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Stabilizing quantum coherence against pure dephasing in the presence
of time-delayed coherent feedback at finite temperature
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We present a theoretical model of a system with time-delayed coherent feedback and show how this feedback
can lead to the preservation of a substantial level of coherence for a two-level system embedded in a phononic
cavity, even at a finite temperature. The exact nature of the solution obtained from the model enables transparent
control of the polarization properties through appropriate choices of phase relations and initial conditions.
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I. INTRODUCTION

Few-level quantum systems such as atoms, molecules, and
their artificial counterparts in solid-state structures are envi-
sioned as fundamental building blocks of quantum commu-
nication, encryption, and computation [1–4]. Quantum dots
in solid-state systems are approximated as few-level, or in
the ideal case, two-level emitters (TLEs), which is similar
to the way atoms are handled in quantum optics [5]. The
interaction of these dots with the collective excitations of the
surrounding bulk material—especially acoustic phonons—is
perceived as the main threat to coherence in these systems.
These decoherence processes also hinder the efficient func-
tioning of quantum information processing on such platforms
[6–9].

Optical excitation of these quantum dots restructures the
local electron configuration and induces lattice vibration
around the equilibrium positions of the atomic cores in the
bulk. While the system equilibrates, the generated phonons
induce a wide range of phenomena such as the damping of
Rabi oscillations [10,11], cavity feeding [12], striking photon-
phonon coupling [13,14], incoherent excitation of the emitter
[15–17], and phonon-assisted quantum interferences [18,19].
Thus, in comparison to isolated atomic systems, solid-state
systems are generally considered to have larger dephasing and
damping rates, most of which—besides phonon emission—
could be overcome only by cooling the system to very low
temperatures.

Due to the interaction with the solid-state environment (via,
e.g., acoustic phonons), these processes cannot be completely
eliminated, but the idea of controlling them has motivated the-
oretical investigations to turn this drawback into a useful and
essential feature. In recent proposals a dissipative interaction
is used to induce phonon lasing [20], ground-state cooling
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[21,22], or even stabilization of the dynamics [18,23,24] in
the strong-coupling regime.

A particularly important example of such control mech-
anisms is quantum feedback. The term refers to two very
distinct kinds of feedback: the measurement-based open-loop
and coherent closed-loop versions [25]. In this paper we
focus on the latter, where the output of a system is fed back
coherently without any measurement step in between.

In order to describe such a setup at finite temperatures,
we propose a model where a TLE is coupled to a dissipative
boson, such as an optical phonon [26–28] or an acoustic cavity
mode [29–32]. In practice, such a dissipative single bosonic
mode can be realized by phonon confinement in layered struc-
tures [31,33–35] or photonic-phononic crystals [29,30]. We
refer to this boson as a link boson (LB) since it provides a link
between the system and the bosonic reservoir. The dynamics
of the link boson can be controlled via its initial state and
interaction with the reservoir [Fig. 1(a)]. This reservoir of
the LB has typically infinite degrees of freedom but can be
spectrally unstructured, as in Fig. 1(b), or structured by, e.g., a
perfectly reflecting edge [Fig. 1(c)] or an imposed chiral cou-
pling [Fig. 1(d)]. A reservoir structuring as shown in Fig. 1(c)
can be realized by phononic Bragg mirrors [29–31,33–35].
This way, the infinite degrees of freedom of the solid-state
reservoir amount to either enhanced or suppressed dephasing
of the TLE [18,36] and may even introduce, e.g., time-delayed
feedback for the system’s dynamics [37].

The interaction between acoustic phonons and the TLE
can be formulated as a level-shifting pure-dephasing-type
interaction [7,8], where an additional Ohmic spectral density
is considered for the continuum of phonon modes that intro-
duces non-Markovian correlations [38–40]. This model, the
independent boson model, accurately describes the dephasing
dynamics of the emitter in the linear regime. However, due
to the absence of excitation exchange, it is limited to unilat-
eral phase-destroying processes without the buildup of quan-
tum entanglement between emitter and reservoir [6,8,41–44].
Here, by connecting the emitter via a LB to the solid-
state reservoir and allowing for excitation transfer between
them, we demonstrate how one can overcome this limitation.
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FIG. 1. (a) Schematics of potential setups to consider. An ex-
ample where this approach can be applied is a quantum emitter
coupled to a single-mode phonon cavity, which is embedded in a
waveguide without edge (b) and with a perfectly reflecting edge (c).
An alternative, unidirectional realization for the feedback case with
chiral coupling to the waveguide can also be considered, where 2L is
the length of the feedback loop (d).

The considered exchange of excitations introduces quantum
interference into the system dynamics, enables reservoir-
engineered quantum coherence, and forms a robust recipe for
quantum state preparation [45,46].

The presented model demonstrates the link between the
two kinds of non-Markovianity, i.e., the one that is observed as
naturally appearing in solid-state systems and the one that is
the topical case of artificially structured reservoirs in quantum
optics. The coherent feedback-type reservoir-LB interaction
is a good example of such a structured reservoir, which can
be used to steer the dynamics of the TLE with the goal of
coherence preservation. Moreover, even though there are nu-
merical methods that in principle are capable of characterizing
the effect of quantum coherent feedback at a finite temperature
[47,48], here we report on the exact influence of this effect on
the amount of recovered coherence.

