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Bloch oscillations of topological edge modes
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Under the action of a weak constant force a wave packet in periodic potential undergoes periodic oscillations
in space, returning to the initial position after one oscillation cycle. This wave phenomenon, known as Bloch
oscillations (BOs), pertains to many physical systems. Can BOs also occur in topological insulators with
topologically protected edge states? This question is highly nontrivial, because in topological insulators with
broken time-reversal symmetry, the edge states propagate unidirectionally without backscattering, hence BOs
that typically involve stages, where a wave packet moves along and against the direction of the force, seem to
be impossible in such systems when force acts parallel to the edge of the insulator. Here we reveal that BOs still
occur with topological edge states, but in a nonconventional way: they are accompanied not only by oscillations
along the edge in the direction of force, but also by oscillations in the direction transverse to that of the force.
A full BO cycle involves switching between edge states at the opposite edges through delocalized bulk modes.
Bloch oscillations of the topological edge states require to scan the first Brillouin zone twice to complete one
cycle, thus they have a period that is two times larger than the period of usual BOs. All these unusual properties
are in contrast to BOs in nontopological systems.

DOI: 10.1103/PhysRevA.99.053814

I. INTRODUCTION

Bloch oscillations (BOs) were introduced in seminal works
that addressed the electron dynamics in crystalline lattices
under the action of a constant electric field [1,2]. They were
observed for electrons in semiconductor superlattices [3,4],
shortly after the observation of Wannier-Stark ladders [5,6].
As a universal wave phenomenon, BOs have been shown to
occur in a variety of physical systems, including ultracold
atoms [7,8], Bose-Einstein condensates trapped in optical
lattices [9–11], waveguide arrays [12–17], optically induced
lattices [18,19], surface plasmon waves in plasmonic waveg-
uides [20], and parity-time symmetric systems [21].

In contrast to conventional insulators, topological insula-
tors [22,23] conduct at the edges of the structure and insulate
in the bulk. The edge conductance is due to the existence of
in-gap states that are spatially localized at the boundaries,
propagate unidirectionally, and are immune to scattering by
perturbations or disorder. Such a robustness is a consequence
of topological protection [22,23]. The first observations of
topological insulator states were performed in electronic sys-
tems and recently studies have been extended to electromag-
netic waves [24]. Topological edge states have been proposed
and observed in gyromagnetic photonic crystals [25,26], semi-
conductor quantum wells [27], arrays of coupled resonators
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[28,29], metamaterial superlattices [30], helical waveguide
arrays [31,32], and in polariton microcavities, where strong
photon-exciton coupling leads to the formation of half-light
half-matter polariton quasiparticles [33–39], see [40] for re-
cent experimental realization of a polariton topological insula-
tor. Remarkably, application of a constant force to unbounded
topological systems has been shown to provide a powerful tool
for the measurement of its topological invariants [41–44]. It
should be stressed that none of these works addressed Bloch
oscillations in truncated topological insulators.

Here we combine the physics of topological insulators with
BOs and introduce unusual BOs of topological edge states.
Taking into account their unidirectional propagation nature
at the edges, topological edge states at first glance cannot
undergo BOs, because the latter implies that the wave packet
periodically returns to its initial position. Our study reveals
that the BOs of topological edge states are still possible, but in
a form that sharply contrasts with BOs in the nontopological
systems: although they are not able to propagate back and
forth along the same side to complete BOs, topologial edge
states still manage to restore their initial position periodically
by switching into their counterpart at the other side of the
structure that is propagating in the opposite direction. Thus,
the BOs of a topological edge state involves not only longi-
tudinal oscillations along the gradient, but also involves os-
cillations between the two edges of the topological insulator,
which do not occur in nontopological systems. Furthermore,
in corresponding momentum space the wave packet evolution
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in the course of BOs connects the energy bands surrounding
the topological gap and therefore induce nearly complete
interband transitions even for very small gradients. This is in
contrast to the usual Landau-Zener tunneling that occurs in
nontopological systems, which remains noncomplete even for
large gradients [45].

In this work we address BOs emerging in truncated topo-
logical insulators based on the microcavity exciton-polaritons
model, however, the results can be carried over to a variety of
other topological systems. BOs in topological systems may be
investigated also in helical waveguide arrays with topological
gap [46], especially if radiative losses can be reduced to an
extent that a complete oscillation cycle can be observed. Also,
some mathematical aspects of topological Bloch oscillations
on infinite lattices, not involving edge states, are discussed in
[47].

