that as
with the confocal case, families separated by one FSR differ
in phase by π/2, giving an associated offset of the atomic
density waves. We may note that while for the confocal reso-
nance different mode families had an orthogonal longitudinal
dependence, this is not true for general M/N .

B. Generalized interaction matrix

Having found the resonances, we may now consider one
near-degenerate family with kμ,Q = kr and find the effective
interaction matrix. Focusing on a single degenerate family, we
consider atomic density waves of the form cos(krz + δ) and
sin(krz + δ) with a phase offset δ = �Q0 (z0) chosen to match
the given family. One may show that the matrix describing
the cavity-mediated matrix of Green’s functions takes exactly
the same form as in Eq. (9), but with modified overlap func-
tions and a modified factor Sμ. Specifically, the angle θ0(z0)
appearing in Oσ

μ is now given by θ0(z0) = ψ (z0) + ψ (L/2) =
arctan(z0/zR) + Mπ/2N , and the factor restricting the mode
summation should now be

Sη
μ = 1

N

N−1∑
s=0

exp[i2πs(nμ − η)/N].

This gives 1 for nμ = η mod N and zero otherwise. The label
η thus replaces the ± label for even or odd modes. We can
then similarly define

Gη(r, r′, ϕ) = 1

N

N−1∑
s=0

e−i2πsη/NG
(

r, r′, ϕ − i2s
π

N

)
. (52)

Using the above, we can then calculate the interaction matrix,
the equivalent of Eq. (18); we find

2Dη(r, r′) = 1Gη(r, r′, 0)

+ σ z

2
[Gη(r, r′,−2iθ0) + Gη(r, r′, 2iθ0)]

+ σ x

2i
[Gη(r, r′,−2iθ0) − Gη(r, r′, 2iθ0)], (53)

which is identical in structure to the confocal case, up to the
replacement of G+ by Gη and the modified value of θ0. One
may also verify that by taking M/N → 1/2 and using η = 0, 1
for the ± families, we recover the confocal results.

In the confocal case, neglecting the effects of finite cloud
size, we noted that at the cavity midplane, z0 = 0, and the
coupling between sine and cosine density waves vanished at
all radii. The same applies here for η = 0 (analogous to the
even modes considered before). In fact, we can extend this to
all η if we consider an η-dependent shift to the phase offset δ.
Specifically, we choose the offset such that the overlap factors
become

Oσ
μ =

{
cos(nμθ0 − πMη/2N ), σ = c

sin(nμθ0 − πMη/2N ), σ = s.
(54)

With this, we find that at the cavity midplane (where θ0 =
Mπ/2N), the remaining kernel takes the form

2Dη(r, r′) = 1Gη(r, r′, 0)

+ σ ze−iπMη/NGη(r, r′,−iMπ/N ). (55)

In terms of the spatial structure of these functions, there
is one notable differences between the confocal case and
the higher-order resonances. This is that in the confocal
case, N = 2, and at the cavity midplane, the angle θ0 =
π/4 led to an especially simple form of the nonlocal inter-
action, cos(2r · r′/w2

0 ). For the higher-order resonances, no
such simplification occurs and thus the nonlocal interaction
takes a form involving a sum of terms of the more general
form cos[A + Br · r′/w2

0 + C(r2 + r′2)/w2
0]. Thus, for such a

higher resonance, the output light coming from a single spot
involves not only a set of parallel fringes (contours of constant
r · r′), but also a set of circular fringes around the location of
the atom cloud. Whether such interactions could be used for
engineering interesting cavity-mediated spin-spin interactions
is the subject left for future work.

X. CONCLUSION AND OUTLOOK

We have shown that the structure of Gaussian modes in
a near-confocal multimode cavity leads to cavity-mediated
atom-atom interactions that can favor distinct patterns of
atomic density waves as one moves transversely across the
cavity. We found, moreover, that specific radii can exist where
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there is phase freedom for the atomic density wave. For a per-
fectly confocal cavity and small-sized BECs, such radii exist
at all longitudinal distances along the cavity. Including effects
of finite nonconfocality, the emergent symmetry exists on the
midplane of the cavity, while elsewhere we have symmetry
breaking. Nonetheless, the symmetry-broken state still shows
interesting phase evolution of the atomic density wave versus
radius, smoothly evolving between sine and cosine density
waves as the atomic gas is moved across the transverse plane.
Such behavior matches that which we report experimentally.

The results presented here provide the foundation to fur-
ther control the cavity-mediated interaction among intracavity
atoms and atomic spins. In particular, we showed that a con-
figuration involving two pump laser frequencies can induce
a full U(1) symmetry, even accounting for imperfections of
the real cavity. This provides a route to exploring liquid crys-
talline order [18,19] in experimentally accessible conditions
with a confocal cavity. At the same time, we showed how
other, more complex, interactions can be engineered, by using
higher-order cavity resonances. In particular, since resonances
are labeled by irreducible fractions M/N , high-order reso-
nances can be realized without requiring a significant change
of cavity length. These higher-order resonances provide a
further tool in realizing tunable cavity-mediated interactions.
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APPENDIX A: FINITE BEC EXTENT
ALONG THE CAVITY AXIS

One additional effect that may be considered as a source
of breaking of the U(1) symmetry is the finite extent of the

atom gas along the cavity axis. This corresponds to relaxing
our simplifying assumption that the phase of cavity modes
is constant over the extent of the atomic gas and can result
in a more complicated overlap factor in Eq. (12). However,
as shown below, this effect on its own does not to lead to a
smooth phase evolution.

