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Recent experimental realizations of uniform confining potentials for ultracold atoms make it possible to
create quantum acoustic resonators and explore nonequilibrium dynamics of quantum field theories. These
systems offer a promising platform for studying the dynamical Casimir effect, since they allow one to achieve
relativistic, i.e., near sonic, velocities of the boundaries. In comparison to previously studied optical and classical
hydrodynamic systems, ultracold atoms allow one to realize a broader class of dynamical experiments combining
both classical driving and vacuum squeezing. In this paper, we discuss theoretically two types of experiments
with interacting one-dimensional condensates with moving boundaries. Our analysis is based on the Luttinger
liquid model which utilizes the emergent conformal symmetry of the low-energy sector of the Lieb-Liniger
model. The first system we consider is a variable-length interferometer with two Y-shaped junctions connected
back to back. We demonstrate that dynamics of the relative phase between the two arms of the interferometer
can be analyzed using the formalism developed by Moore in the problem of electromagnetic vacuum squeezing
in a cavity with moving mirrors. The second system we discuss is a single condensate in a box potential with
periodically moving walls. This system exhibits classical excitation of the mode resonant with the drive as well
as nonlinear generation of off-resonant modes. In addition, we find strong parametric multimode squeezing
between modes whose energy difference matches integer multiples of the drive frequency.
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I. INTRODUCTION

Understanding quantum dynamics of many-body systems
with time-dependent size and geometry is at the heart of many
fundamental problems in physics. In cosmology, inflation
and subsequent expansion of the universe resulted in strong
quantum fluctuations of the inflanton field, which then froze
into classical inhomogeneities [1]. This led to the formation
of the lumpy nature of the currently observed universe with
its galaxies and cosmic voids. In nuclear physics, emission
of neutrons and α particles during the fission processes can
be studied from the perspective of particles moving in the
presence of time-dependent boundaries [2]. In field theory
and quantum gravity, Hawking radiation has a direct analog
in the phenomenon of photon creation by a relativistically
accelerating mirror [3].

Many common properties of systems with time-dependent
boundaries can be understood from the perspective of the
dynamical Casimir effect [4] (see Ref. [5] for a review). In
this paradigmatic problem, one considers an optical cavity
with mirrors moving relative to each other. While classically
changing the length of the cavity should not change its vac-
uum state, quantum mechanical mirrors moving at veloci-
ties comparable to the speed of light produce a “squeezed
vacuum” state. In the ground state of a cavity, one finds
only virtual photons arising from the zero-point motion of
harmonic oscillators describing eigenmodes of the cavity.
When mirrors move, they can turn these virtual photons into
real particles. Moreover, one finds that photons created in
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such a process appear as entangled pairs, which is why the
dynamical Casimir effect has been suggested as a resource
for several applications in quantum information [6]. What
makes the dynamical Casimir effect particularly subtle is that
the entire Hilbert space changes in time. Thus, one faces the
problem of not just understanding evolution of many degrees
of freedom in Hilbert space but of combining the old and the
newly created ones.

While the dynamical Casimir effect has been originally
formulated for optical cavities, it is rather challenging to
realize with electromagnetic fields. The main obstacle is
the requirement of mirrors moving at speeds comparable to
the speed of light. This motivated the search for alterna-
tive realizations of this fundamental phenomenon. Important
milestones in this direction have been achieved in recent
experiments with one-dimensional arrays of superconducting
Josephson junctions [7] and Bose-Einstein condensates of ul-
tracold atoms [8]. In Josephson junction arrays, parameters of
the Superconducting quantum interference device (SQUIDs)
could be changed in time, thus modifying the optical path
length. This resulted in excitation of photons analogous to
dynamical Casimir effect, although the geometric size of the
system remained fixed. In experiments with Bose-Einstein
condensates of ultracold atoms, modulation of the transverse
confining potential was shown to lead to the production of
pairs of excitations at half of the modulation frequency. These
experiments provided the first demonstration of coherent par-
ticle production in systems with time-dependent parameters
and gave the first indications of the correlated nature of
the dynamical Casimir effect. In particular, the experiments
of Jaskula et al. showed modulation of excited particles at
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L(t) = L0(1 + (t))

FIG. 1. Quantum zipper. One of our proposed experiments is
a variable-length interferometer made up of two Y junctions back
to back. The relative phase between the BECs on the two arms
of the intereferometer, φrel, obeys Dirichlet boundary conditions
at the junctions, φ1(0, t ) = φ2(0, t ) and φ1(L(t ), t ) = φ2(L(t ), t ).
Oscillating one of the Y junctions simulates the moving mirror in an
electromagnetic cavity with the relative phase being identified with
the QED gauge field, φrel ↔ A.

opposite momenta. However, the full extent of the coherent
nature of the dynamical Casimir effect remains largely un-
explored. Absence of the moving walls in these experiments
implied that there was no mixing between different modes
although there was squeezing of individual modes.