II. MODEL

To provide an example of a topological system, where BOs
are possible, we consider an exciton-polariton topological
insulator based on microcavity whose top mirror is structured
into a honeycomb lattice truncated on two sides. The resulting
structure is a honeycomb lattice ribbon with zigzag edges
in one direction and infinite along the other direction. The
linear potential inducing Bloch oscillations features a gradient
parallel to the ribbon edges. For the experimental realization
of such a gradient in a polaritonic microcavity see, e.g.,
Ref. [48].

We address the evolution of a spinor polariton wave func-
tion ψ = (ψ+, ψ−)T governed by the coupled Schrödinger
equations [33,39]:

i
∂ψ

∂t
= −1

2

(
∂2

x + ∂2
y

)
ψ + σ1β(∂x ∓ i∂y)2ψ

+ σ3�ψ + [R(x, y) + αy]ψ, (1)

where x, y are the coordinates scaled to the characteristic
length x0; all energy parameters (such as the potential depth
and the Zeeman splitting) are scaled to ε0 = h̄2/mx2

0, where
m is the effective polariton mass that corresponds to the
gradient and periodic potential free system; t is the evolution
time scaled to t0 = h̄ε−1

0 ; ψ+ and ψ− are the spin-positive
and spin-negative components of the wave function in the
circular polarization basis [33]; σ1, σ3 are the Pauli matrices;
β is the strength of spin-orbit coupling arising from the
fact that tunneling between microcavity pillars is polarization
dependent; � is the Zeeman splitting; the potential landscape
R(x, y) = −p

∑
m,n Q(x − xm, y − yn) created by microcav-

ity pillars arranged into a honeycomb array with nodes at
the points (xm, yn) is composed of Gaussian wells Q(x, y) =
exp[−(x2 + y2)/d2] of characteristic diameter 2d , depth p,
and separation a between neighboring wells; the parameter
α = Fx0/ε0 describes a small dimensionless gradient along
y that is necessary for the occurrence of BOs. We assume
that the array of microcavity pillars is periodic along the y
axis with a period Y = 31/2a and that it is truncated along the
x axis in such a way that the topological insulator acquires
two zigzag edges [see two y periods of this structure in
Fig. 1(a)]. A potential gradient is applied along the edges
of the insulator. For x0 = 2 μm and effective mass m =

FIG. 1. (a) Schematic illustration showing lattice of microcavity
pillars with zigzag-zigzag edges and (b)–(d) examples of modulus
distributions of dominating component |ψ−| in modes, correspond-
ing to the points b–d on the energy-momentum diagram (e). In all
cases β = 0.3 and � = +0.8.

10−34 kg, one gets ε0 ≈ 0.17 meV and t0 ≈ 3.8 ps. We set
p = 8, which corresponds to 1.38 meV, d = 0.4 (1.6 μm
diameter), and a = 1.4 (2.8 μm separation between pillars).
A potential energy gradient in the microcavity can be created
by slight variations of its thickness along the y axis, as
realized experimentally in [48]. Here we consider dimen-
sionless gradients in the range α = 0.001–0.01 (i.e., F =
0.085–0.85 meV/mm for characteristic parameters mentioned
above). Note that such potential gradients are from two to one
orders of magnitude smaller than gradients ∼10.5 meV/mm
experimentally reported in [48]. For the largest gradient con-
sidered here the maximal displacement ∼35 μm of the wave
packet upon evolution (see Fig. 4) leads to gradient-mediated
polariton energy variation of ∼0.06 meV, as opposed to en-
ergy variations ∼20 meV observed experimentally. Still even
for such energy gradients the effective mass was changing in
[48] by less than 10%, which allows us to consider an effective
mass (and also interactions) constant across the sample. This
also means that the standard assumption about smallness of
variation of the potential on one period due to gradient is
valid, so that the influence of the gradient on the profiles of
Bloch modes is negligible. The main effect of this potential
is to trigger the variation of Bloch momentum of the wave
packet in the Brillouin zone, as discussed below. Since the
very fact of existence of the edge states in a topological
polariton insulator is not connected with the presence of losses
that are intrinsic in these systems and since Bloch oscillations
are essentially linear physical phenomenon, we do not take
losses into account in the model (1) and mention that such
losses can be in principle compensated by the external pump,
see, e.g., [49–52]. Moreover, recent progress in the technology
of fabrication of high-Q microcavities with low losses [53,54]
enabled a demonstration of long-living polariton condensates
with lifetimes of several hundred picoseconds. It should be
also mentioned that in the experiment, the pump (either co-
herent or incoherent) can be switched off after the relatively
low polariton and reservoir exciton densities are created (i.e.,
after the initial state is prepared) so that any additional pump-
induced energy shifts can be disregarded. Spatial distributions
in subsequent dissipative dynamics will not be affected by
losses, except for an overall decrease of density with time.
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III. RESULTS AND DISCUSSION

