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Dueling dynamical backaction in a cryogenic optomechanical cavity
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Dynamical backaction has proven to be a versatile tool in cavity optomechanics, allowing for precise
manipulation of a mechanical resonator’s motion using confined optical photons. In this work, we present
measurements of a silicon whispering-gallery-mode optomechanical cavity where backaction originates from
opposing radiation-pressure and photothermal forces, with the former dictating the optomechanical spring effect
and the latter governing the optomechanical damping. At high enough optical input powers, we show that the
photothermal force drives the mechanical resonator into self-oscillations for a pump beam detuned to the low-
frequency side of the optical resonance, contrary to what one would expect for a radiation-pressure-dominated
optomechanical device. Using a fully nonlinear model, we fit the hysteretic response of the optomechanical
cavity to extract its properties, demonstrating that this non-sideband-resolved device exists in a regime where
photothermal damping could be used to cool its motion to the quantum ground state.
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I. INTRODUCTION

Over the past several years, the field of cavity optomechan-
ics, which studies the interplay between the photonic modes of
an optical cavity and the phononic modes of a mechanical res-
onator, has proven itself to be a tremendous resource. Along
with numerous applications in precision metrology [1–4] and
quantum information [5–7], optomechanical systems have
also demonstrated potential in providing an experimental
testbed to help answer a number of fundamental questions in
quantum mechanics [8–11] and gravity [12–15]. One of the
most powerful phenomena demonstrated by optomechanical
systems, however, has been their ability to use photons con-
fined within an optical cavity to manipulate the motion of a
mechanical resonator via the radiation-pressure force. Using
the delayed nature of this interaction, which arises due to the
finite lifetime of the photons within in the cavity, the optical
field is able to modify the properties of the mechanical res-
onator, resulting in dynamical backaction between the optical
and mechanical modes of the system [16].

By detuning an optical pump to the lower-frequency (red)
side of the optical cavity, energy can be extracted from the
mechanical resonator via resonantly enhanced anti-Stokes
scattering processes that preferentially promote detuned pho-
tons into the higher energy states of the optical cavity. The
opposite process (Stokes scattering) will then occur for a
pump detuned to the higher frequency (blue) side of the
cavity, such that the photons instead provide energy to the
mechanical element, thus amplifying its motion. Accompa-
nying each of these dynamical backaction processes is an
increase in the mechanical damping rate, or cooling of the
resonator’s motion, for a red-detuned optical pump, while
for a blue-detuned pump, the damping rate decreases. This
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process, known as optomechanical damping, is mirrored by
the optomechanical spring effect, which in the non-sideband-
resolved regime results in a decrease (increase) in the reso-
nance frequency of the mechanical oscillator for a red (blue)
detuned pump, such that these two dynamical backaction
effects obey the Kramers-Kronig relations [17]. Employing
these radiation-pressure-driven effects, a number of ground-
breaking experiments have been performed using optome-
chanical cavities, including motional ground state cooling
of micro/nanomechanical resonators [18,19], entanglement of
photonic and phononic modes [20–22], and preparation of
other nonclassical states of mechanical motion [6,23,24].

Though efforts have largely focused on this radiation-
pressure-driven interaction, optomechanical coupling can be
mediated by other means, such as the photothermal (or
bolometric) force, whereby photon absorption in the me-
chanical element introduces a temperature gradient across
the device, causing it to deflect due to differential ther-
mal contractions [25–29]. Photothermal effects have histor-
ically been studied in optical cavities composed of metal-
coated cantilevers [30–37], but have also been observed
in buckled microcavities [38,39], multilayered Bragg-mirror
beams [40,41], membranes [42–44], thin metallic mir-
rors [45], nanowires [38,46,47], split-ring resonators [48],
and superfluid helium [49–51]. As in the case of radiation-
pressure-driven optomechanics, photothermal forces can also
be used to manipulate the motion of mechanical resonators.
In fact, in a somewhat paradoxical sense, photothermal cou-
pling can be used to cool a resonator’s motion to occu-
pancies of less than a single phonon on average [25–29].
Furthermore, photothermal dynamical backaction is pecu-
liar in that it is able to invert the detuning dependence of
the optomechanical damping (and spring effect) with re-
spect to that found in conventional radiation-pressure-driven
systems, where such a reversal is only possible for cav-
ities that are externally driven to large mechanical am-
plitudes in the sideband-resolved regime [52–55]. In the
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non-sideband-resolved regime, however, this inversion effect
results in amplification of the resonator’s motion (accompa-
nied by an increase in the mechanical resonance frequency)
for red-detuned pumps, while cooling (along with a decrease
in the mechanical resonance frequency) occurs for blue-
detuned pumps [32–35,39,41,42], seemingly violating the
conservation of energy. While there have been brief mentions
of a radiation-pressure-dominated spring effect observed in
photothermally driven optomechanical devices [32,33,35,41],
to date there has not been a thorough experimental investi-
gation of how the photothermal and radiation-pressure forces
interact with each other. Therefore, a comprehensive study
of this interaction is warranted, especially in the case of
cryogenic silicon optomechanical cavities, as these devices
are integral to a number of quantum optomechanical exper-
iments [6,21,56–58].

In this article, we present and quantitatively analyze mea-
surements of a silicon whispering-gallery-mode optomechan-
ical cavity that exists in a parameter regime where both
radiation-pressure and photothermal effects are relevant. We
begin by providing a brief theoretical overview for a nonlinear
optomechanical system that is subject to both of these forces.
Applying this theory to the studied device, we find that radi-
ation pressure dominates the optical spring effect, while pho-
tothermal interactions govern the system’s optomechanical
damping. Moreover, this photothermal force acts to oppose its
radiation-pressure counterpart, such that the optomechanical
damping has the opposite detuning-dependence from what
one would expect for a conventional radiation-pressure-driven
system, resulting in an oddly similar detuning-dependence
between the optomechanical damping and spring effect. With
this photothermal enhancement to the optomechanical damp-
ing, we find that for high enough optical input powers we are
able to drive the mechanical resonator into self-oscillations us-
ing a red-detuned pump. We show that in this self-oscillating
regime, the transmission through the optical cavity, as well as
the optomechanical damping and spring effect, become highly
nonlinear, while demonstrating hysteretic behavior depending
on the sweep direction of the optical drive. Using our fully
nonlinear model, we fit these data, extracting the optome-
chanical properties of the system. From these experimentally
determined parameters, we assess the device’s ability to cool
the motion of the resonator using the photothermal effect for
a blue-detuned optical pump. In doing so, we find that the
mechanical occupancy can, in principle, be reduced to less
than a single phonon on average, despite the fact that the
optomechanical cavity resides deeply in the non-sideband-
resolved regime.

II. THEORETICAL MODEL

To describe the behavior of the device studied in this
work, we consider an optomechanical system composed of
an optical cavity, with resonant frequency ωc and total loss
rate κ , coupled to a mechanical resonator, with a resonant
frequency ωm and intrinsic damping rate �m. We assume
that a dispersive coupling exists between these two systems
due to the fact that the displacement x of the mechanical
oscillator shifts the resonance frequency of the optical cavity
by an amount Gx, where G = −dωc/dx is the dispersive

optomechanical coupling coefficient. For such a system, the
coupled classical equations of motion will be given by [16,49]

ȧ = −κ

2
a + i�0a + iGxa + √

κeāin, (1)

ẍ + �m ẋ + ω2
mx = 1

m
[Fth + Frp + Fpt]. (2)

Equation (1) describes the time evolution of the optical cav-
ity’s field amplitude a, which is driven by an input field āin.
This drive field, whose strength is related to the input power
Pin of the optical signal via the relation |āin|2 = Pin/h̄ωd [16],
is coupled into the cavity at a rate κe, with its frequency ωd

detuned from cavity resonance by an amount �0 = ωd − ωc.
With this definition of detuning, negative (positive) values
indicate a red-detuned (blue-detuned) cavity drive. Mean-
while, Eq. (2) governs the dynamics of the mechanical res-
onator’s displacement, which is simultaneously driven by an
intrinsic thermal force Fth, a radiation-pressure force Frp =
h̄G|a|2 [16,49], and a photothermal force [25–29]

Fpt (t ) = h̄Gβ

τ

∫ t

−∞
e− t−t ′

τ |a(t ′)|2dt ′. (3)

Here the dimensionless parameter β sets the relative strength
of the photothermal force with respect to the radiation-
pressure force and is heavily dependent on the optical and me-
chanical modeshapes being considered [35,49], as well as the
thermal properties of the resonator [28,29]. We further note
that β can be negative, such that the photothermal force acts to
directly oppose radiation-pressure effects [32–35,39,41,42],
which has very important consequences for the detuning-
dependence of the optomechanical damping and spring ef-
fects. Also included in Eq. (3) is the thermal relaxation time τ ,
which sets the timescale of the photothermal force and, similar
to β, is determined by the thermal properties and geometry of
the device (see Appendix E). Finally, while we have chosen to
explicitly identify Eq. (3) as being photothermal in nature, the
following analysis is valid for any optomechanical force that
has a delayed response with respect to the occupation of the
optical cavity.

To solve Eqs. (1) and (2), we begin by assuming that for a
high-Q mechanical resonator (Qm = ωm/�m � 1) driven to a
large amplitude of motion, the mechanical displacement will
be well-described by the ansatz x(t ) = x̄ + A cos(ωmt ), where
x̄ and A are the resonator’s static shift in displacement and am-
plitude of oscillation, respectively [16,52,53]. Inputting this
ansatz into Eq. (1), we find

a(t ) = √
κeāineiφ(t )

∞∑
k=−∞

αkeikωmt , (4)

with φ(t ) = ξ sin(ωmt ) being the time-dependent global
phase of the optical field and

αk = Jk (−ξ )

κ/2 − i(�0 + Gx̄ − kωm )
, (5)

where Jk (z) is the kth Bessel function of the first
kind and ξ = GA/ωm is the dimensionless mechanical
modulation strength [16,52–54,59]. Using these solutions
for x(t ) and a(t ), the mechanical-amplitude-dependent
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optomechanical spring effect δωm and damping δ�m are found
to be (see Appendix B)

δωm = − h̄Gκe|āin|2
Amωm

∞∑
k=−∞

Re

{
αkα

∗
k+1

(
1 + β

1 − iωmτ

)}
,

(6)

δ�m = 2h̄Gκe|āin|2
Amωm

∞∑
k=−∞

Im

{
αkα

∗
k+1

(
1 + β

1 − iωmτ

)}
,

(7)

from which we can find the total mechanical damping rate as
�tot = �m + δ�m. Finally, using Eq. (4), along with the input-
output relation āout = āin − √

κea, we can also determine the
transmission through the optical cavity as [16,59]

T = |āout|2
|āin|2 = 1 − 2κeRe

{ ∞∑
k=−∞

J−k (ξ )αk

}
+ κ2

e

∞∑
k=−∞

|αk|2.

(8)

We note that by taking the small mechanical amplitude limit
(i.e., ξ � 1) for each of the quantities in Eqs. (6), (7), and (8),
their standard linearized expressions can be obtained (see
Appendix B).

The two expressions in Eqs. (6) and (7) resemble what one
would expect for a radiation-pressure-driven optomechanical
system that has been driven to large mechanical amplitude,
with the addition of the β/(1 − iωmτ ) term to account for
the photothermal interaction [52]. Photothermal forces will
therefore govern these dynamical backaction effects when this
additional term overwhelms its radiation-pressure counterpart
(see Appendix B). For a non-sideband-resolved optomechan-
ical cavity, this occurs for the spring effect when

1 + ω2
mτ 2 � |β|, (9)

and for the optomechanical damping when

1 + ω2
mτ 2 � |β|κτ

2
. (10)

Note the difference of κτ/2 between Eqs. (9) and (10), as this
factor quantifies the ratio of the photothermal time constant τ

to the cavity photon lifetime τc = 1/κ (i.e., the relevant time
scales associated with each optical force) and is significant
in determining which force dominates the optomechanical
damping [33,41]. This is especially true for non-sideband-
resolved optomechanical cavities, where κτ tends to be large
and photothermal damping effects are generally stronger than
those found in sideband-resolved systems [25,26,28,29].

