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Signal-to-noise properties of correlation plenoptic imaging with chaotic light
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Correlation plenoptic imaging (CPI) is an imaging technique that exploits the correlations between the
intensity fluctuations of light to perform the typical tasks of plenoptic imaging (namely, refocusing out-of-focus
parts of the scene, extending the depth of field, and performing three-dimensional reconstruction) without
entailing a loss of spatial resolution. Here, we consider two different CPI schemes based on chaotic light, both
employing ghost imaging: the first one to image the object, the second one to image the focusing element. We
characterize their noise properties in terms of the signal-to-noise ratio (SNR) and compare their performances.
We find that the SNR can be significantly easier to control in the second CPI scheme involving standard imaging
of the object; under adequate conditions, this scheme enables the number of frames for achieving the same SNR
to be reduced by 1 order of magnitude.
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I. INTRODUCTION

Plenoptic imaging is a recently established optical imaging
technique based on the idea of recording both the spatial
distribution and propagation direction of light in a single
exposure [1]. Although the first feasible proposal to apply
plenoptic imaging to digital cameras dates back to the mid-
2000s [2], the seminal intuition can be attributed to Lippmann
[3] one century earlier. Plenoptic imaging is currently em-
ployed in a very wide range of applications, including stere-
oscopy [1,4,5], microscopy [6–9], particle image velocimetry
[10], particle tracking and sizing [11], and wavefront sens-
ing [12–15]. Since plenoptic devices are able to simultane-
ously acquire two-dimensional (2D) images from multiple
perspectives, they are considered among the fastest and most
promising methods for three-dimensional (3D) imaging [16],
as shown by the very recent use in imaging of animal neuronal
activity [9], surgical robotics [17], endoscopy [18], and blood-
flow visualization [19].

Currently available plenoptic imaging devices are based
on the intensity measurement on a single detector [2,20,21].
Their key component is a microlens array that produces mul-
tiple images of some reference plane, not coinciding with the
object plane defined by the main lens. In this way the direction
of light from the object plane to such a reference plane can be
traced, enabling us to reconstruct (refocus) the out-of-focus
parts of the scene, extend the depth of field, and perform
3D imaging in postprocessing. However, capturing directional
information entails a fundamental tradeoff with the image
resolution. In particular, spatial resolution in plenoptic devices
cannot reach the diffraction limit, as determined by the light
wavelength and the numerical aperture of the imaging system.
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Several technologies have been developed in the field of
quantum imaging which go beyond the capabilities of stan-
dard imaging and interferometry systems [22–30]. Recently,
a technique named correlation plenoptic imaging (CPI) [31]
has been shown to overcome the typical tradeoff between
spatial and directional resolution of plenoptic imaging by
exploiting intensity correlations of either chaotic light [32–35]
or entangled photon pairs [36]. The key idea of CPI is to
encode information of the image and the direction of light
in two distinct sensors; the desired information emerges by
evaluating intensity correlations. Since two separate sensors
are used, the image resolution can reach the diffraction limit.
CPI is inspired by ghost imaging with chaotic and entangled
light [22,37–46], with a crucial modification: the “bucket”
detector, collecting all light that propagates in one optical path
in ghost imaging, is replaced by a spatially resolving detector
in CPI. The resolution of such a detector enables one to track
the direction of light.

Though the tradeoff between spatial and directional reso-
lution can be overcome by using CPI instead of traditional
plenoptic imaging, the former has the disadvantage of re-
quiring the reconstruction of the source statistics, thus losing
the single-shot advantage of standard plenoptic imaging. The
signal-to-noise ratio (SNR) improves with the number of
frames; however, to aim at performing real-time imaging, the
number of acquired frames should be as small as possible. The
choice of the optimal frame number is particularly delicate in
the case of ghost images with chaotic light, characterized by
a well-known tradeoff between resolution and SNR [47–50].
Ways to mitigate such tradeoff involve image analysis tech-
niques [51,52] and alternative measurement schemes [53].
The objective of this paper is to characterize and compare the
SNR in two different CPI schemes based on the properties
of chaotic light and designed according to complementary
concepts (see Fig. 1): the first one (SETUP1) exploits ghost
imaging to obtain the image of the object and standard
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FIG. 1. Schematic representation of two setups that enable
plenoptic imaging to be performed by measuring the correlation
of intensity fluctuations between points on two spatially resolving
detectors Da and Db. Both setups are illuminated by chaotic light that
is split into two paths by a beam splitter and feature a transmissive
object and a lens of focal length f . In SETUP1 (upper panel), the
chaotic source is focused by the lens on detector Db, while the
“ghost” image of the object emerges in correspondence of Da from
the average correlation �(ρa, ρb) = 〈�i(ρa)�i(ρb)〉. SETUP2 (lower
panel) is based on a different working principle: the image of the
object is formed by the lens on Da, while the ghost image of the
lens is retrieved in correspondence of Db by computing correlations
between Da and Db. In both cases, encoding these two images in the
correlation function of Eq. (1) provides information on the direction
of light in the setup, allowing the possibility to recover the image
of the object even if the focusing conditions (namely, zb = za for
SETUP1, and 1/S1 + 1/S2 = 1/ f for SETUP2) are not satisfied.

imaging to get directional information, while in the second
one (SETUP2) the object is imaged by a lens, and ghost
imaging is used to obtain directional information.

In Sec. II, we outline the problem and define its general
aspects. In Sec. III, we derive the results that enable one to
determine the optimal number of frames to be acquired to
achieve the chosen SNR, given the light properties, the optical
distances, and the object features. The results obtained in

the two setups are compared and interpreted. In Sec. IV, we
further discuss the perspectives of this research.