Motivated by recent progress in creating flat box potentials
for ultracold atoms [9], we discuss theoretically an inter-
esting approach for exploring the dynamical Casimir effect
in experiments with one-dimensional condensates. Weakly
interacting bosons in 1d exhibit emergent Lorentz symmetry
because their low-energy dynamics can be described using
the Luttinger liquid formalism of sound-like excitations [10].
A system of finite size with a uniform density can then be
interpreted as an acoustic resonator.

We consider in this project two distinct systems for explor-
ing the intriguing physics of the dynamical Casimir effect,
both of which can be realized using currently available ex-
perimental techniques.

A. The quantum zipper

The first system we propose consists of two Y junctions
[11] connected back to back. It can also be understood as
a variable-length one-dimensional atomic interferometer (see
Fig. 1). The relevant degrees of freedom come from the rela-
tive phase between the two arms of the interferometer, φrel =
φ1 − φ2. In the connecting point of the Y junctions, the rela-
tive phase must be equal to zero, which provides the analog
of the mirror boundary conditions of electromagnetic cavities.
The time-dependent geometry arises from changing the length
of the “split” part of the condensate, which can be achieved,
for example, with radio frequency (RF) potentials. As we
discuss below, it offers a faithful representation of the original
dynamical Casimir effect considered in the context of cavity
Quantum Electrodynamics (QED) (for details, see Sec. II).
The sound velocity in a Bose-Einstein Condensate (BEC)

ρ0

L(t) = L0(1 + (t))

x

(t)

FIG. 2. One-dimensional (1d) quantum fluid shaken by a moving
wall. The moving wall excites both classical expectations as well as
quantum fluctuations of the density and current density of the fluid.

is of the order of a few millimeters per second, allowing
near-sonic velocities to be achieved by the boundary, required
for resonant effects to be significant. We note, however, that
one should avoid supersonic motion where the Luttinger liq-
uid approach breaks down. The primary experimental observ-
able, the relative phase between the two condensates, φrel, can
be measured by observing the interference after a transverse
expansion of the atoms [12–14].

In our analysis, we primarily address the problem of
periodic modulation of the atomic interferometer, L(t ) =
L0(1 + ε(1 − cos (ωt )), although the same approach can be
used to study other types of dynamical excitations. The main
consequences of the time-dependent change of the boundary
is the generation of a squeezed state and the associated particle
creation (phonons). These effects are encoded in the quan-
tum fluctuations of φrel and the energy stored in the relative
degrees of freedom. The most interesting dynamics occurs
when the driving frequency matches an integer multiple of the
fundamental energy difference of the Luttinger liquid acous-
tic resonator. At short times, the moving boundary excites
multiple modes in the system with the number of phonons in
every mode growing quadratically in time. In this regime, we
observe strong correlations between modes whose frequencies
differ by the drive frequency. This results in a checker-board-
type correlation matrix, 〈φrel(n, t )φrel(m, t )〉, shown in Fig. 3.
At late times, parametric pair production process is dominant
in which pairs of identical phonons are produced, each at
half the frequency of the drive. At this stage, the number of
phonons in nonresonant modes starts to decrease, whereas
in the parametrically resonant mode the number of phonons
increases linearly in time (see Fig. 6).

B. Shaking a box

In the second setup, we consider a single 1d box containing
interacting ultracold bosons. We discuss a shaking-type proto-
col, in which one of the confining walls of the trap oscillates at
a fixed frequency, resulting again in the periodic modulation
of the condensate length. Similar results are obtained when
both walls are moving. The primary experimental observable
that we discuss in this setup is the local density profile (see
Fig. 2).
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It is useful to put our analysis in the perspective of earlier
work on related systems. In the area of classical acoustics and
hydrodynamics, the problem of a pipe with a moving piston
has received considerable attention (see Refs. [15,16] and
references therein). The main limitation of these studies is the
restriction to classical expectation values of operators and dis-
regard of correlations. Furthermore, most of the papers used
simplified boundary conditions in which the flow velocity
was set to match the wall’s velocity not at the actual moving
position of the walls but at some fixed point. In the linear
response regime, such an approximation is justified; however,
in many cases we are interested in dynamics beyond linear
response. In this case, changing the boundary conditions leads
to dramatic changes of the long time dynamics. On the other
hand, the advantage of the classical treatment is that it allows
one to include effects of nonlinearities, which have been
shown to lead to the proliferation of shock waves.

