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Experimental investigation of linear-optics-based quantum target detection
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The development of new techniques to improve measurements is crucial for all sciences. By employing
quantum systems as sensors to probe some physical property of interest allows the application of quantum
resources, such as coherent superpositions and quantum correlations, to increase measurement precision. Here
we experimentally investigate a scheme for quantum target detection based on linear optical measurement
devices, when the object is immersed in unpolarized background light. By comparing the quantum (polarization-
entangled photon pairs) and the classical (separable polarization states) strategies, we found that the quantum
strategy provides us an improvement over the classical one in our experiment when the signal-to-noise ratio
is greater than 1/40, or about 16 dB of noise. This is in constrast to quantum target detection considering
nonlinear optical detection schemes, which have shown resilience to extreme amounts of noise. A theoretical
model is developed which shows that, in this linear-optics context, the quantum strategy suffers from the
contribution of multiple background photons. This effect does not appear in our classical scheme. By improving
the two-photon detection electronics, it should be possible to achieve a polarization-based quantum advantage
for a signal-to-noise ratio that is close to 1/400 for current technology.
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I. INTRODUCTION

Quantum target detection (QTD) is a promising area of
quantum technologies that harnesses uniquely quantum ef-
fects, such as entanglement and coherent superpositions, to
improve sensing of physical quantities [1–3]. In particular it
has been established that quantum correlations can improve
the ability to resolve a parameter of a physical system, even in
environments which sustain moderate levels of noise. This is
exemplified by quantum illumination protocols which harness
quantum entanglement to improve our ability to resolve a
faintly reflective target bathed in intense environmental noise
[4–8]. Experiments using multimode Gaussian light and a
measurement scheme based on an optical parametric amplifier
demonstrated the robustness of QTD in the high-loss and
high-noise regime [9]. It was recently shown that a measure-
ment device based on sum frequency generation and feed-
forward can improve these previous results [10].

In the original QTD proposal by Lloyd [4], a pair of
photons in a d × d dimensional entangled state is used as
the source. One of the photons is sent to probe the object,
and a joint measurement is performed on the photon pair.
A simple measurement based on two-photon coincidence de-
tection has been demonstrated to exploit nonclassical spatial
and temporal correlations in order to improve signal-to-noise
ratio beyond classical light benchmarks [11–13]. However,
as shown in Ref. [4], the optimal measurement is one that
separates the state produced by the source from the orthogonal
subspace. In general, this measurement requires a nonlinear

optical medium [4,14], which typically suffers from low
efficiency [15], rendering the protocol highly probabilistic.
However, in the simplest case of 2 × 2 dimensional systems,
it is well known that projection onto a single maximally
entangled Bell state is deterministically possible with linear
optical elements alone [16,17]. Motivated by this fact, we
implement and study a target detection protocol using photon
pairs in a linear-optics setup. One photon is sent to probe
the presence of a target (reflecting object) that is immersed
in unpolarized background light (noise environment). Both
“classical” and quantum strategies are employed. The former
employs photons in a separable polarization state, while the
quantum one uses polarization entanglement between the
photons. In both strategies, the goal is to obtain information
regarding the presence or absence of the target. Our results
show that polarization entanglement provides an enhancement
in our ability to identify the object when the signal-to-noise
ratio is �1/40. This is due to the fact that in the linear-
optics regime, the quantum strategy is limited by multiphoton
contributions from the noise source. In order to completely
describe the experimental results, we developed a theoretical
model for our protocol by considering the relevant detection
events that are caused by the background noise, obtaining very
good agreement between theory and experiment. We show
how the linear optical scheme can be improved using current
technology. Our results shows that to exploit polarization
entanglement in the very-high-noise regime, one must employ
nonlinear optical devices.
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II. TARGET DETECTION WITH LINEAR OPTICS

Inspired by Refs. [4,6], let us consider a particular target
detection scheme, in which an object, which may or not be
present, is immersed in a background of unpolarized light, as
illustrated in Fig. 1(a). Photons from a light source are re-
flected by the object to a detector, so that detection of a signal
photon indicates that the object is present. The main goal is
to distinguish between the signal photons that are reflected
from the object and the noise photons originating from the
background radiation. Here we consider only the polarization
degree of freedom of the light source and background, so
that the photons can be treated as qubits. We further assume
that the source emits pairs of photons in some bipartite state,
|φ〉AB, and that the signal photon B is sent to probe the object,
while photon A is isolated and later used only in the final joint
measurement stage.