II. CORRELATION PLENOPTIC IMAGING SCHEMES

We consider the two setups (SETUP1 and SETUP2) repre-
sented in Fig. 1 for performing correlation plenoptic imaging.
These configurations have been proposed in [32] and [34], re-
spectively, and an experimental proof of principle of plenoptic
imaging and refocusing in SETUP1 has been performed [35].
The two schemes essentially differ by the way ghost imaging
is employed to obtain an image of either the object plane
(SETUP1) or the focusing element (SETUP2). The common
feature of the two setups is the fact that light emitted by a
chaotic source is split in two paths a and b by a beam splitter
(BS) and is recorded at the end of each path by the high-
resolution detectors Da and Db. An object is always placed
in one of the two paths. More specifically, intensity patterns
IA(ρa) and IB(ρb), with ρa,b the coordinate on each detector
plane, are recorded in time to reconstruct the correlation of
intensity fluctuations [40,44],

�AB(ρa, ρb) = 〈�IA(ρa)�IB(ρb)〉, (1)

with �IA,B(ρa,b) = IA,B(ρa,b) − 〈IA,B(ρa,b)〉. The expectation
value in (1) must be evaluated over the source statistics, but
it can be approximated by the time average of the product
of the intensity fluctuations, provided the source is stationary
and ergodic [54]. In the discussed setups, the images of the
object plane and of the focusing element aperture will be
simultaneously encoded in �AB(ρa, ρb).

In SETUP1, an image of the object can be obtained only by
measuring intensity correlations between Da and Db. Along
path a (the reflected path in the figure), light directly impinges
on detector Da, placed at an optical distance za from the
source. In path b (the transmitted path in the figure), a trans-
missive object lies at a distance zb from the source. A thin lens
of focal length f is placed between the object and the detector
Db at a distance S1 from the former and S2 from the latter.
Such distances are chosen in order to focus the source on Db

with magnification M = S2/(S1 + zb); hence, they satisfy the
thin-lens equation 1/S2 + 1/(S1 + zb) = 1/ f . In the case zb =
za, measurement of the correlation function �AB(ρa, ρb) and
direct integration over ρb provides the focused ghost image of
the object [40].

In SETUP2, the image of the lens is recovered from intensity
correlations between Da and Db. Along path b (the reflected
path in figure), light directly impinges on the detector Db,
placed at an optical distance zb from the source. In path a (the
transmitted path in figure), the transmissive object is placed at
a distance za from the source. The thin lens of focal length f
lies between the object and the detector Da, at a distance S1

from the former and S2 from the latter. In this case, the setup
is designed to obtain a focused ghost image of the lens on the
detector Db: therefore, distances are fixed in order to satisfy
zb = za + S1. The object-to-lens and lens-to-Da distances are
arbitrary. However, it is intuitive that, if S2 = S f

2 such that
1/S1 + 1/S f

2 = 1/ f , the image of the object will be sharply
focused on Da.

The refocusing capability of both setups is determined by
the fact that the correlation function (1) encodes multiple
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coherent images of the object, one for each point ρb on Db.
The images corresponding to different pixels on Db are gen-
erally displaced with respect to each other unless a focusing
condition is satisfied. In the focused case, integration over
detector Db yields an incoherent image. In the out-of-focus
cases, the collected coherent images need to be realigned
before integrating over Db, following

�ref (ρa) = 〈S(α,β )(ρa)〉, (2)

with

S(α,β )(ρa) =
∫

d2ρb�IA(αρa + βρb)�IB(ρb). (3)

The parameters (α, β ), that approach (1,0) at focus, are prop-
erly chosen to realign the coherent images depending on the
setup and read

(α, β ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
za

zb
,− 1

M

(
1 − za

zb

))
for SETUP1,

(
S2

S f
2

, 1 − S2

S f
2

)
for SETUP2.

(4)

It is evident that when the focusing conditions are fulfilled,
there is no need to shift and rescale the first argument of �, and
the high resolution of detector Db plays no role. In all other
cases, the spatial resolution of Db is essential to reconstruct the
image of an out-of-focus object, which, by direct integration
over Db, would appear blurred and degraded.

III. FLUCTUATIONS AND SNR

A. General aspects and statistical model

The objective of this paper is to estimate the signal-to-noise
ratio characterizing the refocused images retrieved in SETUP1
and SETUP2. To this end, we shall analyze the fluctuations of
the refocused observable S(α,β )(ρa), defined in Eq. (3), around
its average �ref (ρa), namely,

F (ρa) = 〈S(α,β )(ρa)2〉 − 〈S(α,β )(ρa)〉2

=
∫

d2ρb1d2ρb2�(ρa, ρb1, ρb2), (5)

with � determined by the local fluctuations of the intensity
correlations [see Eq. (3)]. Let us assume that Nf frames are
collected in time to evaluate the expectation value (2). Sup-
posing their statistical independence, the root-mean-square
error affecting the evaluation of �ref (ρa), can be estimated by√
F (ρa)/Nf . We therefore define the quantity

R(ρa) = √
Nf

�ref (ρa)√
F (ρa)

(6)

as the signal-to-noise ratio. If the collected frames were not
statistically independent (e.g., when two or more consecutive
frames are collected within the coherence time of the source),
the number of frames Nf in Eq. (6) should be replaced by
a smaller effective value that takes into account only the
nonredundant samples.

