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Efficient representation of Gaussian states for multimode non-Gaussian quantum state engineering
via subtraction of arbitrary number of photons
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We consider a complete description of a multi-mode bosonic quantum state in the coherent-state basis (which
in this paper is denoted as the “K” function), which—up to a phase—is the square root of the well-known
Husimi Q representation. We express the K function of any N-mode Gaussian state as a function of its covariance
matrix and displacement vector, and also that of a general continuous-variable cluster state in terms of the modal
squeezing and graph topology of the cluster. This formalism lets us characterize the non-Gaussian state left over
when one measures a subset of modes of a Gaussian state using photon number resolving detection, the fidelity
of the obtained non-Gaussian state with any target state, and the associated heralding probability, all analytically.
We show that this probability can be expressed as a Hafnian, reinterpreting the output state of a circuit claimed to
demonstrate quantum supremacy termed Gaussian boson sampling. As an example application of our formalism,
we propose a method to prepare a two-mode coherent-cat-basis Bell state with fidelity close to unity and success
probability that is fundamentally higher than that of a well-known scheme that splits an approximate single-mode
cat state—obtained by photon number subtraction on a squeezed vacuum mode—on a balanced beam splitter.
This formalism could enable exploration of efficient generation of cat-basis entangled states, which are known
to be useful for quantum error correction against photon loss.
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I. INTRODUCTION

Gaussian states of bosonic modes—quantum states of light
that can be prepared using quadrature squeezed light and
passive linear optics—form an important set of quantum states
the elegant mathematical description of which [1] and feasi-
bility of experimental production [2] make Gaussian quantum
information processing a major success [3]. However, it is
well known that Gaussian states and Gaussian measurements
(homodyne and heterodyne detection) do not constitute a
universal set, i.e., resources that would allow universal quan-
tum computation [4]. Moreover, various important protocols
for quantum enhanced information processing cannot be per-
formed when restricted to Gaussian states, Gaussian unitaries,
and Gaussian measurements alone. Such no-go theorems have
appeared for universal quantum computing [5], entanglement
distillation [6–8], optimal cloning of coherent states [9], op-
timal discrimination of coherent states [10–12], receivers for
optical communications and quantum repeaters [13], quantum
error correction [14], and quantum-enhanced sensing [15].

Therefore, having access to non-Gaussian states becomes
imperative in pretty much any application of quantum en-
hanced photonic information processing. Introducing non-
Gaussianity into an optical system can be challenging. For
example, large χ (3) nonlinearities are very difficult to be
implemented at optical frequencies, and obtaining a strong-
enough non-Gaussian interaction through a χ (2) medium
with a depleted pump [16] is hard. An alternative way to
inject non-Gaussianity is to utilize detection-induced, often
probabilistic, methods such as photon number subtraction.

Theoretical, numerical, and experimental studies [17–26]
have shown that photon subtraction on a single-mode Gaus-
sian (squeezed vacuum) state yields approximations of coher-
ent cat states and has validated the non-Gaussian character of
photon subtracted multimode states. Further, photon subtrac-
tion has been shown to enhance entanglement [27–29] and the
fidelity of continuous-variable teleportation as was originally
shown [27] and also later studied [30].

Evaluating the state obtained after subtracting m photons
from a state |ψ〉, i.e., âm|ψ〉 using the photon number (Fock)
basis {|n〉} and even methods using the Husimi Q represen-
tation of the state |ψ〉, leads to onerous calculations. This is
because one has to calculate expressions such as âm|n〉 and
â†m|α〉 within difficult-to-handle summations and integrals,
where â is the modal photon annihilation operator. Similar
difficulties apply when using the Wigner representation. Fur-
thermore, taking into account the deviations of the photon
subtracted state from âm|ψ〉 pursuant to actual experimental
methods of implementing such operation using a beam splitter
and photon number resolving (PNR) detectors creates addi-
tional complexities. Despite photon number subtraction being
a very promising tool for non-Gaussian state engineering,
this analytical difficulty has stood in the way of theoretical
progress in the field.

In this paper, we remedy the above situation by expressing
the state on the coherent basis [31,32]. Specifically, we utilize
the positive P+ representation of a quantum state, which
is essentially expressing a general density operator in the
coherent-state overcomplete basis [33]. This representation al-
ways exists unlike the Glauber-Sudarshan PGS function, which
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is not always defined, especially for squeezed states which
are of interest in creation of cat states. The P+ representation
has been utilized for the numerical and analytical study of
Fokker-Planck equations of dynamical systems [16,33–38],
Ising systems [39], and single-mode quantum information
analyses [40]. Formulas for P+ have been given for Gaussian
states [41] but only for the cases where the Glauber-Sudarshan
PGS function is well defined.

We first define the P+ function of an N-mode pure Gaus-
sian state, which we call the K function. It is a unique
representation of any pure state, and can be interpreted as a
square root of the Husimi Q function up to a phase. The latter
mathematical observation allows us to derive clean, closed-
form, and easy to use formulas for the P+ representation
(called K in this paper), for any Gaussian state. We begin
with developing a closed-form expression of the K function
of a general N-mode Gaussian state. This lets us analytically
characterize non-Gaussian states created by photon number
detection and/or photon number subtraction on a subset of
modes of any N-mode Gaussian state in an analytic integral
form. We show that this reproduces—in a rather simple
set of steps—the theory behind Gaussian boson sampling,
where it was argued that sampling from the photon number
distribution of a random N-mode entangled Gaussian state
is a classically hard computational task as was proven in
[42] and also subsequently studied [43,44]. As an example
application of our formalism, we consider the problem of
engineering coherent cat-basis entangled cluster states. We
propose a method to prepare a two-mode cat-basis Bell state
by subtracting photons from both modes of a Gaussian two-
mode entangled squeezed state. We show that the fidelity
versus success probability tradeoff of our method is higher
than that of the conventional method—that of splitting an ap-
proximate single-mode cat state, obtained by photon number
subtraction on a squeezed vacuum mode, on a balanced beam
splitter. The above analysis would be extremely cumbersome
(and not scalable to a larger entangled state) if done in
the traditional way in the photon number basis. We expect
generalization of the above to enable exploration of efficient
generation of cat-basis cluster states, which have recently
emerged as a very powerful resource for quantum error correc-
tion against photon losses, with applications both to photonic
quantum repeaters as well as to superconducting quantum
computing [45–47].

II. THE K FUNCTION OF A PURE GAUSSIAN STATE

We work in units of h̄ = 1, where the N-mode vacuum
state’s covariance matrix (CM) is V0 = I/2, with I being the
N-mode identity operator. Coherent states of N modes |�α〉 are
not mutually orthogonal. Yet they form an overcomplete basis.
In other words, they resolve the identity operator, viz.,

I = 1

(2π )N

∫
d2N�xα|�α〉〈�α|, (1)

where �xT
α = (�qT

α , �pT
α ), and the volume element d2N�xα =

dqα1 . . . dqαN d pα1 . . . d pαN . We take αi = (qαi + ipαi )/
√

2.
Using Eq. (1), we can express any N-mode pure state |�0〉

as

|�0〉 = 1

(2π )N

∫
d2N�xα〈�α|�0〉|�α〉

=
∫

d2N�xα K (�xα )|�α〉, (2)

where we call K (�xα ) = 1/(2π )N 〈�α|�0〉 the K function of
the state |�0〉. When compared to the Q function Q(�xα ) =
1/(2π )N |〈�α|�0〉|2, the K function resembles something that
could be called the square root of the Q function. However,
one has to be careful as 〈�α|�0〉 is a complex number and its
square root will contain a phase that if omitted will produce
wrong results since it depends on �xα .