In the area of nonequilibrium quantum field theories, the
most closely related problem to what we discuss in this paper
is the dynamical Casimir effect originally studied by Moore
in the context of electromagnetic cavities [4]. In this class of
problems, one only considers time evolution of correlation
functions, since classical expectation values of the fields
are forbidden by symmetry (

−→
A → −−→

A is the symmetry of
both the Hamiltonian and the Dirichlet boundary conditions,−→
A |boundary = 0, on the moving mirrors). In our analysis of
the cold atoms in a periodically squeezed box, we consider
both the classical expectation values of operators and their
correlation functions. At first sight, it may appear that the
problem of a quantum fluid in a box of variable length
is very different from the canonical Casimir effect. In the
former case, the boundary conditions correspond to the flow
velocity at the position of the moving walls to equal the wall’s
velocity. In the case of the optical cavity of variable length, the
boundary conditions for the vector potential is to vanish at the
boundary [4].

We begin our analysis of the shaken box problem by
introducing an exact transformation that allows one to convert
the hydrodynamic boundary conditions for this system into
Dirichlet-type conditions with j = 0 on the moving walls,
where j is the current of the atoms. As a consequence of
this transformation, an additional time-dependent quadratic
potential is introduced, which is responsible for producing the
classical expectation values of the fields. Experimentally, it
may be useful to have separate controls over the classical and
quantum components of the drive. This can be achieved by
combining the motion of the walls with a compensating exter-
nal time-dependent parabolic potential, which is readily avail-
able in experiments with ultracold atoms. Motivated by this
consideration, we include both types of driving in our anal-
ysis. Correlation functions are closely related to the Green’s
functions introduced for solving classical linear differential
equations. Hence, the transformation that we introduced and
correlation functions that we found are useful for the classi-
cal solution of the moving piston problem. They allow one
to treat the boundary conditions in the linearized dynamics
exactly.

We find that results of this improved analysis of the bound-
ary conditions is rather dramatic at long modulation times.

This difference arises from the fact that including moving
walls introduces mixing between different modes even in
linear hydrodynamics. The physical reason for the mixing is
the Doppler shift of waves reflected from the moving walls.
One of the most dramatic results of the mode mixing is the
nontrivial evolution of the resonantly driven mode.

At short times, the amplitude of this mode grows linearly
in time, similarly to the case of a resonantly driven single
harmonic oscillator. At the same time, nonresonant modes
become populated due to mixing with the resonantly driven
one. At longer times, the increase of the amplitude of the
resonantly driven mode saturates and eventually this mode
becomes suppressed. We attribute this suppression to the
destructive interference between the drive and the previously
excited nonresonant modes. This should be contrasted to
having simple damping in a system without mode coupling.
In the latter case, when an eigenmode is driven resonantly,
its amplitude first increases and then saturates to some finite
value when the energy deposited by the drive balances the
energy lost to dissipation. The effect of mode squeezing
coming from the dynamical Casimir effect is much more
dramatic: It suppresses the resonant mode amplitude (see
Fig. 11). This behavior is also to be contrasted with the usual
nonlinear steady states. In the latter, as the amplitude increases
the resonant mode becomes detuned from the drive. In such
cases, we have again an increasing resonant amplitude that
eventually saturates when it goes off resonance.

We arranged our paper so that the quantum zipper and
shaken box systems are discussed separately. When analyzing
the zipper system, we focus on correlation functions and
quantum fluctuations. In the case of the shaken box, our
emphasis is on the classical expectation values of the density
and velocity, which correspond to the coherent part of the
wave function for individual modes.

This paper is organized as follows. We begin with a brief
discussion of hydrodynamics of interacting bosons in 1d
which provides the basis of the Luttinger liquid model for
this system. We show that for the interferometer shown in
Fig. 1 the relative phase dynamics can be described by the
wave equation with the Dirichlet boundary conditions at the
points of the Y junctions. We present concrete predictions for
the quantum zipper with periodically modulated length at the
end of Sec. IV.