II. THEORETICAL MODEL

For generality, our model considers an arbitrary set of
system operators P̂(†)

i that can be coupled to a single bosonic
mode with annihilation (creation) operator b̂(†). This LB cou-
ples the system (S) to another bosonic reservoir described by
operators r̂ (†)

k [see Fig. 1(a)]. Thus, in its most general form,
the model assumes the following Hamiltonian:

Ĥ = ĤS + ĤR + ĤLB(b̂, b̂†, P̂i , P̂†
i ), (1)

where ĤS describes the free evolution of the system op-
erators P̂†

i , i.e., ĤS = ∑
i h̄ωiP̂

†
i P̂i. Assuming the rotating

wave approximation, the LB interacts with the bosonic

reservoir via ĤR:

ĤR/h̄ = ω0b̂†b̂ +
∫

[ωk r̂†
k r̂k + gk (r̂†

k b̂ + b̂†r̂k )]dk, (2)

where k labels the lowering (raising) operator for a reservoir
mode with wave number k, and gk describes the k-dependent
interaction strength between the two bosonic fields. The
system and the LB interact via the interaction Hamiltonian
ĤLB(b̂, b̂†, P̂i , P̂†

i ) with coupling strength Di [see Fig. 1(a)],
which will be specified later.

The effective action of the reservoir {r̂k , r̂†
k } on the LB is

given by the solution of the LB-reservoir dynamics, as de-
scribed by ĤR in Eq. (2). Using Heisenberg equations of mo-
tion, the LB dynamics can be represented with a linear map:

b̂(t ) = F (t )b̂(0) +
∫

Gk (t )r̂k (0)dk, (3)

where F (t ) and Gk (t ) are c-number functions satisfying
[b̂(t ), b̂†(t )] = 1 at all times. We provide in the following two
examples for the LB-reservoir interaction.

In example 1, we have a dissipative time-local irreversible
interaction of the LB with its reservoir (gk = g0). A typical
example is given in Fig. 1(b), where a single two-level system
couples to a single mode of a photonic or phononic nanocavity
b(†). The interaction leads to Markovian dissipative link boson
processes and to the propagators

Fd (t ) = e−(iω0+κ )t , (4)

Gd
k (t ) = −ig0

∫ t

0
e−(iω0+κ )(t−t ′ )−iωkt ′

dt ′, (5)

where κ = πg2
0/(2c) is the decay rate of the LB into the

continuum of modes of the reservoir. This case is well doc-
umented in the literature [2,3,6,49,50].

On the other hand, in example 2 we consider a k-dependent
coupling (gk ) structuring the reservoir mode leading to non-
Markovian phenomena. This is realized by a half-open cavity
scheme for the link boson and a distant reflector in the
environment, as shown in Fig. 1(c). This reservoir coupling
produces a coherent time-delayed feedback to the LB (gk =
g0 sin[ckτ/2]), where τ = 2L/c is the round-trip time and c
is determined by the dispersion relation valid in the reservoir
[49,51]. An equivalent representation of this feedback scheme
is shown in Fig. 1(d). In this case a chiral coupling to the
waveguide imposes unidirectional flow of information back
to the system. The round-trip time now is translated into the
length of the feedback loop, 2L.

Solving exactly the reservoir-LB dynamics leads to the
c-number functions F and G (see Appendix A for a detailed
derivation):

Ff b(t ) =
∞∑

m=0

κm

m!
e−B(t−mτ )(t − mτ )mθ (t − mτ ), (6)

G f b
k (t ) =

∞∑
m=0

−igkκ
mθ (t − mτ )

(Ak + B)m+1

×
[

eAk (t−mτ )−e−B(t−mτ )
m∑

n=0

1

n!
(Ak+B)n(t−mτ )n

]
,

(7)
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where κ is defined as before and the coefficients are defined as
Ak = −iωk and B = iω0 + κ . The expressions above include
nontrivial feedback quantities depending on the previous
round trips (integer multiples of τ ) of the fields b and rk .
These terms enable some interesting quantum interference
phenomena, such as coherence stabilization, and give access
to the reservoir dynamics [52–55].

A. General interaction

Let us consider an interaction Hamiltonian, ĤLB, involving
an arbitrary system and link boson operators. The main objec-
tive of the applied method is to calculate the time evolution
of a given system operator P̂ numerically up to arbitrary
accuracy for different initial conditions of both the system and
the reservoir, as well as for different couplings between the
two.

Since the effect of the surrounding reservoir dynamics is
fully incorporated in the LB’s time trace, we can evaluate the
Liouville–von Neumann equation explicitly in the interaction
picture:

ih̄
d

dt
ρ̂I (t ) = [ĤLB(t ), ρ̂I (t )],

and from Eqs. (1) and (2)

ĤLB(t ) = Û (t )ĤÛ †(t ) − ih̄Û (t ) ˙̂U †(t ),

Û (t ) = exp [i(ĤS + ĤR)t],

since the system operators commute with the reservoir. Thus,
note that the system-LB interaction becomes time dependent,
and in the time dependence the full reservoir interaction is
present (see the derivation in Appendix A).