A scalar model of the electromagnetic field in which the
effects of polarization are neglected will be adopted, and

we will assume that the radiation emission by the source is
an approximately Gaussian random process, stationary and
ergodic. Such a model provides an effective description of
a chaotic (pseudothermal) light source in the semiclassical
regime, and the quantum corrections to the derived quantities
will scale like the inverse number of photons per mode. The
scalar approximation of the electromagnetic field is valid
whenever the intensity patterns at the output of the optical
elements in paths a and b, including the beam splitter, do not
depend on polarization, which is always true in our analysis.
In particular, the field VS (ρs) at a point ρs on the source will be
characterized by a Gaussian-Schell equal-time correlator [54],

WS (ρs, ρ
′
s) = 〈VS (ρs)V ∗

S (ρ′
s)〉 = Ise

− ρ2
s

4σ2
i

− ρ′2
s

4σ2
i

− (ρs−ρ′
s )2

2σ2
g , (7)

with Is the peak intensity, σi the width of the intensity profile
〈IS (ρs)〉 = WS (ρs, ρs) = Ise−ρ2

s /2σ 2
i , and σg the transverse co-

herence length on the source plane. Since we are interested in
chaotic sources characterized by negligible transverse coher-
ence, we will also approximate the mutual coherence function
with a δ function,

exp
(−ρ2/2σ 2

g

) � 2πσ 2
g δ(2)(ρ), (8)

under the integrals. Considering a Gaussian with a finite
coherence area σg would slightly reduce the resolution of the
ghost image, as it would increase the transverse coherence
length on the object plane [48]. Such an increase, that scales
quadratically with σg, can be safely neglected in our setups.

To compute (2) and (5), it is necessary to determine up to
eight-point field correlators. Using the Gaussian approxima-
tion, we will assume that Isserlis-Wick’s theorem [55] is valid
for the correlators that involve an equal number of V ’s and
V ∗’s, namely,〈

n∏
j=1

VS (ρ j )V
∗

S (ρ′
j )

〉
=
∑

P

n∏
j=1

〈VS (ρ j )V
∗

S (Pρ′
j )〉, (9)

with P a permutation of the primed indexes, while all other ex-
pectation values, including 〈V 〉 and 〈V ∗〉, vanish. Propagation
from the source to the detectors along the two paths a and b is
deterministic and depends on the transmission functions of the
object and the lens. Concerning propagation in free space, a
monochromatic field with frequency ω and wave number k =
ω/c, evaluated on a plane at a general longitudinal position z,
is related to the field at z0 < z by the paraxial transfer function
[56]:

V (ρ; z) = −ik

2π (z − z0)

∫
d2ρ′V (ρ′; z0)eik[ (ρ−ρ′ )2

2(z−z0 ) +(z−z0 )]
. (10)

The correlators between fields VA(ρa) and VB(ρb) at the de-
tectors Da and Db that determine the refocused image �ref

and the fluctuation F thus inherit the factorization property
(9) from the fields on the source. In particular, since IA =
V ∗

A VA and IB = V ∗
B VB, the correlation of intensity fluctuations

between the two detectors, defined in Eq. (1), reads

�AB(ρa, ρb) = |〈VA(ρa)V ∗
B (ρb)〉|2. (11)

Computation of the fluctuation (5), based on the definition (3),
also involves the autocorrelations of intensity fluctuations at
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the same detector,

�DD(ρ1, ρ2) = 〈�ID(ρ1)�ID(ρ2)〉
= |〈VD(ρ1)V ∗

D (ρ2)〉|2, (12)

with D = A, B.
In both setups, F (ρa) is determined with good approxima-

tion by the contribution that features only the autocorrelations:

F0(ρa) :=
∫

d2ρb1d2ρb2�AA(αρa + βρb1, αρa + βρb2)

× �BB(ρb1, ρb2). (13)

Other contributions are typically suppressed as

|F − F0|
F0

∼ 1

Nb
, (14)

with Nb the number of transverse modes that propagate
towards the detector Db. Since this quantity determines the
number of spatial (in SETUP1) or directional (in SETUP2) reso-
lution cells, it is typically large in a plenoptic imaging setup.
Therefore, in the following we shall approximate F � F0

when computing the SNR and postpone the full computation
of the other contributions to F to the Appendix.

B. Analysis of SETUP1

Let us first consider SETUP1 (Fig. 1, upper panel). Let us
call A(ρ) the aperture function of the transmissive object and
neglect the finite pupil size of the lens by assuming that it
does not affect propagation along path b. Combining free
propagation (10) with transmission through the object and the
lens [56] and applying the statistical assumptions (7)–(9) on
the field correlations at the source, we obtain the correlation
between the fluctuations of the intensities IA(ρa) = |VA(ρa)|2
and IB(ρb) = |VB(ρb)|2, which reads

�AB(ρa, ρb) = |SAB|4KAB

×
∣∣∣∣
∫

d2ρoA(ρo)e−γa( ρa
α

−ρo)
2−iγbρb·ρo

∣∣∣∣
2

, (15)

with α = za/zb as in (4), and the coefficients

γa = k2S2
AB

2z2
b

,
1

S2
AB

= 1

σ 2
i

+ ik

(
1

za
− 1

zb

)
, γb = k

Mzb
,

(16)
while KAB = KAKB, with

KA = Is

(
kσg

za

)2

, KB = Is

(
k2σg

2πMz2
b

)2

. (17)

Since γa is a generally complex quantity, it will be useful
in the following to split it into its real and imaginary parts
as γa = γr + iγi. The result (15) shows that by varying ρb, a
collection of coherent images of the object is obtained on Da.

Combining Eq. (15) with the definitions (2)–(4), we deter-
mine the refocused image

�ref (ρa) = π

2δ2γr
|SAB|4KABI� (ρa), (18)

with

I� (ρa) =
∫

d2ρ1d2ρ2A∗(ρa − ρ1)A(ρa − ρ2)ei
γb (ρ2

1−ρ2
2 )

2δ

× exp

[
−
(

γr

2
+ (γb − 2δγi )2

8δ2γr

)
(ρ1 − ρ2)2

]
(19)

and δ = β/α = (1 − zb/za)/M. This quantity is regular in
the focused limit δ → 0, where the ρa-dependent part of the
integral takes the form

I� (ρa)
∣∣
zb=za

∼
∫

d2ρ|A(ρa − ρ)|2 exp

(
− ρ2

σ 2
A

)
, (20)

which is exactly the unit-magnification incoherent image ob-
tained in the case of lensless ghost imaging [40,49], whose
point-spread function is determined by the squared Fourier
transform of the source intensity profile. In the geometrical-
optics limit (k → ∞), the dominant contribution to the in-
tegral (19) comes from the stationary point of the real and
imaginary parts of the exponent, yielding

�
(g)
ref (ρa) = I2

s

πσ 4
g

σ 2
A

|A(ρa)|2, (21)

which also shows that �ref actually provides a refocused
image of the object, characterized by unit magnification.