The dynamics of Bloch oscillations is known to be strongly
affected by the specific features of the Floquet-Bloch spec-
trum of the eigenmodes of the periodic structure at α = 0.
Here we aim to elucidate the new phenomena introduced
by the unusual spectrum of the topological system. We first
set α = 0 in Eq. (1) and search for Bloch eigenmodes of
the polariton topological insulator in the form ψ(x, y) =
eiky−iε(k)tφ(x, y), where ε(k) is the energy, k ∈ [0, K] is the
Bloch momentum along the y axis, K = 2π/Y is the width of
the Brillouin zone, and φ(x, y) = φ(x, y + Y ) is the periodic
spinor function localized along the x axis. The lowest part of
the spectrum of our structure is shown in Fig. 1(e), for the
case when simultaneous action of spin-orbit coupling (here
we took β = 0.3) and Zeeman splitting � = 0.8 results in the
breakup of time-reversal symmetry in Eq. (1) and opening
of the topological gap between the first and second spectral
bands, which in the absence of the above mentioned physical
effects would meet at two Dirac points at k = K/3 and k =
2K/3. We deliberately selected a sufficiently large value of the
Zeeman splitting to ensure a considerable separation in energy
between the two depicted bands and the rest of the spectrum.
This allows us to considerably suppress Landau-Zener tunnel-
ing into higher bands. Due to the truncation of the topological
insulator, two unidirectional in-gap edge states connecting
two bands arise at K/3 < k < 2K/3 [green and red curves
in Fig. 1(e)]. Edge states belonging to different branches are
highly confined near the zigzag edges, when their energies ε

fall close to the center of the topological gap. See examples
in Figs. 1(c) and 1(d) corresponding to the points c and d in
Fig. 1(e). However, they notably expand into the bulk of the
array when the energy approaches the edge of the topological
gap. For k → 0 or k → K such modes smoothly transform
into bulk states. Thus, the bulk state from Fig. 1(b) resides in
the same continuous branch of the dispersion relation (point
b) as the edge state from Fig. 1(c) (point c).

In the presence of a potential gradient in Eq. (1) the wave
packet experiences a constant force along y. If the force
is small (α � 1), the evolution of the system is adiabatic:
one can operate with the same set of eigenmodes, but under
the action of the force the Bloch momentum of the wave
in our narrow lattice ribbon slowly varies in time, k(t ) =
k0 + αt , scanning the whole Brillouin zone [1]. Therefore, the
Bloch wave with a broad envelope and momentum k0 moves
along the corresponding branch of the dispersion relation,
undergoing shape transformations in real space that reflect the
modification of the wave packet position in the spectrum from
Fig. 1(e). Since the dependence ε(k) is periodic, the evolution
in the spatial domain is periodic too, if the Landau-Zener
tunneling to higher bands is weak [2], which is the case in our
system. If one uses for construction of a broad wave packet
one of the modes from the depth of the first or second bands
in Fig. 1(e), the wave packet moves along the corresponding
branch of the dispersion relation, remaining always in the
bulk of the array, undergoing conventional BOs with period
T = K/α. The same standard dynamics of BOs (without any
interband transitions and switching between different edges)
is observed in the nontopological system, where either spin-
orbit coupling is set to zero (β = 0) or Zeeman splitting is

absent (� = 0) (recall that in such a system edge states are
degenerate and there is no topological gap, hence a wave
packet exciting mode from a certain branch always remains
in the same band).

The picture changes qualitatively when the wave packet
is constructed using topologically protected edge states at
β,� �= 0 with broad y envelope (of width w = 30), such as
the state with Bloch momentum k0 = 0.4 K corresponding to
the point c in Fig. 1(e). Examples of the evolution dynamics
are presented in Fig. 2. The selected edge state has positive
group velocity v(k) = dε/dk, and it moves in the positive
direction of the y axis. The state connects two different
bands. Therefore, upon motion along the excited branch of
the dispersion relation under the action of the constant force,
the wave packet traverses the topological gap and for α > 0 it
transforms into a bulk state from the bottom of the second
band. In real space this is accompanied by a considerable
displacement along the y axis and by a shift of the wave
packet into the bulk [see Fig. 2(b) at one quarter of the BO
period]. Moving along the dispersion branch on the bottom
of the second band, the wave packet reaches the point k = K
and due to the periodicity of dispersion, reappears at k = 0. In
this point the group velocity changes its sign. Further variation
of Bloch momentum induced by the force shifts the wave
packet back into the topological gap so that it reaches point d
corresponding to the edge state with negative group velocity
and residing on the different edge [see Fig. 2(b) at half of the
BO period].