We consider a joint measurement using only linear-optics
devices, with the goal of distinguishing between the two
situations described above, in order to best detect the presence
or absence of the object. Below we assume the general joint
measurement strategy of projecting onto the initial state |φ〉
or the orthogonal subspace. Let us define the probability to
obtain result r conditioned on the presence of the object as
p(r|x), where r = 0 indicates projection onto state |φ〉 while
r = 1 corresponds to projection onto the orthogonal subspace.
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FIG. 1. Quantum target detection scheme using photon pairs
to probe for the presence of an object immersed in unpolarized
background radiation. Panel (a) illustrates the case when the object is
present, both the signal photons SB and the unpolarized background
photons N return to the joint measurement stage. When the object is
absent (not illustrated), the signal photon SB does not return for joint
measurement. Panel (b) shows the joint polarization measurement
scheme using a local projective measurement when the initial state
|φ〉 is a product state, while panel (c) considers the projection onto
a Bell state using linear optics when |φ〉 is an entangled state.
PBS is a polarizing beam splitter separating horizontal and vertical
polarizations, and PBSD is a polarizing beam splitter in the linear
diagonal polarization basis. In both the classical and quantum strate-
gies considered here two-photon coincidence detection is employed.

X = {x, p(x)} is a binary random variable indicating the pres-
ence (x = 0) or absence (x = 1) of the object. If there are no
noise or imperfections, we expect p(0|0) = 1 and p(1|0) = 0
for any strategy. In what follows we define the classical and
quantum strategies for target detection.

A. Classical strategy: Product state

The classical strategy for quantum target detection here is
to prepare a pair of photons in a product state of their polariza-
tion, |φ〉 = |α〉A|β〉B, with α and β labeling the polarization.
In the present context considering only the polarization degree
of freedom, this scheme is similar to preparing a single
probe photon, sending it to interact with the target object,
and performing a local polarization measurement. However,
coincidence detection of photon pairs can offer additional
advantages over a classical laser source due to the temporal
correlations, as has been explored in Ref. [13]. For this reason,
we consider here a pair of photons in a product state, as it
allows us to isolate the role of polarization entanglement and
provide a fair comparison between the classical and quantum
strategy arising from the polarization degree of freedom alone.
We note that via the coincidence detection both our classical
and quantum schemes offer improvements when compared
to a classical laser source and that the enhancement due to
polarization entanglement appears in addition to that due to
the temporal correlations.

If we assume a local polarization projection in mode B, as
illustrated in Fig. 1(b), one can eliminate half of the unpolar-
ized noise by projecting onto the polarization state |β〉. Using
the subscript c for variables corresponding to the classical
case, let us define the conditional probability as pc(r|x). We
note that, for any amount of unpolarized noise, pc(r|1) = 1/2,
when the object is absent.

B. Quantum strategy: Polarization entanglement and
linear-optics Bell-state projection

Our quantum strategy consists of preparing an initial state
given by the entangled Bell state |φ〉 = |φ+〉, where we define

|φ±〉 = 1√
2

(|HH〉AB ± |VV 〉AB), (1)

and H (V ) refers to horizontal (vertical) polarization. We use
the subscript q to denote variables relevant to the quantum
case, and thus we refer to the conditional probabilities here
as pq(r|x). The noise and photon A (alone) are completely
unpolarized; when the object is absent we expect pq(0|1) =
1/4 and pq(1|1) = 3/4 for any amount of noise. This follows
from the fact that a completely unpolarized bipartite state can
be written as a convex sum of the four Bell states, each with
probability 1/4.