Let us now evaluate the autocorrelations of the intensity
fluctuations,

�AA(ρa1, ρa2) = σ 4
i K2

A exp

(
− (ρa1 − ρa2)2

σ 2
A

)
, (22)

�BB(ρb1, ρb2) = σ 4
i K2

B

∣∣∣∣
∫

d2ρ1d2ρ2A∗(ρ1)A(ρ2)

× e
− (ρ1−ρ2 )2

2σ2
B

−iγb(ρb2·ρ2−ρb1·ρ1 )
∣∣∣∣
2

, (23)

where

σD = zd

kσi
, (24)

with D = A, B, is the transverse coherence length on the
planes at a distance zd = za, zb from the source. The correla-
tion functions (22) and (23) enable us to evaluate the dominant
contribution to the variance of the correlation of the intensity
fluctuations in Eq. (13), which reads

F0(ρa) = (2π )3

(
KAB

σ 2
Aσ 4

i

γbβ

)2

IF0 , (25)

with

IF0 =
∫ ⎛
⎝ 3∏

j=1

d2ρ j

⎞
⎠A(ρ1)A∗(ρ2)A(ρ3)A∗(ρ1 + ρ3 − ρ2)

× exp

(
− (ρ2 − ρ3)2

σ 2
B

− (ρ1 − ρ2)2

2σ 2
i (1 − za/zb)

)
. (26)

The most relevant (and interesting) feature of such a quantity
is its independence on the coordinate ρa on Da. Therefore,
the signal �ref (ρa) is noisy and superposed to a further back-
ground noise. Such constant background noise stems from the
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fact that the intensity profile of the light impinging on Da is,
in the case of SETUP1, not related to the spatial profile of the
signal �ref (ρa): actually, as one can easily check, the intensity
profile 〈IA〉 on Da is approximately uniform and carries no
information on the object transmission function |A(ρa)|2.

At this point, the SNR can be exactly evaluated as a
function of the number of collected frames by using the results
(18)–(25) in expression (6). A useful and intuitive estimate
is given by the geometrical-optics approximation of R(ρa),
which reads

R(g)(ρa) =
√

2πσBσi

∣∣∣∣1 − zb

za

∣∣∣∣|A(ρa)|2
√

Nf

J (g)
, (27)

with

J (g) =
∫

d2ρ1d2ρ2|A(ρ1)A(ρ2)|2e
− (ρ1−ρ2 )2

2σ2
i (1−za/zb )2 . (28)

Let us first discuss this result in the focused case in which
za = zb and σA = σB. The integrand of (28) becomes localized
around ρ1 = ρ2, and the value of the SNR reduces to

R(g)(ρa)
∣∣
zb=za

=
√

Nf
πσ 2

B∫
d2ρ|A(ρ)|4 |A(ρa)|2. (29)

The above expression highlights the dependence of the SNR
on the ratio between the coherence area ∼σ 2

B on the object and
an “effective area” of the object itself, given by the integral of
the |A|4 factor, which is equal to the actual area in the case of
binary transmission function. Since the same coherence area
determines the resolution through (20), this result entails the
well-known tradeoff between resolution and SNR typical of
ghost imaging [47–50].

Deep in the out-of-focus regime, when σi|1 − zb/za| be-
comes larger than the typical size of the object, the expo-
nential modulation under the integral (28) can be neglected,
yielding

R(g)(ρa) �
√

Nf

2
λzb

∣∣∣∣1 − zb

za

∣∣∣∣ |A(ρa)|2∫
d2ρ|A(ρ)|2 , (30)

with λ = 2π/k the light wavelength. This expression shows
a less trivial dependence on the longitudinal position zb of
the refocused plane but can still be interpreted in terms of
the resolution-SNR tradeoff. Actually, as discussed in [32,35],
a good estimate of the resolution of the refocused image
is given by �x = (λzb/a)|1 − zb/za|, where a is the typical
linear size of the smallest transmissive parts of the object.
Notice, however, that the inverse dependence on the effective
area of the object has changed with respect to the focused
case (29). As a rule of thumb, we can estimate the SNR of
refocused images as

R(g)(ρa)√
Nf

∼
√

a2

Aobj

√
(�x)2

Aobj
|A(ρa)|2, (31)

a result that depends on the product of the ratios (resolution
cell)/(total area) and (smallest detail area)/(total area). In
Fig. 2, we show the behavior of the SNR in SETUP1 as a
function of the source-to-object distance zb, comparing the
result with the case of a focused ghost image taken with
za = zb [Eq. (29)]. The higher SNR of correlation plenoptic

FIG. 2. Signal-to-noise ratio, normalized to the square root of
the number of frames, for the refocused image (18) obtained in
SETUP1 (solid blue line). The source is characterized by wavelength
λ = 532 nm and a Gaussian intensity profile of width σi = 2.5 mm
and is placed at a fixed distance za = 150 mm from detector Da. The
focused image, obtained at zb = za, is characterized by resolution
�x = 10 μm. The values are computed in correspondence of a to-
tally transmissive point (A = 1) of a binary object with transmissive
area Aobj = 4 mm2. The SNR for a ghost image taken at za = zb as a
function of zb (red dashed line) is shown for comparison.

imaging is related to the lower resolution of the refocused
image with respect to the focused ghost image.

