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Mechanical backreaction effect of the dynamical Casimir emission
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We consider an optical cavity enclosed by a freely moving mirror attached to a spring and we study the
quantum friction effect exerted by the dynamical Casimir emission on the mechanical motion of the mirror.
Observable signatures of this simplest example of backreaction effect are studied in both the ring-down
oscillations of the mirror motion and in its steady-state motion under a monochromatic force. Analytical
expressions are found in simple yet relevant cases and compared to complete numerical solution of the master
equation. In order to overcome the experimental difficulties posed by the weakness of the backreaction effect
in current setups, a promising circuit-QED device allowing for the observation of an analog backreaction effect
with state-of-the-art technology is proposed and theoretically characterized.
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I. INTRODUCTION

The rich physics of quantum fields living on curved space-
times and/or subject to boundary conditions has been an
active field of research for a few decades [1], leading to
fascinating predictions such as the Hawking radiation from
black holes [2], cosmological particle creation in an expand-
ing universe [3,4], and dynamical Casimir emission (DCE)
in the presence of moving mirrors [5–7]. All these works are
based on the so-called semiclassical approximation, according
to which the quantum field lives on a fixed background, whose
geometry and dynamics are not affected by the one of the
quantum field itself.

The formulation of a complete theory that is able to take
into account the backreaction of the quantum field on the
background spacetime and/or on the boundary conditions
is still a challenging but very rewarding problem: the an-
ticipated observable consequences of the backreaction range
in fact from the damping of the expansion of the universe
by the cosmological particle creation [8–18], to the long-
time evaporation of black holes [19–24], to the mechanical
friction felt by the moving mirror in the DCE [25]. Given the
complexity of the problem, a widespread assumption is that
the background interacts with expectation values of quantum
field observables such as the stress-energy tensor. Further
investigations are therefore needed to get a clear picture of
the quantum correlations that may appear between the field
and the background beyond such an approximation, and then
of their consequences on the backreaction effect [26–29].

In this work we focus on the backreaction effect of the
DCE onto the motion of a moving mirror. In order to focus
on the fundamental physical processes, we concentrate
on the simplest formulation of the problem in terms of
a single-mode cavity enclosed by massive mechanically
moving mirrors. Their mutual optomechanical coupling
occurs via the radiation pressure effect. The DCE consists of
the conversion of quanta of mechanical motion into pairs of
cavity photons [30,31], which then exert a backreaction effect
on the mirror in the form of a mechanical friction [25,32]. As

we will see in Secs. II–IV of the present article, unambiguous
signatures of the backreaction effect are anticipated to appear
in our configuration both in the relaxation dynamics of the
mirror motion and in the steady state under a monochromatic
mechanical drive.

In spite of the clarity of the predicted signatures of back-
reaction, the road towards their experimental observation is
still quite long. Whereas impressive recent advances have
been made in the field of quantum optomechanics [33], the
conversion of the quantum fluctuations of the electromagnetic
field into real photons by the mechanically moving mirrors
(and, a fortiori, the mechanical backreaction effect) has so
far escaped experimental observation [6,7]. One of the main
difficulties stems from the wide separation in frequency of
the (high-frequency) optical and (low-frequency) mechanical
modes in standard optomechanical devices, which hinders
fulfillment of the DCE resonance condition ωb ≈ 2ωa be-
tween the cavity and mechanical frequencies ωa,b and thus
dramatically suppresses the intensity of the DCE emission.
While strong efforts are devoted to the development of
high frequency mechanical resonators up to the GHz range
[34–36], more sophisticated schemes to reinforce the DCE
emission are being theoretically explored. For instance, the
use of higher-harmonic couplings was proposed to release the
resonant condition to nbωb = 2ωa (nb being an integer) [7],
but the efficiency of the resulting DCE remains quite low. Very
recently, a dramatically reinforced efficiency in strongly non-
linear ultrastrong light-matter coupling regimes was predicted
in [37], where an investigation of the backreaction effect of
DCE onto the mirror was also reported. A scheme based on an
optomechanical system with a parametrically driven squeezed
cavity mode was proposed in [38].

A conceptually different strategy to tackle general ques-
tions about quantum fields on curved spacetimes was pio-
neered by Unruh’s proposal of analog Hawking radiation from
sonic horizons [39]. In the rich literature that has followed, the
general concept of an analog model turned out to be a fruitful
framework to study physical phenomena whose experimental
investigation is out of current technological capabilities or to
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perform systematic explorations of effects that are normally
observed only in uncontrolled astrophysical environments.
The basic idea is to look for an experimentally controllable
system, whose dynamics is governed by the same equations
of motion of the system of interest, yet in a different physical
context and on completely different scales. Even though much
literature on analog models has followed the original work
[39] and focused on the analog Hawking radiation [40–43],
significant attention has also been devoted to other questions
related to the quantum vacuum, in particular to analogs of
the DCE. Beyond optical cavities [44–46] and atomic Bose-
Einstein condensates [47–49], circuit-QED devices turned out
to be one of the most fruitful platforms in this adventure
[50–53].

One of the first experimental successes of the analog model
idea was in fact the demonstration of DCE in a circuit-QED
context [54]. Following the theoretical proposal in [51,52], a
superconducting quantum interference device (SQUID) was
used to impose a magnetically tunable boundary condition to
the electromagnetic field in a coplanar waveguide, analogous
to an effective mirror whose spatial position is controlled by
the applied magnetic field. When the position of this (analog)
mirror is made to oscillate in space via a suitable modulation
of the magnetic field threaded through the SQUID, a sizable
DCE emission into the waveguide was observed, spectrally
centered at half the modulation frequency and displaying pe-
culiar quantum optical properties expected in the DCE. Since
no mechanically moving element was present, the experiment
belongs to the class of analog models. However, its quantum
evolution equations are identical to the one of the standard
DCE effect. A related DCE experiment was published shortly
after in [55]: in contrast to the analog mirror implemented
in [54], here the optical length of the cavity was modulated
by flux biasing the embedded SQUIDs so to slightly vary the
effective refractive index.

Whereas the objective of this first generation of experi-
ments was to detect the analog DCE emission and charac-
terize its quantum statistical properties, a theoretical study
of backreaction effects in all-optical analog models of DCE
was reported in [56]. A strong and experimentally observable
signal of backreaction was anticipated there, still the proposed
device required a quite complex optical setup and the connec-
tion to the general physics of DCE remained nontrivial. It is
therefore important to devise configurations that allow for a
direct insight into the basic physics of backreaction.

The last part of this article indeed reports a theoretical
study in this direction. A direct extension of the device
proposed in [51,52] and experimentally realized in [54] is
investigated: going beyond these works, the key idea is no
longer to drive the SQUID with a classical, predetermined
external field B(t ), but to magnetically couple it to an ex-
ternal LC resonator that plays the role of the harmonically
moving mirror. Treating the LC resonator as an independent
dynamical degree of freedom, we show that the equations
describing the coupled dynamics of the LC and the waveguide
are equivalent to the ones for a perfect, harmonically trapped
mirror interacting with a quantum electromagnetic field via its
radiation pressure [57]. Most remarkably, our quantitative es-
timates for the strength of the analog optomechanical coupling
between the effective moving mirror and the cavity turn out to

FIG. 1. Illustrative representation of a generic optomechanical
system. One of the cavity mirrors is allowed to harmonically oscillate
around the position of equilibrium and is optomechanically coupled
to the cavity mode via the radiation pressure.

be promising in view of the observation of the backreaction
effect with state-of-the-art technology.

The article is organized as follows. We start by introducing
in Sec. II the physical system at hand and by revising the fun-
damental concepts of the optomechanical interaction between
the mechanical and electromagnetic degrees of freedom. In
Sec. III A we then briefly review the mean-field theory of the
system dynamics, which models the evolution of the system
in the classical limit. In order to describe strictly quantum
effects such as particle creation from DCE and the backre-
action effects, a more sophisticated theory going beyond the
mean-field approximation is developed in Sec. III B. The key
results of our theoretical study of the backreaction effect are
presented in Sec. IV. The observable consequences of the
backreaction are first investigated in Sec. IV A for the case
of an initially displaced mirror that performs free oscillations
while interacting with the cavity mode. For relatively weak
optomechanical coupling strength, the backreaction results
in a reinforced damping of the mechanical oscillation. For
coupling strengths stronger than the loss rate, the backreac-
tion results instead in a periodic and reversible exchange of
energy between the mirror and the field. In Sec. IV B we
then study the related but different case where the mirror is
mechanically driven by a monochromatic external force: for
a weak optomechanical coupling, the backreaction effect is
visible as a broadened line shape for the resonant mechanical
response of the mirror. For stronger couplings, we anticipate
a splitting of the resonant response into a pair of Rabi-split
peaks as well as a number of other nonlinear features. A
promising strategy to experimentally investigate this physics
in an circuit-QED-based analog model is quantitatively dis-
cussed in Sec. V. Conclusions and future perspectives are
finally given in Sec. VI.