In Sec. V, we switch to the shaken box problem and discuss
how conservation of mass leads to inhomogeneous boundary
conditions in the shaken box experiment. Through a series of
transformations, we derive a mathematical formulation of the
model constructed in such a way that it obeys Dirichlet-type
boundary conditions j = 0 at the positions of the walls at the
expense of having an additional time-dependent potential. A
naive perturbative treatment of the problem is given in Sec. VI
that helps readers develop an intuition for the classical behav-
ior of the system. This is followed by introducing mode quan-
tization and analyzing correlation functions. This formalism
provides a natural way of including the changing geometry of
the system and allows us to solve the classical problem of a
moving piston. We note that within linear hydrodynamics our
solution is exact and goes beyond previous papers that treated
the boundary conditions only approximately.
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In linear hydrodynamics, dynamics of the classical expec-
tation values of operators and of their second-order corre-
lations are decoupled. Hence, one may be tempted to con-
clude that quantum fluctuations in the shaken box should be
identical to those of the quantum zipper case (i.e., vacuum
squeezing in optical cavity). We point out that there is a subtle
difference in the character of commutation relations between
the two types of problems. In Sec. VIII, we discuss effects of
nonlinear dispersion, nonlinearities, and thermal fluctuations,
which should be relevant for actual experiments with shaken
condensates, and in Sec. IX, we give an alternative Hamil-
tonian prescription to go beyond Luttinger liquid. Finally,
in Sec. X, we provide a summary and a brief discussion of
interesting open issues.

II. THE QUANTUM ZIPPER

A. Luttinger liquid formalism for interacting 1d systems

A hydrodynamic approach is a general framework that
describes the long-wavelength and small-frequency limits of
dynamics in a large variety of systems. To make our analysis
more transparent, in this section we show explicitly how the
hydrodynamic equations of motion can be obtained for a
cold gas of weakly interacting bosons. In the hydrodynamic
limit, a superfluid is described by its low-lying “gapless”
modes which correspond to current-density fluctuations. The
variables obey generically the continuity equation and the
Josephson relation,

∂tρ(x, t ) = − h̄ρ0

m
∂x(∂xφ(x, t )), (1a)

h̄∂tφ(x, t ) = −U0ρ(x, t ), (1b)

[ρ(x, t ), φ(x′, t )] = iδ(x − x′), (1c)

where higher order derivative terms have been ignored and
we limited ourselves to equations of motion around the equi-
librium uniform state. The canonically conjugate variables
are the density ρ(x, t ) and the phase φ(x, t ) of the super-
fluid, where the quantum nature is manifested through their
commutation relations [Eq. (1c)]. ρ0 is the average density
of the superfluid, m is the mass of the bosons, and U0 is the
effective interaction strength of the point interaction between
the bosons.

More generally for gapless systems, low-lying excitations
of interacting 1d systems, in the case of both bosonic and
fermionic particles, have a unified description given by the
standard Tomonaga-Luttinger liquid Hamiltonian [17]:

H =
∫

dx

2π
vs

[
K (π j)2 + 1

K
(∂xθ )2

]
, (2a)

[ j(x, t ), θ (x, t )] = iδ(x − x′). (2b)

Here j is the current density and θ is its conjugate vari-
able. In this expression, variables are switched following the
conventional form found in the literature of Luttinger liquids
[17]. For general interacting systems, the speed of sound, u,
and parameter K should be found numerically. K does not
influence the dynamics but affects the overall scale of the
fluctuations. What is essential for our discussion is that the
Luttinger liquid model gives rise to a linear wave equation of

the type (
∂2

t − v2
s ∂

2
x

)
φ(x, t ) = 0. (3)

In the case of weakly interacting bosons [Eq. (1)], the speed
of sound is given by v2

s = U0ρ0

m . The other scale of interest
needed to define our theory is the healing length, ξh. The
corresponding momentum, � = 1

ξh
, presents a cutoff at which

the dispersion relation is no longer linear. For weakly interact-
ing bosons, this cutoff is given by ξh = h̄

mvs
. In more general

scenarios, the cutoff corresponds to the momentum whose
energy is of the order of the chemical potential.

Therefore, low-energy excitations of a broad class of gap-
less 1d interacting systems can be analyzed from the perspec-
tive of sound modes in an acoustic resonator.

B. Mathematical formulation of the quantum zipper problem

We consider a 1d interferometer of ultracold atoms shown
in Fig. 1. In the two arms of the interferometer, we have
quantum fluids, which can be described with quantum fields
{ρ1, φ1} and {ρ2, φ2} respectively. We assume that the average
densities are equal so that the sound velocities are the same.
In this case, we can separate the symmetric variables ρ+ =
ρ1 + ρ2, φ+ = φ1 + φ2 from the relative degrees of freedom
ρrel = ρ1 − ρ2, φrel = φ1 − φ2 [18]. We will only analyze
dynamics of the relative degrees of freedom which can be
measured using interference experiments. These obey [18]

∂tρrel(x, t ) = − h̄

m
∂x(ρ∂xφrel(x, t )), (4a)

h̄∂tφrel(x, t ) = −U0ρrel(x, t ), (4b)