To account for this effect, we must return to the definition
of the overlap factor to include variation of the Gouy phase
in the integral over z that appears in this factor. That is, we
cannot write this effect as a single integral over z at the end of
the calculation. From Eq. (11), the phase variation along the
cavity axis direction is θ0(z) = π/4 + arctan(z/zR). We may
expand around the midpoint of the atom cloud, z0, and lin-
earize to write θ0(z) ≈ θ0(z0) + θ ′

0(z0)(z − z0). The modified
overlap factor should then include an integral over the density
profile |Z (z − z0)|2 of the atoms along the z direction,

Oσ
μ =

∫
dz|Z (z − z0)|2 ×

{
cos [nμθ0(z)], σ = c

sin [nμθ0(z)], σ = s.
(A1)

Assuming a Gaussian density profile

|Z (z − z0)|2 = 1√
2πw2

z

exp

(
− (z − z0)2

2w2
z

)
, (A2)

the result of the integral is given by

Oσ
μ =

⎧⎨⎩cos [nμθ0(z0)]exp
[
− n2

μ[wzθ
′
0(z0 )]2

2

]
, σ = c

sin [nμθ0(z0)]exp
[
− n2

μ[wzθ
′
0(z0 )]2

2

]
, σ = s.

(A3)

Because of the appearance of the n2
μ factor in the exponent,

we can no longer apply Eq. (15) to evaluate the sum in
Eq. (14). We can nonetheless see that the off-diagonal term
still vanishes for θ (z0) = π/4. Thus, once again, we see that
the variation of the cavity mode phase has no effect on the
symmetry breaking for atoms located at the midplane of the
cavity. The presence of the n2

μ factor in the exponent also
means that we can no longer find a simple expression for the
effect of this term away from the cavity midplane. We leave
additional explorations of this effect to future work.

APPENDIX B: FIELD PROFILE IN A CONFOCAL CAVITY

In order to understand the effects of the confocal cavity-mediated interaction, it is helpful to evaluate the cavity light profile
corresponding to a given atomic cloud position. The full cavity field profile can be written as

�(r, z) ∝
∑

μ

αμ�μ

(
w0r
w(z)

)
cos

[
kr

(
z + r2

R(z)

)
− �Q0 − nμθ0(z)

]
S+

μ , (B1)

where αμ is given by Eq. (19) and R(z) is the radius of curvature of the wave front defined below Eq. (2). In writing this, to find
the full three-dimensional variation of the field, we have made explicit the variation of the beam waist w(z) = w0

√
1 + z2/z2

R
along the cavity axis, which was implicit in previous equations. In the adiabatic limit, we can write αμ in terms of the condensate
density profile, and considering the exact confocal case, we make use of Eq. (15) to perform the summation over μ. This yields

�(r, z) ∝ Re

(((∫
dr′ρ(r′)D3D

(
w0r
w(z)

, r′; z

)
exp

{
i

[
kr

(
z + r2

R(z)

)
− �Q0

]})))
, (B2)

with

4D3D(r, r′; z) = G(r, r′,−θ0(z) + θ0(z0)) + e2iτ G(r, r′,−θ0(z) − θ0(z0)) + G(r, r′,−θ0(z) + θ0(z0) + π )

+ e2iτ G(r, r′,−θ0(z) − θ0(z0) + π ), (B3)
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where τ = 0 (π/2) differentiates between χc (χs) density waves. Assuming that the atoms are in a Gaussian transverse profile
with width σA centered at r0, as in Eq. (39), we can explicitly evaluate the integral∫

dr′ρ(r′)G(r, r′, φ) = w2
0e−iφ

2π
(
4σ 2

A cos φ − iw2
0 sin φ

) exp

[
−2r2

0 cos φ − 4r0 · r + 2r2(w2
0 cos φ − i4σ 2

A sin φ)/w2
0

4σ 2
A cos φ − iw2

0 sin φ

]
. (B4)

Summing over all the contributions in Eq. (B3), we can then compute the total light field inside the cavity. For a BEC located at
z = 0, the field in the cavity transverse plane reduces to a simple form

�(r) ∝ w2
0

4πσ 2
A

[
exp

(−(r − r0)2

2σ 2
A

)
+ exp

(−(r + r0)2

2σ 2
A

)]
+ e2iτ

π
exp

(
−4σ 2

A |r|2
w4

0

)
cos

(
2r · r0

w2
0

)
. (B5)

The overall amplitude of the nonlocal contribution cos(2r · r′/w2
0 ) decays like a Gaussian with width determined by the

transverse size of the atom density profile.
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