II. THE SYSTEM

We begin our discussion from a study of the backreaction
effect in its original formulation in terms of a friction force
acting on the mechanically moving mirror. The system under
consideration is sketched in Fig. 1: it consists of an optical
cavity terminated on one side by a mechanically moving
mirror of mass mb, confined around its equilibrium position
by a harmonic potential of characteristic angular frequency
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ωb. For the sake of simplicity, we restrict the dynamics of
the field to a single relevant mode of the optical cavity and
we indicate with ωa the frequency of the cavity mode when
the mirror is at its equilibrium position and the cavity has
length L0.

Defining by â (â†) and b̂ (b̂†) the annihilation (creation)
operators for the field and the mechanical oscillator, respec-
tively, the Hamiltonian Ĥ0 for the noninteracting system takes
the simple form

Ĥ0 = h̄ωaâ†â + h̄ωbb̂†b̂. (1)

The mirror and the field interact with each other via the
radiation pressure, defined in terms of a pressure operator P̂
which depends quadratically on the field [57],

P̂ = h̄ωa

2L0
(â + â†)2. (2)

In terms of the displacement operator for the mirror around
its equilibrium position x̂ = xZPF(b̂ + b̂†), where xZPF =
(h̄/2mωb)1/2 is the amplitude of the mechanical zero-point
fluctuations, the optomechanical pressure interaction is de-
scribed by the Hamiltonian [33]

Ĥint = −x̂P̂ = −h̄ωc(â + â†)2(b̂ + b̂†), (3)

where the strength of the optomechanical coupling between
the mechanical and electromagnetic degrees of freedom is
quantified by the effective interaction frequency

ωc = ωaxZPF

2L0
= ωa

L0

(
h̄

8mbωb

)1/2

. (4)

For the sake of simplicity, we assume from now on that
the system in a regime where the optomechanical coupling is
much weaker than the natural oscillation frequencies of both
the cavity and the mechanical mirror, ωc/ωa/b � 1. Such an
assumption does not represent a significant limitation for our
purposes, but allows us to neglect extra effects such as the
dressing of the mirror by virtual photons and the consequent
modification of the ground state of the interacting system
[58]. More specifically, under this condition the effects of
antiresonant terms of the Hamiltonian in Eq. (3) like â†âb̂,
â2b, and (â†)2

b† can be neglected, as they are responsible
for a minor correction to the energy levels of the system
[59]. The optomechanical coupling is thus modeled by the
resonant terms â2b̂†, (â†)2

b̂ only, which describe the creation
(annihilation) of mechanical excitations in the mirror and the
simultaneous annihilation (creation) of a pair of photons. This
is the physical mechanism responsible for the DCE, and thus
for the exchange of energy between the mirror and the field
and, in the final instance, for the appearance of friction in
the mechanical motion of the mirror. A more general nu-
merical approach that includes the ultrastrong coupling limit
ωc/ωa/b � 1 and the effects of the antiresonant terms was
recently pursued in [37].

We consider that both the mirror and the cavity mode
are coupled to external degrees of freedom. In particular, we
assume that the mirror is mechanically driven by an external
coherent force of amplitude F (t ), which can be modeled by
means of additional time-dependent terms in the Hamiltonian

Ĥdrive = −h̄(b̂F ∗(t ) + b̂†F (t )). (5)

Summing up all terms, the coherent dynamics of the system is
modeled by the total Hamiltonian

Ĥ = Ĥ0 + Ĥint + Ĥdrive

= h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ωc(b̂†â2 + b̂(â†)2)

− h̄(b̂F ∗(t ) + b̂†F (t )). (6)

On top of this, we take into account losses in the system
by coupling the optical field to an external radiative and/or
nonradiative baths and by including mechanical dissipation
damping the mirror motion. Both these effects are included
at the level of the master equation, so that the time evolution
of the density matrix ρ̂ of the interacting mirror-field system
has the form

d ρ̂

dt
= 1

ih̄
[Ĥ , ρ̂] + Lâ[ρ̂] + Lb̂[ρ̂], (7)

in terms of the Lindblad superoperators

Lô ≡ (γo/2)(2ôρ̂ô† − ô†ôρ̂ − ρ̂ô†ô) (8)

describing cavity and mechanical losses with ô = â, b̂, respec-
tively. Equation of motion for expectation value of generic ob-
servables Ô can finally be obtained from the master equation,

d〈O〉
dt

= 1

ih̄
TrS{[Ô, Ĥ ]ρ̂}

+
∑

ô=â,b̂

γo

2
(Tr{[ô†, Ô]ô ρ̂} + Tr{ô†[Ô, ô]ρ̂}). (9)

In the next sections we are going to develop a formalism
to obtain explicit results for the quantum system dynamics,
which is able to go beyond the mean-field approximation and
take into account the quantum fluctuations of the field at the
simplest level. Based on this, we will provide a quantitative
estimate for the friction due to the emission of dynamical
Casimir pairs, and we will compare the analytical results with
the full numerical solution of the master equation in Eq. (7).

III. THEORETICAL MODELS

A. Mean-field theory of the parametric oscillator

The cubic nature of the Hamiltonian in Eq. (6) makes
the solution of the interacting field-mirror problem far from
trivial. Simplifying hypotheses are thus needed, in order to
derive approximate solutions which are able to capture at
least some of the most significant properties of the system.
We begin our discussion from a semiclassical approximation,
where one focuses on the average value of the field and mirror
oscillation amplitudes and replaces the â and b̂ operators with
the corresponding classical variables a ≡ 〈â〉 and b ≡ 〈b̂〉.
The equations of motion for such mean fields can be derived
from the master equation.

Assuming that the drive is monochromatic F (t ) = F0 e−iωt

with given amplitude F0 and frequency ω, we can usefully
move to the frame rotating with the angular frequency ω of
the drive. Within the rotating frame, the annihilation opera-
tors transform to â → â e−iωt/2 and b̂ → b̂ e−iωt , so that the
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equation of motion for the expectation values get the au-
tonomous form

da

dt
= −

(
γa

2
− i�a

)
a − 2iωca∗b, (10)

db

dt
= −

(
γb

2
− i�b

)
b − iωca2 + iF0, (11)

where we defined the detuning �a ≡ ω/2 − ωa and �b ≡
ω − ωb. Given the dissipative form of Eqs. (10) and (11),
a steady-state solution can be derived by setting the time
derivatives to zero. These equations have the simplest form
in the fully resonant case where the drive is resonant with the
mirror frequency (ω = ωb) and this latter is in resonance with
twice the optical frequency (ωb = 2ωa).

In these conditions the system exhibits a sort of phase
transition at the threshold value F0 = F th

0 ≡ γaγb/8ωc of the
drive amplitude, at which the solution

aB = 0, (12)

bB = 2i

γb
F0, (13)

which is stable below the threshold F0 < F th
0 , becomes dy-

namically unstable. Above threshold, the system sponta-
neously break a Z2 symmetry and has the choice to migrate
towards two possible different branches, characterized by the
same mirror amplitude but equal and opposite values of the
field amplitude,

a±
A = ±

(
F0 − F th

0

ωc

)1/2

, (14)

bA = i
γa

4ωc
. (15)

The parametric oscillator threshold at F th
0 thus separates

two qualitatively different regimes of the system. Below the
threshold, the classical component of the cavity field is zero,
while the average amplitude of the mechanical oscillations
increase linearly with the strength of the applied drive. As
we shall see shortly, in this regime the quantum fluctuations
of the field play a major role in determining the quantum
state of the cavity field. Conversely, above the threshold, the
expectation value of the field is finite and the mirror amplitude
saturates to a finite value. In this case the system behaves to
a good approximation classically, with the quantum fluctua-
tions accounting only for small corrections to the mean-field
dynamics. For later convenience we define γ 2

0 ≡ γaγb/2, so
that F th

0 = γ 2
0 /4ωc.