Let us assume that |�0〉 is a zero-mean Gaussian state, such
that Q(�xα ) = 1/(2π )N 〈�α|�0〉〈�0|�α〉 is a Gaussian function.
In order to calculate the K function, one must break up the
Gaussian Q function’s exponent into two conjugate parts,
yielding a Gaussian K function. This step becomes easier if
instead of working with Cartesian coordinates (�qα, �pα ) we
move to complex coordinates (�α, �α∗) with a π/4 phase-space
rotation. After we finish the calculation we rotate back to
Cartesian coordinates.

Let us now consider a general N-mode Gaussian pure state
|�〉 = D(�β )|�0〉, where D(�β ) is the displacement operator.
With |�0〉 expressed in its K-function form (2), it is straight-
forward to evaluate the K function of |�〉 since D(�β )|�α〉 =
exp (�β �α∗ − �β∗�α)|�α + �β〉.

Using the above method, we show that any N-mode pure
Gaussian state with CM V and displacement vector �xT

β =
(�qT

β , �pT
β ) [48] can be written as follows (see Secs. 2 and 3 of

the Appendix for the complete derivation):

|�〉 =
∫

d2N�xα K (�xα )G(�xα,�xβ )|�α〉, (3)

where

K (�xα ) = exp
[− 1

2�xT
αB�xα

]
(2π )N (det �)1/4

, (4)

G(�xα,�xβ ) = exp
[

1
4

(�xT
α �xT

β

)
D(�xα �xβ )

]
, (5)

with � = V + I/2, and

B = 1

2

(
A + i

2 (C + CT ) C − i
2 (A − B)

CT − i
2 (A − B) B − i

2 (C + CT )

)
, (6)

D =
(

0 2B + X
2B − X −2B

)
, (7)

X =
(

I iI
−iI I

)
, (8)

where A = AT , B = BT , and C are defined as the blocks of
the CM � defined as follows [49]:

�−1 =
(

A C
CT B

)
. (9)
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III. PHOTON SUBTRACTION FROM A GENERAL
MULTIMODE GAUSSIAN STATE

Subtraction of m photons from a single-mode quantum
state |ψ〉 can be implemented by transmitting |ψ〉 through
a beam splitter of transmissivity τ (chosen to be close to
1) while detecting the low-transmissivity output of the beam
splitter with a PNR detector. If the detector registers m
photons, the transmitted state projects to P−m[|ψ〉], which
is an approximation of the m-photon subtracted state âm|ψ〉.
Since âm is not a unitary, photon subtraction only succeeds
probabilistically.

Let us consider subtracting a vector �m = (m1, . . . , mN )
photons from an N-mode pure Gaussian state |�〉 us-
ing an array of beam splitters of transmissivities τi, and
PNR detectors. The postsubtraction state will be denoted
P−�m[|�〉], implying mi photons were subtracted from the
ith mode, i = 1, 2, . . . , N . Using the K function of |�〉
(3), we see that P−�m acts only on the coherent states
(see Sec. 1 of the Appendix), i.e., P−�m[|�α〉], which as-
sumes a simple form, P−�m[|�α〉] = ∏N

i=1 ci|αi
√

τi〉, ci =
[(−√

1 − τi )
mi ]/[

√
mi!]αmi e−(1−τi )|αi|2/2.

The photon subtracted state |�−�m〉 is given as

|�−�m〉 = 1√
P

N∏
i=1

(−√
1 − τi )mi

√
mi!

∫
d2N�xα K (�xα )

× G(�xα,�xβ )e− (1−τi )
4 |�xα |2

×
(

qαi + ipαi√
2

)mi

|√τi�α〉, (10)

where P = 〈�−�m|�−�m〉 is the probability of success of the
N-mode vector photon subtraction. P is a 4N-dimensional
integral with the elementary volume d2N�xαd2N�xγ (�xγ are the
coordinates of 〈�−�m|), with a Gaussian kernel, and polyno-
mial terms (qαi + ipαi )

mi (qγi − ipγi )
mi . This kind of integrals

can be analytically calculated (see Sec. 4 of the Appendix).
If one wishes to use photon subtraction to produce a

desired non-Gaussian multimode entangled state |C〉 (for
example a cat-basis Bell state that we consider later), one
can evaluate analytically the fidelity F = |〈C|�−�m〉|2 between
the desired state |C〉 and the actual state obtained, |�−�m〉, if
|C〉 is expressed in its K-function form. For cat states, for
example, which are superpositions of coherent states |�γ 〉, the
fidelity calculation will require us to calculate the amplitude
|〈�γ |�−�m〉|, which again is a 4N-dimensional integral, with
Gaussian kernel and polynomial terms (qαi + ipαi )

mi , which
can be analytically calculated (see Sec. 5 of the Appendix).

For the rest of this paper we will restrict our attention to
zero-mean states, to keep the exposition simple. Including
nonzero means is a trivial extension. Further, we will assume
that all the beam splitters employed for photon subtraction on
an N-mode Gaussian state have the same transmissivity, τ .

IV. GAUSSIAN BOSON SAMPLING AND NON-GAUSSIAN
STATE ENGINEERING

Consider a pure N-mode Gaussian state |�〉, the first
M < N modes of which are detected using PNR detectors,
obtaining the outcome �n = (n1, . . . , nM ). It is simple to show

that the resulting state |�〉 on the unmeasured modes is given
by (see Sec. 6 of the Appendix)

|�〉 = 1√
PM

M∏
i=1

1√
2ni ni!

∫
d2N�xαK (�xα )e− 1

4 x2
αi

×(qαi + ipαi )
ni |αM+1, . . . , αN 〉, (11)

where we used |α〉 = exp(−|α|2/2)
∑

n αn/(
√

n!)|n〉. The
probability PM of detecting the photon number pattern �n and
hence heralding the state |�〉 can be calculated by setting
〈�|�〉 = 1.

Gaussian boson sampling is the special case of M = N ,
where all N modes are detected [43,44]. The success probabil-
ity of detecting a photon-number pattern �n, P�n = |〈�n|�〉|2 =
|〈n1 . . . nN |�〉|2 can be evaluated using our formalism and
shown to be (see Sec. 7 of the Appendix)

P�n = 1

det H
√

det �
∏N

i=1 ni!2ni

∣∣I�n
∣∣2

, (12)

where

I�n =
∫

d2N�xαR(�xα )
N∏

i=1

(
qαi + ipαi

)ni
, (13)

R(�xα ) =
√

det H
(2π )N

e− 1
2 �xT

α H�xα , (14)

and H = B + I/2. Since H = HT and its real part is positive
definite (see Sec. 8 of the Appendix), Eq. (14) is a proper
Gaussian distribution. Therefore, Eq. (13) is the mean value
〈 f n1

1 . . . f nN
N 〉, where fi = qαi + ipαi , under the distribution of

Eq. (14). Using Wick’s theorem [50,51] we can write it as

I�n =
{

0 � = odd,

Hf(F ) � = even,
(15)

where � = ∑N
i=1 ni and Hf(F ) is the Hafnian of the matrix F

with elements Fi j = 〈 fi f j〉, 1 � i, j � �.