In Fig. 1, we investigate three different optomechanical
regimes according to Eqs. (9) and (10). Interestingly, we find
that there exists a parameter space where |β| < 1 + ω2

mτ 2,
such that the spring effect is dominated by the radiation-
pressure interaction, but κτ is large enough that Eq. (10)
is satisfied and optomechanical damping is governed by the
photothermal force. This parameter space is particularly in-
teresting in the case where β is negative, resulting in the
bizarre effect of a qualitatively similar detuning dependence
between the optomechanical damping and spring effect, as

Normalized Drive Detuning,
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FIG. 1. Plots of the optomechanical (a)–(c) spring effect and
(d)–(f) damping, normalized to their respective maximum values,
δωmax

m and δ�max
m . Here we consider the small mechanical ampli-

tude regime with both radiation-pressure and photothermal effects
included [i.e., Eqs. (6) and (7) in the limit ξ � 1—see Appendix B],
where we have taken (a, d) β = −0.1, ωmτ = 0.01, (b, e) β = −10,
ωmτ = 0.01, and (c, f) β = −0.1, ωmτ = 1; with κ/ωm = 100 in all
plots. Therefore, according to Eqs. (9) and (10), in (a, d) radiation
pressure dominates both the spring effect and damping, while in
(b, e) dynamical backaction is driven by photothermal forces. Finally,
in (c, f) we enter into the dueling regime studied in this work, where
the spring effect is dominated by the radiation-pressure force, while
the optomechanical damping is governed by photothermal effects.

seen in Figs. 1(c) and 1(f). It is this regime, which we refer
to as the “dueling regime,” that we investigate experimentally
in the remainder of the paper.

III. EXPERIMENT

The optomechanical device studied in this work is com-
posed of a “clawlike” mechanical resonator that surrounds
one quarter of the circumference of a 10-μm-diameter mi-
crodisk (see Fig. 2). Both elements are fabricated from the
250-nm-thick single-crystal silicon device layer of a standard

1

-1
1

0

(a) (b)(b)

FIG. 2. (a) A scanning electron microscope image of the device
studied in this work. Scale bar is 3 μm (see Appendix A for de-
tailed device dimensions). (b) Finite element method simulations
of the normalized electric field magnitude for the first-order radial
whispering-gallery mode of the disk with azimuthal mode number
M = 49. Colors indicate the direction of the in-plane electric field,
with blue/negative (red/positive) corresponding to an inward (out-
ward) facing field with respect to the center of the disk. Also included
is a finite element method simulation of the in-plane flexural crab
mode of the mechanical resonator with the normalized displacement
expressed in rainbow scale. Both mechanical and optical simulations
are for the device in (a).
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silicon-on-insulator chip (fabrication details can be found
elsewhere [4]). The microdisk supports whispering-gallery-
mode resonances in the telecom band, while the mechanical
element exhibits a number of MHz-frequency flexural and
torsional modes [see Fig. 2(b), for example]. For this device
geometry, dispersive coupling arises between the optical and
mechanical modes of the system due to the fact that the
resonator’s motion through the evanescent field surround-
ing the microdisk acts to modulate its effective index, and
therefore, its optical resonance frequencies. In this work,
we focus on the in-plane flexural “crab” mode of the me-
chanical resonator [see Fig. 2(b)] with a measured resonant
frequency of ωm/2π = 11.2 MHz, as this mode traverses
the steepest gradient of the optical field profile, resulting
in a large dispersive optomechanical coupling quantified by
G/2π = 0.817 GHz/nm. Using the measured dimensions of
the mechanical resonator (see Appendix A), along with its
simulated modeshape, we find the effective motional mass of
this mode to be m = 183 fg [60], allowing us to determine
its zero-point fluctuation amplitude as xzpf = √

h̄/2mωm =
64 fm.

All measurements are performed inside a cryostat using
a custom-built cryogenic optomechanical coupling appara-
tus [61], with exchange gas added to the vacuum can to pro-
mote thermalization of the device to the helium bath temper-
ature of 4.2 K. Using this setup, laser light is directly injected
into, and collected from, the optical cavity via a cryogenic
dimpled-tapered fiber [62–64]. The transmission through the
optical cavity is then monitored by directly observing the
laser fluence through the fiber using a photodetector, while
fluctuations in the optical signal are either transduced directly
using this photodetector, or by switching out to a homodyne
detection system (see Appendix A for details). This setup
allows the advantage of being able to measure the mechanical
signal using both direct and homodyne detection, as these two
schemes are complimentary in a sense that one’s response will
be maximized for detunings at which the other is minimized,
providing optimal signal-to-noise in the transduced signal
over the entire sweep of the optical resonance.

IV. RESULTS

In Fig. 3, we show measurements of the studied optome-
chanical system from two separate optical resonances
with center wavelengths located at 1582 nm [Fig. 3(a)]
and 1608 nm [Fig. 3(b)]. Here the optical resonance at
1582 nm exhibits the behavior one would expect for a stan-
dard radiation-pressure-driven optomechanical system [see
Figs. 1(a) and 1(d)], where we observe optomechanical damp-
ing on the red side of the optical cavity and amplification on
the blue side, with the mechanical spring effect exhibiting the
opposite detuning dependence. However, this is not the case
for the optical resonance at 1608 nm. Instead, the optome-
chanical damping behaves quite differently, with amplification
on the red side of the optical cavity and damping on the
blue side. Furthermore, the spring effect seems to qualitatively
follow the same detuning dependence as the optomechanical
damping, such that these two dynamical backaction effects
appear to violate the Kramers-Kronig relations [17]. We note
that this reversal in the detuning dependence of the optome-

FIG. 3. Mechanical spectra (normalized to their maximum val-
ues) versus detuning for the 11.2 MHz crab mode depicted in
Fig. 2(b) transduced using optical resonances at (a) λc = 1582 nm
and (b) λc = 1608 nm, with the mechanical frequency on the left
axis. Overlaid in white is the transmission through the cavity (right
axis) for each optical mode. Note that while in (a) mechanical
damping (amplification) occurs on the red (blue) side of the optical
resonance, this effect is reversed in (b). Also included are (c, d) the
optomechanical spring effect δωm and (e, f) the total mechanical
damping rate �tot = �m + δ�m, with (c) and (e) corresponding to the
mechanical data in (a), while (d) and (f) are extracted from the data in
(b). We attribute the lack of spring effect on the red side of the optical
resonance in (d) to an optical-heating-induced mechanical frequency
shift that offsets dynamical backaction effects [42]. Measurements
are taken at input optical powers to the cavity of (a, c, e) Pin =
10.9 μW and (b, d, f) Pin = 1.9 μW, chosen such that self-oscillation
of the mechanical motion has just begun to onset for each optical
mode.

chanical damping is observed at optical input powers down
to 50 nW (see Appendix D), indicating that this seemingly
anomalous effect does not onset at a given power threshold.
We attribute this behavior to an additional photothermal force
that is present for the 1608 nm optical mode, with β and τ sat-
isfying β < 0 and Eq. (10), but not Eq. (9), such that this force
acts to overwhelm the device’s radiation-pressure-driven op-
tomechanical damping, but not its spring effect. We postulate
that photothermal effects arise in this optomechanical device
for optical modes that heat the inner surface of the mechanical
resonator (facing the disk) via optical absorption. This process
in turn generates a thermal gradient across the width of the
curved portion of the resonator, inducing thermoelastic forces
that cause it to curl [42,43], thus actuating the crab mode.
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The inverted detuning dependence associated with this
effect becomes more pronounced at higher optical input pow-
ers, where we further find that the observed photothermal
amplification is strong enough to reduce the total mechanical
damping to zero, inducing a parametric instability in the
system [52,53]. This causes the device to self-oscillate for
a near-resonant red-detuned optical pump, driving the me-
chanical resonator’s motion to amplitudes as large as Amax =
5.2 nm [= 382 ωm/G—see Fig. 4(e)], nearly three orders
of magnitude greater than its thermally driven amplitude of
Ath = √

2kBT/mω2
m = 11.3 pm at T = 4.2 K. Accompanying

this increase in mechanical amplitude, we also observe highly
nonlinear behavior in each of the spring effect, optomechani-
cal damping, and transmission through the optical cavity (see
Fig. 4), as well as a hysteresis in each of these quantities
with respect to the sweep direction of the optical drive. We
note that while the optomechanical interaction causing the de-
vice to enter into self-oscillation is nonlinear, the mechanical
motion itself still remains within the linear regime, avoiding
complications such as Duffing nonlinearities [65].

This peculiar behavior can be understood by examining
the combined photothermal and radiation-pressure attractor
diagram of the system [34,52–55], which is generated by
evaluating Eq. (7) at various mechanical amplitudes A and
optical drive detunings � = �0 + Gx̄ [see Fig. 4(e)]. Note
that with this definition of �, we include the shift in the cavity
resonance due to the static, optomechanically induced dis-
placement of the mechanical resonator. In principle, this static
shift can act to displace the detuning dependence of the attrac-
tor diagram [34,52]; however, for the device considered here
this shift is negligible, such that � ≈ �0 (see Appendix B).
The physical values of the mechanical amplitude are found
to traverse the contours of the attractor diagram that obey the
condition �tot = 0 ⇒ δ�m = −�m [see white dashed line in
Fig. 4(e)], corresponding to an increase in mechanical ampli-
tude to dissipate the optical power input to the system [52,53].
As can be seen in Fig. 4(e), for the non-sideband-resolved
system considered here, there are two possible mechanical
amplitude solutions for optical drive detunings ranging from
� ≈ −2.5 to −4.0 GHz. This leads to dynamical bistability,
and therefore, a hysteresis in the mechanical amplitude, as
well as the optomechanical properties of the system [34].
We point out that at the given optical input power, these
nonlinear effects, which are photothermal in origin, would not
be present for this system if only the radiation-pressure force
were considered (see Appendix C).

Fixing the mechanical resonance frequency and damping
rate to their low power values of ωm/2π = 11.2 MHz and
�m/2π = 374 Hz, while using τ = 9.5 ns determined from
finite element method simulations (see Appendix E), we fit
the data in Fig. 4 by varying G, β, κ , and κe. We note that
while driven to self-oscillation, the mechanical frequency
locks to a position slightly larger than its off-resonant value
[see Fig. 4(c)], which we attribute to a small thermal shift in
the mechanical resonance due to optically induced heating of
the resonator [42], leading to an additional inconsequential
fit parameter. To perform this fitting procedure, we first
determine the mechanical amplitude of the resonator as a
function of optical drive detuning according to an attractor
diagram similar to that in Fig. 4(e) for each iteration of trial
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FIG. 4. At an input power of Pin = 10.1 μW, we find that
the photothermal force drives the mechanical resonator into self-
oscillation, causing an increase in its amplitude of motion. This
results in a highly nonlinear response for (a) the transmission through
the optical cavity and (b) the signal-to-noise ratio (SNR) of the ho-
modyne mechanical spectra, as well as the optomechanical (c) spring
effect and (d) damping, over the detuning range from � ∼ 0 to
−4 GHz. In each of these plots, red (blue) data points correspond to
an optical drive that was swept starting from the red (blue) side of the
optical cavity, i.e., from negative to positive (positive to negative) de-
tunings, as indicated by the arrows in (a) and (e). The data in (c) and
(d) are extracted from mechanical spectra obtained using both direct
(squares) and homodyne (circles) detection of the high-frequency
portion of the optical signal at each drive detuning, while the signal-
to-noise ratio in (b) is determined by dividing the maximum value of
the homodyne spectra by its off-resonant imprecision noise floor. The
data for each detuning takes approximately 5 s to acquire, such that
the sweep over the entire ∼160 detunings occurs on the timescale of
∼800 s. The dashed green (solid black) lines in (a), (c), and (d) are
fits to the red (blue) data using Eqs. (8), (6), and (7), respectively,
allowing for extraction of the optomechanical parameters quoted
in the main text. In (e), we display the attractor diagram for this
system, which is produced by using Eq. (7) to calculate δ�m(A) for
a number of mechanical amplitudes and optical drive detunings. The
white dashed line indicates the condition of δ�m(A)/�m = −1 (i.e.,
�tot = 0), such that the red (blue) solid line traces out the physical
values of the mechanical amplitude for a detuning sweep originating
on the red (blue) side of the optical cavity.

parameters. These amplitude are then fed into Eqs. (6), (7),
and (8), the results of which are compared to the data in
Figs. 4(c), 4(d), and 4(a), respectively. This process is repeated
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simulation for red and blue detuning sweeps (sweep direction indicated by the white arrow), with each detuning scaled to the cavity’s resonance
frequency at the lowest measured power of Pin = 1.9 μW. Fixing κ/2π = 1.59 GHz and κe/2π = 0.29 GHz, we fit the data in (a, c) to Eq. (8),
allowing us to determine β and ωc versus input optical power to the cavity. In (e), we display these values for β (green circles), which are fit
to Eq. (11) (orange line) resulting in β0 = −0.399, B = 0.063, and P∗ = 0.68 μW. The simulations in (b, d) are calculated by inputting the
values of β from this fit, along with ωc extracted from the fits to (a, c) and the aforementioned fixed values of κ and κe, into Eq. (8). Finally,
(f) displays the optical cavity resonance frequency shift �ωc (relative to its value at the lowest optical power), with the red/blue data points
corresponding to fits of the detuning sweeps originating from the red/blue side of the cavity found in (a, c), both of which indicate a blue shift
in the cavity resonance with increasing optical power.

until the minimization condition of the fitting algorithm is
met (see Appendix B for more details). Using this procedure,
we extract the optomechanical coupling parameters
G/2π = 0.817 GHz/nm (g0/2π = Gxzpf/2π = 52.2 kHz)
and β = −0.316, as well as a total optical loss rate of
κ/2π = 2.04 GHz and an external coupling rate of κe/2π =
0.38 GHz, for the studied device. This results in a single
photon cooperativity of C0 = 4g2

0/κ�m = 1.4×10−2 and a
maximal cavity-enhanced cooperativity of C = N̄maxC0 = 68,
where N̄max = 4κePin/h̄ωcκ

2 = 4.7×103 is the average
number of photons circulating within the cavity for a
resonant pump with an input power of Pin = 10.1 μW.
Furthermore, using these extracted parameters, along with
ωmτ = 0.67, we find 1 + ω2

mτ 2 = 1.45 and |β|κτ = 38.
This ensures that Eq. (10) is satisfied, while Eq. (9) is
not, confirming that we are indeed in the dueling regime
associated with a radiation-pressure-dominated spring effect,
but a photothermally driven optomechanical damping.