While this classical model is typically able to reproduce
the general trend of the steady-state field expectation values,
it is not able to capture strictly quantum effect, such as
the parametric amplification of vacuum fluctuations of the
electromagnetic field via the dynamical Casimir effect and, in
turn, the backreaction of the dynamical Casimir photons onto
the mechanical degrees-of-freedom. This can be directly seen
from the mean-field steady state below threshold found above,
which contains no cavity excitation aB = 0.

Generalization of the steady-state solutions (12) and (13) to
general values of �b further shows that the response function
of the oscillator to the external drive has the form of a
Lorentzian function with central frequency ωb, and a linewidth
equal to the damping rate γb of the bare mechanical oscillator

|b(ω)|2 = |F0|2
�2

b + (γb/2)2
. (16)

The absence of any Casimir emission and any backreaction
effect shows that in order to understand the physics of these
effects it is necessary to go beyond the mean-field approxima-
tion and include quantum fluctuations in the model. This will
be the objective of the following sections.

B. Beyond mean field

In order to go beyond the mean-field theory, we first note
that, because of the symmetry properties of the Hamiltonian
in Eq. (6), the expectation value of any correlator containing
an odd number of cavity field annihilation and creator oper-
ators â, â† does not change in time under the Hamiltonian
evolution and remains strictly zero in the steady state. The
fundamental dynamical quantities for the field are thus given
by the quadratic operators q̂ ≡ â2 and n̂a ≡ â†â.

On this basis, a simple description of the quantum dy-
namics of the system can be formulated in terms of the time
evolution of the expectation values of the amplitudes b ≡ 〈b̂〉
and q ≡ 〈q̂〉 for the mirror and the cavity field, respectively,
and of the number of photons in the cavity na ≡ 〈n̂a〉. Working
again in the frame rotating at the drive frequency ω, we can
describe the system by the set of three equations:

db

dt
= −

(
γb

2
− i�b

)
b − iωcq + iF0, (17)

dna

dt
= −γana − 2iωc〈q†b〉 + 2iωc〈qb†〉, (18)

dq

dt
= −(γa − i�q)q − 4iωc〈nab〉 − 2iωcb, (19)

where we defined the detuning �q ≡ ω − 2ωa. Equations
(17)–(19) reveal how the presence of cubic terms in the
Hamiltonian Eq. (6) leads to an infinite hierarchy of corre-
lators that need to be suitably truncated in order to obtain
a solution to the problem. This effectively means neglecting
the correlation of higher order between the mirror and the
field, and attention must be paid to the conditions under which
this approximation is justified. To this aim we identify three
different regimes.

(i) In the limit of a weak drive F0 � F th
0 , the correlators

involving products of two b̂, q̂, and n̂a operators can be
safely neglected as they represent higher order terms in the
infinitesimal quantities q, b, and na. From now on, this regime
will be called linear regime, since in this case Eqs. (17)–
(19) reduce to a set of three linear equations. In spite of its
simplicity, this linear model is able to account for the quantum
fluctuations responsible for the DCE emission and, then, for
the backreaction effect.

(ii) In the opposite limit of a strong drive F0 	 F th
0 , the

system is in the parametric oscillator limit. As mentioned in
the previous section, in this regime the system behaves in an
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approximately classical way: the nonfactorizable component
(that is the cumulant in the language of statistics) in the
correlations between the field and the mirror can be neglected
and the correlations can be factorized as 〈a2b†〉 
 qb∗ and
〈a†ab〉 
 nab (we indicated by asterisk “∗” the complex con-
jugate operation). The equations of motion (17)–(19) then
reduce to the closed nonlinear system

db

dt
= −

(
γb

2
− i�b

)
b − iωcq + iF0, (20)

dna

dt
= −γana − 2iωcq∗b + 2iωcqb∗, (21)

dq

dt
= −(γa − i�q)q − 4iωcnab − 2iωcb. (22)

(iii) In the region of parameters between these two limits,
that is for F0 ∼ F th

0 , quantum fluctuations play a crucial and
complex role and the nontrivial higher order correlations
between the field and the mirror need to be fully taken into
account to properly describe the properties of the system.

For the purpose of this article, we note that the best
conditions for the investigation of the backreaction effects
from the DCE photons are met in the linear regime of weak
drive and weak excitation. In this case, all the key features of
the DCE mechanism are kept in play, with the advantage of
being able to neglect all the complex nonlinear effects arising
from the radiation pressure coupling of the field with the
mechanical oscillator. As we will see in the next sections, this
simplifies very much the analysis, and closed expressions for
the quantities of interest can be obtained by analytical means.

IV. VACUUM-INDUCED FRICTION

In the previous sections we have introduced the physical
model under consideration and the theoretical tools that can
be used to study its nonequilibrium dynamics. In this section
we investigate the central subject of the article, namely the ob-
servable signatures of the backreaction effect of the dynamical
Casimir emission onto the mechanically moving mirror. In the
next two subsections, this backreaction effect will be studied
in the two most relevant cases of the ring-down oscillations of
a freely oscillating mirror and of a mechanically driven mirror
subject to a monochromatic force.

A. Free evolution

We start our study of the backreaction effect from the case
of the free evolution of the mirror: the physical idea is that
the cavity is prepared in its vacuum state, while the mirror is
prepared in a coherent state with a given amplitude. Starting
from this state, the system is then let to evolve in the absence
of any external drive F0 = 0. The dissipative nature of the
evolution will eventually bring it back to the ground state with
all fields being in their vacuum state, but the intermediate
dynamics will carry interesting signatures of the dynamical
Casimir and of the backreaction effects.

To investigate this physics, we go back to the full set in
Eqs. (17)–(19). In absence of the external drive, that is for
F0 = 0, there is no advantage in moving to the rotating frame
for the operators. We start from the simplest and most relevant

regime of a small initial perturbation from the ground state, in
which case the equations can be linearized into the form

db

dt
= −iωbb − γb

2
b − iωcq, (23)

dq

dt
= −(γa − 2iωa)q − 2iωcb, (24)

which describe a damped oscillating evolution for both the
mirror and the field amplitude starting from the initial con-
ditions b(0) = b0 and q(0) = 0. These equations of motion
can be analytically solved and, in the resonant case ωb = 2ωa,
provide the solutions

b(t )=e−iωbt−γ1t/2 b0

2ωd

[(
γa−γb

2

)
sin(ωdt ) + 2ωd cos(ωdt )

]
,

(25)

q(t ) = e−2iωat−γ1t/2 b0

4ωdωc

[(
γa − γb

2

)2

− 4ω2
d

]
sin(ωdt ),

(26)

which show a complex temporal envelope modulating the free
oscillations of b(t ) and q(t ) at ωb = 2ωa. A similar expression
can be obtained also for the average number of photons na, but
we do not report it here because it is quite involved and not
that instructive. For the sake of compactness, we have used the
shorthands γ1 = γa + γb/2 for the averaged dissipation rate
and

ωd =
√

2ω2
c − (γa − γb/2)2/4 (27)

for the effective energy exchange frequency. Given the even
symmetry of Eq. (25) with respect to ωd , either of the two
roots can be chosen. As a key result of this work, and in
agreement with the conclusions of the recent work [37], we
easily see that two regimes can be identified, depending on
the relative values of the interaction frequency ωc and the
dissipation rates γa and γb, i.e., the real vs imaginary nature
of ωd .

In the underdamped ωc > (γa − γb/2)/(2
√

2) regime, the
exchange frequency ωd is real and energy is periodically
exchanged between the mirror and the optical mode of the
cavity, before being eventually damped with an exponential
law on a longer timescale. In the opposite overdamped regime,
damping is so large that ωd is purely imaginary and the
amplitude of the mirror oscillations is monotonically damped
out. Of course the resulting damping rate gets contributions
from the bare decay rate γb as well as from the backreaction
effect. In the weak optomechanical regime ωc � γa,b and
assuming γa 	 γb, the reinforced damping reads

γ eff
b 
 γb + 4ω2

c

γa
. (28)

Since the dynamical Casimir emission is suppressed for sub-
stantial values of the mirror-cavity detuning |ωb − 2ωa| 	
γa,b, the backreaction contribution can be isolated by com-
paring the values of the damping rate that are observed in the
two cases when the cavity is tuned respectively on or far-off
resonance from the mirror.