For a quadratic system Hamiltonian ĤS with only real
eigenvalues, there can be found a set of system operators
{�̂i}, the normal modes of the system, for which the time
dependence has the following form:

�̂i(t ) = e−iωit�̂i(0). (8)

Any given system operator P̂ can be constructed from these
operators as

P̂(t )=
∑

i

[αi�̂i(t ) + βi�̂
†
i (t )],

∑
i

(|αi|2 + |βi|2)=1. (9)

If we want to interpret the normal modes as quasiparticles
with bosonic or fermionic commutation relations, the condi-
tions

|αi|2 ± |βi|2 = 1

also apply, with a minus sign corresponding to bosons and a
plus sign corresponding to fermions.

Using the Liouville–von Neumann equation, for each of
the normal mode operators we can prescribe the following
equation:

d ρ̂I

dt
�̂i(t ) = − i

h̄
[ĤLB, ρ̂I ]�̂i(t ). (10)

If the commutation relationship between the interaction
Hamiltonian and �̂i(0) can be written as

[ĤLB(t ), �̂i(0)] = Ĉi(t ), (11)

and using the time evolution of �̂i, Eq. (8), the following
equation of motion can be obtained:

Tr

(
d ρ̂�i (t )

dt

)
= − i

h̄
Tr{[ĤLB, ρ̂�i (t )] − ρ̂IĈi(t )}

= i

h̄
Tr

{[
�̂−1

i (0)Ĉi(t )
]
ρ̂�i (t )

}
, (12)

ρ̂�i (t ) = ρ̂I (t )�̂i(0), (13)

which, due to the linear property of the trace, translates into

d

dt
〈〈〈�̂i(t )〉〉〉 = − i

h̄
〈〈〈D̂i(t )�̂i(t )〉〉〉, (14)

D̂i(t ) = −�̂−1
i (0)Ĉi(t ). (15)

A stroboscopic solution for this equation for short enough
time steps gives

〈〈〈�̂i(t + �t )〉〉〉 =
〈(

1 − i

h̄
D̂i(t )�t

)
�̂i(t )

〉

≈ 〈
e− i

h̄ D̂i (t )�t e− i
h̄ D̂i (t−�t )�t�̂i(t − �t )

〉
,

which, by applying the Baker-Campbell-Hausdorff formula,
turns into

〈〈〈�̂i(t )〉〉〉 =
〈

exp

[
− i

h̄

∫ t

0
D̂i(t1)dt1

]
exp

{
− 1

2h̄2

×
∫ t

0

∫ t1

0
[D̂i(t1), D̂i(t2)]dt2dt1

}
�̂i(0)

〉
. (16)

The time evolution of the expectation value of the original sys-
tem operator P̂(t ) can be constructed from these expectation
values by using (9).

B. TLE-phonon interaction

As we saw in the previous subsection, the model is appli-
cable to a wide range of system-LB interactions. To provide
an example, we consider the interaction between an optically
excited spin or two-level emitter and a single-phonon mode
[56]. This specific example [see Figs. 1(b)–1(d)] is of great
importance, as it describes the loss of coherence in quantum
systems enforced by level shifts of the emitter [57–59] or
between quantum emission processes influencing the indistin-
guishability of photons [60–62]:

ĤLB(t ) = h̄D[b̂(t ) + b̂†(t )]P̂†(t )P̂(t ), (17)

where P̂ = |g〉〈e| is the lowering operator of the TLE. Note
that this model implies the pure dephasing limit, where the
level spacing of the TLE (h̄ωi = h̄ωeg) is much greater than
the energy of the LB (h̄ω0), and the population for the
TLE, 〈〈〈P̂†P̂〉〉〉, is not influenced by the reservoir. In contrast
to the population, however, the coherence amplitude 〈〈〈P̂(†)〉〉〉 is
strongly affected, showing, for instance, nontrivial dynamics
due to unconventional coupling between the system and reser-
voir.
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A relevant effect to investigate is the controllability of
the coherence 〈〈〈P̂(†)〉〉〉 by the reservoir coupling, gk , and the
description of different, unconventional dephasing dynam-
ics. We choose the coherence as our observable, 〈〈〈P̂(t )〉〉〉 =
Tr{ρ̂(t )P̂(t )}, and define the absolute square of the polariza-
tion at time t normalized by its initial value as our figure of
merit, i.e.,

η(t ) = |〈〈〈P̂(t )〉〉〉|2
|〈〈〈P̂(0)〉〉〉|2 . (18)

The goal of the modification of the LB-reservoir dynamics,
gk : g0 → g0 sin(kL) [37,53–55,63], is to restore or stabilize
as much of the initial coherence for as long as possible. As
there is no direct driving considered for the TLE, we have

P̂(t ) = P̂(0)e−iωegt , (19)

which is a special case of the situation described in the
previous section. Here, �̂(0) = P̂(0), and the commutator
(11) has the following form:[

ĤLB, P̂(0)
] = −D[b̂(t ) + b̂†(t )]P̂(0)P̂†(0)P̂(0).

Thus Eq. (16) turns into

ρ̂I
P̂(t ) = exp

[
−i

∫ t

0
ĤLB(t1)dt1

]

× exp

{
−1

2

∫ t

0

∫ t1

0
[ĤLB(t1), ĤLB(t2)]dt2dt1

}
ρ̂I

P̂(0),

(20)

which can also be obtained by a similar but more direct
method used in Appendix B.