We continue to observe nonlinear effects in the optical
transmission through the cavity for input powers up to
∼140 μW (see data in Fig. 5). These measurements are
performed under coupling conditions that differ slightly from
those used to collect the data in Fig. 4, causing a shift in
the loss rates of the optical cavity to κ/2π = 1.59 GHz and

κe/2π = 0.29 GHz. Fixing these values for κ and κe, while
assuming that the thermal relaxation time remains constant in
power/temperature (which should be the case up to roughly
100 K—see Appendix E), we fit the optical scans in Figs. 5(a)
and 5(c) to Eq. (8), extracting β and ωc versus optical power
input to the cavity [see Figs. 5(e) and 5(f)]. Upon inspection
of Fig. 5(e), we find that β exhibits a logarithmic dependence
on input power, which can be fit with the phenomenological
equation

β(P) = β0 + B ln

(
1 + P

P∗

)
, (11)

where β0 = −0.399 is the value of β at zero input power,
while B = 0.063 and P∗ = 0.68μW are scaling parameters.
Rearranging Eq. (11), we can also determine the power at
which β = 0 as P0 = P∗(e−β0/B − 1) = 384μW. Inputting
β from this fit, along with the extracted values of ωc versus
power, into Eq. (8), we show that we are able to reproduce the
power-dependent behavior of the optical transmission data, as
can be seen in Figs. 5(b) and 5(d).

The observed power dependence in β and ωc is likely due
to the fact that increasing the power input to the optome-
chanical cavity causes the system to heat up, changing its
thermal and optical properties. Because of the complicated
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nature of this optically induced heating, it is difficult to
quantitatively ascertain the temperature of the device in this
regime; however, we find the qualitative trend that β decreases
in magnitude as we move to higher power/temperature. We
postulate that this decrease in the magnitude of β with in-
creasing temperature has prevented previous studies of the
dueling radiation-pressure and photothermal effects discussed
in this paper, as the majority of optomechanical experiments
on nanophotonic silicon devices have been performed at room
temperature. Furthermore, in Fig. 5(f) it can be seen that ωc

increases with power/temperature. This observation is consis-
tent with the negative thermal expansion coefficient of silicon
between approximately 17 to 120 K [66], as an increase in
temperature reduces the diameter of the microdisk cavity, re-
sulting in a blue-shift of its optical resonant frequency [67,68].

We conclude this section by noting that β = −0.232 at
Pin = 10.2 μW for the data in Fig. 5, which is consider-
ably smaller in magnitude than the value of β = −0.316
extracted from Fig. 4, where Pin = 10.1 μW. We attribute
this disparity to the discrepancy in optical linewidths between
the two measurements, which causes the power absorbed by
the mechanical resonator, and therefore its temperature, to be
larger for the data in Fig. 5, resulting in a decrease in the
magnitude of β (for a more indepth discussion of this effect
see Appendix B).

V. OPTOMECHANICAL COOLING

Up to this point, we have largely focused on the pho-
tothermally driven amplification of mechanical motion that
occurs for a pump beam detuned to the red side of the optical
resonance. However, the photothermal effect can also be used
to perform considerable cooling of the mechanical mode on
the opposite (blue) side of the resonance [32,33,35,41–43].
For instance, in Fig. 4(d) we find that the photothermal force
increases the total damping rate of the mechanical resonator
to as high as �tot/2π = 2.5 kHz at � = 2π×0.97 GHz
(= 0.48 κ), resulting in a factor of 6.7 increase from
its intrinsic value of �m/2π = 374 Hz. Assuming that
the resonator is initially thermalized to the helium
bath temperature of Tb = 4.2 K, this damping effect
actively cools the mechanical mode to a temperature of
Tm = Tb(�m/�tot ) = 631 mK, equivalent to a reduction in the
phonon occupation of the mechanical resonator from 〈n〉 ≈
7800 to 〈n〉 ≈ 1170 [16]. Cooling of this nature is especially
intriguing given it occurs for a blue-detuned optical pump,
such that the photothermal force must overwhelm any
radiation-pressure-driven amplification.

More interesting, however, is the fundamental limit on
minimum reachable phonon number using this cooling
method, which is set by the shot noise generated by pho-
tons impinging upon the mechanical resonator. For a purely
radiation-pressure-driven system, this limit is given by

n̄rp
min = −

κ2

4 + (� + ωm )2

4�ωm
, (12)

which when minimized with respect to detuning in the
non-sideband-resolved regime (κ � ωm) results in n̄rp

min ≈
κ/4ωm [16,69]. It is important to note that this result only
holds true for standard, dispersively coupled cavities, as it

has been shown that ground state cooling can in theory be
achieved using non-sideband-resolved, dissipatively coupled
optomechanical systems [70,71]. Nonetheless, we find that
n̄rp

min ≈ 45 for the device studied here, such that it would be
impossible to cool it to an average phonon occupation less
than one using radiation pressure alone. However, the situa-
tion is far more complex when one adds photothermal effects
into the picture, as this force interferes with the radiation pres-
sure [26], resulting in a modified expression for the minimum
achievable phonon number given by (see Appendix B)

n̄min = −
κ2

4 + (� + ωm )2

4�ωm
{
κ + β

1+ω2
mτ 2

[
κ + τ

(
κ2

4 + �2 − ω2
m

)]}
×

{
κ + β

1 + ω2
mτ 2

[
κ

(
βκ

4κa
+ 1

)

+ (� − ωm )

(
β(� − ωm )

κa
+ 2ωmτ

)]}
. (13)

Here we have introduced κa = ηκi as the optical loss rate
due to absorption of photons in the mechanical resonator,
which makes up a fraction η of the cavity’s total intrinsic
loss rate κi. For the experimental measurements given in
Fig. 4, we determine this total intrinsic loss rate to be
κi = κ − κe = 1.66 GHz. It is difficult to experimentally
determine what fraction of this intrinsic loss rate contributes
to κa; however, we initially assume that optical losses
are dominated by absorption in the mechanical element
(i.e., set η = 1), allowing us to establish a lower limit
on the minimum achievable phonon occupation for the
device studied here. Using this condition, along with the
experimental parameters extracted from the data in Fig. 4, we
plot n̄min as a function of detuning in Fig. 6(a). As one can see,
this minimum achievable phonon number drops below one
over a detuning range from � ∼ κ to 9κ , reaching its optimal
value of n̄min = 0.39 at �min = 3.1κ , which corresponds to
a mechanical resonator that is in its ground state 71% of the
time. We note that ground state cooling remains possible
when relaxing the condition that κa = κi, with n̄min < 1 for
η � 0.4 [see inset of Fig. 6(a)]. While it has long been known
theoretically that the photothermal force can be used to cool
a non-sideband-resolved optomechanical resonator into its
motional ground state [25–29], this is the first experimental
device reported to exist within the required regime.

To further investigate the parameter space over which
ground state photothermal cooling can occur, we have plotted
the logarithm of the minimum achievable phonon number
versus β and τ in Fig. 6(b). Each point on this plot is obtained
by varying β and τ in Eq. (13) (while again setting all other
physical parameters equal to those extracted from the fits in
Fig. 4) and taking the minimum value of n̄min with respect
to detuning. The result is a large region of photothermal
parameter space that allows for cooling below the single
phonon level, with a slight asymmetry between positive and
negative β due to interference between the radiation-pressure
and photothermal forces [26]. As indicated by the yellow star
in Fig. 6(b), the parameters for the device considered in this
work lie well within this regime.

We must be careful, however, when interpreting these re-
sults, as n̄min describes the fundamental limit on the minimum
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FIG. 6. (a) Plot of the minimum reachable phonon number ac-
cording to Eq. (13) versus normalized drive detuning using the
parameters extracted from the fits in Fig. 4, while setting κa = κi.
The black dashed line corresponds to n̄min = 1, indicating that the
resonator can, in principle, be cooled below single phonon occupancy
over a detuning band from � ∼ κ to 9κ , reaching its minimum value
of n̄min = 0.39 at �min = 3.1κ . Inset is a plot of this minimum value
as a function of the ratio η = κa/κi, demonstrating that ground state
cooling is still possible for η � 0.4. (b) A color plot depicting the
base-ten logarithm of n̄min (minimized with respect to detuning) as
a function of β and τ , with the rest of the parameters the same
as in (a). Note that while we have expressed the x axis in terms
of the unitless quantity ωmτ , the mechanical resonance frequency
is fixed to ωm = 2π×11.2 MHz such that only τ is varied along
this axis. Furthermore, we have ensured finite (i.e., nonzero) β to
allow us to focus on photothermal effects, as opposed to the narrow
feature that emerges due to the radiation-pressure force for very
small β (� 0.001). The solid (dashed) white lines demarcate the
contour of n̄min = 1 (n̄min = 0.1), while the yellow star indicates the
parameters for the device studied here. As one can see, there is a
region where n̄min < 1 centered near β = 0, with deviations from a
symmetric distribution in β being due to interference between the
radiation-pressure and photothermal forces [26]. We further note that
while n̄min decreases for larger values of τ , the detuning at which n̄min

is minimized increases with τ (see Appendix B), moving away from
� ≈ κ/2 where the photothermal force is maximal [25], such that it
becomes increasingly difficult to reach n̄min experimentally.

reachable phonon number using this cooling mechanism. Fur-
thermore, as τ increases, so does the detuning at which n̄min

is minimized, reducing the effectiveness of the photothermal
cooling (see Appendix B). Therefore, one generally wishes
to maximize the strength of the photothermal damping force,
which occurs for ωmτ ≈ 1 [25,27,32,33] and � ≈ κ/2 [see
Fig. 4(d)], to decrease the optical power required to reach n̄min.
Of particular interest are the photothermal cooling parameters
of ωmτ = 1 (corresponding to τ = 1/ωm = 14.2 ns) and β =
−2.0, which when combined with the other device parameters
used in this work, results in n̄min = 0.11 at �min ≈ κ/2 (see
Appendix B). These conditions therefore maximize photother-
mal cooling with respect to both thermal relaxation time and
optical drive detuning [25], while still allowing for ground
state cooling of the mechanical resonator, thus presenting a set
of parameters to strive for in future iterations of the device.

VI. CONCLUSION

In this paper, we have presented measurements of a silicon
whispering-gallery-mode optomechanical cavity that exhibits
dynamical backaction effects due to competing photothermal
and radiation-pressure forces. We find that the radiation-
pressure force governs the optomechanical spring effect,
while the photothermal force dictates the optomechanical
damping. Furthermore, due to the fact that this photothermal
force acts to directly oppose its radiation-pressure counter-
part, we find that at high enough power we can reduce the
mechanical damping to zero on the red side of the cavity
resonance, inducing a parametric instability in the mechanical
resonator that drives its motion into large-amplitude self-
oscillation. Accompanying this self-oscillating behavior, we
observe highly nonlinear effects, as well as a hysteresis de-
pending on the sweep direction of the optical drive, in each of
the optomechanical damping, spring effect, and transmission
through the optical cavity. Fitting these data with a nonlinear
optomechanical model that includes both radiation-pressure
and photothermal interactions, we extract the optomechan-
ical properties of the system associated with each of these
effects. Finally, using these extracted parameters, we infer
that this non-sideband-resolved optomechanical system can
theoretically be cooled to an average phonon occupancy less
than one. This comprehension of exactly how the radiation-
pressure and photothermal forces interact with each other at
low temperatures will be crucial as silicon optomechanical
cavities continue to be used to perform quantum experi-
ments [6,21,56–58].

While the ability to photothermally cool a non-sideband-
resolved optomechanical cavity below single phonon occu-
pancy is promising, reaching this regime in practice presents
a significant challenge, largely due to residual heating from
inevitable photon absorption processes [26,27]. However, as
this device was not purposefully designed for photothermal
coupling, it may be possible to engineer this effect to achieve
the parameters detailed at the end of the previous section,
perhaps by adding a metallic layer to the resonator to enhance
its differential thermal contractions and optical absorp-
tion [30–37,47]. Furthermore, one could also imagine mod-
ifying the thermal time constant by changing the dimensions
of the resonator, which would also affect the strength of the
photothermal damping. Increasing the photothermal coupling
in this way may provide a path to cool a photothermally driven
optomechanical device into its motional ground state, as well
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as allow for future investigation of other photothermally
enhanced optomechanical effects, such as entangle-
ment [28,29] or induced chaos [72,73] between the optical
and mechanical modes of the system.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Device dimensions

The critical dimensions for the optomechanical device
studied in this work (see Fig. 7) are measured using the
scanning electron microscope image shown in Fig. 2(a), and
are displayed in Table I. These measured device parameters
are used when performing finite-element-method simulations
of the device.