This linearized approach holds for weak initial amplitudes
b2

0 � γ 2
a /ω2

c , so that the nonlinear terms in the motion
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FIG. 2. Free evolution of the interacting cavity field-mirror system. At the initial time t = 0, the cavity field is in its vacuum state, while
the mechanical oscillator is in a coherent state of amplitude b0 = 2. Solutions are given in terms of the number of photons in the cavity 〈â†â〉
and of mechanical oscillator quanta 〈b̂†b̂〉. The different panels (a)–(d) are for growing values of the ratio ωc/γ0 = 0.1, 0.5, 5, 10. In each
panel, the solution (L) of the linearized equations is plotted as a blue fine dashed line, the solution (NL) of the nonlinear mean-field equations
is shown as a dashed red line, and the full numerical solution (ME) of the master equation Eq. (7) is shown as a continuous (black) line. In the
panels for 〈b̂†b̂〉, the dotted green lines [not distinguishable in (a)] show the evolution of the mirror in the absence of optomechanical coupling
to the cavity field, that is for ωc = 0.

equations are negligible. In a more general case, the full
quantum nonlinear equations (17)–(19) should be considered.
For small values of ωc/γa,b, one can expect that nonlinear
mean-field equations (20)–(22) should provide a reasonable
approximate description.

These analytical expectations are validated in Fig. 2
which shows the free evolution of the system starting
from b0 = 2 and the cavity field in its vacuum state. The
Figs. 2(a)–2(d) refer to growing values of coupling strength,
ωc/γ0 = 0.1, 0.5, 5, 10. In each panel, the different curves
show the full numerical solution of the master equation (black
solid line), the solution of the linearized equations (blue dotted
line), and the solution of the nonlinear mean-field equations
(red dashed line). The dotted green lines in the panels for
〈b̂†b̂〉 show the bare damping of the mechanical oscillator at
γb. For simplicity we have assumed equal dissipation rates
for both the cavity and the mechanical oscillator γa = γb = γ ,
so that γ0 = γ /

√
2 and γ1 = 3γ /2. With this choice, one has

ωd = (2ω2
c − γ 2/16)1/2.

In Fig. 2(a) we illustrate the overdamped regime of weak
optomechanical coupling: while the mechanical oscillator per-
forms a monotonic decay towards its ground state, the cavity
field is initially excited by the dynamical Casimir effect,
then the photons are lost by dissipation. Consequences of
backreaction can be found in the decay rate of the mirror
oscillation, which is reinforced compared to its bare value

γb (green dotted line). The quantitative importance of this
effect grows with ωc: while it is almost invisible on the scale
of Fig. 2(a), it shows up clearly in Fig. 2(b). In both these
panels, the agreement of the different approximations to the
full numerical solution is very good and the discrepancy gets
smaller as ωc/γ0 is decreased.

In Figs. 2(c) and 2(d) we illustrate the underdamped regime
where a continuous and periodic transfer of energy occurs
between the mirror and the field and vice versa. The timescale
on which such a conversion takes place can be estimated from
the analytical theory to be on the order of 1/ωd . Because of
the losses, the system then decays towards the vacuum state
on a timescale set by the characteristic time 1/γ1. Given the
relatively large initial value of b chosen here, the linearized
approach provides inaccurate results. The nonlinear mean-
field equations are however able to reasonably capture the
oscillation frequency. Quantum fluctuations and correlations
are then responsible for the quick damping of the oscillations
shown in the full numerics.

B. Driven-dissipative steady state under a monochromatic drive

After having discussed the free evolution of the system
under the combined effect of the losses and the dynami-
cal Casimir emission, we now turn to the driven-dissipative
dynamics when the system is continuously driven by a
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monochromatic drive acting on the mirror. As we have done
in the previous section, the full numerical results will be com-
pared to the solution of the nonlinear equations (20)–(22): as
compared to the pure mean-field theory based on one-operator
expectation values of Sec. III A, these equations explicitly
include the relevant two-operator quantities that enter into the
DCE, in particular q = 〈â2〉.

1. Linear regime

We start from the case where the strength of the external
drive is small enough that the system is slightly perturbed
from the vacuum. In this regime, an analytical solution for
the response of the mirror can be obtained by linearizing the
equations of motion, which gives

b(ω) = R(ω)F0, (29)

where R(ω) is the response function of the oscillator

R(ω) = − �q + iγa

�b�q + i
(
γa�b + γb

2 �q
) − (

2ω2
c + γ 2

0

) . (30)

This formula is one of the key results of our work. In the
completely resonant case ωb = 2ωa, it simplifies as

R(ω) = − � + iγa

�2 + iγ1� − (
2ω2

c + γ 2
0

) , (31)

where � = ω − ωb = ω − 2ωa. As expected, in the limit
ωc → 0 of a vanishing optomechanical interaction, the re-
sponse function reduces to the response (16) of the bare
oscillator.

For small ωc � γa,b, and assuming for simplicity γa 	 γb,
the response (31) takes the Lorentzian form

R(ω) = 1

� + iγ eff
b /2

, (32)

with the effective damping rate for the mirror given in
Eq. (28). This last formula clearly shows the backreaction
effect of the dynamical Casimir emission as a reinforced
broadening of the mirror response: while the first term in
Eq. (28) is the bare damping of the mechanical oscillator, the
second term accounts for the damping due to the creation of
photon pairs out of the vacuum. Since the dynamical Casimir
effect is dramatically suppressed far away from resonance
|ωb − 2ωa| 	 γ0,1, the backreaction contribution can be ex-
tracted just by looking at the dependence of the linewidth on
the cavity-mirror detuning ωb − 2ωa = �q − �b. Of course,
isolating the backreaction contribution to the mechanical

dissipation requires that the intrinsic dissipations γa,b are not
far larger than the optomechanical coupling ωc.

For arbitrary values of ωc, the squared amplitude of the
mirror oscillations follows directly from Eq. (31),

|b(ω)|2 = �2 + γ 2
a[

�2 − (
2ω2

c + γ 2
0

)]2 + γ 2
1 �2

|F0|2. (33)

For strong values of the coupling ωc 	 γa,b, the periodic
energy exchange between mechanical and optical modes pre-
dicted in the previous section manifests itself in a complex
response spectrum showing a pair of Lorentzian peaks of
width γ1 separated by a splitting approximately given by
2
√

2ωc,

|b(ω)|2 = 2ω2
c(

�2 − 2ω2
c

)2 + 2ω2
cγ

2
1

|F0|2. (34)

Quantitatively, for typical parameters of high-frequency op-
tomechanical systems taken from [60], the optomechanical
coupling results on the order of ωc ≈ 1 Hz. As we have
seen in this section, weak optomechanical couplings require
correspondingly small dissipation rates γ � ωc for the back-
reaction effect to be observable, which is anticipated to pose
serious difficulties to experimental verification of our predic-
tions.

2. Nonlinear mean-field regime

For higher strength of the drive, calculation of the response
of the system need to include the nonlinear character of the
system, encoded in Eqs. (20)–(22). Since we are interested in
the stationary state of the system, we pose the time derivatives
to zero here. To analytically tackle the nonlinear equation,
we combine the first and the second ones to find the steady
state for the mirror oscillation amplitude and for the field
fluctuations as a function of the average number of photons
in the cavity na,

b = (� + iγa)F0[
2ω2

c (1 + 2na) − (
�2 − γ 2

0

)] − i�γ1
, (35)

q = 2ωc(1 + 2na)F0[
2ω2

c (1 + 2na) − (
�2 − γ 2

0

)] − i�γ1
. (36)

Here we posed ωb = 2ωa (that is �a = �b = �). From the
third equation we then find a condition for x ≡ (1 + 2na) in
the form of a third order polynomial equation,

ω4
c x3 − ω2

c

[
ω2

c + (
�2 − γ 2

0

)]
x2 +

[(
�2 − γ 2

0

)2

4
+ ω2

c

(
�2 − γ 2

0

) + �2

4
γ 2

1 − 4F 4
0

]
x − 1

4

((
�2 − γ 2

0

)2 + �2γ 2) = 0, (37)

which can be easily solved by numerical means. The solution
then provides the amplitude of the mirror and field oscillations
through Eqs. (35) and (36).