V. PHOTON SUBTRACTION FROM MULTIMODE
SQUEEZED CLUSTER STATES

Continuous variable quantum computing is a field that
explores the use of multimode entangled squeezed states for
all-photonic quantum computing. Such Gaussian cluster states
of thousands of modes have been prepared experimentally
[2,52,53]. It is known, however, that Gaussian cluster states
by themselves are not a resource sufficient for universal
quantum processing. Photon number detection being the most
practical “de-Gaussification” tool, and given that it is known
that approximate cat states can be prepared using photon
number subtraction from a single-mode squeezed vacuum, we
will explore the creation of cat-basis cluster (graph) states by
photon number subtraction on Gaussian cluster states.

Let us consider the Gaussian graph state |G〉 which is the
result of the unitary evolution of an N-mode vacuum state un-
der the unitary Ûr = exp (−irĤ ) the generating Hamiltonian
of which is

Ĥ = − i

2

N∑
i, j

Gi j (â
†
i â†

j − âiâ j ), (16)
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where âi and â†
i are the annihilation and creation operators of

the ith mode, respectively. The state |G〉 is a squeezed entan-
gled state among its N modes. The information about which
modes are entangled is described by the graph (a symmetric
matrix) G. We assume that the squeezing parameter r > 0 is
the same for all modes [54]. In the limit r → ∞, |G〉 is a
continuous variable cluster state if G is a full rank matrix [55].
For the same r, we will consider a matrix G which is its own
inverse, i.e., G2 = I . Under this assumption on G, we show
that (see Sec. 9 of the Appendix)

B = 1

2
I + 1

2
tanh r

(−G iG
iG G

)
. (17)

To demonstrate the power of our method, as a first example
we consider a two-mode squeezed vacuum state (TMSV),
from which we subtract five photons per mode (ten in total).
We calculate the photon subtracted state |�−5,−5〉, the proba-
bility of success P5, and the fidelity F5 = |〈C|�−5,−5〉|2, where

|C〉 = 1

N+
(|γ , γ 〉 + | − γ ,−γ 〉), (18)

with normalization |N+|2 = 2[1 + e−2(q2
γ +p2

γ )]. We compare
the state |�−5,−5〉 with the specific state of Eq. (18), because
both states are parity (−1)n̂1+n̂2 eigenstates with eigenvalue
+1. If the K (�xα ) function is known, then the state |�−5,−5〉 is
known from Eq. (10) for zero displacement. The only thing
required to find the K (�xα ) is the matrix B [56], which is given
by Eq. (17) for

G =
(

0 1
1 0

)
, (19)

which describes the graph corresponding to the TMSV, as can
also be seen by Eq. (16). The probability P5 and the fidelity F5

are given by

P5 = (1 − τ 2)10 tanh10 r

cosh2 r
p(μ), (20)

F5 = 2e−(q2
γ +p2

γ − z
2 )(1 − τ )5 tanh2 r[

1 + e−2(q2
γ +p2

γ )
]√

P5(det �)
1
4

w(z), (21)

where p(μ) = [(1 + μ2)(1 + 24μ2 + 76μ2 + 24μ6 + μ8)]/
[(1−μ2)11], w(z) = 1+(5z)/(2) + (5z2)/(4) + (5z3)/(24) +
(5z4)/(384) + (z5)/(3840), μ = τ tanh r, and z = (qγ −
ipγ )μ. For example for qγ = 0.5, pγ = 0, τ = 0.01, and r =
1 we get P5 = 0.025 and F5 = 0.979. Note that in the above
example the analytical complexity would not have changed
if we decided to subtract more (e.g., ten photons) from each
mode, whereas a traditional Fock basis calculation would
become completely intractable.

As a second example we consider two ways to produce the
cat-basis Bell state |C〉.

(i) We subtract two photons from a single-mode squeezed
state, and the resulting state is known to be an approximation
of the cat state |δ〉 + | − δ〉, which if then split in a 50-50 beam
splitter is known to produce the state |C〉 with δ = √

2γ [57].
(ii) We subtract one photon from each of the two modes of

a TMSV.
In both scenarios two photons are subtracted in total. Also,

the beam splitter used in scenario (i) is a Hadamard gate,

FIG. 1. Scenario (i): Two-photon subtraction from a single-mode
squeezed state creates a state close to a single-mode coherent cat
state. This when split on a balanced beam splitter creates a state that
approximates the two-mode coherent cat-basis entangled state |C〉.
Scenario (ii): An approximation to |C〉 is created by subtracting one
photon from each mode of a two-mode squeezed vacuum state.

and if this is used to mix a position-squeezed state with a
momentum-squeezed state we get a TMSV (see Fig. 1). We set
pγ = 0 and we calculate the probabilities of success P(i), P(ii)

and the fidelities F(i), F(ii) for scenarios (i) and (ii) to the
desired state |C〉, as

P(i) = (tanh r − μ)2(1 + 2μ2)

2 cosh r(1 − μ2)
5
2

, (22)

P(ii) = (tanh r − μ)2(1 + μ2)

cosh2 r(1 − μ2)3
, (23)

F(i) = 2eq2
γ (1+μ)

(
q2

γ μ + 1
)2

(1 − μ2)
5
2(

eq2
γ + 1

)
(1 + 2μ2)

, (24)

F(ii) = eq2
γ (1+μ)

(
q2

γ μ + 2
)2

(1 − μ2)3

2
(
e2q2

γ + 1
)
(1 + μ2)

. (25)

Comparative results for these two scenarios are shown in
Figs. 2 and 3. To produce a cat-basis Bell state |C〉 with a
small amplitude, scenario (ii) is better than scenario (i) in
both fidelity and probability of success. As the amplitude
of |C〉 increases, the situation begins to change: scenario
(i) favors high fidelity, at the expense of smaller probabil-
ity of success compared to scenario (ii), for example, for
qγ = 0.1, pγ = 0, r = 0.9, τ = 0.4, P(i) = 0.179, P(ii) =
0.249, F(i) = 0.999, and F(ii) = 0.999 and for qγ = 1, pγ =
0, r = 0.9, τ = 0.4, P(i) = 0.093, P(ii) = 0.126, F(i) =
0.990, and F(ii) = 0.806. It is of similar ease to find ex-
pressions for P5, F5, P(i), P(ii), F(i), and F(ii) for pγ 	= 0
(generality is not lost by assuming real amplitude).

VI. MIXED GAUSSIAN STATES

A mixed Gaussian state ρ̂ can be written as ρ̂ = Û ρ̂thÛ †,
where ρ̂th is a thermal state and Û is a Gaussian unitary.
Using the Glauber-Sudarshan PGS function of the thermal state
PGS,th ≡ Pth(�xα ), we have ρ̂ = ∫

d2N�xαPth(�xα )|�〉〈�| where
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FIG. 2. Black dots correspond to scenario (i) while gray dots
correspond to scenario (ii). Each dot corresponds to qγ = 0.1, pγ =
0; r, τ are taking values in [0.01,1] with step 0.01. Scenario (ii) is
superior to scenario (i) as it can achieve higher fidelity with higher
probability of success.

|�〉 = U |�α〉. The state |�〉 can be expressed using Eq. (3)
and therefore ρ̂ is expressed in the coherent-state basis as two
integrals coming from |�〉 and 〈�|, which are convoluted into
a third integral over �xα with Pth(�xα ).