2. Experimental setup

To address the optomechanical device studied in this work,
we use a cryogenic optical detection system (shown schemati-
cally in Fig. 8) that allows for both direct detection and homo-
dyne measurements of the collected signal. Light from a fiber-
coupled tunable diode laser (1550–1630 nm), whose wave-
length is stabilized on long timescales (on the order of hours)
using a 2% pickoff to a wavelength meter (WLM), is sent to
a variable coupler (VC) that splits the optical circuit into two
paths: the signal arm and the local oscillator (LO). The optical
power in the signal arm is set using a voltage-controlled vari-
able optical attenuator (VOA), all while being monitored by
sending 10% of this signal to a power meter (PM). This path
continues through a fiber polarization controller, ensuring that
the laser light sent to the optical cavity is polarization-matched
to the optical mode of interest. Following these components,
the laser in the signal arm is directed via optical fiber to a low
temperature optomechanical coupling apparatus that resides
on the base plate of a dilution refrigerator [61], complete
with a dimpled optical fiber taper [62–64] that allows photons
to couple to and from the on-chip optomechanical device.
The intracavity signal is recollected using this tapered fiber
and is sent to an optical switch (SW) that toggles this signal

TABLE I. Numerical values for the dimensions of the device
studied in this work (see Fig. 7). Measurements were performed
using the scanning electron microscope image shown in Fig. 2(a).
Device thickness was taken to be d = 250 nm as specified by the
manufacturer.

Measured dimensions

l1 = 143 nm w1 = 177 nm Rd = 595 nm
l2 = 1.53 μm w2 = 177 nm Rc = 5.26 μm
l3 = 4.20 μm w3 = 151 nm θ = 92.7 deg

FIG. 7. Schematic of the studied optomechanical device, indi-
cating each of its critical dimensions. Numerical values for each
dimension are given in Table I.

between a standard photodetector (PD) for direct detection of
the optical signal, or alternatively, to a balanced photodetector
(BPD) for homodyne measurements. In the latter case, light
from the signal arm is recombined with the LO on a fiber-
coupled beam splitter (BS) and sent to the BPD, allowing
for a phase-sensitive probe of the optical signal. The constant
phase offset between the signal and LO arms is maintained
using a proportional-integral-derivative (PID) controlled fiber
stretcher (FS) located in the LO, with its setpoint referenced to
the low frequency component of the difference signal from the
BPD, which is monitored in real-time using a voltmeter (V).
For each of the homodyne and direct detection setups, the high
frequency signal is recorded as time-series data using a 500
mega-sample per second analog-to-digital converter (ADC),
allowing for observation of the mechanical motion. Finally,
the transmission through the optical cavity is obtained by
monitoring the low frequency (<25 kHz) channel of the direct
detection PD using a data acquisition (DAQ) system.

APPENDIX B: CAVITY OPTOMECHANICS WITH
RADIATION-PRESSURE AND PHOTOTHERMAL

INTERACTIONS

In this section, we look to theoretically model the be-
havior of an optomechanical cavity that is subject to both
radiation-pressure and photothermal forces. Specifically, we
determine the parameter regimes over which these individual
forces dominate each of the optomechanical damping and
spring effect, as well as investigate how the inclusion of the
photothermal force modifies the optomechanical phenomena
of cooling and nonlinear parametric amplification.

To begin, we consider an optical cavity that is dispersively
coupled to the displacement of a mechanical resonator in the
presence of both radiation-pressure and photothermal forces.
Treating the system semiclassically, the equations of motion
for the field amplitude a of the cavity and mechanical position
x of the resonator will be given by [16,25–29,49]

ȧ(t ) = −κ

2
a(t ) + i�0a(t ) + iGx(t )a(t ) + √

κeain(t )

+√
κaa′

abs(t ) + √
κoa′

o(t ), (B1)

ẍ(t ) + �m ẋ(t ) + ω2
mx(t ) = 1

m
[Fth(t ) + Frp(t ) + Fpt (t )].

(B2)
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FIG. 8. Schematic of the optical detection system used to probe the optical and mechanical properties of the device under study. WLM =
wavelength meter, VC = variable coupler, VOA = variable optical attenuator, PM = power meter, OMC = optomechanical cavity, FS = fiber
stretcher, PID = proportional-integral-derivative controller, V = voltmeter, LO = local oscillator, SW = optical switch, BS = beam splitter,
BPD = balanced photodetector, PD = photodetector, ADC = analog-to-digital converter, DAQ = data acquisition.

Here, �0 = ωd − ωc is the bare detuning of the optical drive
frequency ωd from the resonant frequency of the cavity ωc,
while κ = κe + κa + κo is the total decay rate of the optical
cavity, composed of contributions from losses to the external
coupler, absorption of cavity photons in the mechanical ele-
ment, and all other sources, at the associated rates of κe, κa,
and κo, respectively. Note that both κa and κo contribute to the
total intrinsic damping rate of the optical cavity κi = κa + κo.
We then have that ain(t ) is the field input to the cavity via the
external coupler, while a′

abs(t ) and a′
o(t ) are the field operators

associated with vacuum noise (denoted by primes) that creeps
into the system via absorption of photons in the mechanical
element and other loss channels, with each of these input
operators having units of 1/

√
s. Meanwhile, ωm, �m, and m

are the resonant frequency, damping rate, and effective mass
of the mechanical resonator, which is actuated by an intrinsic
thermal fluctuation force Fth, as well as two optically driven
forces, the radiation-pressure force [16,49]

Frp(t ) = h̄Ga†(t )a(t ) (B3)

and the photothermal force [25–29,49]

Fpt (t ) = h̄Gβ

κaτ

∫ t

−∞
e− t−t ′

τ a†
abs(t

′)aabs(t
′)dt ′. (B4)

Here, G = −dωc/dx is the dispersive optomechanical cou-
pling coefficient and aabs(t ) = √

κaa(t ) − a′
abs(t ) is the field

operator characterizing the photons absorbed by the me-
chanical resonator [25,26,28]. The mathematical form of this
photothermal force is motivated by the fact that adiabatic
elimination of the mechanical resonator’s phononic bath [43]
gives rise to an integral of an exponential that decays on
a time scale set by the photothermal time constant τ (see
Appendix E for more details). Also included in Eq. (B4) is
the dimensionless parameter β that determines the relative
strength and direction of the photothermal force with respect
to the radiation-pressure force. It is important to note that it is

possible for β to be negative in value [32–35,39,41,42], such
that the photothermal force acts to directly oppose radiation-
pressure effects. Finally, while we have chosen to identify
the force in Eq. (B4) as photothermal in nature, with the
appropriate choice of τ , β, and κa, the description that follows
can be applied to any optical force that is delayed in time.

1. Linearized optomechanical equations of motion

To solve the equations of motion for the above optome-
chanical system, we express each quantity as a combination of
its classical, steady-state amplitude (denoted by an overhead
bar) and its fluctuations about this mean value (denoted by
an operator hat). This leads to a(t ) = ā + â(t ), ain(t ) = āin +
â′

in(t ), a′
abs(t ) = â′

abs(t ), a′
o(t ) = â′

o(t ), x(t ) = x̄ + x̂(t ), and
Fth(t ) = F̂th(t ). Note that each of the noise quantities [i.e.,
a′

abs(t ), a′
o(t ), and Fth(t )] are composed solely of a fluctuating

term (which includes both thermal and quantum noise). In-
putting each of these relations into Eqs. (B1)–(B4), while only
keeping terms to first order in the fluctuations, we linearize
Eqs. (B1) and (B2), resulting in

˙̂a(t ) = −κ

2
â(t ) + i�â(t ) + iGāx̂(t ) + √

κeâ′
in(t )

+√
κaâ′

abs(t ) + √
κoâ′

o(t ), (B5)

¨̂x(t ) + �m ˙̂x(t ) + ω2
m x̂(t )

= 1

m

(
F̂th(t ) + h̄G[ā∗â(t ) + āâ†(t )]

+ h̄Gβ

τ

∫ t

−∞
e− t−t ′

τ

{
[ā∗â(t ′) + āâ†(t ′)]

− 1√
κa

[ā∗â′
abs(t

′) + āâ′†
abs(t

′)]
}

dt

)
, (B6)
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with the steady-state values of a and x being

ā =
√

κeāin

κ/2 − i�
, (B7)

x̄ = h̄G|ā|2(1 + β )

mω2
m

. (B8)

Note that we have also introduced a modified drive detuning
� = �0 + Gx̄ to account for the static shift in cavity fre-
quency due to the steady-state displacement of the mechanical
equilibrium position.

In this linearized form, Eqs. (B5) and (B6) can now be
Fourier transformed, resulting in the frequency representation
of the cavity field and mechanical displacement fluctuations
as

â(ω) = χc(ω)[iGāx̂(ω) + √
κeâ′

in(ω)

+√
κaâ′

abs(ω) + √
κoâ′

o(ω)], (B9)

x̂(ω) = χm(ω)

(
F̂th(ω)

+ h̄G

{(
1 + β

1 − iωτ

)
[ā∗â(ω) + āâ†(ω)]

− β√
κa(1 − iωτ )

[ā∗â′
abs(ω) + āâ′†

abs(ω)]

})
. (B10)

Here we have implicitly used the fact that for a given variable
ô, we have ô†(ω) = [ô(−ω)]† (note that [x̂(−ω)]† = x̂(ω) as
position is a Hermitian quantity) [16], as well as introduced
the frequency-dependent susceptibilities of the optical cavity
χc(ω) and mechanical resonator χm(ω) as

χc(ω) = 1

κ/2 − i(� + ω)
, (B11)

χm(ω) = 1

m
(
ω2

m − ω2 − iω�m
) . (B12)

In what follows, we will use the linearized, frequency-
dependent solutions for â and x̂ given in Eqs. (B9) and (B10)
to investigate a number of optomechanical effects.

2. Optomechanical damping and spring effect

To determine the optomechanical damping and spring ef-
fect, we input Eq. (B9) into Eq. (B10), resulting in

x̂(ω) = χeff (ω)

(
F̂th(ω) + h̄G

{(
1 + β

1 − iωτ

)

× (
χc(ω)ā∗[

√
κeâ′

in(ω) + √
κaâ′

abs(ω) + √
κoâ′

o(ω)]

+χ∗
c (−ω)ā[

√
κeâ′†

in(ω) + √
κaâ′†

abs(ω) + √
κoâ′†

o (ω)]
)

− β√
κa(1 − iωτ )

[ā∗â′
abs(ω) + āâ′†

abs(ω)]

})
, (B13)

where we have introduced the effective mechanical suscepti-
bility as [16,25,26,28,49]

χ−1
eff (ω) = χ−1

m (ω)

− ih̄G2|ā|2
(

1 + β

1 − iωτ

)
[χc(ω) − χ∗

c (−ω)]

≡ m[(ωm + δωm )2 − ω2 − iω(�m + δ�m )]

≈ m
[
ω2

m − ω2 + 2ωmδωm − iω�m − iωδ�m
]
.

(B14)

Note that we have assumed δωm � ωm for the approximation
made in the last line of Eq. (B14). From this effective suscepti-
bility, we can extract the optomechanically induced shift in the
mechanical resonance frequency, or optomechanical spring
effect,

δωm = − h̄G2|ā|2
2mωm

Re

{
i

(
1 + β

1 − iωmτ

)

× [χc(ωm ) − χ∗
c (−ωm )]

}

= 2N̄g2
0�|χc(ωm )|2|χc(−ωm )|2

×
[
κ2

4
+ �2 − ω2

m

+ β

1 + ω2
mτ 2

(
κ2

4
+ �2 − ω2

m − ω2
mκτ

)]
, (B15)

as well as the shift in the mechanical damping rate, or optome-
chanical damping,

δ�m = h̄G2|ā|2
mωm

Im

{
i

(
1 + β

1 − iωmτ

)

× [χc(ωm ) − χ∗
c (−ωm )]

}

= −4N̄g2
0�ωm|χc(ωm )|2|χc(−ωm )|2

×
{
κ + β

1 + ω2
mτ 2

[
κ + τ

(
κ2

4
+ �2 − ω2

m

)]}
.