For the detection system we consider here a Bell-state
projection using only linear optical elements, which can be
performed using two-photon Hong-Ou-Mandel interference
[16–18]. Here we choose a partial Bell-state analyzer based
on three polarizing beam splitters (PBSs) [19], as shown in
Fig. 1(c), though other schemes are possible. Photons coming
from modes A and B are first superposed onto a central PBS
that transmits H polarization while reflecting V polarization.
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Photon pairs in state |φ±〉 always result in one photon in
each of the output ports of the central PBS. We use one
half-wave plate and an additional PBS (which we represent
together in the figure as PBSD) in each output of the central
PBS to separate the diagonal polarization components |±〉 ≡
(|H〉 ± |V 〉)/

√
2. With this scheme, one can then identify the

|φ+〉 state by registering joint detection events at detectors A+
and B+ or detectors A− and B−. To see this, let us denote the
corresponding detection operators as d̂A± and d̂B± and write
the joint detection operators in terms of the operators of the
input modes as

d̂A+d̂B+ = 1
2 (âH b̂H + âV b̂V + âH âV + b̂H b̂V ) (2a)

and

d̂A−d̂B− = 1
2 (âH b̂H + âV b̂V − âH âV − b̂H b̂V ), (2b)

where operators â and b̂ refer to the two input spatial modes
(polarization can be either H or V ). In both equations, the first
two terms correspond to events that register the input state
|φ+〉. A similar calculation using operator d̂A+d̂B− or d̂A−d̂B+
shows that input state |φ+〉 never triggers these detection
events. Moreover, one can show that all other joint detection
events correspond to one or more of the other three Bell states.

Let us focus now on the additional terms in Eq. (2).
The third and fourth terms refer to events in which both
detected photons come from the same input mode, but with
different polarizations. In the present case this occurs only
for the unpolarized background light. Since the unpolarized
background is present only in input mode B, we can expect a
large contribution from the fourth term when the background
intensity is sufficiently large, so there is a significant proba-
bility to find more than one background photon in mode B.
In other words, there are unwanted joint detection events that
result from the joint measurement of two noise photons. This
does not take place in the classical strategy using coincidence
detection, since all of the unpolarized background is routed
to a single detector and thus does not contribute to the coinci-
dence counts. Thus, in contrast to idealized QTD, which might
rely on nonlinear optical processes for optimal detection [4,6],
we expect the QTD protocol with linear optics to present a
quantum advantage only for low-intensity noise background.

III. EXPERIMENT AND RESULTS

We performed an experimental investigation of the pro-
tocols described above using polarization-entangled pho-
ton pairs produced from spontaneous parametric down-
conversion [20]. Our experimental setup is shown in Fig. 2.
The target object to be identified is a mirror, marked as
TO in the figure. The noise source (NS) is a depolarized
laser beam, injected into the signal path using a thin glass
plate (GP). We experimentally investigate the QTD protocol
for different intensities of the depolarized background noise
using the local projective filtering (classical strategy) and
linear-optics Bell-state projective filtering (quantum strategy)
described above. For the quantum case, we create pairs of
polarization-entangled photons in the state |φ〉 = |φ+〉 [20].
Projection onto the Bell-state basis is performed, as described
above. For the classical case we produced the initial product
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FIG. 2. Experimental setup: A continuous-wave laser at 405 nm
pumps two barium borate (BBO) crystals, and pairs of photons
are produced via parametric down-conversion [20]. To compensate
polarization walk-off in the source, two birefringent quartz crystals
5 mm in length (Q1 and Q2) are used in the pump beam to finely
tune the relative optical delay between the vertical and horizontal
polarizations, so that the photon pairs are produced in state |φ+〉.
Photons A and B are sent to a Bell state analyzer, consisting of three
PBSs and HWPs (see text). The path-length difference is adjusted to
zero using the translation stage TE. Photon B reflects from the target
object TO (a mirror). The unpolarized noise source NS incoherently
combines H and V polarized photons from an attenuated diode laser,
and these are coupled into mode B using a glass-plate GP as a
low-reflectivity beam splitter. The intensity of the background noise
is controlled with a transmission filter TF. Photons are detected with
single-photon detectors, and FPGA-based electronics are used to
register coincidence counts and single-photon events.

state |φ〉 = |HH〉 and removed PBS-c, thus performing only
local polarization measurements.