Therefore, in the topological insulator, highly unconven-
tional Bloch oscillations, involving switching between its
opposite edges and periodic penetration into the bulk, occur.
Despite the fact that the gradient is applied along the y axis
only, the wave packet exhibits oscillations also along the x
axis, a remarkable phenomenon that is not known to occur
in nontopological systems. After point d is passed, the wave
packet transforms into the state from the top of the first band,
i.e., it expands into the bulk again [see Fig. 2(b) at three
quarters of the BO period]. After reaching the k = K point,
the wave packet arrives to point b and then comes back to the
initial location c within the topological gap (i.e., it returns to
the left edge in real space), completing one BO cycle. The
described dynamics clearly shows that, in complete contrast
to nontopological systems or to excitations in the depth of the
band of topological system, BOs involving edge states exhibit
a period T = 2K/α that is two times larger than the period
of usual BO. Thus, to return to the initial location the wave
packet has to traverse the Brillouin zone twice [11].

Note that if the input state corresponds to the edge state,
an inversion of the sign of the gradient does not change the
direction of BOs in real space [compare Figs. 2(a) and 2(b)].
The direction of motion in the momentum space does change.
Because for α < 0 the wave packet upon evolution turns into
the mode from the top of the first band (rather than into the
mode from the bottom of the second band as it happened for
α > 0) one can see that the structure of the wave in the bulk
on the first and second halves of BO cycles is different for
opposite gradients.

In Figs. 2(c)–2(f) we plot the coordinates of the center
of mass of the wave packet in real space (xc, yc) and in the
Fourier domain (kx, ky) as functions of time, calculated by the
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FIG. 2. Distributions of |ψ−| in different moments of time corresponding to the number of the cross section multiplied by 100 showing
dynamics of Bloch oscillations for positive Zeeman splitting � = +0.8 and gradients α = −0.001 (a) and α = +0.001 (b). Initially topological
edge state with momentum k = 0.4 K and width w = 30 is located on the left edge. Green arrows indicate gradient direction. Red dashed lines
in (c)–(f) indicate the moment of time when the wave packet returns to the y = 0 point, but at the opposite edge of the insulator.

expressions:

(xc, yc) = U −1
∫∫

(x, y)(|ψ+|2 + |ψ−|2)dxdy,

(kx, ky) = 4πF−1
∫∫

(κx, κy)(|ψ̃+|2 + |ψ̃−|2)dκxdκy, (2)

where U = ∫∫
(|ψ+|2 + |ψ−|2)dxdy, F = ∫∫

(|ψ̃+|2 +
|ψ̃−|2)dκxdκy, and ψ̃+, ψ̃− are the Fourier transforms of
ψ+, ψ−. The oscillations of the x coordinate of the wave
packet center are out-of-phase with oscillations of its y
coordinate, the amplitude of the latter being much larger
[Figs. 2(c) and 2(e)]. Notice that we study a relatively narrow
topological insulator to reduce the temporal period of the BO.
The period can be drastically reduced by larger gradients α,
but this may lead to Landau-Zener tunneling. The periodic
motion of the wave packet in the spectral domain is readily
visible in Figs. 2(d) and 2(f), which show a much larger
variation in the ky component. The dependencies kx,y(t ) are
perfectly periodic, indicating that the wave packet is almost
exactly recovered after a BO cycle. Note that the integral
criterion (2) yields smooth time dependencies of kx,y, see
Figs. 2(d) and 2(f), even when a wave packet reappears at the
other edge of the Brillouin zone.

A change of sign of the Zeeman splitting, from � = +0.8
to � = −0.8, significantly affects the dynamics of the BOs.
The spectrum ε(k) remains similar to that shown in Fig. 1(e),
but with several noteworthy differences. First, inverting the

sign of � changes the relative strength of the ψ+ and ψ−
spinor components. Second, the edge mode from the red
(green) curve that resides at the left (right) edge of the array at
� = 0.8, for the opposite sign of � it resides on the right (left)
edge. Thus, if the mode at point c from Fig. 1(e) is excited,
one starts the BO cycle from the mode on the right edge (see
Fig. 3). The y dynamics in this case remains the same, but
evolution along the x axis reverses: the trajectories of motion
can be obtained from those shown in Fig. 2 if one changes
xc → −xc and kx → −kx. Thus, the conclusion is that the
magnetic field that determines the direction of edge currents
can also be used to change the x component of the currents.