(B16)

Here N̄ = |ā|2 is the average number of coherent photons
(originating from the drive field) that are confined to the
optical cavity, while g0 = Gxzpf is the single-photon, single-
phonon optomechanical coupling rate, with xzpf = √

h̄/2mωm

being the zero-point fluctuation amplitude of the mechanical
resonator. Note that we have also taken ω ≈ ωm in Eqs. (B15)
and (B16), as we are only concerned with effects near me-
chanical resonance. As expected, these dynamical backac-
tion effects vanish for zero detuning (� = 0) and the stan-
dard radiation-pressure-driven expressions are restored when
β = 0 [16].

We are now interested in determining the parameter space
for which the optomechanical damping and spring effect
are dominated by photothermal forces. By inspection of
Eqs. (B15) and (B16), we find that this will occur for the
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spring effect when∣∣∣∣κ2

4
+ �2 − ω2

m

∣∣∣∣<
∣∣∣∣ β

1 + ω2
mτ 2

(
κ2

4
+ �2 − ω2

m − ω2
mκτ

)∣∣∣∣,
(B17)

while the photothermal force will dominate the optomechani-
cal damping if

κ <

∣∣∣∣ β

1 + ω2
mτ 2

[
κ + τ

(
κ2

4
+ �2 − ω2

m

)]∣∣∣∣. (B18)

These inequalities are simplified considerably if we restrict
ourselves to the experimentally relevant parameter space
of κ � ωm (i.e., the non-sideband-resolved regime) and
ωmτ ∼ 1, which together imply κτ � 1. Using these condi-
tions, Eq. (B17) will be satisfied if

1 + ω2
mτ 2 � |β|, (B19)

while Eq. (B18) becomes

κ <
|β|τ

1 + ω2
mτ 2

(
κ2

4
+ �2

)
. (B20)

Finally, Eq. (B20) can be further simplified if we assume � ∼
±κ/2, i.e., only consider the region where optomechanical
damping is maximized, which results in

1 + ω2
mτ 2 � |β|κτ

2
. (B21)

Note that for the above inequalities we have taken the abso-
lute value of β as it can be positive or negative depending
on the orientation of the photothermal force with respect
to the radiation-pressure force. From Eqs. (B19)–(B21) it
is therefore clear that for κτ � 1 (as is assumed here and
is experimentally relevant for this work), it is possible to
have values of β and τ such that radiation-pressure forces
dominate the spring effect, while photothermal effects dictate
the optomechanical damping. We note that this is especially
important in the non-sideband-resolved regime, where κ is
generally large, as highlighted by the fact that photothermal
damping effects are often stronger in non-sideband-resolved
cavities when compared to their sideband-resolved counter-
parts [25,26,28,29]. Furthermore, if β < 0, the photothermal
and radiation-pressure forces oppose each other, resulting in
an oddly similar detuning dependence between the optome-
chanical spring effect and damping [see Figs. 1(c) and 1(f)] in
apparent violation of the Kramers-Kronig relations [17].

3. Optomechanical cooling

We now look to see how the inclusion of a photothermal
force acts to modify conventional radiation-pressure-driven
backaction cooling. To do this, we begin by determining the
two-sided spectral density of the mechanical displacement
Sxx(ω) in the presence of optomechanical effects, which can
be found by using [74]

Sxx(ω) = 1

2π

∫ ∞

−∞
〈x̂(ω)x̂(ω′)〉 dω′, (B22)

along with the following Markovian noise correlators [16,25]

〈F̂th(ω)F̂th(ω′)〉 = 2π h̄ωm�m coth
(

h̄ω
2kBT

)
δ(ω + ω′), (B23)

〈â′
i(ω)â′†

i (ω′)〉 = 2πδ(ω + ω′), (B24)

〈â′
i(ω)â′

i(ω
′)〉 = 〈â′†

i (ω)â′
i(ω

′)〉 = 〈â′†
i (ω)â′†

i (ω′)〉 = 0.

(B25)

In Eqs. (B24) and (B25) we have used â′
i as a placeholder

for any of the optical vacuum fluctuation amplitudes â′
in, a′

abs,
and a′

o, as well as assumed a zero temperature bath for each
optical mode (due to the fact that h̄ωc � kBT ). We further
note that any cross-correlations between the noise terms given
in Eqs. (B23)–(B25) will equate to zero. Inputting Eqs. (B13)
and (B23)–(B25) into Eq. (B22), while using the fact that
χeff (−ω) = χ∗

eff (ω) [this is a direct consequence of χeff (t )
being a real-valued function], we then find

Sxx(ω) = |χeff (ω)|2[Sth
FF (ω) + Sopt

FF (ω)
]
, (B26)

where

Sth
FF (ω) = 1

2π

∫ ∞

−∞
〈F̂th(ω)F̂th(ω′)〉 dω′

= h̄ωm�m coth

(
h̄ω

2kBT

)
(B27)

is the spectral density of the thermal force [25,74–76] and
Sopt

FF (ω) = Srp
FF (ω) + Spt

FF (ω) is the optical force spectral den-
sity, composed of the spectra due to radiation-pressure Srp

FF (ω)
and photothermal Spt

FF (ω) effects. We further find it con-
venient to express these optical force spectra as Srp

FF (ω) =
h̄2G2Srp

NN (ω) and Spt
FF (ω) = h̄2G2Spt

NN (ω), where

Srp
NN (ω) = N̄κ

(� + ω)2 + (κ/2)2 (B28)

and

Spt
NN (ω) = N̄

(� + ω)2 + (κ/2)2

β

1 + ω2τ 2

×
{
κ

(
βκ

4κa
+ 1

)
+ (� + ω)

[
β(� + ω)

κa
− 2ωτ

]}
(B29)

are the effective cavity photon number spectra associated
with the radiation-pressure and photothermal forces, respec-
tively [69,75].

Using the spectral density function given by Eq. (B26),
we can determine the mean-squared value of the mechanical
displacement as [74]

〈x2〉 = 1

2π

∫ ∞

−∞
Sxx(ω)dω. (B30)

To perform this integral, we make the approximation

|χeff (ω)|2 ≈ π

2m2ω2
m�tot

[δ(ω − ωm ) + δ(ω + ωm )], (B31)

where �tot = �m + δ�m is the total mechanical damping
rate, including both the intrinsic mechanical damping and
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optomechanical effects. This approximation is valid for high-
Q mechanical resonators (i.e., Qm = ωm/�m � 1), due to
the fact that the majority of the mechanical displacement
spectrum is located near ω ≈ ±ωm. Using this approximation
to evaluate the integral in Eq. (B30), we find

〈x2〉= x2
zpf

�tot

{
(2n̄th + 1)�m + g2

0

[
Sopt

NN (ωm ) + Sopt
NN (−ωm )

]}
,

(B32)

where we have taken advantage of the relation
coth (h̄ωm/2kBT ) = 2n̄th + 1, with n̄th = (eh̄ωm/kBT − 1)

−1

being the average thermal phonon occupation number of the
bath (according to Bose-Einstein statistics) evaluated at the
mechanical resonance frequency. Comparing Eq. (B32) to
the expected expression for the mean-squared displacement,
〈x2〉 = 2x2

zpf (〈n〉 + 1
2 ) [74], we determine the average phonon

occupancy 〈n〉 of the mechanical resonator to be

〈n〉 = (2n̄th + 1)�m + g2
0

[
Sopt

NN (ωm ) + Sopt
NN (−ωm )

]
2�tot

− 1

2
.

(B33)

Finally, using the identity [26,69,75]

δ�m = x2
zpf

h̄2

[
Sopt

FF (ωm ) − Sopt
FF (−ωm )

]
= g2

0

[
Sopt

NN (ωm ) − Sopt
NN (−ωm )

]
, (B34)

we can recast Eq. (B33) into the familiar rate equation form
[16,27,69]

〈n〉 = n̄th�m + n̄minδ�m

�tot
, (B35)

allowing us to identify the minimum attainable average
phonon occupancy using this cooling method as [16,26,69]

n̄min = [
Sopt

FF (ωm )/Sopt
FF (−ωm ) − 1

]−1

= [
Sopt

NN (ωm )/Sopt
NN (−ωm ) − 1

]−1

= −
κ2

4 + (� + ωm )2

4�ωm
{
κ + β

1+ω2
mτ 2

[
κ + τ

(
κ2

4 + �2 − ω2
m

)]}
×

(
κ + β

1 + ω2
mτ 2

{
κ

(
βκ

4κa
+ 1

)

+ (� − ωm )

[
β(� − ωm )

κa
+ 2ωmτ

]})
. (B36)

As expected, by setting β = 0, Eq. (B36) reverts to the
standard radiation pressure result [16,69]

n̄rp
min = −

κ2

4 + (� + ωm )2

4�ωm
. (B37)

Furthermore, if we sever the connection to the optomechanical
bath [i.e., set G = g0 = 0 such that δ�m = 0 in Eqs. (B33)
and (B35)], the mechanical resonator thermalizes to its
environmental bath such that 〈n〉 = n̄th.

The quantity in Eq. (B36) describes the minimum attain-
able phonon occupation of the mechanical resonator (when
considering both radiation-pressure and photothermal forces),
which can be reached if δ�m is large enough such that

0 1 2 3 4 5
10− 1

100

101

(a)

Normalized Drive Detuning,

(b)

FIG. 9. (a) Color plot of log10(|�min/κ|), i.e., the base-ten log-
arithm of the absolute value of the detuning �min for which n̄min is
globally minimized (normalized by κ). Here we have used the same
optomechanical parameters as those in Fig. 6, with the solid (dashed)
white line indicating the contour of |�min| = κ (|�min| = κ/2). Note
that the sign of �min is opposite of β, such that �min < 0 (�min > 0)
for β > 0 (β < 0). As one can see, |�min| is maximized near β = 0
and increases for larger values of τ . We point out, however, that
for small β and large τ , local minima emerge near � ≈ −κ/2 [not
shown here as (a) depicts the global minimum of n̄min], correspond-
ing to the region over which radiation-pressure effects begin to
dominate. Furthermore, as is seen with n̄min in Fig. 6(b), |�min| is
asymmetric about β = 0, which is again due to interference between
radiation-pressure and photothermal effects. Finally, we note that the
dashed contour of �min = κ/2 passes very near β = −2.0 for ωmτ =
1 (see red star), such that these parameters optimize photothermal
cooling versus both optical drive detuning and thermal relaxation
time [25]. In (b), we plot n̄min versus normalized drive detuning for
this special set of parameters, showing that the lowest achievable
phonon number is indeed minimized to n̄min = 0.11 at �min ≈ κ/2.

�tot ≈ δ�m and n̄th�m � n̄minδ�m. In this sense, Eqs. (B33)
and (B35) do not include effects that would arise when
experimentally performing optomechanical cooling of the
mechanical resonator, such as the inevitable heating due to
photon absorption [26,27]. Nevertheless, the inclusion of pho-
tothermal effects has a substantial influence on this minimal
phonon occupation when compared to the result obtained
using solely radiation pressure. In fact, due to interference
between the radiation-pressure and photothermal forces [26],
it is possible to cool the mechanical resonator to an average
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phonon occupancy below one while operating in the non-
sideband-resolved regime [25–29], a feat which is not possible
for a dispersively coupled, radiation-pressure-driven optome-
chanical cavity [16,69].

To determine the absolute minimum phonon occupancy
that can be reached for a given optomechanical cavity, the
expressions in Eqs. (B36) and (B37) must be optimized with
respect to the optical drive detuning �. This is easily done
for the case of radiation pressure alone, where Eq. (B37) is
found to be minimized for �

rp
min = −√

κ2/4 + ω2
m. Therefore,

in the non-sideband-resolved regime, �
rp
min ≈ −κ/2, leading

to n̄rp
min ≈ κ/4ωm [16]. Unfortunately, the situation is far more

complicated when the photothermal force is included, such
that we are unable to determine a closed-form solution for the
detuning �min that minimizes Eq. (B36). However, �min can
be determined numerically for a given set of conditions, as we
have shown in Fig. 9(a) for the same parameter space that is
mapped out in Fig. 6(b). Here we see that |�min| grows for
decreasing β and increasing τ , moving away from the optimal
value of |�min| ≈ κ/2 denoted by the white dashed line, while
exhibiting a similar asymmetry about β as was seen for n̄min.
Interestingly, this plot further shows that near β = −2.0 and
ωmτ = 1, we find �min ≈ κ/2 [see red star in Fig. 9(a)], such
that for this set of parameters the strength of the photothermal
force is maximized with respect to both detuning and thermal
relaxation time [25,27,32,33], while still allowing for ground
state cooling of the mechanical motion to an occupancy as low
as n̄min = 0.11 [see Fig. 9(b)].

4. Nonlinear optomechanics

In the previous sections of this Appendix, we implicitly
assumed an optomechanical system whose mechanical fluctu-
ations are small enough to allow for a linearized treatment
of the equations of motion. However, when the amplitude
of oscillation A of the mechanical resonator becomes large
enough (GA � ωm), the system enters into a regime where
keeping terms to first order in their fluctuations no longer
suffices. One such situation where this occurs is optomechan-
ical self-amplification [34,52–55,77–79], which onsets when
δ�m = −�m, such that �tot drops to zero and a parametric
instability emerges, driving the mechanical motion into large
amplitude oscillations to counteract the optical drive forces.