The joint measurement for both cases—separable po-
larization state (classical) and entangled polarization state
(quantum)—involves projection onto the initial polarization
state and subsequent detection of the two photons within a
small coincidence window (�t = 5 ns) using single-photon
detectors. From these joint detection events we obtain the
experimental estimates of the conditional probabilities

pπ (0|x) = C(x)
πφ

C(x)
πφ + C(x)

π⊥
, (3a)

pπ (1|x) = C(x)
π⊥

C(x)
πφ + C(x)

π⊥
, (3b)

where π = c or q refers to the classical or quantum protocol,
C(x)

πφ are the coincidence counts corresponding to projection

onto the initial state |φ〉, and C(x)
π⊥ are the counts corresponding

to projection onto the subspace orthogonal to |φ〉.
The noise is quantified in terms of the ratio between the

count rate of noise photons (≈ εN) and the count rate of signal
photons (≈ εSB), which we define as g = N/SB, where ε is the
efficiency of the detector, and N and SB are the rates of input
noise and signal photons, respectively. We note that g can
increase due to losses suffered by the signal photons or due
to an increased rate of background photons. The experimental
results are shown by the points in Fig. 3. The dashed lines
correspond to the theoretical predictions when the object is
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(a)

(b)

FIG. 3. Conditional probabilities. (a) Data points corresponding
to the measured probabilities pc(0|0) and pc(1|0) for the classical
strategy as a function of g. (b) Data points corresponding to the
probabilities pq(0|0) and pq(1|0) for the quantum strategy with a
Bell-state analyzer constructed from linear optical devices. In both
plots the dashed lines are theoretical predictions, and the solid curves
are obtained from the noise model presented in the main text.

absent (x = 1), which were described in the last section. The
solid curves correspond to theoretical curves, which will be
developed in the next section.

For the classical strategy, we remove PBS-c from the setup,
sending the idler photons to detector DA while the signal and
noise photons are sent to detector DB after projection onto
the polarization state |H〉. The experimental results can be
observed in Fig. 3(a). The absence of the target object TO
(x = 1) was simulated by blocking the path of photon B. One
can see that the probabilities pc(0|0) ≈ 1 and pc(1|0) ≈ 0 for
low noise and tend towards pc(0|0) −→ pc(0|1) = 1/2 and
pc(1|0) −→ pc(1|1) = 1/2 for high levels of noise. This is
in agreement with what we expect, since the background is
completely unpolarized.

The quantum scenario is shown in Fig. 3(b). We see that
pq(0|0) ≈ 1 and pq(1|0) ≈ 0 for low noise. In the quantum
case both the background noise and photon A are unpolarized.
Thus, in the absence of the object we expect pq(0|1) ≈ 1

4
and pq(1|1) ≈ 3

4 , as confirmed by the experimental results.
However, while the probabilities pc(r|0) for the classical
strategy are still quite far from pc(r|1) for high levels of
noise, the probabilities pq(r|0) and pq(r|1) for the quantum
strategy are visually indistinguishable for the same level
of noise. This confirms the discussion following Eqs. (2):

contrary to what is expected from the usual QTD protocol,
if the detection scheme is limited to linear-optics devices, the
classical strategy using a separable state is more robust at high
levels of noise than the quantum strategy. In the next section
we develop a simple theoretical model for the experimental
probabilities presented in Fig. 3, as a function of the intensity
of the unpolarized background light.

A. Quantifying the noise

We can quantify the amount of noise by considering the
joint detection events in which two uncorrelated photons, such
as one photon A together with a noise photon, or two noise
photons, are detected within the coincidence time window.
The number of coincidence counts registered by the two
detectors DA and DB measuring uncorrelated sources is given
by [21]

NC = cAcB�T, (4)

where cA (cB) is the counting rate at detector DA (DB) and
�T is the coincidence time window. These count rates are
equal to the overall detection efficiency ε times the number of
photons incident on the detection system. Here the notation
“NC” stands for “noise coincidence counts.” We note that
all quantities in this estimate are experimentally accessible,
as it involves the count rates at each detector and makes no
assumption concerning the origin of the detected photons.