Because of the nonlinear nature of the problem, multiple
(up to three) solutions could exist for these equations, de-
pending on the values of the strength and frequency of the

drive. Such multistability effects are well known in optics
and a simplest example in our context is illustrated in Fig. 3:
depending on the drive frequency, one or two stable solu-
tions can be found, as well as a dynamically unstable one.
The splitting of the two tilted peaks is due to a nonlinear
Rabi coupling between the mechanical and optical degrees of
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FIG. 3. Stationary state in the presence of a monochromatic me-
chanical drive acting on the mirror, in terms of the number of photons
in the cavity as a function of the drive frequency ω. All curves
are for the resonant case ωb = 2ωa, while different values λ′ =
F0/(F th

0 )′ = 1, 3, 5 for the drive amplitude are used. The presence
of multiple solutions for the same drive frequency and amplitude
indicate multistable behaviors, the dynamically unstable branches
being highlighted by symbols.

freedom [61], and, for na 	 1, can be estimated from (37) to
be approximately 2ωc n1/2

a .
a. Modified parametric oscillator. This general theory can

be successfully used to study the dynamical Casimir emission
and the backreaction effect in the nonlinear regime. For
simplicity we restrict ourselves to the fully resonant case
ω = ωb = 2ωa and we give special attention to the field
fluctuations, taken into account in our theory at the level of
the averages of the q̂ operator (we remind that q̂ ≡ â2). Setting
� = 0, Eqs. (35) and (36) simplify to

b = iγaωcF0

2ω2
c x + γ 2

0

, (38)

q = 2ω2
c F0

2ω2
c x + γ 2

0

, (39)

while (37) reduces to

ω4
c x3 − ω2

c

(
ω2

c − γ 2
0

)
x2

(
γ 4

0

4
− ω2

cγ
2
0 − 4ω4

c F 2
0

)
x − γ 4

0

4
= 0.

(40)

In the F0 → 0 limit, this set of equation admits the explicit
solutions

b = iωcγaF0

2ω2
c + γ 2

0

, q = 2ω2
c F0

2ω2
c + γ 2

0

, na = 8ω4
c F 2

0(
2ω2

c + γ 2
0

)2 ,

(41)

which fully recover the result of the linearized equations (20)–
(22). This is immediately seen, for example, by comparing the
expression for b in Eq. (41) with the one in (29) and (31) for
� = 0.

In the opposite limit F0 → ∞, the nonlinear mean-field
equations predict for the stationary state of the system

b = iγa

4ωc
, q = F0, na = F0, (42)

FIG. 4. Stationary state of the driven-dissipative evolution in the
presence of a monochromatic drive acting on the mirror in a fully
resonant condition ω = ωb = 2ωa. (a) The amplitude of the mirror
oscillations as a function of the drive amplitude. The solid line is
the mean-field solution of (10) and (11), squares show the analytical
nonlinear expression (40), and the circles indicate the full numerical
prediction of the master equation. Different colors refer to different
values of the optomechanical coupling ωc/γ0 = 0.5 (red) and 2
(black). (b) The relative deviation between the analytical nonlinear
solutions and the full numerical solution. (c) and (d) The numerical
solutions for the normalized correlations between the field and the
mirror, as defined in Eq. (44). Vertical dashed lines indicate the points
of maximum deviation �b/〈b〉.

the equal expressions for q and na suggest that in this
regime the cavity field is in a coherent state and its amplitude
recovers the mean-field prediction (15).

The different dependence on the strength F0 of the drive
appearing in Eqs. (41) and (42) is a hint of the parametric
oscillator transition. In order to estimate the amplitude of the
drive at which the crossover between the below- and above-
threshold regimes takes place, we equate the amplitude of the
mechanical oscillations as predicted in Eqs. (41) and (42),
obtaining the threshold value (F th

0 )
′ = (1/2)(ωc + γ 2

0 /2ωc).
In the limit ωc → 0, this expression reduces to the critical
value F th

0 predicted by the mean-field theory. Such a transition
is illustrated in Fig. 4(a), where the solution for b as a function
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of F0, for the values γa/
√

2 = γb/
√

2 = γ /
√

2 = 0.5, 2 (that
is for γ0 = 0.5, 2, respectively), is shown. A close analysis
of the figure reveals the existence of three distinct regimes
depending on the value of the ratio λ′ ≡ F0/(F th

0 )
′
of the drive

strength. In contrast to the pure mean-field theory discussed in
Sec. III A, the transition between the different regimes is not
sharp but is smoothened out by quantum fluctuations.

The three regimes correspond to (i) below (λ′ � 1), (ii)
above (λ′ 	 1), and (iii) around (λ′ 
 1) threshold. The solu-
tions in Eq. (41) refer to the first of these regions [regime (i)].
The most interesting feature is that the quantum fluctuations
due to the mirror-field interaction decrease the slope of b as
a function of F0 with respect to the mean-field prediction in
Eq. (13) and this deviation grows with ωc. All these elements
confirm the origin of this feature in the DCE emission of
photons that increases the effective damping of the mirror
via the backreaction effect. Note also that, in this regime,
the theoretical solution agrees very well with the (fully quan-
tum) numerical one. This happens because, despite that the
quantum fluctuations are not negligible in this limit and the
factorization of the correlations is not justified, the system
is only weakly displaced from its vacuum state, and the
correlations account for higher order terms in the infinitesimal
displacement of the system above its vacuum state.

Above the parametric oscillator transition [regime (iii)], the
coherent oscillations of the mirror generated by the driving
force are so large they induce a self-supported coherent os-
cillation in the cavity field as well. In the DCE context, such
oscillations were observed in [62] and must, of course, be dis-
tinguished from the quantum-fluctuation-induced excitation
that is observed in the cavity in regime (i) below the transition
[54]. Also in regime (iii), the mean-field solution agrees well
with both the theoretical and the numerical solutions: the
system behaves in fact classically and quantum effects have
a negligible impact on the dynamics.

In region (ii) in between these two limits, that is for
values of the order F0 ∼ (F th

0 )
′
, the quantum fluctuations

have non-negligible effects on the properties of the system,
whose dynamics significantly deviates from the prediction
of the theoretical model developed in the previous sections.
These considerations are supported from the numerical results
in Figs. 4(c) and 4(d), where the normalized correlations

〈n̂ab̂〉c ≡ 〈n̂ab̂〉
nab

− 1, (43)

〈(â†)2b̂〉c ≡ 〈(â†)2b̂〉
q∗b

− 1 (44)

are plotted as a function of the drive strength (we remind
that by q∗ we mean the complex conjugate of q, that is
the expectation value 〈q̂†〉). From the same figures, we also
confirm the expectation that the stronger the optomechanical
coupling is compared to the loss rates ωc/γ0, the stronger the
effect of the quantum correlations and thus the larger are the
deviations of the analytical results from the fully quantum
numerical solution [Fig. 4(b)].

b. Spectral response. After having characterized the gen-
eral features of the parametric transition in the fully resonant
case, we now discuss the response of the mirror as a function
of the drive frequency. In the linear regime of a weak drive,

we obtained in Eqs. (33) that the linewidth of the response
function gets an additional contribution from the backreaction
effect of the DCE emission. The same conclusions can be
drawn from the analysis of the more general nonlinear set of
Eqs. (20)–(22), despite in this case an explicit solution for the
response function cannot be obtained.

In Fig. 5 these predictions are contrasted with the corre-
sponding numerical results. In Figs. 5(a)–5(c) we consider the
case of a relatively weak ωc/γ0 = 0.5 and different values
of the drive strength F0/(F th

0 )
′ = 0.5, 2, 5. We observe a

good matching between the nonlinear analytical result and the
numerical solution in the first and last cases, corresponding,
respectively, to situations well below and well above the para-
metric oscillator transition. As expected, in the first case the
linearized solution in Eq. (33) also provides a good approxi-
mation to the response function. A sizable deviation between
the analytical and numerical results for the response function
is instead observed in the intermediate case F0/(F th

0 )
′ = 2,

which is the value of the drive strength for which the dis-
crepancy between the analytical and numerical solutions for
� = 0 was the largest in Fig. 4.

The response for a larger value ωc/γ0 = 2 of the optome-
chanical coupling is shown in Fig. 5(d). The drive amplitude
F0/(F th

0 )
′ = 3 is again chosen to maximize the deviation be-

tween the analytical and numerical solutions for � = 0 shown
in Fig. 4. As expected, by comparing Figs. 5(b) and 5(d) we
notice a better agreement between the two solutions in the
case of a weaker optomechanical coupling.