Concerning mixed Gaussian states, things become even
easier if an initial pure Gaussian state |�0〉 goes through a
pure loss channel. We remind the reader that under a pure loss
channel every mode of the state |�0〉 is coupled with |0〉 (the
environment) via a beam splitter of transmittance τi, where
i = 1, . . . , N counts the modes, i.e., the loss does not have
to be uniform across the N modes. Then the environment’s
output is traced out. The single-mode pure loss channel is
described by the Kraus operators [58]:

Âl =
√

(1 − τ )l

l!
τ n̂/2âl , (26)

and the final state is

ρ̂ =
∞∑

l1,...,ln=0

Âl1 . . . ÂlN |�0〉〈�0|Â†
lN

. . . Â†
l1
. (27)

Here we observe that if |�0〉 is expressed on the coherent basis
the operators τ n̂/2âl in Eq. (26), will act on coherent states,
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FIG. 3. Black dots correspond to scenario (i) while gray dots
correspond to scenario (ii). Each dot corresponds to qγ = 1, pγ = 0;
r, τ are taking values in [0.01,1] with step 0.01. Scenario (i) can
achieve higher fidelity. However, for high fidelity the probability of
success is smaller compared to smaller coherent cat states.

resulting in manageable expressions. For further simplicity we
assume the same transmittance rate τ per mode (even though
this assumption can be easily dropped). The final state will be

ρ̂ =
∫

d2N�αd2N �βK (�α)K∗(�β )

× exp

[
−1 − τ

2
(|�α|2 + |�β|2)

+ (1 − τ )�β∗T �α
]
|√τ�α〉〈√τ�β|, (28)

an expression which can be useful, for example, in an analysis
of a Gaussian boson sampling with a pure loss scheme.

VII. CONCLUSIONS

We have derived a general representation of Gaussian
states in the coherent-state basis, and showed that it opens
the door to analytical and thorough investigations of non-
Gaussian states prepared via photon subtraction and partial
PNR detection of Gaussian states. We showed a simplified
analysis of Gaussian boson sampling as a special case of our
formalism. As a specific example application of our formal-
ism, we considered cat-basis cluster creation by multimode
photon subtraction on entangled Gaussian states. We showed
that by subtracting photons simultaneously from both modes
of a two-mode squeezed vacuum state a coherent cat-basis
Bell state can be produced with higher fidelity and prob-
ability of success, compared to the well-known method of
first creating a cat state via photon number subtraction of
a single-mode squeezed vacuum followed by linear-optical
manipulation. The question of whether more general coherent
cat-basis graph states—known to be an excellent resource
for quantum error correction against photon loss—can be
systematically engineered from Gaussian cluster states and
photon subtraction is left open for future work. We an-
ticipate that our formalism will prove a powerful tool for
non-Gaussian cluster state engineering [59–61], which is a
subject of intense interest in designing scalable solutions
for all-photonic quantum computing and other forms of
quantum-enhanced photonic information processing such as
all-photonic quantum repeaters, where photonic cluster states
replace quantum memories [62,63], and optical-domain quan-
tum machine learning via receivers powered with cluster
states [64].

Note added. Recently, it came to our attention [65] that
similar phase-space methods have been developed [66,67]
practically concurrently.
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APPENDIX

1. Photon subtraction from a coherent state using
a beam splitter

Subtraction of m photons from a mode of a state |�〉
can be implemented with a beam splitter of transmittance
τ . The beam splitter couples the mode in which the photon
subtraction will take place with vacuum. Then, if the photon
number resolution measurement (PNRM) registers m photons,
the resulting state is |�−m〉 as shown in Fig. 4. Since a
measurement is involved, this procedure is probabilistic and
heralded. Because of the probabilistic nature of photon sub-
traction the final state needs to be normalized. The absolute
square of the normalization is the probability of finding m
photons in the PNRM. This probability is also called the
probability of success.

Since we expand |�〉 on a coherent basis, when subtracting
photons from some mode of |�〉, the beam splitter will couple
a coherent state with vacuum. If â1, â2 and b̂1, b̂2 are the input
and output annihilation operators, respectively, we have(

b̂1

b̂2

)
=

( √
τ

√
1 − τ

−√
1 − τ

√
τ

)(
â1

â2

)
. (A1)

Therefore, if the global two-mode input state is |α, 0〉 the final
state is |√τα,−√

1 − τα〉. The conditional state on the upper
output port, upon finding m photons in the PNRM, is

〈m| − √
1 − τα〉|α√

τ 〉 =
(−√

1 − τ
)m

√
m!

αme−(1−τ ) |α|2
2 |α√

τ 〉,

(A2)

therefore we can write

P̂−m[|α〉] = cs|α−m〉, (A3)

where

cs = (−√
1 − τ )m

√
m!

αme−(1−τ ) |α|2
2 , (A4)

|α−m〉 = |α√
τ 〉 (A5)

and the probability of success is given by P = |cs|2. Subtract-
ing photons from a coherent state yields the same amplitude-
damped coherent state |α√

τ 〉 regardless of the PNRM re-
sult. Therefore, for applications there is not much meaning
in subtracting photons from coherent states. However, it is
highly convenient for mathematical manipulation of photon
subtraction written on a coherent basis.

( )

FIG. 4. The ith mode of a state |�〉 is mixed with vacuum in a
beam splitter with transmittance τ . If a photon number resolution
measurement registers m photons in the lower output port, then m
photons have been subtracted from the ith mode of the input state.

2. Coherent basis representation of pure Gaussian states
without displacement

We define �xα = ( �qα

�pα
) and we work with h̄ = 1. Using the

unit resolution on coherent states,
1

πN

∫
d2N�α |�α〉〈�α| = 1

(2π )N

∫
dN �qαdN �pα |�α〉〈�α|

= 1

(2π )N

∫
d2N�xα |�α〉〈�α|

= I, (A6)

for any state |�〉 we can write

|�〉 = 1

(2π )N

∫
d2N�xα 〈�α|�〉|�α〉 =

∫
d2N�xα K (�xα )|�α〉,

(A7)

where we define

K (�xα ) = 1

(2π )N
〈�α|�〉. (A8)

which up to some constant is the the square root of the Q(�xα )
representation:

Q(�xα ) = 1

(2π )N
〈�α|�〉〈�|�α〉, (A9)

therefore we can write
1

(2π )N
Q(�xα ) = |K (�xα )|2 ⇒ K (�xα ) = 1

(2π )N/2
Q1/2(�xα ),

(A10)

such that

Q1/2(�xα )Q∗
1/2(�xα ) = Q(�xα ). (A11)

Equations (A10) and (A11) imply that to find Q1/2(�xα ) we
have to separate the Q(�xα ) representation into a product of
two conjugate parts. In that way, if the state |�〉 = |�0〉 is a
Gaussian state with zero displacement, we can express K (�xα )
as a function of the states’ CM. The Q(�xα ) representation of a
Gaussian state with CM V is

Q(�xα ) = 1

(2π )N
√

det �
exp

[
−1

2
�xT

α �−1�xα

]
, (A12)

where

� = V + 1
2 I, (A13)

where I is the identity matrix of appropriate dimensions. Any
CM is a real symmetric matrix, and as per Eq. (A13) � is a real
symmetric matrix. The inverse of a real symmetric matrix is
again real and symmetric, therefore in block form the matrix
�−1 is

�−1 =
(

A C
CT B

)
, (A14)

where A = AT and B = BT and A, B, and C real. It is more
convenient if we change coordinates in the following manner:

�z = R�xα, (A15)

where

�zα =
( �α

�α∗

)
, (A16)

�α = 1√
2

(�qα + i �pα ), (A17)
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�α∗ = 1√
2

(�qα − i �pα ), (A18)