C. Analysis of SETUP2

In the analysis of SETUP2, we shall consider a finite-size
pupil P(ρ) of the lens that determines the spatial resolution
and assume that the transverse size of the source is asymp-
totically large, namely, that the finite size of the source does
not affect in a relevant way the correlation of the intensity
fluctuations. In this way, the most relevant part of the mutual
correlation function reads

�AB(ρa, ρb) =
(

za(za + S1)

kS1

)2

KAB

×
∣∣∣∣
∫

d2ρoA(ρo)P̃β

(ρo

S1
+ ρa

S2

)
e

ik
S1

ρo·ρb

∣∣∣∣
2

,

(32)

where

P̃β (q) =
∫

d2ρ�P(ρ�) exp

(
ikβ

2S2
ρ2

� − ikq · ρ�

)
, (33)

which coincides with the Fourier transform of the pupil func-
tion, representing the coherent point-spread function (PSF)
of the focused image [obtained when S2 = S f

2 = (1/ f −
1/S1)−1 and β = 0], and KAB = KAKB, with

KA = Is

(
k3σg

(2π )2S1S2za

)2

, KB = Is

(
kσg

za + S1

)2

. (34)

The refocused image, defined by (α, β ) in Eq. (4) (second
formula), reads

�ref (ρa) =
(

2πza(za + S1)

k2

)2

KABI� (ρa), (35)
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with

I� (ρa) =
∫

d2ρ1d2ρ2d2ρoP∗(ρ1)P(ρ2)e− ikβ

2S2
(ρ2−ρ1 )2

× A∗(ρo)A

(
ρo + βS1

S2
(ρ2 − ρ1)

)
e

ik(
ρb

S f
2

+ ρo
S1

)(ρ2−ρ1 )
.

(36)

One can easily check that in the focused case β = 0, the
above expression reduces to the incoherent image of the
transmission function of the object, whose point-spread func-
tion is related to the usual square modulus of the Fourier
transform of the lens pupil function P. In the general case,
the plenoptic imaging property emerges when considering the
geometrical-optics limit in which the complicated expression
(35) simplifies to

�
(g)
ref (ρa) = I2

s

k2σ 4
g

S2
2

Alens

∣∣∣∣A
(

−ρa

μ

)∣∣∣∣
2

, (37)

where μ = S f
2 /S1 is the absolute magnification provided by

the lens, and Alens = ∫
d2ρ|P(ρ)|2 is the (effective) area of the

lens.
The autocorrelations, computed in the same regime of large

source width σi, read

�AA(ρa1, ρa2) =
(

2πKA
z2

a

k2

)2∣∣∣∣
∫

d2ρo|A(ρo)|2

× P̃β

(
ρo

S1
+ ρa2

S2

)
P̃∗

β

(
ρo

S1
+ ρa1

S2

)∣∣∣∣
2

, (38)

�BB(ρb1, ρb2) = πσ 2
i K2

B

(
za + S1

k

)2

δ(2)(ρb1 − ρb2). (39)

Notice that the autocorrelation on the detector Db diverges
with increasing σi; therefore, even if the finite size of the
source can become irrelevant for the average correlation of
intensity fluctuations, the variance of this quantity crucially
depends on it.

Also in this case, the dominant contribution to the variance
of S(α,β ) can be evaluated by considering the autocorrelations.
However, the computation of (13) must take into account the
finite size of the detector Db, since integrating without bounds
on ρb would yield a divergent result. Since the role of Db is to
detect the ghost image of the lens, which is characterized by
unit magnification, the optimal size of this detector is given
by the size of the lens. Following these considerations and
the result (38), valid in the limit of large source width σi, one
obtains

F0(ρa) = πσ 2
i K2

B

(
za + S1

k

)2

×
∫

Db

d2ρb�AA(αρa + βρb, αρa + βρb). (40)

In the focused case, the integral in (40) is trivially proportional
to �AA(ρa, ρa), which is ρa dependent, as opposed to the case
of SETUP1. In the general case, the analytic evaluation of (40)
can become impossible when considering the actual detector
area as the integration domain. However, one can perform
the computation by regularizing the integral with a Gaussian

envelope function exp(−πρ2
b/ADb ), where ADb is the area of

detector Db (or, better, the area of the part of the detector that
accommodates the image of the lens).

The geometrical-optics approximation of (40) reads

F (g)
0 (ρa) = ADb

4π

(
(2π )4 (za + S1)σiz2

aS2
2

k5
(
1 − S2/S f

2

)2

)2

J (g)(ρa), (41)

with

J (g)(ρa) =
⎡
⎣∫ d2ρo|A(ρo)|2

×
∣∣∣∣∣P
(

S2/S1

1 − S2/S f
2

(
ρo + ρa

μ

))∣∣∣∣∣
2
⎤
⎦

2

. (42)

The spatial behavior of the variance F0 is now much less
trivial than the constant behavior found in SETUP1. Actually,
in the focused limit S2 → S f

2 , the integrand of (42) becomes
infinitely localized around ρo = −ρa/μ, leading to J (g)(ρa) ∝
|A(−ρa/μ)|4. This means that, at least in the focused case,
noise is proportional to the signal. Such a feature is related to
the fact that, in this case, the field transmitted by the object is
focused on Da, and this is reflected in all the correlation func-
tions involving Da. This feature is absent in the focused case
of SETUP1 in which the field impinging on Da extends well
beyond the shape of the object and the image emerges only
from intensity correlation measurements. In the opposite limit
of large defocusing, instead, the spatial dependence of the lens
pupil function P under the integral (42) becomes irrelevant,
and the result J (g)(ρa) ∝ (

∫
d2ρ|A(ρ)|2)2 implies that the

measurement of �ref (ρa) comes with a uniform background
noise. However, as we shall presently find, such background
is more easily controllable than the one surrounding the ghost
image in SETUP1.