As for the LB operators, the following commutation rela-
tion is valid: [B̂(t1), [B̂(t1), B̂(t2)]] = 0 [where B̂(t ) = b̂(t ) +
b̂†(t )] and, thus,

ρ̂P(t ) = exp

{(
− i

∫ t

0
B̂(t1)dt1

− 1

2

∫ t

0

∫ t1

0
[B̂(t1), B̂(t2)]dt2dt1

)
P̂†(0)P̂(0)

}
ρ̂P(0).

(21)

Taking the trace of the expression above gives the expected
time evolution of the coherence, which can be written as

Tr{ρ̂P(t )} =
∑

m,i,nk

〈i, m, {nk}|ρ̂P(t )|i, m, {nk}〉, (22)

where i = e, g accounts for the electronic states, m =
0, . . . , N counts the phonon number in the cavity, and nk refers
to the reservoir states.

Substituting Eq. (21), and collecting together the link bo-
son part as

ϒ̂ (t )=−i
∫ t

0
B̂(t1)dt1 − 1

2

∫ t

0

∫ t1

0
[B̂(t1), B̂(t2)]dt2dt1,

we obtain

Tr{ρ̂P(t )}=
∑

m,i,nk

〈i, m, {nk}|eϒ̂ (t )P̂†(0)P̂(0)ρ̂I (0)P̂(0)|i, m, {nk}〉.

Considering the electronic part of this expression, only the
expectation value taken with the excited state gives a contri-
bution, as [ϒ(t ), P̂†(0)P̂(0)] = 0 and (P̂†P̂)n = P̂†P̂, so

〈e|eϒ(t )P̂†(0)P̂(0) = eϒ(t )〈e|. (23)

The final expression for the general solution can be written as

ρ̂I
P̂(t ) = exp

(
− i

{
ωegtD[γ (t )b̂(0) + γ ∗(t )b̂†(0)]

+ D
∫

[Nk (t )r̂k (0) + N∗
k (t )r̂†

k (0)]dk

+ D2φ(t )

}
P̂†P̂

)
ρ̂I

P̂(0), (24)

with

γ (t ) =
∫ t

0
F (t ′)dt ′, Nk (t ) =

∫ t

0
Gk (t ′)dt ′,

φ(t ) = Im

[∫ t

0
(F (t ′)γ ∗(t ′) +

∫
Gk (t ′)N∗

k (t ′)dk)dt ′
]
. (25)

Such an exact solution can be derived for an arbitrary mixed
state and temperature-dependent reservoir states, as well as
for coherent feedback with structured reservoirs at a finite
temperature. The trace of the above expression with a given
set of initial conditions for the system, the link boson, and
the reservoir, provides the following expectation value of the
time-dependent coherence:

〈〈〈P̂(t )〉〉〉 = Tr
{
ρ̂I

P̂(t )
} = σS (t )σLB(t )σR(t ), (26)

σS (t ) = 〈e|ρ̂S (0)|g〉 = 〈〈〈P(0)〉〉〉e−iωegt−iφ(t ),

σLB(t ) =
∑

m

{〈m|e−i[γ (t )b̂(0)+γ ∗(t )b̂†(0)]ρ̂b(0)|m〉}, (27)

σR(t ) =
∑
{nk}

〈{nk}|e−i
∫

[Nk (t )r̂k (0)+N∗
k (t )r̂†

k (0)]dk ρ̂R(0)|{nk}〉,

where ρ̂S (0), ρ̂LB(0), and ρ̂R(0) characterize the initial coher-
ences of the TLE, the link boson, and the reservoir, respec-
tively. The numbers m and nk represent the initial phonon
number states of the LB and the reservoir mode k.

Note that although here we only consider pure dephasing
a similar derivation can be given for other quantum noise
effects, at least by using established approximation schemes
[49]. We also would like to point out that the form of the
interaction Hamiltonian (17) shows some similarities with
optomechanical interactions, which is of interest in many
reservoir engineering schemes [64,65]. In the following sec-
tions we discuss the results for examples 1 and 2, introduced
earlier in Sec. II, as well as in Figs. 1(b) and 1(c), respectively.

III. EXAMPLE I: LB EXPOSED TO MARKOVIAN LOSS

Let us consider the reservoir coupling in the Markovian
limit, gk = g0, and assume the same initial temperature for
the reservoir and the cavity. In order to include temperature,
we use the canonical statistical operator ρR(0, T ) =
exp[

∑
k h̄ωk r̂†

k (0)r̂k (0)/(kBT )]/Z , giving the following
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FIG. 2. The normalized absolute value of the TLE coherence,
η(t ), as a function of time, with and without feedback, at 300 K. In-
set: The corresponding absorption spectra. Parameters: ω0 = 1 THz,
D = 200 GHz, κ = 20 GHz, κτ = 157.1 × {1, 3} (with feedback).

contributions:

σR(t ) = exp

{
−1

2

∫
|Nk (t )|2[2nk (T ) + 1]dk

}
,

σb(t ) = exp

{
−1

2
|γ (t )|2[2nb(T ) + 1]

}
,

where nk (T ) and nb(T ) are the average occupation of the
reservoir and LB modes at temperature T , respectively:

nb = 1

e
h̄ω0
kT − 1

, nk = 1

e
h̄ωk
kT − 1

.