�xα =
(�qα

�pα

)
, (A19)

R = 1√
2

(
I I

−iI iI

)
. (A20)

Note that R is unitary, i.e., RR† = I .
To break Eq. (A12) into two conjugate parts, we must

express the term �xT
α �−1�xα which appears in its exp(.) as a

summation of two conjugate terms. To this end we express
� in the �zα basis:

�xT �−1�x = �z†R†�−1R�z = �z†�̃−1�z, (A21)

where

�̃−1 = R†�−1R (A22)

is the transformed �−1 in the �zα basis. From Eqs. (A22) and
(A20) we have

�̃−1 = 1

2

(
A + B − i(C − CT ) A − B + i(C + CT )
A − B − i(C + CT ) A + B + i(C − CT )

)

=
(

Ã C̃
C̃∗ Ã∗

)
. (A23)

Therefore we can write

�z†
α�̃−1�zα = (�α∗T �αT

)( Ã C̃
C̃∗ Ã∗

)( �α
�α∗

)
(A24)

= �α∗T Ã�α + �α∗T C̃�a∗ + �αT C̃∗�a + �αT Ã∗�α∗

= �z†B̃�z +�z†B̃†�z. (A25)

Equation (A25) shows that we can readily derive the two
conjugate terms where

B̃ = 1

2

(
Ã C̃

0 Ã∗

)
. (A26)

Going back to Cartesian coordinates �xα we get the matrix B:

�−1 = R�̃−1R† = RB̃R† + RB̃†R† = B + B†, (A27)

where

B = RB̃R† = 1

2

(
A + i

2 (C + CT ) C − i
2 (A − B)

CT − i
2 (A − B) B − i

2 (C + CT )

)

(A28)

where we have used Eqs. (A20) and (A26). Therefore, given
the CM V of a pure Gaussian state |�0〉, we can find �−1 and
from that we can immediately write B and the expansion on a
coherent basis is

K (�xα ) = 1

(2π )N

1

(det �)1/4
exp

[
−1

2
�xT

αB�xα

]
. (A29)

3. Coherent basis representation of pure Gaussian
states with displacement

A displaced pure Gaussian state |�〉 can be derived by
applying a displacement D(�xβ ) and multiple-mode squeezing
S(�r) (phases can be absorbed into the squeezing operator) [3]
onto a multiple-mode vacuum state |�0〉:

|�〉 = D(�β )S(�r)|�0〉 ⇒ |�〉 = D(�β )|�0〉, (A30)

where |�0〉 is the state for which we worked out its coherent
basis expansion in Sec. 2. Therefore we have

|�〉 = 1

(2π )N

∫
d2N�xα 〈�α|D(�β )|�0〉|�α〉

= 1

(2π )N

∫
d2N�xα 〈�0|D(−�α)D(�β )|�0〉|�α〉 (A31)

= 1

(2π )N

∫
d2N�xα 〈�α − �β|�0〉e 1

2
�β�α∗− 1

2
�β∗�α|�α〉, (A32)

where in the last step we have used D(−�α)D(�β ) =
e

1
2
�β�α∗− 1

2
�β∗�αD(�β − �α), which acts on 〈�0| and therefore the sign

of the displacement should be inversed. In Eq. (A32), 〈�α −
�β|�0〉 is known from Eq. (A29). Additionally, by defining

X =
(

I iI
−iI I

)
, (A33)

Eq. (A32) is written

|�〉 = 1

(2π )N

1

(det �)1/4

∫
d2N�xα exp

[
−1

2
(�xα − �xβ )TB(�xα − �xβ )

]
exp

(
1

4
�xT

αX�xβ − 1

4
�xT

β X�xα

)
(A34)

= 1

(2π )N

1

(det �)1/4

∫
d2N�xα exp

(
−1

2
�xT

αB�xα

)
exp

[
1

4

(�xT
α �xT

β

)( 0 2B + X
2B − X −2B

)(�xα

�xβ

)]
. (A35)

From Eqs. (A29) and (A35) we have

|�〉 =
∫

d2N�xα K (�xα )G(�xα,�xβ )|�α〉, (A36)

where

G(�xα,�xβ ) = exp
[

1
4

(�xT
α �xT

β

)
D(�xα �xβ )

]
, (A37)

with

D =
(

0 2B + X
2B − X −2B

)
. (A38)

4. Probability of success

The photon subtracted state is

|�−�m〉 = 1√
P

N∏
i=1

(−√
1 − τi )mi

√
mi!

∫
d2N�xα K (�xα )G(�xα,�xβ )

× e− (1−τi )
4 |�xα |2

(
qαi + ipαi√

2

)mi

|√τi�α〉, (A39)
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therefore the probability of success is given by the condition
〈�−�m|�−�m〉 = 1. Therefore we have

P =
N∏

i=1

(1 − τi )mi

mi!

∫
d2N�xαd2N�xγ K (�xα )G(�xα,�xβ )K∗(�xγ )

× G∗(�xγ ,�xβ )e− (1−τi )
4 (|�xα |2+|�xγ |2 )

(
qαi + ipαi√

2

)mi

×
(

qγi − ipγi√
2

)mi

〈√τi�γ |√τi�α〉. (A40)

By writing

〈√τi�γ |√τi�α〉 = exp
(− 1

4τi�xT
α �xα − 1

4τi�xT
γ �xγ + 1

2τi�xT
γ X�xα

)
,

(A41)

Eq. (A40) gives

P =
N∏

i=1

(1 − τi )mi

2mi mi!

∫
d2N�xαd2N�xγ K (�xα )G(�xα,�xβ )K∗(�xγ )

× G∗(�xγ ,�xβ )e− (1−τi )
4 (|�xα |2+|�xγ |2 )− 1

4 τi�xT
α �xα− 1

4 τi�xT
γ �xγ + 1

2 τi�xT
γ X�xα

× (
qαi + ipαi

)mi
(
qγi − ipγi

)mi
. (A42)

Equation (A42) is a Gaussian integral [represented by

the e− (1−τi )
4 (|�xα |2+|�xγ |2 )− 1

4 τi�xT
α �xα− 1

4 τi�xT
γ �xγ + 1

2 τi�xT
γ X�xα , K (�xα ), and

K∗(�xγ ), kernels] with linear terms [represented by
G(�xα,�xβ ) and G∗(�xγ ,�xβ )] and polynomial terms
(qαi + ipαi )

mi (qγi − ipγi )
mi . The way to calculate this

analytically and efficiently is to use the identity(
qαi + ipαi

)mi
(
qγi − ipγi

)mi

= dmi

dλ
mi
i

dmi

dμ
mi
i

eλi (qαi +ipαi )+μi (qγi −ipγi )

∣∣∣∣
λi=μi=0

. (A43)

Using Eq. (A43), we cast Eq. (A42) into a Gaussian integral,
i.e., there is only an exponential and no polynomial terms,
with extra lineal terms λi(qαi + ipαi ) + μi(qγi − ipγi ) in the
exponential. Then one should take the mith-order derivatives
on the result of the Gaussian integral with respect to λi and μi

at λi = μi = 0.

5. Fidelity

For any state of the form

|φ〉 =
∑

i

ci|�γ (i)〉, (A44)

∑
i |ci|2 = 1 and |�γ (i)〉 = |γ (i)

1 γ
(i)

1 . . . γ
(i)

N 〉. Note that a special
example of |φ〉 is the coherent cat state used in the main
paper. The fidelity F = |〈φ|�−�m〉|2 requires the calculation of
〈�γ |�−�m〉. From Eq. (A39) we have

〈�γ |�−�m〉 = 1√
P

N∏
i=1

(−√
1 − τi )mi

√
mi!