Based on the above considerations, the estimate of the
SNR based on Eq. (6) is less trivial than in SETUP1, since
the denominator depends on ρa and shows different spatial
behaviors with varying defocusing. The geometrical-optics
expression of the SNR reads

R(g)(ρa) = 2σB

√
Nf

π

ADbJ (g)(ρa)

(
1 − S2/S f

2

S2/S1

)2

×
∣∣∣∣A
(

−ρa

μ

)∣∣∣∣
2 ∫

d2ρ|P(ρ)|2. (43)

In the focused case, the above quantity reduces to the simple
expression

R(g)(ρa)
∣∣
S2=S f

2
= 2σB

√
Nf

π

ADb

, (44)

a result that does not depend on ρa, since noise is proportional
to the signal. The constant SNR in (44) is essentially the
square root of the ratio of the coherence area ∼σ 2

B on Db

and the area ADb of the same detector, which can also be
interpreted as (coherence area on the lens)/(area of the lens),
in perfect analogy with Eq. (29), after replacing the object
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FIG. 3. Signal-to-noise ratio, normalized to the square root of
the number of frames, for the refocused image (35) obtained in
SETUP2 (solid blue line). The source is characterized by a wavelength
λ = 532 nm and a Gaussian intensity profile of width σi = 2.5 mm,
and is placed at a fixed distance zb = za + S1 = 300 mm from the
detector Db. The lens has a focal length f = 75 mm and a Gaussian
pupil function of width σp = 2.5 mm. Fixing the value S2 = 2 f =
150 mm, the focused image, obtained at S1 = S2, is characterized
by the same resolution, depth of field, and magnification as in the
case shown in Fig. 2. The values are computed in correspondence
of a totally transmissive point (A = 1) of a binary object with
transmissive area Aobj = 4 mm2. The SNR for a ghost image taken
at S2 = S f

2 = (1/ f − 1/S1)−1 as a function of S1 (red dashed line) is
shown for comparison.

with the lens. The SNR thus coincides with the one expected
for the ghost image of the lens.

In the out-of-focus case, a background noise emerges and
the SNR becomes similar in form to (30), yielding

R(ρa)(g) � 2σB

√
Nf

π

ADb

(
1 − S2/S f

2

S2/S1

)2

×
∫

d2ρ|P(ρ)|2∫
d2ρ|A(ρ)|2 |P(0)|2

∣∣∣∣A
(

−ρa

μ

)∣∣∣∣
2

. (45)

The ratio between the area of the lens and the area of the object
is generally large for image magnification μ � 1, and the
SNR also increases quadratically with defocusing, providing a
generally more favorable picture compared to SETUP1. A good
rule to estimate the order of magnitude of the refocused image
SNR thus reads

R(g)(ρa)√
Nf

∼
(

S2/S1

1 − S2/S f
2

)2
√

σ 2
B

Alens

Alens

Aobj

∣∣∣∣A
(

−ρa

μ

)∣∣∣∣
2

, (46)

where we have assumed that the area of the detector is
matched to the area of the lens. In Fig. 3, we represent the
behavior of the SNR in SETUP2 as a function of the object-
to-lens distance S1 and compare the result with the case of a
focused image taken with S f

2 = S2 (notice that S f
2 is a function

of S1).

D. Summary of the results

We have discussed the properties of the signal-to-noise
ratio for SETUP1 and SETUP2, finding that the results obtained

for the latter are generally more advantageous than for the
former. In the focused case, SETUP2 is characterized by the
suppression of background noise that, on the other hand,
is a typical feature affecting the ghost image obtained in
SETUP1. Moreover, noise in SETUP1 increases with improving
resolution on the object, thus entailing a tradeoff between
resolution and SNR tradeoff. In the out-of-focus case, back-
ground noise is present in both configurations. However, in
SETUP1 it depends on small quantities, namely, the ratios
(�x)2/Aobj between the area of an effective resolution cell and
the total area of the object, and a2/Aobj, where the numerator
is the area corresponding to the size a of the finest details of
the object. In SETUP2, instead we find that the SNR depends
also on the ratio Alens/Aobj, a quantity that is not necessarily
small. Therefore, we expect that a smaller number of frames
is needed to achieve the same resolution in SETUP2 compared
to SETUP1.

To get a quantitative hint of the SNR improvement in
SETUP2, we compare the results shown in Figs. 2 and 3, which
are referred to two cases that are as homogeneous as possible
in terms of resolution, depth of field, and magnification of
the focused image. We find that the ratio between the SNR
in SETUP2 and SETUP1 at fixed Nf is consistently larger than
1: when such a ratio reaches values around 3.2, for an object
placed at zb = S1 = 80 mm, one-tenth of the frames is needed
in SETUP2 to reach the same SNR as in SETUP1. Notice that by
considering the expressions (30)–(45), the ratio of the SNRs
for out-of-focus images is very weakly dependent on the light
wavelength and the area of the object, provided the condi-
tions for the validity of geometrical-optics approximation are
satisfied.