The blue solid curves in Fig. 2 show the corresponding
time trace η(t ) and its Fourier transform (inset). The latter
is proportional to the absorption spectrum R[〈〈〈P̂(ω)〉〉〉], and is
shown for parameters of a high-Q phonon cavity, in the regime
of realizable experimental platforms on nanofabricated hybrid
systems [29,66,67].

Due to the Markovian reservoir, the coherence decays
monotonically in proportion to the coupling strength g2

0. The
coherence is irreversibly lost to the reservoir modes for longer
times (κt 	 1) and, for the case shown in Fig. 2, LB side
peaks or “satellites” in the absorption spectrum are broadened
and barely noticeable due to the dissipation produced by the
structureless reservoir, as expected [68,69].

Recovering the independent boson model

A special case of the Markovian reservoir calculations is
when we consider the temperature limit of T = 0 for the
reservoir, while keeping a finite temperature for the link
boson. In this case, one finds

Tr
{
ρ̂d

P (t )
} = 1

2
exp

{
− �(t )

|D|2
|B|2

[
2B∗t + nb(1 + e−2κt ) + 1

2
(3 − e−2κt ) + i

ω2
0

|B|2 sin(ω0t )e−κt

− (2nb + 1) cos(ω0t )e−κt + 2κ

|B|2 (−2B∗ + B∗e−Bt + Be−B∗t )

]
(28)

+ i �(t )
|D|2
|B|2

[
{3κ sin(ω0t ) + 4ω0 cos(ω0t )} κ

|B|2 e−κt − ω0

2κ
(1 − e−2κt )

]}
. (29)

The last row of this formula (29) shows a shift of the satellites in the absorption spectrum compared to the expected values.
These can become substantial if the couplings between the link boson and the emitter (D) or the reservoir (g0) are comparable
to the link boson frequency (ω0).

Without particle exchange with the environment, considering only pure dephasing, further simplification is possible. In this
case the LB is not interacting with the reservoir at all (g0, κ → 0) and thus we arrive at the formula

ρ̂IBM
P (t ) = σe(0) exp

{
i
D2

ω0
t − D2

ω2
0

[(1 + nb)(1 − e−iω0t ) + nb(1 − eiω0t )]

}
, (30)

which is the result known from the independent boson model [8,42].

IV. EXAMPLE II: LB EXPOSED TO TIME-DELAYED
COHERENT FEEDBACK

The dynamics changes significantly when the link boson
couples to a structured reservoir. In a previous work the pure
dephasing dynamics was considered in a similar half-space
configuration but without the link boson [70]. In the present
paper we focus on the preservation of coherences for the
two-level system by time-delayed coherent feedback of the
link boson mode rather than the TLE itself. This construct,
as is shown later, retains a significant amount of polarization
despite the initial incoherent thermal fluctuations.

The influence of time delay in coherent feedback schemes
became important first in the context of an atom in front of a
mirror [53,71–73]. These works showed how the presence of a

perfectly reflecting boundary alters the spontaneous emission
dynamics of a TLE. In our case, however, no spontaneous
emission is considered as we focus only on the dephasing
dynamics.

Coherent feedback [74], originally introduced as an all-
optical feedback [75] for quantum systems, has been proven
an efficient way to recover lost quantum information from
a reservoir with infinite degrees of freedom. Besides intro-
ducing a distant mirror, as just described [37], it can also be
considered as a special case of cascaded quantum systems, as
illustrated in Fig. 1(d) and described in [76]

For optical excitations, the effect of feedback first mani-
fests itself as a reduction in the effective cavity linewidth. In
certain regimes, the time delay associated with the feedback
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FIG. 3. Time evolution of the normalized coherence, η(t ), with
and without feedback, and for different temperatures. Parameters:
ω0 = 1 THz, D = 200 GHz, κ = 20 GHz, κτ = 0.031.

propagation also becomes an important dynamical control
parameter. This was used to enhance intrinsic quantum prop-
erties of various systems, such as squeezing [77–80], or to re-
cover Rabi oscillations [52]. It has also proven to be useful for
the manipulation of steady-state behavior of a given quantum
system [63,80] and to prepare various quantum states [81].

The strength of the approach developed in this paper is
that we can treat such a reservoir with finite occupation and
with an assumed boundary condition (here at L). Moreover,
the explicit expression for the spectral density of the complex
environment involving the link boson and the feedback region
is not required, unlike for other methods [41]. The distant
perfectly reflecting mirror depicted in Fig. 1(c) or the chiral
loop construct in Fig. 1(d) introduces coherent feedback into
the S-LB dynamics, as well as an entangled reservoir-LB
dynamics [37].

In this paper, we examine two limiting cases: the long-
delay (Fig. 2) and short-delay (Fig. 3) limits.

A. Long-delay limit (κτ � 1)

In this case the feedback loop reduces the decay rate of
the coherence. In Fig. 2 (dashed and dash-dotted lines) the
LB-TLE interference is restored in the time-domain due to
the feedback mechanism. This appears as a reduced effective
linewidth of the LB satellites in the absorption spectrum.