Figures 4(a) and 4(b) show the dependence of the complete
time period T and y-amplitude Ay of BOs on the potential
gradient α for a fixed spin-orbit coupling strength β = 0.3.
Here T is defined as the time required for the wave packet to
return to the initial position after traversing twice the Brillouin
zone, while Ay is determined as a difference between the
maximal and minimal y positions of the wave packet during
evolution. In accordance with the model of adiabatic motion
of the wave packet within the Brillouin zone caused by a
constant force described above, both these parameters vary
as ∼1/α. While the period T is independent of the spin-
orbit coupling strength β, the amplitude of oscillations Ay

monotonically decreases with increasing β [Fig. 4(c)]. Such
a phenomenon was not expected. Indeed, the amplitude of
BO is usually proportional to the maximal energy difference
acquired by the wave packet upon motion across the Brillouin
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FIG. 3. Same as in Fig. 2, but for negative Zeeman splitting � = −0.8. Initially topological edge state with momentum k = 0.4 K and
width w = 30 is located on the right edge. Evolution of wave packet center and central momentum in the Fourier domain (not shown here) is
identical to that shown in Figs. 2(c)–2(f), but one has to change xc → −xc and kx → −kx .

zone and one may expect that the difference should grow
with increasing β due to broadening of the topological gap.
However, while the gap broadens with β, the two lowest
bands shrink, leading to an overall decrease of the interval of
energies scanned by the wave packet, which, in turn, leads to
diminishing Ay.

Finally, we would like to stress that Bloch oscillations re-
ported here can be observed even in the presence of nonlinear

FIG. 4. Period (a) and y amplitude (b) of topological Bloch
oscillations versus gradient α at β = 0.3. (c) y amplitude of Bloch
oscillations versus strength of spin-orbit coupling β at α = 0.001. In
all cases � = +0.8.

interactions in the low-density regime. To illustrate this we
included corresponding nonlinear terms (|ψ±|2 + σ |ψ∓|2)ψ±
accounting for repulsion between polaritons with the same
spin and weak attraction σ = −0.05 between polaritons with
opposite spins into the right-hand side of the evolution Eq. (1).
The dynamics of evolution within half of Bloch oscillations
cycle for different input peak amplitudes a−

t=0 of the dom-
inating ψ− component in this nonlinear case is shown in
Fig. 5 for the same α,� parameters as in Fig. 2(b). Bloch
oscillations clearly persist up to amplitude values a−

t=0 ∼ 0.1.

FIG. 5. Distributions of |ψ−| in different moments of time cor-
responding to the number of the cross section multiplied by 100
showing dynamics of nonlinear Bloch oscillations for � = +0.8,
α = +0.001, and different input peak amplitudes of the ψ− com-
ponent indicated below panels. Half of the Bloch oscillations cycle
is shown. Initially topological edge state with momentum k = 0.4 K
and width w = 30 is located on the left edge.
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For larger input amplitudes (hence stronger nonlinear effects)
one observes distortions of the wave packet and its splitting
into two fragments. At the same time, the wave packet still
moves to the opposite edge of the ribbon after completing half
of the oscillation cycle.

IV. CONCLUSION

We presented a new type of Bloch oscillations, namely
Bloch oscillations of topological edge states. The fundamental
result that we have uncovered is that a full cycle of Bloch
oscillation for a topological edge state is achieved through a
continuous transformation between the localized edge mode
and the delocalized bulk mode, as well as through a transition
between the two edge states. In a topological insulator the
wave packet traverses the Brillouin zone twice to complete
one Bloch oscillation cycle, thus the period of oscillations

in a topological system is two times larger than in the usual
insulator. These topology-controlled phenomena are in sharp
contrast to the behavior exhibited by nontopological systems.

ACKNOWLEDGMENTS

Y.V.K. acknowledges support from the Severo Ochoa
Excellence Programme (SEV-2015-0522), Fundacio Privada
Cellex, Fundacio Privada Mir-Puig, and CERCA/Generalitat
de Catalunya. C.L. acknowledges support of the National
Natural Science Foundation of China (NSFC) (Grant No.
11805145) and Natural Science Foundation of Shaanxi
Province (Grant No. 2019JQ-089). Y.V.K. acknowledges
funding of this work by RFBR and DFG according to the re-
search project No. 18-502-12080. F.Y. acknowledges support
from the NSFC (Grants No. 61475101 and No. 11690033).