Here we will study this nonlinear optomechanical inter-
action in the same context as the previous sections, where
we include both radiation-pressure and photothermal effects.
However, as the large amplitude mechanical oscillations as-
sociated with this nonlinear regime act to overwhelm any
quantum noise [i.e., terms containing a′

in(t ), a′
abs(t ), or a′

o(t )],
we restrict ourselves to a classical treatment of the optome-
chanical system, such that Eqs. (B1) and (B2) become

ȧ(t ) = −κ

2
a(t ) + i�0a(t ) + iGx(t )a(t ) + √

κeāin, (B38)

ẍ(t ) + �m ẋ(t ) + ω2
mx(t ) = 1

m
[Fth(t ) + Frp(t ) + Fpt (t )].

(B39)

Furthermore, we introduce the classical radiation-pressure
force Frp(t ) = h̄G|a(t )|2, along with the classical photother-

mal force by modifying Eq. (B4) to obtain

Fpt (t ) = h̄Gβ

τ

∫ t

−∞
e− t−t ′

τ |a(t ′)|2dt ′. (B40)

We continue by assuming a high-Q mechanical system, such
that we can use the ansatz [16,52,53]

x(t ) = x̄ + A cos(ωmt ), (B41)

as the solution to Eq. (B39) for the resonator’s displacement,
where again x̄ is the resonator’s static displacement from
equilibrium. Inputting this expression into Eq. (B38), we solve
for the optical field amplitude as

a(t ) = √
κeāineiφ(t )

∞∑
k=−∞

αkeikωmt , (B42)

with φ(t ) = ξ sin(ωmt ) being the time-dependent global
phase of the field and

αk = Jk (−ξ )

κ/2 − i(�0 + Gx̄ − kωm )
, (B43)

where Jk (z) is the kth Bessel function of the first kind
and ξ = GA/ωm is the dimensionless mechanical modulation
strength [16,52–54,59]. We point out that in the expression for
αk , we have explicitly written out the optical drive detuning
� = �0 + Gx̄, as we wish to be more transparent with the x̄
term throughout this section for completeness. Note, however,
that for the experiment considered in this work, the effect of
adding this Gx̄ term to the bare drive detuning is negligible,
such that � ≈ �0. This is demonstrated by the fact that
even at the largest optical power input to the device (Pin =
139 μW), we find the maximum static displacement of the
resonator to be x̄max = 46 pm, causing a shift in the detuning
that is at most Gx̄max = 38 MHz = 0.024κ .

We now look to determine the quantities x̄, δωm, and δ�m

in terms of the mechanical amplitude A using this nonlin-
ear optomechanical treatment. In doing so, we neglect the
thermal force acting upon the resonator, as its effect will be
dwarfed by that of its optically induced counterparts. Starting
by taking the time average of Eq. (B39) (i.e., balancing the
time-averaged forces of the system), we find [16,34,52,53]

x̄(A) = h̄Gκe|āin|2
mω2

m

(1 + β )
∞∑

k=−∞
|αk|2, (B44)

where we have used the fact that 〈ẍ(t )〉 = 〈ẋ(t )〉 = 0 and
〈x(t )〉 = x̄, as well as

〈|a(t )|2〉 = κe|āin|2
∞∑

k=−∞
|αk|2, (B45)

〈
β

τ

∫ t

−∞
e− t−t ′

τ |a(t ′)|2dt ′
〉

= βκe|āin|2
∞∑

k=−∞
|αk|2. (B46)

Note that since αk is implicitly dependent on x̄, Eq. (B44)
represents a transcendental equation for x̄ in terms of A and
�0 (see Fig. 10), which in general must be solved numerically.
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Drive Detuning,                       (GHz)

(p
m

)

FIG. 10. A color plot of x̄ versus mechanical amplitude and
optical drive detuning for the conditions given in Fig. 4. The solid
lines are the mechanical amplitudes that are traced out for detuning
sweeps performed in the direction of the corresponding colored
arrows (see Fig. 4). Thus, these contours denote the physical values
of x̄ that are realized in this situation.

Next, we multiply Eq. (B39) by ẋ(t ) and again take the
time average, balancing the time-averaged power of the sys-
tem. This leads to the condition that �tot = �m + δ�m(A) = 0
[16,34,52,53], such that we can identify the amplitude-
dependent optomechanical damping of the system as

δ�m(A) = 2h̄Gκe|āin|2
Amωm

∞∑
k=−∞

Im

[
αkα

∗
k+1

(
1 + β

1 − iωmτ

)]
.

(B47)

Note that to obtain this result, we have used the re-
lations 〈ẍ(t )ẋ(t )〉 = 〈x(t )ẋ(t )〉 = 0 and 〈ẋ2(t )〉 = ω2

mA2/2,
along with

〈|a(t )|2ẋ(t )〉 = −Aωmκe|āin|2
∞∑

k=−∞
Im{αkα

∗
k+1}, (B48)

〈
β

τ

∫ t

−∞
e− t−t ′

τ |a(t ′)|2ẋ(t )dt ′
〉

= −Aωmκe|āin|2
∞∑

k=−∞
Im

{
βαkα

∗
k+1

1 − iωmt

}
. (B49)

Finally, it can also be shown (see Ref. [80], for example) that
the spring effect in the nonlinear optomechanical regime will
be given by

δωm(A) = − h̄Gκe|āin|2
Amωm

×
∞∑

k=−∞
Re

[
αkα

∗
k+1

(
1 + β

1 − iωmτ

)]
. (B50)

Interestingly, one can use the time-averaged energy bal-
ance equation [by multiplying Eq. (B39) by x(t ) and
time-averaging], along with the relations 〈ẋ(t )x(t )〉 = 0,
〈ẍ(t )x(t )〉 = −ω2

mA2/2, and 〈x2(t )〉 = x̄2 + A2/2, to show
that δωm(A) = 0 while A is large enough that the system

remains in the nonlinear regime. This frequency locking ef-
fect, coupled with the reduction of the resonance linewidth, is
indicative of phonon lasing in the mechanical resonator [16].

We are also interested in how mechanical self-oscillations
affect the transmission of the optical field through the cavity.
To do this, we consider the optical field output from the cavity,
which can be found using input-output theory as aout (t ) =
ain(t ) − √

κea(t ) [16]. Inserting Eq. (B42) into this expres-
sion, while only considering the time-independent terms, we
find the amplitude-dependent transmission through the cavity
as [16,59]

T (A) = |āout|2
|āin|2 = 1 − 2κeRe

{ ∞∑
k=−∞

J−k (ξ )αk

}

+ κ2
e

∞∑
k=−∞

|αk|2, (B51)

where we have used the Jacobi-Anger expansion [50]

e±iφ(t ) =
∞∑

k=−∞
J−k (ξ )e±ikωmt . (B52)

We conclude this section by noting that in the regime
of small mechanical oscillations (i.e., ξ � 1), each of the
amplitude-dependent quantities given above approach their
linearized counterpart. That is, Eq. (B44) → Eq. (B8),
Eq. (B47) → Eq. (B16), and Eq. (B50) → Eq. (B15), while
Eq. (B51) approaches its linearized version given by [16]

Tlin = 1 − κe(κ − κe )|χc(0)|2 = 1 − κeκi

�2 + (κ/2)2
. (B53)

5. Integral approximations

Though the expressions in the previous section provide ex-
act representations for the optomechanical shift in mechanical
equilibrium position, damping, and spring effect, computing
these quantities numerically can be cumbersome. This is due
to the fact that to accurately model the nonlinear behavior
of the optomechanical system, the number of terms that one
must keep for each of the sums found in Eqs. (B44)–(B51)
is on the order of ξ , which can be as large as 1500 for the
conditions studied here. Fortunately, it was shown by Metzger
et al. [34] that in the non-sideband-resolved regime, the
integral in Eq. (B40) can be performed directly by assuming
the optical intensity inside the cavity adiabatically follows the
quasistatic motion of the mechanical resonator. This allows
for a simpler, more computationally efficient treatment of the
nonlinear optomechanical system considered in this work,
with minimal error introduced into the final results when
compared to those given by Eqs. (B44), (B47), and (B50) (see
Fig. 11 for instance). Here we provide a brief overview of
this method, resulting in approximate expressions for each of
the nonlinear optomechanical properties given in the previous
section.

For this integral approach, we immediately assume the
non-sideband-resolved regime, such that the optical field in
the cavity reacts nearly instantaneously to the resonator’s
mechanical motion [34]. This allows us to treat x(t ) as a
quasistatic variable, such that we can insert the ansatz given
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FIG. 11. Attractor diagrams of δ�m(A)/�m (color scale) for the
device parameters given in Fig. 4 using (a) the exact sum formalism
of Eqs. (B44) and (B47), and (b) the integral approximations given
by Eqs. (B55) and (B59). The white dashed line indicates the contour
of δ�m(A)/�m = −1, demarcating the region of self-oscillations.
For the sums in (a), terms up to k = ±1000 were used, while the
integrals in (b) were performed using a numerical solver (trapezoidal
method). In (c), we show the percent difference between the attractor
diagrams given in (a) and (b). Here, we highlight the fact that over
the displayed detuning and amplitude range, there is at most a 13.4%
difference between the sum and integral methods for calculating
δ�m(A), with this maximum discrepancy located near zero detuning
for small mechanical amplitudes.

by Eq. (B41) into Eq. (B7) [i.e., by taking � = �0 + Gx̄ +
GA cos(ωmt )] to directly solve for the quasistatic cavity field
amplitude as

a(t ) =
√

κeāin

κ/2 − i[�0 + Gx̄ + GA cos(ωmt )]
. (B54)

Using this approximate expression, we can again take the time
average of Eq. (B39) to find an integral form for x̄ as

x̄(A) = h̄Gκe|āin|2(1 + β )

2πmω2
m

×
∫ 2π

0

dφ

(κ/2)2 + (�0 + Gx̄ + GA cos φ)2
. (B55)

In comparing this expression to what was found for x̄ in
Appendix B 4, we see that this approximation is equivalent
to replacing the sum in Eq. (B44) with an integral according
to

∞∑
k=−∞

|αk|2 ≈ 1

2π

∫ 2π

0

dφ

(κ/2)2 + (�0 + Gx̄ + GA cos φ)2
.

(B56)

Furthermore, this integral can be solved analytically, resulting
in ∫ 2π

0

dφ

(κ/2)2 + (�0 + Gx̄ + GA cos φ)2

= 2π
√

2

κ
√
A

√√
A + B, (B57)

where A = B2 + κ2(�0 + Gx̄)2 and B = G2A2 + κ2/4 −
(�0 + Gx̄)2. Therefore, we can write x̄ in the purely analytical
form

x̄(A) =
√

2h̄Gκe|āin|2(1 + β )

mω2
mκ

√√
A + B√
A

. (B58)

Performing a similar analysis to determine the integral
form for δ�m(A), we multiply Eq. (B39) by ẋ(t ) and take the
time average, while using the approximation for a(t ) given by
Eq. (B54) to obtain

δ�m(A) = h̄Gκe|āin|2β
πAmωm

ωmτ

1 + ω2
mτ 2

×
∫ 2π

0

cos φdφ

(κ/2)2 + (�0 + Gx̄ + GA cos φ)2
. (B59)

We note that this integral expression is only valid in the
regime where photothermal forces dominate the optomechan-
ical damping [see Eq. (B18)], as δ�m(A) = 0 for β = 0 here.
Similar to the integral expression for x̄, we find that Eq. (B59)
approximates Eq. (B47) by replacing its sum with the integral

∞∑
k=−∞

Im

{
αkα

∗
k+1

(
1 + β

1 − iωmτ

)}

≈ β

2π

ωmτ

1 + ω2
mτ 2

∫ 2π

0

cos φdφ

(κ/2)2 + (�0 + Gx̄ + GA cos φ)2
.

(B60)
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This integral also has an analytical expression given by∫ 2π

0

cos φdφ

(κ/2)2 + (�0 + Gx̄ + GA cos φ)2

= −sgn(�0 + Gx̄)
2π

√
2

GAκ
√
A

(
|�0 + Gx̄|

√√
A − B

− κ

2

√√
A − B

)
, (B61)

where sgn(z) is the signum function. Using this relation, we
can then express δ�m in the analytical form

δ�m(A) = −2
√

2h̄κe|āin|2β
A2mωmκ

ωmτ

1 + ω2
mτ 2

sgn(�0 + Gx̄)√
A

×
(

|�0 + Gx̄|
√√

A − B − κ

2

√√
A − B

)
.

(B62)

It is also possible to arrive at an integral expression for
δωm, which looks similar to Eq. (B59) except the factor
of cos(φ) in the numerator of the integrand is replaced by
sin(φ). This, however, results in an integral that evaluates to
zero, as one would expect in the self-oscillating regime (see
Appendix B 4), and therefore offers no additional insight into
Eq. (B50).