IV. CONCLUSIONS AND OUTLOOK

Performing plenoptic imaging by correlation measure-
ments has the potential to improve 3D imaging and mi-
croscopy, since it combines high resolution with the possi-
bility to gain directional information. The results obtained in
this article provide the experimenter with rules to determine
the scaling of the SNR with the number of frames and
consequently, to fix the number of frames needed for a fast
and accurate imaging of the scene. The problem of optimizing
the acquisition time is particularly relevant, both in view of
real-time imaging and in all those cases in which additional
difficulties in retrieving intensity correlations are present, as
it happens when considering unconventional sources like x
rays [57,58] to perform CPI. In our future research, we plan to
extend our analysis to the case in which CPI is performed with
entangled photons [36], investigating whether the remarkable
results observed in other kinds of imaging schemes [59–61],
in which the shot-noise limit can be overcome, would yield
analogous improvements in a setup oriented to plenoptic
imaging. Moreover, we will investigate the possibility to
combine plenoptic imaging with super-resolution techniques
based on correlation imaging with frequency filtering [45,46].
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APPENDIX

We have identified and discussed the term F0, defined in
Eq. (13), as the most relevant term to determine the SNR
in both setups. Here we provide the computation of the
remaining terms characterizing the local fluctuations F (ρa):

�F (ρa) = F (ρa) − F0(ρa) =
7∑

j=1

F j (ρa), (A1)

which characterizes the variance at a point ρa in the
geometrical-optics approximation. In (A1), all but one term
are conjugate to each other, namely, F j (ρa) = F∗

3+ j (ρa), with
2 � j � 4. The independent contributions read

F1(ρa) =
∫

d2ρb1d2ρb2�AB(αρa + βρb1, ρb2)

× �AB(αρa + βρb2, ρb1), (A2)

F2(ρa) =
∫

d2ρb1
d2ρb2

WAB(αρa + βρb1
, ρb1

)

× WAB(αρa + βρb2
, ρb2

)

× W ∗
AB(αρa + βρb2

, ρb1
)

× W ∗
AB(αρa + βρb1

, ρb2
), (A3)

and

F3(4)(ρa) =
∫

d2ρb1d2ρb2WBB(ρb1, ρb2)

× WAA(αρa + βρb2, αρa + βρb1)

× WAB(αρa + βρb1(b2), ρb1)

× W ∗
AB(αρa + βρb2(b1), ρb2). (A4)

Notice that, in the focused case, both F1 and F2 exactly reduce
to the squared refocus image �2

ref , defined in Eq. (2).

1. Results for SETUP1

The term F1 reads

F1(ρa) =
(

π

2δ2γr

)2

|SAB|8K2
ABI1(ρa), (A5)

with

I1(ρa) =
∫

A1(ρa; {ρi})es1({ρi})
4∏

i=1

d2ρi, (A6)

where δ = (1 − zb/za)/M, SAB, KAB, and γr = Reγa are de-
fined in Eqs. (16) and (17), and

A1(ρa; {ρi}) = A∗(ρa − ρ1)A(ρa − ρ2)

× A∗(ρa − ρ3)A(ρa − ρ4), (A7)

s1({ρi}) = − γa
(
ρ2

2 + ρ2
4

)− γ ∗
a

(
ρ2

1 + ρ2
3

)
+ R2

1({ρi}) + R2
2({ρi})

8δ2γr
. (A8)

The functions R1 and R2 in (A8) are defined as follows:

R1({ρi}) = R(ρ1, ρ2, ρ3, ρ4) = iγb(ρ4 − ρ3)

− 2γaδρ2 − 2γ ∗
a δρ1, (A9)

R2({ρi}) = R(ρ3, ρ4, ρ2, ρ1). (A10)

In the geometrical-optics limit, the function F1 in (A5)
reduces to

F (g)
1 (ρa) = 4π6

γ 4
b γ 2

r

|SAB|8K2
AB|A(ρa)|4. (A11)

The term F2 reads

F2(ρb) =
(

π

2δ2γr

)2

|SAB|8K2
ABI2(ρa), (A12)

with

I2(ρa) =
∫

A1(ρa; {ρi})es2({ρi})
4∏

i=1

d2ρi, (A13)

and A1 is defined in Eq. (A7), while the argument of the
exponential reads

s2({ρi}) = − γa
(
ρ2

2 + ρ2
1

)− γ ∗
a

(
ρ2

4 + ρ2
3

)
+ R2

3({ρi}) + R2
4({ρi})

8δ2γr
, (A14)

with [see Eq. (A9)]

R3({ρi}) = R(ρ4, ρ1, ρ3, ρ1), (A15)

R4({ρi}) = R(ρ3, ρ2, ρ4, ρ2). (A16)

The geometrical-optics result is

F (g)
2 (ρa) = 4π6

γ 3
b γr (γbγr + 4iδ|γa|2)

|SAB|8K2
AB|A(ρa)|4.

(A17)
The terms F3 and F4 in Eq. (A4) are both complex and

very similar to each other. In this case,

F3(4)(ρb) = π2

q1q2
|SAB|4σ 4

i K2
ABI3(4)(ρa), (A18)

with

I3(4)(ρa) =
∫

A3(ρa; {ρi})es3(4) ({ρi})
4∏

i=1

d2ρi, (A19)

where

A3(ρa; {ρi}) = A∗(ρa − ρ1)A(ρa − ρ2)

× A(ρa − ρ3)A∗(ρa − ρ4) (A20)
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coincides, for an object characterized by a real transmission
function, with A1 defined in Eq. (A7), and

s3(4)({ρi}) = − γaρ
2
3 − γ ∗

a ρ2
4 − (ρ1 − ρ2)2

2σ 2
B

+ T3(4)({ρi})2

4q1

+ 1

4q2

[
U3(4)({ρi}) + β2

2q1σ
2
A

T3(4)({ρi})

]2

,

(A21)

with

T3(4)({ρi}) = − 2δγaρ3 + iγb(ρ3(2) − ρ1(4)), (A22)

U3(4)({ρi}) = − 2δγ ∗
a ρ4 − iγb(ρ4(1) − �ρ3). (A23)

The coefficients q1 and q2 appearing in Eq. (A21) are
defined as

q1 = β2

2σ 2
A

+ γaδ
2, q2 = q∗

1 − β4

4q1σ
4
A

. (A24)

In the geometrical-optics limit, F3 and F4 approach the same
value, namely,

F (g)
3 (ρa) = F (g)

4 (ρa) = |SAB|8K2
AB|A(ρa)|4

× 64iπ6σ 2
Aσ 2

B

(
2δ2γaσ

2
A + β2

)
γ 2

b

(
iβ4|γa|2 − 8δ2γaσ

4
Aγv − (2βσA)2γu

) ,
(A25)

where

γv = (2
∣∣γa|2δ − iγbγr

)
γb, γu = γv + 2iδ2γ 2

a γ ∗
a . (A26)

The obtained results are consistent with the order-of-
magnitude evaluation in Eq. (14).