[1] F. Bloch, Uber die quantenmechanik der elektronen in kristall-
gittern, Z. Phys. 52, 555 (1928).

[2] C. Zener, A theory of the electrical breakdown of solid di-
electrics, Proc. R. Soc. London Ser. A 145, 523 (1934).

[3] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E.
Cunningham, S. Schmitt-Rink, T. Meier, G. von Plessen,
A. Schulze, and P. Thomas, Optical investigation of Bloch
oscillations in a semiconductor superlattice, Phys. Rev. B 46,
7252 (1992).

[4] C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and
K. Köhler, Coherent Submillimeter-wave Emission from Bloch
Oscillations in a Semiconductor Superlattice, Phys. Rev. Lett.
70, 3319 (1993).

[5] E. E. Mendez, F. Agulló-Rueda, and J. M. Hong, Stark Local-
ization in GaAs-GaAlAs Superlattices Under an Electric Field,
Phys. Rev. Lett. 60, 2426 (1988).

[6] P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and
A. Regreny, Observation of the Wannier-Stark Quantization
in a Semiconductor Superlattice, Phys. Rev. Lett. 61, 1639
(1988).

[7] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Bloch Oscillations of Atoms in an Optical Potential, Phys. Rev.
Lett. 76, 4508 (1996).

[8] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and
M. G. Raizen, Observation of Atomic Wannier-Stark Ladders
in an Accelerating Optical Potential, Phys. Rev. Lett. 76, 4512
(1996).

[9] B. P. Anderson and M. A. Kasevich, Macroscopic quantum
interference from atomic tunnel arrays, Science 282, 1686
(1998).

[10] O. Morsch, J. H. Muller, M. Cristiani, D. Ciampini, and
E. Arimondo, Bloch Oscillations and Mean-field Effects of
Bose- Einstein Condensates in 1D Optical Lattices, Phys. Rev.
Lett. 87, 140402 (2001).

[11] Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, and L. Torner,
Bloch Oscillations in Optical and Zeeman Lattices in the Pres-
ence of Spin-Orbit Coupling, Phys. Rev. Lett. 117, 215301
(2016).

[12] U. Peschel, T. Pertsch, and F. Lederer, Optical Bloch oscilla-
tions in waveguide arrays, Opt. Lett. 23, 1701 (1998).

[13] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg,
and Y. Silberberg, Experimental Observation of Linear and
Nonlinear Optical Bloch Oscillations, Phys. Rev. Lett. 83, 4756
(1999).

[14] T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer,
Optical Bloch Oscillations in Temperature Tuned Waveguide
Arrays, Phys. Rev. Lett. 83, 4752 (1999).

[15] S. Stützer, Y. V. Kartashov, V. A. Vysloukh, V. V.
Konotop, S. Nolte, L. Torner, and A. Szameit, Hybrid
Bloch-Anderson localization of light, Opt. Lett. 38, 1488
(2013).

[16] A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de
Sterke, J. Wan, and M. M. Dignam, Quasi-Bloch Oscillations
in Curved Coupled Optical Waveguides, Phys. Rev. Lett. 103,
143903 (2009).

[17] G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R.
Osellame, Fractional Bloch oscillations in photonic lattices,
Nat. Commun. 4, 1555 (2013).

[18] H. Trompeter, W. Krolikowski, D. N. Neshev, A. S.
Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch,
U. Peschel, and F. Lederer, Bloch Oscillations and Zener Tun-
neling in Two-Dimensional Photonic Lattices, Phys. Rev. Lett.
96, 053903 (2006).

[19] Y. Sun, D. Leykam, S. Nenni, D. Song, H. Chen, Y. D. Chong,
and Z. Chen, Observation of Valley Landau-Zener-Bloch Os-
cillations and Pseudospin Imbalance in Photonic Graphene,
Phys. Rev. Lett. 121, 033904 (2018).

[20] A. Block, C. Etrich, T. Limboeck, F. Bleckmann, E.
Soergel, C. Rockstuhl, and S. Linden, Bloch oscillations
in plasmonic waveguide arrays, Nat. Commun. 5, 3843
(2014).

[21] M. Wimmer, M. A. Miri, D. Christodoulides, and U. Peschel,
Observation of Bloch oscillations in complex PT-symmetric
photonic lattices, Sci. Rep. 5, 17760 (2015).

[22] M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod.
Phys. 82, 3045 (2010).