×
∫

d2N�xα K (�xα )G(�xα,�xβ )e− (1−τi )
4 |�xα |2

×
(

qαi + ipαi√
2

)mi

〈�γ |√τi�α〉, (A45)

where the probability of success P should be calculated first
as per Sec. 4 of the Appendix. We have

〈�γ |√τi�α〉 = exp
(− 1

4τi�xT
α �xα − 1

4�xT
γ �xγ + 1

2

√
τi�xT

γ X�xα

)
,

(A46)

therefore Eq. (A45) is written as

〈�γ |�−�m〉 = 1√
P

N∏
i=1

(−√
1 − τi

)mi

√
2mi mi!

∫
d2N�xα K (�xα )G(�xα,�xβ )

× e− (1−τi )
4 |�xα |2− 1

4 τi�xT
α �xα− 1

4 �xT
γ �xγ + 1

2

√
τi�xT

γ X�xα

× (
qαi + ipαi

)mi
. (A47)

Equation (A47), similarly to P in Sec. 4 of the Appendix, is
a Gaussian integral with linear terms, and polynomial terms
(qαi + ipαi )

mi which can be injected into the exponential of
Eq. (A47) by using the identity

(
qαi + ipαi

)mi = dmi

dλ
mi
i

eλi (qαi +ipαi )

∣∣∣∣
λi=0

. (A48)

That way Eq. (A47) will become a Gaussian integral, upon
which we take mith-order derivatives with respect to λi

at λi = 0.

6. The conditional state and its normalization

We set zero displacements, therefore we work with
the N-mode Gaussian state |�0〉. Upon finding a pattern
{n1, . . . , nM}, M < N at the PNRMs at each one of the M
modes, the conditional state |�〉 is

|�〉 = 1√
PM

〈n1, . . . , nM |�0〉

= 1√
PM

M∏
i=1

1√
2ni ni!

∫
d2N�xαK (�xα )e− 1

4 x2
αi

× (
qαi + ipαi

)ni |αM+1, . . . , αN 〉. (A49)

The probability PM is given by the normalization 〈�|�〉 = 1:

PM =
M∏

i=1

1

2ni ni!

∫
d2N�xαd2N�xγ K (�xα )K∗(�xγ )

× e
− 1

4 |xα |2− 1
4 |xγ |2+

N∑
k,l=M+1

xγk Xkl xαl

× (
qαi + ipαi

)ni
(
qγi − ipγi

)ni (A50)

where we have used 〈γ |α〉 = exp(−|γ |2/2 − |α|2/2 + γ ∗α)
and |�xα,γ |2 = ∑N

k=1 x2
αi,γi

, and Xkl are the matrix elements of
X of Eq. (A33) for dimensions (N − M ) × (N − M ). The
same method using ancillary variables λi as in Sec. 4 of the
Appendix can be applied to calculate PM of Eq. (A50).

7. The probability distribution P�n

We set zero displacements. The probability of finding a
pattern {n1, . . . , nN } at each one of all the N modes is

P�n = |〈�n|�0〉|2 = |〈n1 . . . nN |�0〉|2. (A51)
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From Eq. (A29) and using 〈n|α〉 = exp(−|α|2/2)αn∗/(
√

n!)
we get

〈n1 . . . nN |�0〉 = 1

(2π )N (det �)1/4

M∏
i=1

1√
2ni ni!

×
∫

d2N�xαe− 1
2 �xT

α B�xα− 1
4 �xT

α �xα
(
qαi + ipαi

)ni

= 1

(2π )N (det �)1/4

M∏
i=1

1√
2ni ni!

×
∫

d2N�xαe− 1
2 �xT

α H�xα
(
qαi + ipαi

)ni
, (A52)

where H = B + I/2. As it is shown in Sec. 8 of the Appendix,
H is symmetric with positive definite real part. Therefore, the
function

R(�xα ) =
√

det H
(2π )N

e− 1
2 �xT

α H�xα (A53)

represents a Gaussian distribution. In that way, Eq. (A52) is
written as

〈n1 . . . nN |�0〉

= 1√
det H(det �)1/4

M∏
i=1

1√
2ni ni!

∫
d2N�xαR(�xα )

(
qαi + ipαi

)ni

= 1√
det H(det �)1/4

1√
2n1 n1! . . . 2nN nN !

〈
f n1
1 . . . f nN

N

〉
,

(A54)

where fi = qαi + ipαi . Mean values of the form 〈 f n1
1 . . . f nN

N 〉
represent Hafnians via Wick’s theorem as argued in the main
paper. Equation (A54) yields a complex number result, the
absolute square of which is the probability P�n of Eq. (A51).

8. The H matrix is symmetric and its real part is
positive definite

From Eq. (A28) and given that AT = A and BT = B we can
readily see that BT = B. Therefore H = B + I/2 is symmet-
ric as well. The real part of H is

Re(H) = 1

2

(
H + H†

) = 1

2

(
H + H∗) = 1

2

[(
A C

CT B

)
+ I

]

= 1

2
(�−1 + I ). (A55)

Since any CM V is positive definite, denoted as V > 0, then
� = V + I/2 > 0 ⇒ �−1 > 0 since the inverse of a positive
definite matrix is also positive definite.

9. B matrix for multimode squeezed states

The Hamiltonian

Ĥ = − i

2

N∑
i, j

Gi j (â
†
i â†

j − âiâ j ) (A56)

generates the unitary Ûr = exp (−irĤ ) which corresponds to
the symplectic matrix:

Sr =
(

erG 0
0 e−rG

)
. (A57)

Therefore the CM is

V = 1

2
SrST

r = 1

2

(
e2rG 0

0 e−2rG

)
(A58)

and from Eq. (A28) we get

B = 1

2
I + 1

2

(− tanh Gr i tanh Gr
i tanh Gr tanh Gr

)
. (A59)

In Eq. (A59) the matrix G = GT is in the argument of tanh(.)
which denotes

tanh Gr = e2rG − I

e2rG + I
. (A60)

For a self-inverse matrix G = G−1, i.e., G2 = I , we expand
e2rG in Taylor series. In this way we get

e2rG − I = I cosh 2r + G sinh 2r − I, (A61)

e2rG + I = I cosh 2r + G sinh 2r + I. (A62)

From Eqs. (A60), (A61), and (A62), we have

tanh Gr = tanh2 r

(
I + G

1

tanh r

)
(I + G tanh r)−1.

(A63)

We have that

I = (I + G tanh r)(I − G tanh r) cosh2 r (A64)

⇒ (I + G tanh r)−1 = (I − G tanh r) cosh2 r. (A65)

Equations (A63) and (A65) give

tanh Gr = G tanh r. (A66)

From Eqs. (A59) and (A66) we find

B = 1

2
I + 1

2
tanh r

(−G iG
iG G

)
. (A67)

[1] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States
in Quantum Information, Napoli Series on Physics and Astro-
physics (Bibliopolis, 2005).

[2] J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong,
Y. Shiozawa, K. Makino, and A. Furusawa, APL Photonics 1,
060801 (2016).

[3] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621
(2012).

[4] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
[5] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto,

Phys. Rev. Lett. 88, 097904 (2002).
[6] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89,

137903 (2002).
[7] J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
[8] G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 (2002).
[9] N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf,

Phys. Rev. Lett. 95, 070501 (2005).