2. Results for SETUP2

As in the main text, we will consider a lens with a finite
pupil function P(ρ) and an asymptotically large source. The
term F1, as defined in (A2), reads

F1(ρa) =
(

2πza(za + S1)

k2

)4

K2
ABI1(ρa), (A27)

with

I1(ρa) =
∫

d2ρo1d2ρo2

4∏
j=1

d2ρ jA1(ρo1, ρo2, {ρi})

× P1({ρi}) exp

{
ik

[
β

2S2

(
ρ2

2 − ρ2
1 + ρ2

4 − ρ2
3

)
+ ρo1

S1
(ρ1 − ρ2) + ρo2

S1
(ρ3 − ρ4)

+ ρa

S f
2

(ρ1 − ρ2 + ρ3 − ρ4)

− β

S2
(ρ2(ρ4 − ρ3) + ρ4(ρ2 − ρ1))

]}
, (A28)

with KAB = KAKB as defined in Eq. (34), β = 1 − S2/S f
2 , and

A1(ρo1, ρo2, {ρi}) = A∗(ρo1)A

(
ρo1 + S1β

S2
(ρ4 − ρ3)

)

× A∗(ρo2)A

(
ρo2 + S1β

S2
(ρ2 − ρ1)

)
,

(A29)

P1({ρi}) = P∗(ρ1)P(ρ2)P∗(ρ3)P(ρ4). (A30)

The stationary-phase approximation provides the result

F (g)
1 (ρa) =

[
S1S2KAB

β

(
4π2za(za + S1)

k3

)2
]2

×
∫

d2ρod2ρ�

∣∣∣∣A
(

−ρo − 2
ρa

μ

)∣∣∣∣
2

|A(ρo)|2

× |P(ρ�)|2
∣∣∣∣P
[
ρ� − S2

S1β

(
ρo + ρa

μ

)]∣∣∣∣
2

, (A31)

with μ = S f
2 /S1.

The result for F2 is

F2(ρa) =
(

2πza(za + S1)

k2

)4

K2
ABI2(ρa), (A32)

with

I2(ρa) =
∫

d2ρo1d2ρo2

4∏
j=1

d2ρ jA2(ρo1, ρo2, {ρi})

× P2({ρi}) exp

{
ik

[
β

2S2

(
ρ2

1 + ρ2
2 − ρ2

3 − ρ2
4

)
+ ρo2

S1
(ρ4 − ρ1) + ρo1

S1
(ρ3 − ρ2)

+ ρa

S f
2

(ρ3 + ρ4 − ρ2 − ρ1)

− β

S2
(ρ1(ρ3 − ρ1) + ρ2(ρ4 − ρ2))

]}
, (A33)

where

A2(ρo1, ρo2, {ρi})

= A∗(ρo1)A

(
ρo1 + S1β

S2
(ρ2 − ρ4)

)

× A∗(ρo2)A

(
ρo2 + S1β

S2
(ρ4 − ρ3)

)
, (A34)

P2({ρi}) = P(ρ1)P(ρ2)P∗(ρ3)P∗(ρ4). (A35)

The geometrical-optics approximation of (A32) reads

F (g)
2 (ρa) =

[
S1S2KAB

β

(
4π2za(za + S1)

k3

)2
]2

×
∣∣∣∣A
(

−ρa

μ

)∣∣∣∣
2∫

d2ρod2ρ�e
−i kS2

S2
1β

(ρo+ ρa
μ

)2

|A(ρo)2

× |P(ρ�)|2
∣∣∣∣P
[
ρ� − S2

S1β

(
ρo + ρa

μ

)]∣∣∣∣
2

. (A36)
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Let us finally compute the remaining independent
terms F3 and F4. Since after the assumption of asymp-
totically large source, WBB(ρb1, ρb2) ∝ δ(ρb1 − ρb2), the
two terms are incidentally equal to each other and
read

F3(ρa) = F4(ρa) =
(

2πza(za + S1)

k2

)4

K2
ABI3(ρa), (A37)

with

I3(ρa) =
∫

d2ρo1d2ρo2

4∏
j=1

d2ρ jA3(ρo1, ρo2, {ρi})

× P1({ρi}) exp

{
ik

[
β

2S2

(
ρ2

2 − ρ2
1 + ρ2

4 − ρ2
3

)
+ ρo1

S1
(ρ1 − ρ2) + ρo2

S1
(ρ3 − ρ4)

+ ρa

S f
2

(ρ3 − ρ4 − ρ2 + ρ1)

− β

S2
(ρ2(ρ3 − ρ4 − ρ2 − ρ1))

]}
, (A38)

with P1 defined in Eq. (A30) and

A3(ρo1, ρo2, {ρ j}) = A∗(ρo1)|A(ρo2)|2

× A

(
ρo1 − βS1

S2
(ρ3 − ρ4 − ρ2 + ρ1)

)
,

(A39)

the geometrical-optics limit yields

F (g)
3 (ρa) =

[
S1S2KAB

β

(
4π2za(za + S1)

k3

)2
]2

×
∣∣∣∣A
(

−ρa

μ

)∣∣∣∣
2 ∫

d2ρod2ρ�|A(ρo)|2|P(ρ�)|2

×
∣∣∣∣P
[
ρ� − S2

S1β

(
ρo + ρa

μ

)]∣∣∣∣
2

. (A40)

Also in this case, we find that the terms of F satisfy the
scaling in Eq. (14).
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