053814-6

https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
https://doi.org/10.1098/rspa.1934.0116
https://doi.org/10.1098/rspa.1934.0116
https://doi.org/10.1098/rspa.1934.0116
https://doi.org/10.1098/rspa.1934.0116
https://doi.org/10.1103/PhysRevB.46.7252
https://doi.org/10.1103/PhysRevB.46.7252
https://doi.org/10.1103/PhysRevB.46.7252
https://doi.org/10.1103/PhysRevB.46.7252
https://doi.org/10.1103/PhysRevLett.70.3319
https://doi.org/10.1103/PhysRevLett.70.3319
https://doi.org/10.1103/PhysRevLett.70.3319
https://doi.org/10.1103/PhysRevLett.70.3319
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4512
https://doi.org/10.1103/PhysRevLett.76.4512
https://doi.org/10.1103/PhysRevLett.76.4512
https://doi.org/10.1103/PhysRevLett.76.4512
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1103/PhysRevLett.87.140402
https://doi.org/10.1103/PhysRevLett.87.140402
https://doi.org/10.1103/PhysRevLett.87.140402
https://doi.org/10.1103/PhysRevLett.87.140402
https://doi.org/10.1103/PhysRevLett.117.215301
https://doi.org/10.1103/PhysRevLett.117.215301
https://doi.org/10.1103/PhysRevLett.117.215301
https://doi.org/10.1103/PhysRevLett.117.215301
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1364/OL.23.001701
https://doi.org/10.1103/PhysRevLett.83.4756
https://doi.org/10.1103/PhysRevLett.83.4756
https://doi.org/10.1103/PhysRevLett.83.4756
https://doi.org/10.1103/PhysRevLett.83.4756
https://doi.org/10.1103/PhysRevLett.83.4752
https://doi.org/10.1103/PhysRevLett.83.4752
https://doi.org/10.1103/PhysRevLett.83.4752
https://doi.org/10.1103/PhysRevLett.83.4752
https://doi.org/10.1364/OL.38.001488
https://doi.org/10.1364/OL.38.001488
https://doi.org/10.1364/OL.38.001488
https://doi.org/10.1364/OL.38.001488
https://doi.org/10.1103/PhysRevLett.103.143903
https://doi.org/10.1103/PhysRevLett.103.143903
https://doi.org/10.1103/PhysRevLett.103.143903
https://doi.org/10.1103/PhysRevLett.103.143903
https://doi.org/10.1038/ncomms2578
https://doi.org/10.1038/ncomms2578
https://doi.org/10.1038/ncomms2578
https://doi.org/10.1038/ncomms2578
https://doi.org/10.1103/PhysRevLett.96.053903
https://doi.org/10.1103/PhysRevLett.96.053903
https://doi.org/10.1103/PhysRevLett.96.053903
https://doi.org/10.1103/PhysRevLett.96.053903
https://doi.org/10.1103/PhysRevLett.121.033904
https://doi.org/10.1103/PhysRevLett.121.033904
https://doi.org/10.1103/PhysRevLett.121.033904
https://doi.org/10.1103/PhysRevLett.121.033904
https://doi.org/10.1038/ncomms4843
https://doi.org/10.1038/ncomms4843
https://doi.org/10.1038/ncomms4843
https://doi.org/10.1038/ncomms4843
https://doi.org/10.1038/srep17760
https://doi.org/10.1038/srep17760
https://doi.org/10.1038/srep17760
https://doi.org/10.1038/srep17760
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045


BLOCH OSCILLATIONS OF TOPOLOGICAL EDGE MODES PHYSICAL REVIEW A 99, 053814 (2019)

[23] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[24] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological pho-
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J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S.
Dang, Bose-Einstein condensation of exciton polaritons, Nature
(London) 443, 409 (2006).

[50] M. Wouters, I. Carusotto, and C. Ciuti, Spatial and spectral
shape of inhomogeneous nonequilibrium exciton-polariton con-
densates, Phys. Rev. B 77, 115340 (2008).

[51] K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H.
Liew, V. Savona, A. V. Kavokin, R. André, and B. Deveaud-
Plédran, Probing the Dynamics of Spontaneous Quantum Vor-
tices in Polariton Superfluids, Phys. Rev. Lett. 106, 115301
(2011).

[52] F. Baboux, D. De Bernardis, V. Goblot, V. N. Gladilin,
C. Gomez, E. Galopin, L. Le Gratiet, A. Lemaître, I. Sagnes,
I. Carusotto, M. Wouters, A. Amo, and J. Bloch, Unstable
and stable regimes of polariton condensation, Optica 5, 1163
(2018).