053816-9

https://doi.org/10.1063/1.4962732
https://doi.org/10.1063/1.4962732
https://doi.org/10.1063/1.4962732
https://doi.org/10.1063/1.4962732
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevLett.95.070501
https://doi.org/10.1103/PhysRevLett.95.070501
https://doi.org/10.1103/PhysRevLett.95.070501
https://doi.org/10.1103/PhysRevLett.95.070501


CHRISTOS N. GAGATSOS AND SAIKAT GUHA PHYSICAL REVIEW A 99, 053816 (2019)

[10] M. Takeoka and M. Sasaki, Phys. Rev. A 78, 022320 (2008).
[11] K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara,

M. Takeoka, and M. Sasaki, Phys. Rev. Lett. 106, 250503
(2011).

[12] C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G.
Leuchs, Phys. Rev. Lett. 104, 100505 (2010).

[13] R. Namiki, O. Gittsovich, S. Guha, and N. Lütkenhaus, Phys.
Rev. A 90, 062316 (2014).

[14] J. Niset, J. Fiurášek, and N. J. Cerf, Phys. Rev. Lett. 102, 120501
(2009).

[15] C. N. Gagatsos, D. Branford, and A. Datta, Phys. Rev. A 94,
042342 (2016).

[16] M. Wolinsky and H. J. Carmichael, Phys. Rev. Lett. 60, 1836
(1988).

[17] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.-G. Welsch,
Phys. Rev. A 55, 3184 (1997).

[18] V. Averchenko, C. Jacquard, V. Thiel, C. Fabre, and N. Treps,
New J. Phys. 18, 083042 (2016).

[19] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka,
A. Furusawa, and M. Sasaki, Phys. Rev. Lett. 101, 233605
(2008).

[20] R. Tualle-Brouri, A. Ourjoumtsev, A. Dantan, P. Grangier, M.
Wubs, and A. S. Sørensen, Phys. Rev. A 80, 013806 (2009).

[21] P. Marek, H. Jeong, and M. S. Kim, Phys. Rev. A 78, 063811
(2008).

[22] Y.-S. Ra, C. Jacquard, A. Dufour, C. Fabre, and N. Treps, Phys.
Rev. X 7, 031012 (2017).

[23] A. Dufour, C. Jacquard, Y.-S. Ra, C. Fabre, and N. Treps,
Photon subtraction from a multimode squeezed vacuum state,
Quantum Information and Measurement (QIM) 2017 (Optical
Society of America, 2017), p. QT4B.2.

[24] S. M. Barnett, G. Ferenczi, C. R. Gilson, and F. C. Speirits,
Phys. Rev. A 98, 013809 (2018).

[25] S. Glancy and H. M. de Vasconcelos, J. Opt. Soc. Am. B 25,
712 (2008).

[26] Y.-S. Ra, A. Dufour, M. Walschaers, C. Jacquard, T. Michel, C.
Fabre, and N. Treps, arXiv:1901.10939 (2019).

[27] T. Opatrný, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61,
032302 (2000).

[28] A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Phys.
Rev. A 73, 042310 (2006).

[29] C. Navarrete-Benlloch, R. García-Patrón, J. H. Shapiro, and
N. J. Cerf, Phys. Rev. A 86, 012328 (2012).

[30] K. P. Seshadreesan, J. P. Dowling, and G. S. Agarwal, Phys. Scr.
90, 074029 (2015).

[31] V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961).
[32] J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quan-

tum Optics (Benjamin, New York, 1968), Chap. 7.
[33] P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353

(1980).
[34] S.-Y. Zhu and N. Lu, Phys. Lett. A 137, 191 (1989).
[35] R. Schack and A. Schenzle, Phys. Rev. A 44, 682 (1991).
[36] A. Gilchrist, C. W. Gardiner, and P. D. Drummond, Phys. Rev.

A 55, 3014 (1997).
[37] H. -y. Fan and M. Xiao, Phys. Lett. A 244, 256 (1998).
[38] M. Olsen and A. Bradley, Opt. Commun. 282, 3924 (2009).

[39] D. W. Barry and P. D. Drummond, Phys. Rev. A 78, 052108
(2008).

[40] V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, Phys. Rev. A
49, 2993 (1994).

[41] Quantum Detection and Estimation Theory, edited by C. W.
Helstrom, Mathematics in Science and Engineering Vol. 123
(Elsevier, New York, USA, 1976), Chap. 5, pp. 119–159.

[42] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.
O’Brien, and T. C. Ralph, Phys. Rev. Lett. 113, 100502 (2014).

[43] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Phys. Rev. Lett. 119, 170501 (2017).

[44] N. Quesada, J. Chem. Phys. 150, 164113 (2019).
[45] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J.

Salmilehto, L. Jiang, and S. M. Girvin, Phys. Rev. X 6, 031006
(2016).

[46] L. Li, C.-L. Zou, V. V. Albert, S. Muralidharan, S. M. Girvin,
and L. Jiang, Phys. Rev. Lett. 119, 030502 (2017).

[47] V. V. Albert, S. O. Mundhada, A. Grimm, S. Touzard, M. H.
Devoret, and L. Jiang, arXiv:1801.05897 (2018).

[48] We work in the qqpp representation;, i.e., the upper left (lower
right) block of the CM concerns position (momentum), while
the off-diagonal blocks hold information of correlations thereof.

[49] Since the CM V is symmetric, � and �−1 will be symmetric.
[50] A. Zvonkin, Math. Comput. Model. 26, 281 (1997).
[51] J.-G. Luque and J.-Y. Thibon, Adv. Appl. Math. 29, 620 (2002).
[52] M. Chen, N. C. Menicucci, and O. Pfister, Phys. Rev. Lett. 112,

120505 (2014).
[53] J. Zhang, J. J. Wang, R. G. Yang, K. Liu, and J. R. Gao, Opt.

Express 25, 27172 (2017).
[54] This assumption can be dropped just by having a symmetric

matrix G the elements of which are the different values of the
squeezing parameter.

[55] N. C. Menicucci, S. T. Flammia, and P. van Loock, Phys. Rev.
A 83, 042335 (2011).

[56] The matrix �−1 can be easily found to be �−1 = B + B†, from
which we calculate det � = cosh4 r.

[57] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S.
Glancy, Phys. Rev. A 68, 042319 (2003).

[58] J. S. Ivan, K. K. Sabapathy, and R. Simon, Phys. Rev. A 84,
042311 (2011).

[59] F. Arzani, A. Ferraro, and V. Parigi, Phys. Rev. A 99, 022342
(2019).

[60] M. Walschaers, S. Sarkar, V. Parigi, and N. Treps, Phys. Rev.
Lett. 121, 220501 (2018).

[61] K. K. Sabapathy, H. Qi, J. Izaac, and C. Weedbrook,
arXiv:1809.04680 (2018).

[62] K. Azuma, K. Tamaki, and H.-K. Lo, Nat. Commun. 6, 6787
(2015).

[63] M. Pant, H. Krovi, D. Englund, and S. Guha, Phys. Rev. A 95,
012304 (2017).

[64] Q. Zhuang and Z. Zhang, arXiv:1901.09566 (2019).
[65] Xanadu Quantum Technologies (private communication).
[66] D. Su, C. R. Myers, and K. K. Sabapathy, arXiv:1902.02323

(2019).
[67] D. Su, C. R. Myers, and K. K. Sabapathy, arXiv:1902.02331

(2019).