The feedback phase, i.e., the specific position of the re-
flecting surface (ω0τ = 2k0L), has only a weak impact; in
particular, the green (dashed) and orange (dash-dotted) lines
in Fig. 2 are almost identical. The only difference arises from
the fact that for decreasing delay it is more probable that the
TLE and the LB interact, as the cavity is more likely to be
excited at a given point in time.

Generally, in the long-delay limit (κτ 	 1), the LB ex-
citation is absorbed entirely by the reservoir before being
fed back. Thus, the significance of the specific phase ω0τ is
negligible and, in fact, eventually the whole coherence is lost
into the reservoir regardless of the reduced effective linewidth.

B. Short-delay limit (κτ � 1)

In the case of short delay, on the other hand, quantum
interferences occur between the LB and the reservoir. This is

FIG. 4. Color map of the normalized coherence, η(t ), at t =
200 ps. Without feedback the system decoheres rapidly at higher
temperatures, whereas with feedback a finite coherence is preserved
even at room temperature. Parameters: ω0 = 1 THz, D = 200 GHz,
κ = 20 GHz.

because, with decreasing time delay τ , there is a higher chance
that the feedback signal observes a finite LB excitation. This
results in an oscillating coherence of the TLE, which shows
the recovered coherent dynamics of the LB and the system
(see Fig. 3, dashed and dash-dotted lines).

The introduced memory of the environment preserves a
large portion of the initial coherence of the TLE, in contrast
to the case without feedback, when all coherence is inevitably
lost. This effect arises even for an initial thermal state of the
LB and reservoir (see Fig. 3).

Note that the amount of leftover coherence decreases with
growing temperature of the phonon reservoir, as shown in
Fig. 4 (see also [8]), although, interestingly, persistence of the
initial coherence can hold up to very high temperatures, in
contrast to the case without feedback, where the coherence is
damped even at T = 0 due to spontaneous emission of the LB
into its reservoir.

FIG. 5. Time evolution of the coherence with feedback for
different time delays. Parameters: T = 300 K, ω0 = 1 THz, D =
200 GHz, κ = 20 GHz.
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FIG. 6. The deviation of the normalized coherence, η(t ), from
its mean value over the time period of 200 ps as a function of
temperature and feedback phase. In the case of constructive inter-
ference (integer multiples of 2π ), more pronounced oscillations can
be observed, which appear as “hot spots” in the figure. On the other
hand, for destructive interference (odd integer multiples of π ), the
amplitudes of the recovered oscillations are smaller, which appear as
a smaller deviation from the mean value. Parameters: T = 300 K,
ω0 = 1 THz, D = 200 GHz, κ = 20 GHz.

C. Influence of the feedback phase

In the case of time-delayed coherent feedback, a short feed-
back length means that the accumulated propagation phase
(ω0τ ) becomes an important control parameter. At phases
described by nπ , where n ∈ {1, 2, . . .} we recover oscillations
with the LB frequency (ω0), whereas the frequency slightly
changes for other phases, as can be observed in Fig. 5 for
feedback phases (n − 1/2)π .

Note that the feedback phase has a less significant effect
on the amount of leftover coherence than the length of the
corresponding time delay. Its contribution becomes visible
mainly in the frequency of oscillations and in the amplitude of
recovered oscillations. The greater these oscillations are, the
larger is the deviation from the mean value in the normalized
coherence over the time period shown in Fig. 3. Thus we
calculated the standard deviation of η(t ) as in Eq. (18) over
the first 200 ps as a function of temperature and propagation
phase (Fig. 6).

Note that for lower temperatures, even though the steady-
state coherence is substantial (Fig. 3), the amplitude of the
oscillations is quite small. This also shows up in Fig. 6,
where signs of significant oscillations can only be seen for
temperatures above 50 K. The “hot spots” coincide well with
the propagation phases, where a peak can be observed in the
recovered coherence in Fig. 4, i.e., at multiples of 2π .

V. CONCLUSION

In this paper we have presented a general framework,
where the description of structured-reservoir-induced quan-
tum dynamics is facilitated by the introduction of an addi-
tional link boson interaction, ĤLB. This enabled us to extend
the description of pure dephasing-type influence of the envi-
ronment on the TLE with time-delayed coherent feedback at
finite temperatures. The obtained solution can be evaluated

numerically up to arbitrary accuracy and is readily capable
of treating arbitrary initial states for both the LB and the
reservoir. For example, one may consider an initial Fock-state
excitation of the LB (see Appendix C).

Our investigations demonstrate a robust recovery of LB-
system oscillations in a continuous environment with struc-
tured coupling. In the short-delay limit the propagation phase
in the feedback loop (ω0τ ) becomes an important control pa-
rameter, influencing both the frequency and amplitude of the
recovered oscillations. We also show that using this specific
interaction between the LB and the environment the initial
coherence of the electronic system can be stabilized even at
finite temperatures.

The introduction of a link boson enables separate control
over the Markovian (g0) and non-Markovian (D and L) char-
acteristics. Thus the presented approach has the potential to
describe other unique and yet not understood non-Markovian
effects intrinsic to solid-state systems [60,82–84].