[53] B. Nelsen, G. Q. Liu, M. Steger, D. W. Snoke, R. Balili, K.
West and L. Pfeiffer, Dissipationless Flow and Sharp Threshold
of a Polariton Condensate with Long Lifetime, Phys. Rev. X 3,
041015 (2013).

[54] M. Steger, G. Q. Liu, B. Nelsen, C. Gautham, D. W. Snoke,
R. Balili, L. Pfeiffer, and K. West, Long-range ballistic motion
and coherent flow of long-lifetime polaritons, Phys. Rev. B 88,
235314 (2013).

053814-7

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevLett.100.013904
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nature08293
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1103/PhysRevLett.108.206809
https://doi.org/10.1103/PhysRevLett.108.206809
https://doi.org/10.1103/PhysRevLett.108.206809
https://doi.org/10.1103/PhysRevLett.108.206809
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevLett.114.116401
https://doi.org/10.1103/PhysRevLett.114.116401
https://doi.org/10.1103/PhysRevLett.114.116401
https://doi.org/10.1103/PhysRevLett.114.116401
https://doi.org/10.1103/PhysRevB.91.161413
https://doi.org/10.1103/PhysRevB.91.161413
https://doi.org/10.1103/PhysRevB.91.161413
https://doi.org/10.1103/PhysRevB.91.161413
https://doi.org/10.1103/PhysRevX.5.031001
https://doi.org/10.1103/PhysRevX.5.031001
https://doi.org/10.1103/PhysRevX.5.031001
https://doi.org/10.1103/PhysRevX.5.031001
https://doi.org/10.1103/PhysRevB.93.085438
https://doi.org/10.1103/PhysRevB.93.085438
https://doi.org/10.1103/PhysRevB.93.085438
https://doi.org/10.1103/PhysRevB.93.085438
https://doi.org/10.1364/OPTICA.3.001228
https://doi.org/10.1364/OPTICA.3.001228
https://doi.org/10.1364/OPTICA.3.001228
https://doi.org/10.1364/OPTICA.3.001228
https://doi.org/10.1103/PhysRevLett.119.253904
https://doi.org/10.1103/PhysRevLett.119.253904
https://doi.org/10.1103/PhysRevLett.119.253904
https://doi.org/10.1103/PhysRevLett.119.253904
https://doi.org/10.1103/PhysRevB.97.081103
https://doi.org/10.1103/PhysRevB.97.081103
https://doi.org/10.1103/PhysRevB.97.081103
https://doi.org/10.1103/PhysRevB.97.081103
https://doi.org/10.1038/s41586-018-0601-5
https://doi.org/10.1038/s41586-018-0601-5
https://doi.org/10.1038/s41586-018-0601-5
https://doi.org/10.1038/s41586-018-0601-5
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1209/0295-5075/96/60011
https://doi.org/10.1209/0295-5075/96/60011
https://doi.org/10.1209/0295-5075/96/60011
https://doi.org/10.1209/0295-5075/96/60011
https://doi.org/10.1103/PhysRevB.98.024310
https://doi.org/10.1103/PhysRevB.98.024310
https://doi.org/10.1103/PhysRevB.98.024310
https://doi.org/10.1103/PhysRevB.98.024310
https://doi.org/10.1364/OPTICA.2.000001
https://doi.org/10.1364/OPTICA.2.000001
https://doi.org/10.1364/OPTICA.2.000001
https://doi.org/10.1364/OPTICA.2.000001
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1103/PhysRevB.77.115340
https://doi.org/10.1103/PhysRevB.77.115340
https://doi.org/10.1103/PhysRevB.77.115340
https://doi.org/10.1103/PhysRevB.77.115340
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1103/PhysRevLett.106.115301
https://doi.org/10.1364/OPTICA.5.001163
https://doi.org/10.1364/OPTICA.5.001163
https://doi.org/10.1364/OPTICA.5.001163
https://doi.org/10.1364/OPTICA.5.001163
https://doi.org/10.1103/PhysRevX.3.041015
https://doi.org/10.1103/PhysRevX.3.041015
https://doi.org/10.1103/PhysRevX.3.041015
https://doi.org/10.1103/PhysRevX.3.041015
https://doi.org/10.1103/PhysRevB.88.235314
https://doi.org/10.1103/PhysRevB.88.235314
https://doi.org/10.1103/PhysRevB.88.235314
https://doi.org/10.1103/PhysRevB.88.235314