Let us consider that in a given measurement window there
are SA signal photons A, SB signal photons B, and N photons
from the background noise, incident on our measurement
device. In the classical strategy, a polarizer is used to project
onto the initial separable polarization state, which at the
same time removes half of the background noise. Then, using
Eq. (4), the number of coincidence counts due to noise is

NCc = εAεBSA

(
SB + N

2

)
�T

= εAεBSASB

(
1 + g

2

)
�T, (5)

where εA and εB are the overall detection efficiencies of
detectors DA and DB, respectively. Equation (5) shows that
there are contributions to the coincidence counts that originate
from joint detections of uncorrelated idler and signal events
(the SASB contribution), as well as uncorrelated idler and noise
events (the SASBg term).

Let us consider now the quantum strategy consisting of
the Bell-state projection. Since the central PBS combines the
signal and idler modes, and each photon alone, regardless of
its origin, is completely unpolarized, the average number of
photons at each output of the central PBS is proportional to
(SA + SB + N )/2. State |φ+〉 is then identified through an ad-
ditional polarization measurement at the detectors, projecting
onto |+〉|+〉 and |−〉|−〉. This gives an additional polarization
filtering of the noise by a factor of 1/2, since only half of
the possible unpolarized events contribute. In principle, the
number of noise counts is

NCq = εAεB

8
(SA + SB + N )2�T

= εAεB

8
[SA + SB(1 + g)]2�T . (6)
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The above equations show that noisy coincidence counts
can arise from the joint measurement of any combination of
photons A and B as well as noise N . In particular, the joint
measurement of two noise photons (the N2) term appears,
which is not present in the classical case. Thus, the unpo-
larized background light contributes to the number of noise
counts quite differently in the quantum case when compared
to the classical one.

To include these noise estimates in the conditional prob-
abilities pπ (r|x), let us write the actual coincidence counts
due to photon pairs produced by the source as SCπφ for the
classical (π = c) and quantum (π = q) cases. We can write

C(x)
πφ = SC(x)

πφ + NC(x)
πφ (7)

and

C(x)
π⊥ = NC(x)

π⊥. (8)

Equations (5)–(8) can be used in Eqs. (3) to obtain the-
oretical predictions for the conditional probabilities pπ (r|x).
These are plotted in Fig. 3 along with the experimental
data. One can see that agreement between experiment and
theory is quite good, thus validating our noise model. For
both strategies, the main discrepancy occurs for values of
g that are close to zero. In this case, the classical strategy
shows a big dispersion between the experimental data of
pc(0|1) and pc(1|1) and their theoretical predictions. This is
caused by the small number of coincidences detected, which
is originated by the lack of photons present in the absence of
the object (when the noise is low). For the quantum case, the
discrepancy is due to the reduced visibility (∼0.9 < 1) of the
two-photon interference due to mode mismatch at the central
PBS. This reduced visibility diminishes the efficiency of the
Bell-state measurement, achieving with probability V (related
to visibility) a successful Bell-state measurement while with
probability (1 − V ) a noisy measurement is observed. This
noise is not taken into account in our model and affects all
data obtained. Thus, when g is close to zero, all possible
discrepancies between experimental and theoretical points are
mainly due to this nonunit visibility. For higher values of g,
the effect of nonunit visibility is negligible when compared to
that of the background noise, and curves with good agreement
between the data and the model are observed.

B. Identifying the quantum advantage

The capacity to identify the presence or absence of the
object relies on our ability to distinguish between two prob-
ability distributions, pπ (r|0) and pπ (r|1), corresponding to
whether the object is present or absent. In order to identify
the amount of information obtained by the measurement,
we employ the mutual information between the stochastic
variables r and x, defined by I (r : x) = H (x) − H (x|r) [22].
In this equation, H (x) is the binary Shannon entropy [H (x) =
−x log x − (1 − x) log(1 − x)], while H (x|r) stands for the
conditional entropy H (x|r) = −∑

x,r p(x, r) log p(x|r). Such
quantities can be calculated directly from experimental results
by means of Bayes’ rule. Assuming that the target has a
probability of 1/2 of being present or not, we have H (x) = 1.