In Fig. 11, we compare the attractor diagrams of δ�m(A)
for the optomechanical device studied in this work generated
using both the exact sums given in Eqs. (B44) and (B47), as
well as the integral approximations of Eqs. (B55) and (B59).
As our device exists deeply within the non-sideband-resolved
regime (κ/ωm ≈ 180) and has a large photothermal con-
tribution to the optomechanical damping (|β|κτ = 38), the
integral approximations presented in this section accurately
model its nonlinear optomechanical behavior. This is demon-
strated by the fact the percent difference in δ�m(A) between
these two methods is at most 13.4% for the conditions given
in Fig. 4 [see Fig. 11(c)]. Furthermore, we note that while
the integral approach slightly overshoots the value of δ�m(A),
it still provides an excellent approximation of the mechanical
amplitude, as can be seen by the nearly matching contour lines
in Figs. 11(a) and 11(b).

We conclude this section by noting that while we have
used Eqs. (B55)–(B62) for preliminary assessment of our
optomechanical device, as well as the computationally in-
tensive calculations associated with the varying power mea-
surements shown in Fig. 5, the fits and attractor diagram in
Fig. 4 were determined using the exact expressions given by
Eqs. (B44)–(B51).

6. Optical power transfer

In this section, we use the input-output formalism intro-
duced in Appendix B 4, along with the conservation of energy,
to investigate the power input to and output from the optical
cavity, as well as absorbed by the mechanical resonator and
dissipated via other loss mechanisms (see Fig. 12). Restricting
ourselves to a linearized classical treatment (all quantum
effects will average to zero), we begin with the power input
to the optical cavity, which can be expressed in terms of its

FIG. 12. Schematic illustrating the flow of the optical field
through the optomechanical cavity.

field amplitude as Pin = h̄ωd|āin|2 [16]. The power recollected
by the external waveguide (and subsequently sent to our de-
tection apparatus) is then simply given by (see Appendix B 4)

Pout = h̄ωd|āout|2 = Pin

[
1 − κeκi

�2 + (κ/2)2

]
. (B63)

Meanwhile, the power absorbed by the mechanical resonator
is determined to be

Pabs = h̄ωd|āabs|2 = Pin
κeκa

�2 + (κ/2)2
. (B64)

Finally, power lost to other cavity dissipation channels is
found as

Po = h̄ωd|āo|2 = Pin
κeκo

�2 + (κ/2)2
, (B65)

where āo = √
κoā is the steady-state field amplitude as-

sociated with these damping mechanisms. We note that
Eqs. (B63)–(B65) obey the conservation of energy in the sense
that Pin = Pout + Pabs + Po.

Equation (B64) has very important consequences for op-
tically induced heating of the mechanical resonator. This is
due to the fact that even if the same amount power is input
to the cavity, differing values of κe and κi, and therefore
κ , can cause varying amounts of power to be absorbed by
the resonator, causing it to heat to different temperatures.
For instance, inputting the values of κ and κe from the two
different coupling conditions used to obtain the data found
in Figs. 4 and 5 (while assuming κa remains the same in each
case), we find the power absorbed by the mechanical resonator
(on cavity resonance) to be approximately 25% larger for the
data in Fig. 5 compared to that in Fig. 4. This effect, coupled
with the rapid decrease in β at low optical input powers
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Drive Detuning,                       (GHz)

FIG. 13. Attractor diagram of δ�m(A)/�m for the device param-
eters given in Fig. 4, except with β = 0 such that only radiation-
pressure effects are present. We note that not only does the sign
of the optomechanical damping reverse, restoring what one would
expect for a radiation-pressure-driven system, but the damping force
is no longer strong enough to induce mechanical self-oscillations
at this power (Pin = 10.1 μW), as demonstrated by the fact that
δ�m(A)/�m > −1 for all optical drive detunings.

[see Fig. 5(e)], likely accounts for the reason why β differs
between these two data sets for similar input powers.

APPENDIX C: RADIATION-PRESSURE-DRIVEN
ATTRACTOR

To understand how substantial photothermal effects are in
determining the optomechanical properties of the studied de-
vice, it is interesting to investigate the attractor diagram with
only the radiation-pressure force present. To do this, we have
produced an attractor diagram for the device parameters given
in Fig. 4 while setting β = 0 such that the photothermal force
is negated. The result is drastic (see Fig. 13), as the absence of
photothermal effects causes the detuning dependence of the
optomechanical damping to reverse. Furthermore, we show
that with the radiation-pressure force alone, this system is no
longer able to be driven into self-oscillations at the considered
optical input power of Pin = 10.1 μW. It is therefore clear that
the addition of the photothermal force has significant effects
on the optomechanical properties of the system.

APPENDIX D: POWER DEPENDENCE
OF OPTOMECHANICAL PROPERTIES

1. Spring effect and damping

Along with the studies shown in Figs. 3–5, we have also
investigated the optomechanical properties of our device over
nearly three orders of magnitude in input optical power from
approximately 50 nW to 10 μW, as seen in Fig. 14. Most
importantly, we observe that for all input powers, the optome-
chanical damping exhibits the same qualitative behavior as
the optical spring effect, similar to what is seen in Figs. 3(d)
and 3(f), as well as Figs. 4(c) and 4(d). Such a power de-
pendence is in agreement with an optomechanical damping
caused by dueling radiation-pressure and photothermal forces,
as both of these effects scale identically with optical input
power [see Eqs. (B16) and (B47)].
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FIG. 14. Optomechanical (a) spring effect and (b) damping over
nearly three orders of magnitude in input optical power, ranging
from approximately 50 nW to 10 μW. Even at very low powers,
optomechanical damping occurs for a blue-detuned optical drive,
qualitatively matching the detuning dependence of the optomechani-
cal spring effect.

2. Hysteresis in optical transmission

Due to the bistable nature of the attractor diagram shown in
Fig. 4(e), amplification of the mechanical resonator’s motion
results in hysteretic behavior of the transmission through the
cavity depending on whether the pump beam swept from its
red or blue side. As the optical power input to the cavity is
increased, optomechanical amplification occurs over a larger
range of drive detunings, causing this hysteresis spacing to
expand. In Fig. 15, we showcase this effect for the data in
Figs. 5(a) and 5(c), where the we demonstrate that at high
input powers (Pin � 25 μW), the hysteresis spacing roughly
obeys a square-root dependence.

APPENDIX E: PHOTOTHERMAL RELAXATION TIME

The photothermal time constant τ that was introduced in
Eq. (3) is a very important quantity that sets the time scale,
and in some instances the strength, of photothermally driven
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FIG. 15. Hysteresis spacing of the transmission through the cav-
ity versus optical input power (green circles) extracted from the data
in Figs. 5(a) and 5(c). The orange line is a fit to a power law, from
which we find an exponent of 0.52, indicating a near square-root
dependence of the hysteresis spacing on input optical power.

optomechanical effects. For a thin beam of rectangular cross
section, Zener showed that this time constant is dominated
by thermal relaxation of the fundamental mode of the beam,
resulting in

τ = l2Cp

π2kth
, (E1)

where l , Cp, and kth are the length, volumetric heat capacity at
constant pressure (with units of J/m3 K), and thermal conduc-
tivity of the beam, respectively [81–83]. For a nonmagnetic,
crystalline insulator (e.g., silicon), the thermal properties of
the material are governed by its phonons, such that at low
temperatures its heat capacity can be determined according
to the Debye model as [84]

Cp = 2π2k4
BT 3

5h̄3c3
s

, (E2)

where cs = ( 1
3

∑
i

1
c3

i
)
−1/3

is the effective speed of sound in the
material, with the sum taken over the single longitudinal (l)
and two transverse (t1, t2) phonon polarizations. For silicon,
this effective speed is given by cs = 5718 m/s, where we
have taken cl = 9148 m/s, ct1 = 4679 m/s, and ct2 = 5857
m/s [64]. Furthermore, treating the phonons as a diffuse,
noninteracting gas, we can express the thermal conductivity
as [84]

kth = 1

3
Cp�cs = 2π2k4

BT 3�

15h̄3c2
s

, (E3)

where � is the phonon mean free path, which is in gen-
eral temperature-dependent [85]. However, as pointed out by
Casimir [86], below a certain temperature this mean free path
will become comparable to the dimensions of the system,
such that it will be limited by the device’s finite size. We
note that for the resonator studied in this work, this transition
temperature is approximately 100 K [85], far exceeding its
experimental operating temperature. For a beam with a rect-
angular cross section, this boundary-limited mean free path is

given by � = 1.12
√

wd , where w and d are the width and
thickness of the beam [86–90]. Inputting this relation, along
with Eqs. (E2) and (E3), into Eq. (E1) allows us to express the
boundary-limited thermal relaxation time as

τ = 3l2

1.12π2cs

√
wd

. (E4)

Therefore, at low temperatures and for small cross sections
(T � 100 K for dimensions on the order of 100 nm [85]), the
thermal relaxation time for a silicon beam depends only on the
geometry and speed of sound of the system, which are to first
order temperature-independent.

While the above description works well for determining the
thermal time constant of a simple beam with a uniform rectan-
gular cross section, it is unclear if such an analysis applies to
the complex device structure studied here. Therefore, we have
performed finite element simulations to accurately determine
the thermal relaxation time for this device [41]. Here, the
phonon mean free path is limited by the smallest dimension
of our resonator (i.e., w3 = 151 nm in Fig. 7), leading to � =
1.12

√
w3d = 218 nm, where we have taken d = 250 nm as

the thickness of the silicon device. Using this value for the
mean free path, along with the temperature-dependent expres-
sions for the specific heat capacity and thermal conductivity
found in Eqs. (E2) and (E3), we simulate the heating of
the device due to absorption of laser power. To do this, the
laser-driven heating is approximated as a uniform heat load
applied to the inner surface of the resonator facing the disk
[see inset of Fig. 16]. The magnitude of this heat load is cho-
sen to be Pabs = 6 μW to approximately match the expected
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FIG. 16. Plot of the normalized temperature T/Tf versus time for
the finite element heating simulation used to determine the thermal
relaxation time of the resonator. Inset is a schematic illustrating the
simulation procedure, whereby a uniform heat load of 6 μW is ap-
plied to the surface of the resonator indicated by the red arrows, while
its temperature profile is probed in time at the positions denoted by
the colored crosses. By normalizing each of these extracted data sets
(color-coded to match the corresponding probe point) to its final
temperature, a universal heating trend along the curved portion of
the resonator is demonstrated. From these normalized profiles, we
determine the thermal relaxation time of the device (τ = 9.5 ns) as
the time required for the temperature to increase from its initial value
by an amount �T (1 − e−1) [see Eq. (E5)].
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absorbed power for the conditions associated with Fig. 4 (i.e.,
κ = 2.04 GHz, κe = 0.38 GHz, and Pin = 10.1 μW), while
also assuming κa = κi and � = 0 (see Appendix B 6). The
simulated temperature increase of the resonator as a function
of time is then monitored at seven equally spaced points along
its rounded portion, as shown in Fig. 16. Continuing with the
Zener approximation (i.e., the majority of this thermal relax-
ation occurs through the fundamental mode of the resonator),
we expect the temperature at each of these points to increase
according to [29,83,91]

T (t ) = T0 + �T (1 − e−t/τ ). (E5)

Here �T = Tf − T0 is the difference between the resonator’s
temperature T0 at t = 0 when the heat load is initially applied
and its final equilibrium temperature Tf that is reached for t �
τ . We note that while each point on the resonator heats from
an initial temperature of T0 = 4.2 K to varying equilibrium
temperatures ranging from Tf = 43 K to Tf = 49 K, when
normalized by these final temperatures, each simulated data
set collapses onto a single universal trace (see Fig. 16). There-
fore, we can use Eq. (E5) to extract the thermal relaxation time

as the average time required for the resonator to heat from T0

to T0 + �T (1 − e−1). Performing this calculation for each of
these data sets, we find τ = 9.5 ± 0.2 ns, where the uncertainty
is given by the standard deviation of this distribution.

To conclude this section, we use this simulated value of
τ to evaluate how well our irregular resonator geometry is
approximated as a uniform rectangular beam (with width w3

and thickness d). This is done by rearranging Eq. (E4) to
obtain an effective thermal length of

leff =
√

1.12π2csτ
√

w3d

3
. (E6)

Using the simulated time constant and the parameters for
our device, we find this effective length to be leff = 6.24 μm.
Comparing this value to the total length of our device, ltot =
l1 + l2 + l3 + 2Rd = 7.06 μm, as measured from the tip of
one end of the rounded portion of the resonator to its anchor
point, we find that these two lengths agree very well with each
other. Thus, our device is well-approximated as a uniform
beam provided we introduce a small reduction in its length
by a numerical factor of leff/ltot = 0.88.
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[58] I. Marinković, A. Wallucks, R. Riedinger, S. Hong, M.
Aspelmeyer, and S. Gröblacher, Phys. Rev. Lett. 121, 220404
(2018).