V. CIRCUIT ANALOG

In the previous sections of this article, observable signa-
tures of the backreaction effect have been identified in the
relaxation dynamics of the system as well as in its response to
an external drive. All these signatures will be of experimental
interest as soon as a suitable optomechanical device is real-
ized, in which the mechanical frequency is on resonance with
the optical one ωb ≈ 2ωa to give a sizable dynamical Casimir
emission and the optomechanical coupling is large enough
to make the backreaction effect visible over other dissipation
channels. As we have mentioned in the Introduction, this ob-
jective is however still facing great experimental difficulties,
in particular for what concerns the mechanical frequency.
In the first observation of dynamical Casimir emission [54],
this difficulty was circumvented by making use of an analog
model based on a superconductor-based waveguide. As theo-
retically proposed in [51,52], the role of the mirror is played
here by a SQUID device and its mechanical motion in space
is simulated by tuning the reflection phase of the SQUID via
an externally imposed static magnetic field.

In this section we build atop all these works to propose and
theoretically characterize a configuration where the mirror
motion is not externally predetermined, but constitutes an
independent degree of freedom of the system, dynamically
coupled to the cavity field via the optomechanical Hamilto-
nian (3). The basic idea is to replace the externally imposed
magnetic field with one generated by another, independent
LC circuit concatenated to the SQUID. A possible imple-
mentation of this idea is sketched in Fig. 6. In contrast to
the open-waveguide experiment [54], the opposite end of
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FIG. 5. Steady-state amplitude of the mirror oscillation as a function of the frequency ω of the monochromatic drive. We consider the
mechanical oscillator resonant with the cavity field: ωb = 2ωa, and use different values for the optomechanical coupling and of the drive
amplitude. (a)–(c) ωc/γ0 = 0.5 and F0/(F th

0 )
′ = 0.5 (a), F0/(F th

0 )
′ = 2 (b), and F0/(F th

0 )
′ = 5 (c). (d) ωc/γ0 = 2 and F0/(F th

0 )
′ = 3. The black

symbols indicate the numerical solution of the master equation (7). The prediction of the linearized theory is shown as a solid green line. The
prediction of the nonlinear mean-field model is shown as a dashed red line. The response of the bare mirror for a vanishing optomechanical
coupling is shown as a dotted blue line.

the CPW terminates here on a highly reflecting capacitive
gap, so to obtain discrete high-Q cavity modes as exper-
imentally realized in [62]. Using experimental parameters
from these works, a quantitative estimate for the effective
optomechanical coupling which can be realistically obtained
in state-of-the-art devices is obtained. Most remarkably, this
value appears very promising in view of an experimental
observation of the backreaction effect.

The starting point is the relation between the effective
position xeff of the analog mirror (measured from the physical
position of the SQUID) and the magnetic flux φ threaded
through the SQUID. Such a formula was derived in full detail
in [52],

xeff =
(

�0

2π

)2 1


wgEJ (φ)
, (45)

FIG. 6. (a) Pictorial representation of the LC resonator magnetically coupled to the coplanar waveguide. (b) Sketch of the equivalent
circuit. (c) Effective cavity with moving mirror in correspondence of the SQUID.
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where 
wg is the impedance per unit length of the waveguide,
and �0 is the quantum of magnetic flux. Here EJ (φ) is the
(flux-dependent) Josephson energy of the SQUID, written as

EJ (φ) = 2Eo
J |cos(πφ/�0)| (46)

in terms of the single junction Josephson energy Eo
J . Provided

the modulation frequency is much smaller than the plasma
frequency of the SQUID ωs = 2π

√
2Eo

J /�2
0C

o
J (where Co

J
is the capacitance of each Josephson junction forming the
SQUID), a small time-dependent flux δφ then results in a
time-dependent variation of the effective cavity length

δxeff = −xeff
δEJ (φ)

EJ (φ)
= xeff

sin(πφ/�0)

cos(πφ/�0)

π δφ

�0
. (47)

Assuming that the self-inductance of the SQUID is much
smaller than the kinetic one, LSQUID � [�0/(2π )]2/Eo

J , the
former can be neglected. The magnetic flux threaded by the
LC circuit through the SQUID can be written as δφ = MILC in
terms of the current ILC flowing through the LC and the mutual
inductance M, this latter being of course bounded from above
by the self-inductance of the circuit M/LLC < 1.

Using the expression for the average magnetic energy
stored in the ground state of the LC

1

2LLC

[
ϕ

(1)
LC

]2

2
= 1

4
h̄ωLC, (48)

in terms of the zero-point fluctuations ϕ
(1)
LC of the magnetic

flux, we can directly estimate ϕ
(1)
LC in terms of circuit pa-

rameters, and then write the (operator-valued) magnetic flux
threaded through the SQUID,

δφ̂ = M

LLC
ϕ

(1)
LC

(
b̂ + b̂†

√
2

)
(49)

in terms of the creation and destruction operators for the LC
harmonic oscillator, b̂ and b̂† in our notation.

Inserting this expression into the one for the effective
length (47) and, this latter into the standard effective time-
dependent Hamiltonian for the DCE emission in a cavity of
average length xo [57],

HDCE(t ) = −h̄ωa
δx(t )

2xo
(â + â†)2 (50)

and promoting the position δx(t ) to an operator, one gets to an
effective coupling Hamiltonian between the LC circuit and the
(lowest) cavity mode in the desired form (3), with a coupling
constant

h̄ωc = h̄ωa

4
√

2π

M

LLC

ωa

Io
J Zwg

√
h̄ωLCLLC

sin(πφ/�0)

cos2(πφ/�0)
. (51)

Here we have considered the lowest mode of the waveg-
uide with ωa ≈ πv/xo. Furthermore, ωLC is the frequency of
the LC circuit (ωb in the rest of the article), v = √


wgcwg

and Zwg ≡ √

wg/cwg are, respectively, the velocity and the

impedance of the waveguide mode in terms of the impedance

wg and capacitance cwg for unit length, and Io

J = 2πEo
J /�0

is the critical current of each Josephson junction forming the
SQUID. A derivation of this same result starting from a more
extended Lagrangian theory for the analog system is reported
in the Appendix.

Plugging into this formula typical values for the SQUID
device inspired from the experiment [54], namely an operating
frequency ωa/(2π ) ≈ 5 GHz, an average cavity length of
the order of a wavelength (in the waveguide) xo ≈ 2πv/ωa,
a critical current Io

J ≈ 1.25 μA, an impedance Zwg ≈ 55 ,
an inductance LLC ≈ 0.1 nH (of the order of the kinetic
inductance of the Josephson junction), a flux concatenation
ratio M/LLC = 0.1, and a trigonometric factor of order 1, one
obtains a value for h̄ωc in the order of a few 104 Hz. Given
state-of-the-art values of the linewidths of superconductor-
based oscillators in the tens of kHz range [63], this value for
h̄ωc is very promising in view of experimental observation
of the dynamical Casimir-induced damping of the LC circuit
oscillations, as well as of the dynamical Casimir-induced
periodic exchange of energy between the LC circuit and the
coplanar cavity. From a physical standpoint, the strong value
of the analog optomechanical coupling can be understood in
terms of the very light mass that the LC circuit displays when
viewed as an (analog) mechanical oscillator.

Finally, it is important to note that the LC circuit can be
straightforwardly driven and/or monitored just by coupling it
to an external circuit as shown in Fig. 6. This provides the
experimental access needed to implement both the free evolu-
tion and the driven-dissipative steady-state schemes discussed
in the previous section.

VI. CONCLUSIONS

In this work we have theoretically studied a simplest
system where the backreaction effect of quantum fluctuations
of the electromagnetic field onto a mechanically moving
neutral object can be investigated. An optical cavity closed
by a freely moving mirror attached to a spring is considered.
The mechanical motion of the mirror is responsible for the
conversion of zero-point quantum fluctuations of the elec-
tromagnetic field into real cavity photons via the dynamical
Casimir effect, which then leak out of the cavity and can be
observed as propagating radiation. In return, the dynamical
Casimir photons exert a friction force on the moving mirror
that damps its motion. This quantum friction effect is studied
in two most remarkable configurations.

When no other external mechanical force is applied onto
the mirror and the optomechanical coupling is relatively weak,
the mirror motion performs periodic ring-down oscillations
that are slowly damped out. The backreaction appears as an
additional contribution to the damping rate on top of standard
friction. Since dynamical Casimir emission is strongest when
the mechanical oscillations are on resonance with twice the
cavity frequency, the two contributions to damping can be
disentangled by looking at the variation of the mechanical
damping rate as a function of the cavity frequency. As first
predicted in [37], for strong values of the optomechanical
coupling, the monotonic decay of the ring-down oscillations
is replaced by a periodic exchange of energy between the me-
chanical and optical degrees of freedom in a sort of dynamical
Casimir-induced two-photon Rabi oscillations.