Figure 4 shows the mutual information for both the clas-
sical [red circles] and quantum (black squares) cases. Points

FIG. 4. Experimental results for the mutual information as a
function of the noise intensity g. Black and red lines are the theoreti-
cal predictions for the quantum and classical strategies, respectively.
The dots are experimental results, which are in excellent agreement
for the classical strategy. For the quantum strategy, there is a dis-
crepancy at g close to zero due to reduced two-photon interference
visibility. The main figure shows a zoom of the region close to g = 0
to show at which level of noise the classical strategy becomes better
than the quantum. The inset shows an evolution for larger values of
noise. The parameters for our experiment are SA ≈ 1000, SB ≈ 1000,
and �T = 5 ns.

correspond to experimental data, while the lines correspond
to theoretical predictions using the noise model developed
in the last section. We can see that the quantum strategy
using linear optics (black curve) is better than the classical
one [red curve] up to a signal-to-noise ratio of about g ≈ 40.
For larger values of g, the classical strategy presents a better
performance. As was analyzed previously, for values of g
close to zero, the theoretical model and the experimental
data are not in good agreement for both the classical and
quantum strategies. The former shows a discrepancy that is
related to the large dispersion between the experimental data
of pc(0|1) and pc(1|1) and their theoretical predictions. For
the latter, it is due to the nonunit visibility of the two-photon
interference.

C. Improving the quantum advantage

A simple way to improve our results is to employ coinci-
dence electronics with a smaller coincidence window, which
reduces the number of noise coincidence counts in Eqs. (5)
and (6). Since the temporal correlation between the source
photons is extremely high (typically better than 1 ps), this
should not reduce the rate of signal counts. The limiting factor
here is then the temporal resolution of the detectors, which is
determined by the temporal jitter (∼50 ps). We calculated the
mutual information for the separable and entangled strategies
and found that a coincidence window of �t = 100 ps in
our experiment would correspond to a quantum advantage
when the signal-to-noise ratio was �1/400. For higher inten-
sity of unpolarized background radiation, a nonlinear optical
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medium can be used to perform a Bell-state measurement
[15], though this method is highly probabilistic.

IV. CONCLUSIONS

We investigated a protocol for quantum target detection
based on polarization-entangled photons and a linear-optics-
based measurement system. The target object was immersed
in unpolarized background light. The entangled probe state
was distinguished from the unpolarized background noise via
a partial Bell-state projector, constructed using two-photon
interference and linear-optics devices. We compared this
linear-optics-based strategy with a classical strategy using
local projective measurements on a separable probe state.
Our results show that the linear-optics protocol allows for
quantum mechanics to outperform classical strategies when
the signal-to-noise ratio is better than about 1/40. For higher
levels of noise, the classical strategy outperforms the quantum
one. We explain this by analyzing the number of coincidence
counts due to uncorrelated photons, obtaining a good agree-
ment between theory and experiment. These uncorrelated
events originate from joint measurement of an unpolarized
background photon with a signal photon, and also between
two background photons.

We note that the quantum advantage we consider here
concerns only the polarization correlations of the photons.
In both of our strategies, two-photon coincidence detection
is employed. Thus, even in the case of our “classical” strat-
egy using photon pairs in a separable polarization state, the
temporal correlations of the photons provide a gain in the
signal-to-noise ratio when compared to the use of classical
light [13]. The polarization-based quantum gain should appear
in addition to the temporal-based one.

It is interesting to contrast our protocol with that of the
original proposal for quantum illumination [4]. In this case, it
was assumed that one can perform the optimal joint measure-
ment, corresponding to a perfect projective measurement that
distinguishes the initial state from all orthogonal subspaces.
For polarization-entangled photons, one can distinguish a
single Bell state (|φ+〉AB in the present context) from the
other three Bell states using only linear optics. These four
states form a complete basis for the polarization degree of
freedom when restricted to the subspace where one photon is
in mode A and one is in mode B (≡ |1〉A|1〉B). However, when
the background noise is larger, it can produce non-negligible
contributions of the form |0〉A|2〉B, where two photons can
be found in mode B, as well as higher-order contributions
consisting of more background photons. The linear-optics
Bell-state analyzer does not separate state |φ+〉AB from these
events perfectly. Thus, when the amount of background noise
is large compared to the number of actual signal photons,
the linear-optics scheme no longer performs the optimal
measurement. We note that the optimal measurement could
indeed be realized by employing a Bell-state projector based
on nonlinear optics [15]. However, whereas the linear-optics
device is deterministic, the nonlinear device suffers from a
very small success probability. Our results should be useful
in future designs of quantum sensing devices.
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