[59] A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J.
Kippenberg, Nat. Phys. 4, 415 (2008).

[60] B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis,
Ann. Phys. 339, 181 (2013).

[61] A. J. R. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim,
A. Fredrick, X. Rojas, P. Doolin, and J. P. Davis, Rev. Sci.
Instrum. 86, 013107 (2015).

[62] C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O.
Painter, Opt. Express 15, 4745 (2007).

[63] B. D. Hauer, P. H. Kim, C. Doolin, A. J. R. MacDonald, H.
Ramp, and J. P. Davis, EPJ Tech. Instrum. 1, 4 (2014).

[64] B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis,
Phys. Rev. B 98, 214303 (2018).

[65] R. Lifshitz and M. C. Cross, Nonlinear dynamics of nanome-
chanical and micromechanical resonators, in Review of Nonlin-
ear Dynamics and Complexity, edited by H. G. Schuster (Wiley,
Weinheim, 2008), Vol. 1, Chap. 1.

[66] K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White,
J. Appl. Phys. 48, 865 (1977).

[67] T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742
(2004).

[68] A. J. R. MacDonald, B. D. Hauer, X. Rojas, P. H. Kim,
G. G. Popowich, and J. P. Davis, Phys. Rev. A 93, 013836
(2016).

[69] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin,
Phys. Rev. Lett. 99, 093902 (2007).

[70] F. Elste, S. M. Girvin, and A. A. Clerk, Phys. Rev. Lett. 102,
207209 (2009).

[71] A. Xuereb, R. Schnabel, and K. Hammerer, Phys. Rev. Lett.
107, 213604 (2011).

[72] F. Marino and F. Marin, Phys. Rev. E 83, 015202(R) (2011).
[73] F. Marino and F. Marin, Phys. Rev. E 87, 052906 (2013).
[74] B. D. Hauer, J. Maciejko, and J. P. Davis, Ann. Phys. 361, 148

(2015).
[75] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
[76] M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise,

and T. J. Kippenberg, Opt. Express 18, 23236 (2010).
[77] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J.

Vahala, Phys. Rev. Lett. 94, 223902 (2005).
[78] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J.

Vahala, Phys. Rev. Lett. 95, 033901 (2005).
[79] H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala,

Opt. Express 13, 5293 (2005).
[80] M. Ludwig, Ph.D. thesis, Friedrich-Alexander University

Erlangen-Nürnberg, 2013.
[81] C. Zener, Elasticity and Anelasticity of Metals (University of

Chicago Press, Chicago, 1948).
[82] R. Lifshitz and M. L. Roukes, Phys. Rev. B 61, 5600 (2000).
[83] M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S.

Rabinovich, Opt. Express 15, 7557 (2007).

053803-21

https://doi.org/10.1063/1.109413
https://doi.org/10.1063/1.109413
https://doi.org/10.1063/1.109413
https://doi.org/10.1063/1.109413
https://doi.org/10.1063/1.1600513
https://doi.org/10.1063/1.1600513
https://doi.org/10.1063/1.1600513
https://doi.org/10.1063/1.1600513
https://doi.org/10.1038/nature03118
https://doi.org/10.1038/nature03118
https://doi.org/10.1038/nature03118
https://doi.org/10.1038/nature03118
https://doi.org/10.1103/PhysRevB.78.035309
https://doi.org/10.1103/PhysRevB.78.035309
https://doi.org/10.1103/PhysRevB.78.035309
https://doi.org/10.1103/PhysRevB.78.035309
https://doi.org/10.1103/PhysRevLett.101.133903
https://doi.org/10.1103/PhysRevLett.101.133903
https://doi.org/10.1103/PhysRevLett.101.133903
https://doi.org/10.1103/PhysRevLett.101.133903
https://doi.org/10.1103/PhysRevLett.101.133904
https://doi.org/10.1103/PhysRevLett.101.133904
https://doi.org/10.1103/PhysRevLett.101.133904
https://doi.org/10.1103/PhysRevLett.101.133904
https://doi.org/10.1063/1.2405373
https://doi.org/10.1063/1.2405373
https://doi.org/10.1063/1.2405373
https://doi.org/10.1063/1.2405373
https://doi.org/10.1063/1.2711181
https://doi.org/10.1063/1.2711181
https://doi.org/10.1063/1.2711181
https://doi.org/10.1063/1.2711181
https://doi.org/10.1109/JMEMS.2004.838360
https://doi.org/10.1109/JMEMS.2004.838360
https://doi.org/10.1109/JMEMS.2004.838360
https://doi.org/10.1109/JMEMS.2004.838360
https://doi.org/10.1109/JMEMS.2012.2226931
https://doi.org/10.1109/JMEMS.2012.2226931
https://doi.org/10.1109/JMEMS.2012.2226931
https://doi.org/10.1109/JMEMS.2012.2226931
https://doi.org/10.1038/nature05273
https://doi.org/10.1038/nature05273
https://doi.org/10.1038/nature05273
https://doi.org/10.1038/nature05273
https://doi.org/10.1364/OE.19.021904
https://doi.org/10.1364/OE.19.021904
https://doi.org/10.1364/OE.19.021904
https://doi.org/10.1364/OE.19.021904
https://doi.org/10.1038/nphys2196
https://doi.org/10.1038/nphys2196
https://doi.org/10.1038/nphys2196
https://doi.org/10.1038/nphys2196
https://doi.org/10.1088/1367-2630/14/8/085024
https://doi.org/10.1088/1367-2630/14/8/085024
https://doi.org/10.1088/1367-2630/14/8/085024
https://doi.org/10.1088/1367-2630/14/8/085024
https://doi.org/10.1021/nl302036x
https://doi.org/10.1021/nl302036x
https://doi.org/10.1021/nl302036x
https://doi.org/10.1021/nl302036x
https://doi.org/10.1103/PhysRevE.84.046605
https://doi.org/10.1103/PhysRevE.84.046605
https://doi.org/10.1103/PhysRevE.84.046605
https://doi.org/10.1103/PhysRevE.84.046605
https://doi.org/10.1038/ncomms5663
https://doi.org/10.1038/ncomms5663
https://doi.org/10.1038/ncomms5663
https://doi.org/10.1038/ncomms5663
https://doi.org/10.1021/acs.nanolett.6b04769
https://doi.org/10.1021/acs.nanolett.6b04769
https://doi.org/10.1021/acs.nanolett.6b04769
https://doi.org/10.1021/acs.nanolett.6b04769
https://doi.org/10.1038/s41467-017-01840-6
https://doi.org/10.1038/s41467-017-01840-6
https://doi.org/10.1038/s41467-017-01840-6
https://doi.org/10.1038/s41467-017-01840-6
https://doi.org/10.1038/nphys3714
https://doi.org/10.1038/nphys3714
https://doi.org/10.1038/nphys3714
https://doi.org/10.1038/nphys3714
https://doi.org/10.1038/nphys3900
https://doi.org/10.1038/nphys3900
https://doi.org/10.1038/nphys3900
https://doi.org/10.1038/nphys3900
https://doi.org/10.1088/2040-8986/aa551e
https://doi.org/10.1088/2040-8986/aa551e
https://doi.org/10.1088/2040-8986/aa551e
https://doi.org/10.1088/2040-8986/aa551e
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1088/1367-2630/10/9/095013
https://doi.org/10.1088/1367-2630/10/9/095013
https://doi.org/10.1088/1367-2630/10/9/095013
https://doi.org/10.1088/1367-2630/10/9/095013
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevA.92.013811
https://doi.org/10.1103/PhysRevA.92.013811
https://doi.org/10.1103/PhysRevA.92.013811
https://doi.org/10.1103/PhysRevA.92.013811
https://doi.org/10.1038/nature14349
https://doi.org/10.1038/nature14349
https://doi.org/10.1038/nature14349
https://doi.org/10.1038/nature14349
https://doi.org/10.1126/science.aan7939
https://doi.org/10.1126/science.aan7939
https://doi.org/10.1126/science.aan7939
https://doi.org/10.1126/science.aan7939
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1103/PhysRevLett.121.220404
https://doi.org/10.1038/nphys939
https://doi.org/10.1038/nphys939
https://doi.org/10.1038/nphys939
https://doi.org/10.1038/nphys939
https://doi.org/10.1016/j.aop.2013.08.003
https://doi.org/10.1016/j.aop.2013.08.003
https://doi.org/10.1016/j.aop.2013.08.003
https://doi.org/10.1016/j.aop.2013.08.003
https://doi.org/10.1063/1.4905682
https://doi.org/10.1063/1.4905682
https://doi.org/10.1063/1.4905682
https://doi.org/10.1063/1.4905682
https://doi.org/10.1364/OE.15.004745
https://doi.org/10.1364/OE.15.004745
https://doi.org/10.1364/OE.15.004745
https://doi.org/10.1364/OE.15.004745
https://doi.org/10.1140/epjti4
https://doi.org/10.1140/epjti4
https://doi.org/10.1140/epjti4
https://doi.org/10.1140/epjti4
https://doi.org/10.1103/PhysRevB.98.214303
https://doi.org/10.1103/PhysRevB.98.214303
https://doi.org/10.1103/PhysRevB.98.214303
https://doi.org/10.1103/PhysRevB.98.214303
https://doi.org/10.1063/1.323747
https://doi.org/10.1063/1.323747
https://doi.org/10.1063/1.323747
https://doi.org/10.1063/1.323747
https://doi.org/10.1364/OPEX.12.004742
https://doi.org/10.1364/OPEX.12.004742
https://doi.org/10.1364/OPEX.12.004742
https://doi.org/10.1364/OPEX.12.004742
https://doi.org/10.1103/PhysRevA.93.013836
https://doi.org/10.1103/PhysRevA.93.013836
https://doi.org/10.1103/PhysRevA.93.013836
https://doi.org/10.1103/PhysRevA.93.013836
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.102.207209
https://doi.org/10.1103/PhysRevLett.102.207209
https://doi.org/10.1103/PhysRevLett.102.207209
https://doi.org/10.1103/PhysRevLett.102.207209
https://doi.org/10.1103/PhysRevLett.107.213604
https://doi.org/10.1103/PhysRevLett.107.213604
https://doi.org/10.1103/PhysRevLett.107.213604
https://doi.org/10.1103/PhysRevLett.107.213604
https://doi.org/10.1103/PhysRevE.83.015202
https://doi.org/10.1103/PhysRevE.83.015202
https://doi.org/10.1103/PhysRevE.83.015202
https://doi.org/10.1103/PhysRevE.83.015202
https://doi.org/10.1103/PhysRevE.87.052906
https://doi.org/10.1103/PhysRevE.87.052906
https://doi.org/10.1103/PhysRevE.87.052906
https://doi.org/10.1103/PhysRevE.87.052906
https://doi.org/10.1016/j.aop.2015.05.031
https://doi.org/10.1016/j.aop.2015.05.031
https://doi.org/10.1016/j.aop.2015.05.031
https://doi.org/10.1016/j.aop.2015.05.031
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1364/OE.18.023236
https://doi.org/10.1364/OE.18.023236
https://doi.org/10.1364/OE.18.023236
https://doi.org/10.1364/OE.18.023236
https://doi.org/10.1103/PhysRevLett.94.223902
https://doi.org/10.1103/PhysRevLett.94.223902
https://doi.org/10.1103/PhysRevLett.94.223902
https://doi.org/10.1103/PhysRevLett.94.223902
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1103/PhysRevLett.95.033901
https://doi.org/10.1364/OPEX.13.005293
https://doi.org/10.1364/OPEX.13.005293
https://doi.org/10.1364/OPEX.13.005293
https://doi.org/10.1364/OPEX.13.005293
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1364/OE.15.007557
https://doi.org/10.1364/OE.15.007557
https://doi.org/10.1364/OE.15.007557
https://doi.org/10.1364/OE.15.007557


HAUER, CLARK, KIM, DOOLIN, AND DAVIS PHYSICAL REVIEW A 99, 053803 (2019)

[84] F. Pobell, Matter and Methods at Low Temperatures (Springer-
Verlag, Berlin, 2007).

[85] L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).
[86] H. B. G. Casimir, Physica 5, 495 (1938).
[87] J. M. Ziman, Electrons and Phonons: The Theory of Transport

Phenomena in Solids (Oxford University Press, Oxford, 2001).
[88] J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Nano

Lett. 9, 1861 (2009).

[89] J.-S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois,
Phys. Rev. B 82, 155458 (2010).

[90] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clark, S. Fan, K. E.
Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar,
H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Appl. Phys. Rev.
1, 011305 (2014).

[91] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Oxford University Press, Oxford, 1959).

053803-22

https://doi.org/10.1007/BF00323873
https://doi.org/10.1007/BF00323873
https://doi.org/10.1007/BF00323873
https://doi.org/10.1007/BF00323873
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl803844j
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1063/1.4832615
https://doi.org/10.1063/1.4832615
https://doi.org/10.1063/1.4832615
https://doi.org/10.1063/1.4832615