When a periodically oscillating external force is applied
to the mirror, the system is able to reach at long times
a stationary state characterized by periodic oscillations of
the mirror and a continuous emission of dynamical Casimir
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photons. In particular, we have shown how the properties of
the backreaction force can be extracted from the dependence
of the mechanical oscillation amplitude on the frequency of
the applied force. For weak optomechanical couplings, this
response shows a single yet broadened peak whose linewidth
carries an additional contribution from the backreaction effect.
For stronger couplings, the peak is replaced by a doublet
whose splitting corresponds to the frequency of the periodic
energy exchange between the mechanical and optical degrees
of freedom.

While our study identified unambiguous signatures of
the backreaction effect that could be used in experiments
with standard optomechanical devices based on macro- or
mesoscopic mechanically moving mirrors, the quantitatively
weak magnitude of the predicted effects makes their actual
experimental measurement a very challenging task. In the
last part of our work, we have therefore investigated the
observability of the backreaction effect in analog models
based on circuit-QED systems. Taking inspiration from the
device proposed in [51,52] and recently used in [54] for the
observation of an analog of the dynamical Casimir effect,
we propose a configuration where the massive, mechanically
moving mirror is replaced by a SQUID element magnetically
coupled to an independently evolving LC circuit. In such
a system, the ring-down oscillations can be monitored by
following in time the evolution of the oscillating current in
the LC circuit. The response to the external force can be
studied by sending an external monochromatic field onto the
LC circuit and looking either at its current response or at the
energy that is absorbed from the external field. The actual
values of the system parameters that emerge from our simple
modeling are extremely promising in view of experimental
detection of the effect in state-of-the-art samples.

While the friction force of the dynamical Casimir effect
onto the moving mirror is the simplest example of backre-
action effect of quantum fluctuations onto their environment,
the next theoretical steps will attack the far more difficult case
of the backreaction of Hawking radiation onto a black hole
horizon. Schemes to study this physics in analog models based
on condensed matter or optical systems are being explored,
with special attention to unveiling analogies and differences
with the late-time evaporation of astrophysical black holes.
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APPENDIX: LAGRANGIAN FORMULATION
OF THE LC-SQUID-CPW SYSTEM

The following derivation is an extension of the Lagrangian
formulation developed in [52], to the case in which the drive
on the SQUID represents a dynamical degree-of-freedom for
the system. Without affecting the generality of the following
arguments, we assume the drive provided by a simple LC
circuit which is magnetically coupled to the SQUID. Other

devices could have been considered to the same aim, such
as another CPW, or any other electronic circuit which can be
magnetically coupled to the SQUID.

For convenience, we start by writing the Lagrangian for
the lumped-element model of the circuit depicted in Fig. 7,
and take the continuum limit after we calculate the equation of
motion for the discrete degrees of freedom. Such a Lagrangian
can be written as

L = LCPW + LSQUID + LLC, (A1)

where

LCPW =
N−1∑
n=1

[
1

2
�x cwg �̇2

n − 1

2

(�n+1 − �n)2

�x 
wg

]
, (A2)

LSQUID =
∑
j=1,2

[
1

2
CJ, j (�̇J, j )

2 + EJ, j cos

(
2π

�J, j

�0

)]
,

(A3)

LLC = 1

2
CLC�̇2

LC − 1

2LLC
�2

LC (A4)

are the Lagrangian for the CPW, the SQUID, and the LC
resonator, respectively. Here we defined the flux quantum
�0 ≡ π h̄/e (e is the electron charge), the capacitance cwg and
inductance 
wg densities in the CPW, the capacitance CLC and
inductance LLC, respectively, for the capacitor and inductor
in the LC resonator, as well as the capacitance CJ, j and the
Josephson energy EJ, j = h̄Ic, j/2e of the jth junction in the
SQUID loop, characterized by the critical current Ic, j . We
wrote the Lagrangian in Eqs. (A2)–(A4) by assuming the node
fluxes as generalized coordinates, which are defined as the
time integral of the local voltage Vj ,

� j (t ) ≡
∫ t

dτVj (τ ). (A5)

Here j = 1, 2, . . . , N denote the (discrete) degrees-of-
freedom of the CPW, while j = LC refers to the flux and the
voltage across the LC resonator. We dropped from LSQUID

a term (LI2)SQUID/2, accounting for the magnetic energy
stored in the SQUID because of the current ISQUID circu-
lating in the loop. In other terms, we assumed the size of
the SQUID loop small enough so that its self-inductance
LSQUID is negligible compared to the Josephson inductances
LJ, j = (�0/2π )2/EJ, j . Given these assumptions, the fluxes
�J, j across the junctions can be directly related to the external
flux piercing the loop as �J,1 − �J,2 = φ, so that the SQUID
can be described by the single degree of freedom �J =
(�J,1 + �J,2)/2. As a consequence, the SQUID behaves as
a single Josephson junction described, in the simpler case of
a perfectly symmetric junction characterized by the values
CJ,1 = CJ,2 = Co

J /2 and EJ,1 = EJ,1 = Eo
J , by the effective

Lagrangian

LSQUID = 1

2
Co

J �̇
2
J + EJ (φ) cos

(
2π

�J

�0

)
. (A6)

Here we indicated by EJ (φ) = 2Eo
J | cos (π φ

�0
)| the energy

stored in the SQUID, which is a nonlinear function of the
external flux piercing the flux. We work in the limit in which
the plasma frequency ω2

S = (2π/�0)2(2Eo
J /Co

J ) of the SQUID
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FIG. 7. Discrete model of the CPW magnetically coupled with the LC circuit.

far exceed the other characteristic frequencies in the circuit. In
this regime, the oscillations of the phase across the SQUID
are small, that is �J/�0 � 1. Furthermore, we consider
the external magnetic field piercing the SQUID to perform
small oscillations around a bias value φb, and we call δφ

the amplitude of these oscillations, which are driven by the
LC resonator magnetically coupled with its loop. With these
assumptions we can approximate the SQUID Lagrangian by
using the expansions

cos

(
2π

�J

�0

)
≈ 1 −

(
2π

�0

)2
�2

J

2
, (A7)

EJ (φ) = 2Eo
J

∣∣∣∣cos

(
π

φ

�0

)∣∣∣∣ = 2Eo
J

∣∣∣∣cos

(
π

φb + δφ

�0

)∣∣∣∣
≈ 2Eo

J cos

(
π

φb

�0

)
− 2Eo

J sin

(
π

φb

�0

)(
π

δφ

�0

)
.

(A8)

In the third line in Eq. (A8) we assumed the amplitude of the
oscillations δφ small enough so that the overall flux piercing
the SQUID does not change sign. For the sake of brevity, we
label in what follows ϕb = πφb/�0, and write δφ = χ�LC,
being χ ≡ M/LLC, where M is the mutual inductance between
the LC and the SQUID and �LC is the flux through the
LC circuit. Under these assumptions, the Lagrangian for the
SQUID-LC subsystem can be written in the form

LSQUID + LLC = L′
SQUID + L′

LC + Lint, (A9)

with

L′
SQUID = 1

2
Co

J �̇
2
J − Eo

J

(
2π

�0

)2

cos ϕb�
2
J , (A10)

L′
LC = 1

2
CLC�̇2

LC − 1

2LLC
�2

LC − χEo
J

(
2π

�0

)
sin ϕb�LC,

(A11)

L′
int = χ

Eo
J

2

(
2π

�0

)3

sin ϕb�
2
J�LC. (A12)

The Lagrangian in Eqs. (A10) and (A11) describes the free
evolution of the SQUID and the LC resonator, respectively.
There we notice the presence of a term linear in the flux
�LC, which accounts for a shift of the equilibrium position
of the oscillator, due to its coupling with the SQUID. The
Lagrangian in Eq. (A12) is instead cubic in the products
between the flux �J across the junction and the flux �LC

across the inductance of the LC, and is responsible for a
coupling between the two devices. In terms of Eqs. (A2) and
(A10)–(A12), the Lagrangian for the full circuit can thus be
written as

L = LCPW + L′
SQUID + L′

LC + L′
int. (A13)

Equations of motion

a. Radiation field

Basing on the effective Lagrangian in Eq. (A13), we de-
termine here the equation of motion for the electromagnetic
field. In the bulk region of the medium, in the continuum limit
�x → 0, the field satisfies the wave equation