Focusing only on boson-emitter interactions, the investi-
gated model can also be applied in various settings ranging
from acoustic phonons and quantum dots to circuit QED
setups. Systems such as micro- and nanomechanical res-
onators coupled to nitrogen-vacancy centers [85,86], Cooper
boxes [21,22,87–90], Josephson junctions, and superconduct-
ing quantum interference devices [91–93] are perfect plat-
forms for testing fundamental quantum mechanics as well
as quantum nondemolition measurement of the TLE [94,95].
Also, in optical lattices, recent experiments show strong con-
trol over single vibrational modes in ion traps with generalized
pure dephasing coupling [96]. A straightforward extension
of these systems would be a quantum emitter located on
the surface of a mechanical resonator, interacting with the
vibrational mode via a strain-mediated coupling [45,97–99].

The considered interaction Hamiltonian between the TLE
and the LB (17) also has some similarities with the usual op-
tomechanical coupling, thus it may be used for the description
of a structured reservoir in that sense as well. Finally, the
introduced theoretical description may open up a new horizon
for reservoir manipulation as, to the best of our knowledge,
calculations for a quantum system with time-delayed coherent
feedback at a finite temperature have not been performed
before.
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APPENDIX A: DERIVATION OF THE COEFFICIENTS
IN THE LINEAR MAP WITH FEEDBACK

The main point of taking the interaction picture is to
describe the environment’s influence on the system only
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through its coupling to the LB by introducing an effective time dependence. The interaction picture Hamiltonian is
considered as

ĤI/h̄ = ĤR/h̄ + ĤS/h̄ = ĤS/h̄ + ω0b̂†b̂ +
∫

[ωk r̂†
k r̂k + gk (r̂†

k b̂ + b̂†r̂k )]dk, (A1)

from which the following equations of motion can be derived for the reservoir operators and the LB:

˙̂b = −iω0b̂(t ) − i
∫

gkr̂k (t )dk, ˙̂rk = −iωk r̂k (t ) − igkb̂(t ).

Note that, by changing gk to g0, we obtain the usual Markovian time evolution. By formally integrating the second equation and
substituting it back into the equation of motion for the LB, we obtain the following:

˙̂b = −iω0b̂(t ) − i
∫

gke−iωkt r̂k (t )dk −
∫ t

0
b̂(t ′)

∫
g2

ke−iωk (t−t ′ )dkdt ′.

The last term describes the environmental back action on the state of the link boson. Introducing a specific boundary condition
for the problem results in a coherent feedback [gk = g0 sin (kL) = g0 sin ( ωkτ

2 )] and a spectral density [41]:

J (ωk ) = sin2
(ωkτ

2

)
e−iωk (t−t ′ ) = 1

2

(
e−iωk (t−t ′ ) + 1

2
e−iωk (t−t ′+τ ) + 1

2
e−iωk (t−t ′−τ )

)
, (A2)

where the first term describes the standard Markovian decay, the second refers to a noncausal dependence, and the last term
describes the past state of the link boson field fed back by the environment. Integrating over the frequencies and taking causality
into account, we obtain the following for the environmental back action:

−
∫ t

0
b̂(t ′)

∫
g2

0J (ωk )dkdt ′ = g2
0π

2c

∫ t

0
b̂(t ′)[δ(t − t ′ + τ ) + δ(t − t ′ − τ ) − 2δ(t − t ′)]dt = κ[b̂(t − τ ) − b̂(t )].

Thus, the equation of motion for the LB with the effective action of the environment becomes

˙̂b = −Bb̂(t ) − i
∫

gkeAkt r̂k (0)dk + κ�(t − τ )b̂(t − τ ), (A3)

where we use

B = iω0 + κ, Ak = −iωk, κ = πg2
0

2c
.

The usual way of dealing with time-delayed dynamic equations is to apply the method of steps, where the solution is evaluated
for each τ interval by first ignoring the delay term and then substituting the solution obtained for the previous τ interval into the
last term.

Let us follow this through the example of the first two τ intervals. For 0 < t < τ we have the following equation of motion:

˙̂b = −Bb̂(t ) +
∫

Dk (t )r̂k (0)dk, Dk (t ) = −igkeAkt ,

for which we can obtain the solution

b̂(t ) = e−Bt b̂(0) +
∫

Gk
0(t )r̂k (0)dk, Gk

0(t ) =
∫ t

0
Dk (t ′)e−B(t−t ′ )dt ′ = − igk

Ak + B
(eAkt − e−Bt ).

By exchanging gk for the k-independent g0, this recovers the Markovian coefficient Gd
k (t ) as in Eq. (5) in the main text.

Substituting the above solution back into the last term of Eq. (A3) gives the following equation of motion for the time interval
0 < t < 2τ :

˙̂b = −Bb̂(t ) + κ�(t − τ )b̂(t − τ ) +
∫ [

Dk (t )κ�(t − τ )Gk
0(t − τ )

]
r̂k (0)dk,

for which we can obtain the solution

b̂(t ) = [�(t )e−Bt + κ�(t − τ )e−B(t−τ )(t − τ )]b̂(0) +
∫ [

�(t )Gk
0(t ) + �(t − τ )Gk

1(t )
]
r̂k (0)dk,

Gk
1(t ) = κ

∫ t

τ

Gk
0(t ′ − τ )e−B(t−t ′ )dt ′ = − igkκ

(Ak + B)2
{eAk (t−τ ) − e−B(t−τ )[1 + (Ak + B)(t − τ )]}.
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Continuing in a similar fashion with the other time intervals, the following ansatz can be assumed for a general coefficient
Gk

m(t ):

Gk
m(t ) = − igkκ

m

(Ak + B)m+1

[
eA(t−mτ ) − e−B(t−mτ )

m∑
n=0

(t − mτ )n

n!
(Ak + B)n

]
.