053816-10

https://doi.org/10.1103/PhysRevA.78.022320
https://doi.org/10.1103/PhysRevA.78.022320
https://doi.org/10.1103/PhysRevA.78.022320
https://doi.org/10.1103/PhysRevA.78.022320
https://doi.org/10.1103/PhysRevLett.106.250503
https://doi.org/10.1103/PhysRevLett.106.250503
https://doi.org/10.1103/PhysRevLett.106.250503
https://doi.org/10.1103/PhysRevLett.106.250503
https://doi.org/10.1103/PhysRevLett.104.100505
https://doi.org/10.1103/PhysRevLett.104.100505
https://doi.org/10.1103/PhysRevLett.104.100505
https://doi.org/10.1103/PhysRevLett.104.100505
https://doi.org/10.1103/PhysRevA.90.062316
https://doi.org/10.1103/PhysRevA.90.062316
https://doi.org/10.1103/PhysRevA.90.062316
https://doi.org/10.1103/PhysRevA.90.062316
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1103/PhysRevLett.60.1836
https://doi.org/10.1103/PhysRevLett.60.1836
https://doi.org/10.1103/PhysRevLett.60.1836
https://doi.org/10.1103/PhysRevLett.60.1836
https://doi.org/10.1103/PhysRevA.55.3184
https://doi.org/10.1103/PhysRevA.55.3184
https://doi.org/10.1103/PhysRevA.55.3184
https://doi.org/10.1103/PhysRevA.55.3184
https://doi.org/10.1088/1367-2630/18/8/083042
https://doi.org/10.1088/1367-2630/18/8/083042
https://doi.org/10.1088/1367-2630/18/8/083042
https://doi.org/10.1088/1367-2630/18/8/083042
https://doi.org/10.1103/PhysRevLett.101.233605
https://doi.org/10.1103/PhysRevLett.101.233605
https://doi.org/10.1103/PhysRevLett.101.233605
https://doi.org/10.1103/PhysRevLett.101.233605
https://doi.org/10.1103/PhysRevA.80.013806
https://doi.org/10.1103/PhysRevA.80.013806
https://doi.org/10.1103/PhysRevA.80.013806
https://doi.org/10.1103/PhysRevA.80.013806
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevX.7.031012
https://doi.org/10.1103/PhysRevX.7.031012
https://doi.org/10.1103/PhysRevX.7.031012
https://doi.org/10.1103/PhysRevX.7.031012
https://doi.org/10.1103/PhysRevA.98.013809
https://doi.org/10.1103/PhysRevA.98.013809
https://doi.org/10.1103/PhysRevA.98.013809
https://doi.org/10.1103/PhysRevA.98.013809
https://doi.org/10.1364/JOSAB.25.000712
https://doi.org/10.1364/JOSAB.25.000712
https://doi.org/10.1364/JOSAB.25.000712
https://doi.org/10.1364/JOSAB.25.000712
http://arxiv.org/abs/arXiv:1901.10939
https://doi.org/10.1103/PhysRevA.61.032302
https://doi.org/10.1103/PhysRevA.61.032302
https://doi.org/10.1103/PhysRevA.61.032302
https://doi.org/10.1103/PhysRevA.61.032302
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1088/0031-8949/90/7/074029
https://doi.org/10.1088/0031-8949/90/7/074029
https://doi.org/10.1088/0031-8949/90/7/074029
https://doi.org/10.1088/0031-8949/90/7/074029
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1002/cpa.3160140303
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1016/0375-9601(89)90209-0
https://doi.org/10.1016/0375-9601(89)90209-0
https://doi.org/10.1016/0375-9601(89)90209-0
https://doi.org/10.1016/0375-9601(89)90209-0
https://doi.org/10.1103/PhysRevA.44.682
https://doi.org/10.1103/PhysRevA.44.682
https://doi.org/10.1103/PhysRevA.44.682
https://doi.org/10.1103/PhysRevA.44.682
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1016/S0375-9601(98)00318-1
https://doi.org/10.1016/S0375-9601(98)00318-1
https://doi.org/10.1016/S0375-9601(98)00318-1
https://doi.org/10.1016/S0375-9601(98)00318-1
https://doi.org/10.1016/j.optcom.2009.06.033
https://doi.org/10.1016/j.optcom.2009.06.033
https://doi.org/10.1016/j.optcom.2009.06.033
https://doi.org/10.1016/j.optcom.2009.06.033
https://doi.org/10.1103/PhysRevA.78.052108
https://doi.org/10.1103/PhysRevA.78.052108
https://doi.org/10.1103/PhysRevA.78.052108
https://doi.org/10.1103/PhysRevA.78.052108
https://doi.org/10.1103/PhysRevA.49.2993
https://doi.org/10.1103/PhysRevA.49.2993
https://doi.org/10.1103/PhysRevA.49.2993
https://doi.org/10.1103/PhysRevA.49.2993
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1063/1.5086387
https://doi.org/10.1063/1.5086387
https://doi.org/10.1063/1.5086387
https://doi.org/10.1063/1.5086387
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/PhysRevLett.119.030502
https://doi.org/10.1103/PhysRevLett.119.030502
https://doi.org/10.1103/PhysRevLett.119.030502
https://doi.org/10.1103/PhysRevLett.119.030502
http://arxiv.org/abs/arXiv:1801.05897
https://doi.org/10.1016/S0895-7177(97)00210-0
https://doi.org/10.1016/S0895-7177(97)00210-0
https://doi.org/10.1016/S0895-7177(97)00210-0
https://doi.org/10.1016/S0895-7177(97)00210-0
https://doi.org/10.1016/S0196-8858(02)00036-2
https://doi.org/10.1016/S0196-8858(02)00036-2
https://doi.org/10.1016/S0196-8858(02)00036-2
https://doi.org/10.1016/S0196-8858(02)00036-2
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1103/PhysRevLett.112.120505
https://doi.org/10.1364/OE.25.027172
https://doi.org/10.1364/OE.25.027172
https://doi.org/10.1364/OE.25.027172
https://doi.org/10.1364/OE.25.027172
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.83.042335
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1103/PhysRevA.84.042311
https://doi.org/10.1103/PhysRevA.84.042311
https://doi.org/10.1103/PhysRevA.84.042311
https://doi.org/10.1103/PhysRevA.84.042311
https://doi.org/10.1103/PhysRevA.99.022342
https://doi.org/10.1103/PhysRevA.99.022342
https://doi.org/10.1103/PhysRevA.99.022342
https://doi.org/10.1103/PhysRevA.99.022342
https://doi.org/10.1103/PhysRevLett.121.220501
https://doi.org/10.1103/PhysRevLett.121.220501
https://doi.org/10.1103/PhysRevLett.121.220501
https://doi.org/10.1103/PhysRevLett.121.220501
http://arxiv.org/abs/arXiv:1809.04680
https://doi.org/10.1038/ncomms7787
https://doi.org/10.1038/ncomms7787
https://doi.org/10.1038/ncomms7787
https://doi.org/10.1038/ncomms7787
https://doi.org/10.1103/PhysRevA.95.012304
https://doi.org/10.1103/PhysRevA.95.012304
https://doi.org/10.1103/PhysRevA.95.012304
https://doi.org/10.1103/PhysRevA.95.012304
http://arxiv.org/abs/arXiv:1901.09566
http://arxiv.org/abs/arXiv:1902.02323
http://arxiv.org/abs/arXiv:1902.02331