∂2�

∂t2
− v2 ∂2�

∂x2
= 0, (A14)

where v = 1/
√

cwg
wg is the velocity of light in the CPW.
Beside this, we need to pose opportune boundary conditions
(BCs) to the field. On the side opposite to the SQUID, that
is at x = −L, such a BC is determined by the fact that the
CPW is open and the current Iwg need to be zero. Here the
current is written in terms of the flux on the N and N − 1
node as (�N − �N−1) = Iwg(
wg�x), from which follows in
the continuum limit Iwg = −∂�/(
wg∂x). This yields the first
BC

∂�(t,−L)

∂x
= 0. (A15)

On the SQUID side instead, posing a BC means fixing the
value of �(0, t ), which corresponds to �1 in the discretized
version of the Lagrangian in Eq. (A2). It is important here to
note that, in the model analyzed, �1 is not only a BC for the
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field, but it is a true dynamical quantity for the system. To
determine the corresponding equation of motion, we notice
that �1 coincides with the flux �J across the junctions (see
Fig. 7). By posing �J = �1, and minimizing the Lagrangian
in Eq. (A13) with respect to variations in �1, we obtain, again
in the continuum limit,

Co
J �̈(t, 0) + 1


wg

∂�

∂x
(t, 0) + 2Eo

J

(
2π

�0

)2

cos ϕb �(t, 0)

− Eo
J

(
2π

�0

)3

χ sin ϕb �(t, 0)�LC = 0. (A16)

Since we work in the regime ω2 � ω2
S , the first term in

Eq. (A16) can be neglected, which reduces to

�(t, 0) + ∂�

∂x
(t, 0)δLeff = 0. (A17)

Here we defined the effective variation of the CPW length

δLeff = 1

2Eo
J 
wg cos ϕb

(
�0

2π

)2 1

(1 − πχ tan ϕb�LC/�0)
.

(A18)

To first order in �LC/�0, such an effective length is given by
the sum of the two contributions

δLeff = δLφb

eff + δLδφ

eff . (A19)

Here

δLφb

eff ≡ 1

cos ϕb

LJ


wg
(A20)

is an effective length experienced by the CPW as an effect of
the bias component φb of the magnetic flux concatenated with
the SQUID, while

δLδφ

eff = �LC

R
, (A21)

with

R = (
tan ϕbπχδLφb

eff

)−1
�0 (A22)

is an effective length induced by the drive. In Eq. (A20) we
introduced the characteristic inductance of the SQUID LJ =
(�0/2π )2/(2Eo

J ). For convenience we shift in what follows
the origin of the x coordinate by L, and rewrite the BCs
obtained above as

∂�(t, 0)

∂x
= 0, (A23)

�(t, L) + ∂�

∂x
(t, L)δLeff = 0. (A24)

The former is satisfied by choosing field modes of the form
cos(knx), while the latter sets the allowed values of the wave
vector κn, which need to satisfy the following relation:

(κnδLeff ) tan(κnL) = 1. (A25)

In the limit κnδLeff � 1, the BC at x = L can be simplified as

�(t, d ) = 0, (A26)

with d = L + δLeff the total effective length of the CPW. From
the BC written in this form we find the allowed wave vectors
κn = (2n + 1)π/2d (t ). The (normalized) basis functions, at
the generic time instant t , can thus be written as

ϕn(x) =
√

2

d (t )
cos(κnx), (A27)

in terms of which the field in the CPW can be expanded as
�(t, x) = ∑

n Qn(t )ϕn(x), with Qn(t ) the coefficients of the
expansion, having the units [flux] × [length]1/2. Upon substi-
tution of Eq. (A27) into the equation of motion in Eq. (A14),
we obtain the equation of motion for the Qn,

Q̈n + ω2
nQn − 2

ḋ

d

∑
k

Q̇ngnk −
(

d̈d − ḋ2

d2

) ∑
k

Qkgnk

− ḋ2

d2

∑
k, j

Qkgk jgn j = 0, (A28)

with the coefficients

gnk =
{

(−1)n+k

2
(1+2k)(1+2n)

k(k+1−n(n+1)) if n �= k,

0 if n = k.
(A29)

b. The LC resonator and its effective mass

In the previous section we derived the equation of motion
for the field in the CPW. Since one of the BCs is nonsta-
tionary, we expanded the field in the instantaneous basis of
eigenmodes {ϕn(x)}, and wrote the equation describing the
time evolution for the coefficients Qk of such an expansion.
This procedure is not new in literature, but has been pursued
in order to calculate the particle production from DCE or
in cosmological scenarios as expanding universes [1,64,65].
What is different in the problem we study is that we consider
the BC, which is the LC resonator in our case, as a truly
dynamical object. In this section we study its dynamics, and
derive the equation that describes the evolution in time of the
effective length d (t ) of the CPW. The ultimate aim of this
procedure is to introduce the effective mass for the BC, and
provide an estimate for its value.

We start from the Euler-Lagrange equation for the LC
resonator, which can be obtained directly from the Lagrangian
in Eq. (A9). This has the form

�̈LC + ω2
LC�LC +

(
�0

2π

)
χ

2LJCLC
sin ϕb −

(
2π

�0

)
χ

4LJCLC
sin ϕb �2(t, L) = 0. (A30)

The value of the field �(t, L) at x = L is obtained from the BC in Eq. (A26),

�(t, L) = −∂φ

∂x
[d (t )][d (t ) − L] =

√
2

d

(∑
n

(−1)n κnQn

)
[d (t ) − L], (A31)
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where we used here the expansion �(t, x) = ∑
n Qn(t )ϕn(x), along with the definition in Eq. (A27) for the field eigenmodes.

Upon substitution of Eq. (A31) into Eq. (A30) we can write the equation for the LC resonator as

�̈LC + ω2
LC�LC +

(
�0

2π

)
χ

2LJCLC
sin ϕb

⎡
⎣1 −

(
2π

�0

)2 (d − L)2

d

⎛
⎝∑

n,k

(−1)n+kQnQkκnκk

⎞
⎠

⎤
⎦ = 0. (A32)

In writing Eq. (A32) we neglected a correction to the LC
frequency, induced by the electromagnetic field in the CPW. In
order to make a connection with the optomechanical problem
discussed in the previous sections, we write this equation
in standard mechanical units and define an effective mass
for the LC oscillator. To this aim we start from the free
Lagrangian

LLC = 1

2
CLC�̇2

LC − 1

2LLC
�2

LC, (A33)

and write it in terms of the effective length d defined above.
By using Eq. (A21), this takes the form

LLC = 1

2
CLCR2ḋ2 − 1

2LLC
R2[d − (

L + δLφb

eff

)]2
. (A34)

The momentum conjugate to the effective length d is

p = ∂LLC

∂ ḋ
= CLCR2ḋ, (A35)

and allows us to identify the effective mass m = R2CLC.
Considering typical values for the physical parameters of the
system, such an effective mass can take values of the order

m = CLCR2 = CLC

(
cos ϕb

tan ϕb


wg

LJ

�0

πχ

)2

∼ 10−30 kg. (A36)

In terms of these quantities, Eq. (A32) can be rewritten as

m d̈ + mω2
LC(d − Leq) − 1

d

∑
kn

(−1)n+kQ̃nQ̃kωnωk = 0.

(A37)

Here we defined the quantities

Q̃n ≡
(

2π

�0

)
δLφb

eff

(
ma

v2

)1/2

Qn, (A38)

Leq ≡ L + δLφb

eff − a

ω2
LC

, (A39)

a ≡ R�0

2π

χ

2LJm
sin ϕb, (A40)

and used the zeroth order approximation

(d − L)2

d
≈

(
δLφb

eff

)2

d
. (A41)

The coefficients Q̃n have here the units [length] × [mass]1/2,
and Eq. (A37) is equivalent to the equation of motion of a mir-
ror interacting with an electromagnetic field via its radiation
pressure. We do not go through the quantization procedure for
this theory. It is laborious and already addressed in [57]. For
our purposes it is sufficient to remember that, in the regime
of small oscillations of the mirror around its equilibrium
position, the quantized theory leads to the Hamiltonian we
used in Eq. (3) to describe the interaction. By taking advantage
of this analogy, the value of the effective coupling constant
can be calculated by using the definition in Eq. (4) given in
Sec. II (with ωLC in place of ωb). Given the expression for
the effective mass in Eq. (A36), this reproduces the result in
Eq. (51) of the main text.
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