The next step in our derivation is to prove that by using the general recursive method demonstrated for Gk
1(t ) we obtain the

next coefficient in the same form (M = m + 1):

Gk
M (t ) = κ

∫ t

(m+1)τ
Gk

m(t ′ − τ )e−B(t−t ′ )dt ′

= − igkκ
Me−Bt

(Ak + B)M

[∫ t

Mτ

e(Ak+B)(t ′−Mτ )eBMτ dt ′ − eBMτ

m∑
n=0

(Ak + B)n

n!

∫ t

Mτ

(t ′ − Mτ )ndt ′
]

= − igkκ
Me−B(t−Mτ )

(Ak + B)M

[
e(Ak+B)(t−Mτ ) − 1

Ak + B
−

m∑
n=0

(Ak + B)n

n!

(t − Mτ )n+1

n + 1

]

= − igkκ
M

(Ak + B)M+1

[
eA(t−Mτ ) − e−B(t−Mτ )

M∑
n=0

(t − Mτ )n

n!
(Ak + B)n

]
.

For the coefficients of b̂(0) a similar process leads to the general formula

Fm(t ) = κm

m!
e−B(t−mτ )(t − mτ )m.

By summing up these contributions as

Ff b(t ) =
∞∑

m=0

�(t − mτ )Fm(t ),

G f b
k (t ) =

∞∑
m=0

�(t − mτ )Gk
m(t ),

we obtain the final form of the coefficients given in the main text in Eqs. (6) and (7).

APPENDIX B: ALTERNATIVE DERIVATION FOR A PURE DEPHASING INTERACTION

Since time dependence of ĤLB(t ) can be expressed solely by c-number functions and initial operators that are time
independent [Eqs. (4)–(7)], an exact formula can be obtained for the dynamics of the observable P̂(t ):

ih̄
d ρ̂I

dt
P̂(t ) = [ĤLB, ρ̂I ]P̂(t ),

d ρ̂I

dt
P̂(t ) = −iD[b̂(t ) + b̂†(t )]P̂†(t )P̂(t )ρ̂I P̂(t ). (B1)

By exploiting the intrinsic linear dynamics of the TLE coherence (19) we obtain

d ρ̂P

dt
= −iB̂(t )P̂†(0)P̂(0)ρ̂P, (B2)

B̂(t ) = b̂†(t ) + b̂(t ), (B3)

where we abbreviate ρ̂I (t )P̂(t ) =: ρ̂I
P(t ), and Tr[ρ̂I

P̂
(t )] = 〈〈〈P̂(t )〉〉〉. A stroboscopic solution of the equation of motion for short

enough time steps gives

ρ̂P(t + �t ) = (1 − iB̂(t )P̂†(0)P̂(0)�t )ρ̂P(t ) ≈ e−iB̂(t )P̂†(0)P̂(0)�t e−iB̂(t−�t )P̂†(0)P̂(0)�t ρ̂P(t − �t ).

By applying the Baker-Campbell-Hausdorff formula, this translates into

ρ̂I
P̂(t ) = exp

[
−i

∫ t

0
ĤLB(t1)dt1

]
exp

[
−1

2

∫ t

0

∫ t1

0
[ĤLB(t1), ĤLB(t2)]dt2dt1

]
ρ̂I

P̂(0), (B4)

which is the same as was obtained in (21).
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APPENDIX C: INITIAL FOCK EXCITATION IN THE LB

Let us assume n bosons for the LB in the beginning [σLB(0) = |n〉〈n|] and 0 K for the reservoir. Then, the link boson part of
the expectation value (26) becomes

σLB(t ) =
∑

m

〈m|e−i[γ (t )b̂(0)+γ ∗(t )b̂†(0)]|n〉〈n||m〉 = 〈n|e−i[γ (t )b̂(0)+γ ∗(t )b̂†(0)]|n〉. (C1)

If n is set to zero, we have a series, which results in the typical exponential evolution:

σLB(t ) = exp

[
−|γ (t )|2

2

]
, (C2)

which is equivalent to the zero-temperature case. Higher Fock-state contributions can be calculated by using the Baker-Campbell-
Hausdorff formula, since

[−iγ ∗(t )b̂†(0),−iγ (t )b̂(0)] = |γ (t )|2, (C3)

thus the link boson part of the expectation value becomes

σLB(t ) =〈n|e−iγ ∗(t )b̂†(0)e−iγ (t )b̂(0)|n〉e− |γ (t )|2
2 , (C4)

which can be evaluated as

σLB(t ) = (〈n|e−iγ ∗(t )b̂†(0) )(e−iγ (t )b̂(0)|n〉)e− |γ (t )|2
2

=
(

〈n|
n∑

l=0

[−iγ ∗(t )b̂†(0)]l

l!

)(
n∑

l ′=0

[−iγ (t )b̂(0)]l ′

l ′!
|n〉

)
e− |γ (t )|2

2 =
n∑

l=0

[−|γ (t )|2]l

l!

(
n

l

)
e− |γ (t )|2

2 .
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