[ρrel(x, t ), φrel(x
′, t )] = iδ(x − x′). (4c)

Note that any potential that acts the same way on both arms
of the interferometer does not affect the relative phase φrel.
The boundary conditions obeyed by the relative phase φrel are
Dirichlet since at the point where the two BECs meet they
must have the same phase. Combining the equations of motion
then leads to the wave equation

(
∂2

t − v2
s ∂

2
x

)
φrel(x, t ) = 0, (5a)

[φ(x, t ), ∂tφrel(x
′, t )] = iδ(x − x′), (5b)

φrel(0, t ) = φrel(L(t ), t ) = 0, (5c)

where vs is the speed of sound. As promised, Eq. (5) offers a
direct analog to cavity QED (see below).

III. DYNAMICAL CASIMIR EFFECT

Discussion in this section is arranged as follows. We begin
by obtaining the quantum time-dependent eigenstates of the
quantum zipper problem following the formalism developed
by Moore. These modes are used to compute both the retarded
and Keldysh Green functions of this system. Quantum fluctua-
tions in the system can be obtained from the equal time values
of the Keldysh Green functions. Retarded Green functions
will be used in the discussion of the shaken box to analyze
the classical part of the response.

053615-4



FROM THE MOVING PISTON TO THE DYNAMICAL … PHYSICAL REVIEW A 99, 053615 (2019)

Generalized formalism of the dynamical Casimir effect

Moore pointed out that quantum resonators with time-
dependent length do not have a Hamiltonian description [4].
Instead, the fields should be quantized using the equations of
motion. Here, we follow closely the discussion in the original
paper by Moore [4] and represent the main field by the letter
A(x, t ), making the analogy between vector potential in cavity
QED:

(
∂2

t − ∂2
x

)
A(x, t ) = 0, (6a)

A(0, t ) = A(L(t ), t ) = 0. (6b)

To simplify the notations, we set vs = 1 in the discussion
of this section. We will recover proper dimensions later in the
paper. The general strategy is to find a set of orthonormal solu-
tions of the Klein-Gordon equation with a moving boundary,
Eq. (6), and expand the field, A(x, t ), in terms of orthonormal
solutions with respect to the Klein-Gordon inner product:

{ f |g} = −i
∫ L(t )

0
dx( f (x, t )∂t g(x, t ) − g(x, t )∂t f (x, t )). (7)

Provided that f and g satisfy the Klein-Gordon equation,
Eq. (6), the inner product defined in Eq. (7) is time inde-
pendent. An orthonormal basis consists of a set of solutions
{ fn} and its complex conjugate { f ∗

n } such that { fn, f ∗
n } span

the space of solutions of Eq. (6) and obey [3]

{ fn| f ∗
m} = δn,m, (8a)

{ fn| fm} = { f ∗
n | f ∗

m} = 0. (8b)

Using such a basis, any solution can be expanded as linear
combination of the basis functions,

A =
∑

n

(cn fn + c∗
n f ∗

n ), (9)

where the fact that A is real was used. Finally, quantization
of this theory is achieved by promoting the time-independent
coefficients to creation and annihilation operators:

cm → ĉm, c∗
m → ĉ†

m, (10a)

ĉ†
m = { fm|Â}, ĉm = −{ f ∗

m|Â}, (10b)

[ĉm, ĉ†
n] = δn,m. (10c)

The step of promoting coefficients to creation and annihi-
lation operators using a basis with a particular normalization
corresponds to a particular choice of commutation relations
obeyed by the field A(x, t ).

It is important to note that the creation and annihilation
operators defined in this way are time independent and since
we are working in the Heisenberg picture the states are also
time independent. As a result, if the initial ground state is
a vacuum for a set of annihilation operators cm, then the
state of the system will remain the vacuum state of those
operators while all the time dependence of observables is
taken into account by the basis functions. Furthermore, notice
that the definition of creation and annihilation operators and
the vacuum state depends on the choice of basis functions we
choose to expand our fields in.

In the fixed box case, L(t ) = L0, expanding the field in
the basis functions amounts to a Fourier decomposition of the
field

fn = 1√
nπ

e−i nπ
L0

t sin

(
nπ

L0
x

)
, (11)

with the positive frequency solutions corresponding to cre-
ation operators and the negative frequency solutions to anni-
hilation operators.

Finding the eigenmodes while the wall is moving is
achieved by performing a conformal transformation which
preserves the equations of motion but fixes the boundary:

s + w = R(t + x), (12a)

s − w = R(t − x), (12b)(
∂2

s − ∂2
w

)
A(s,w) = 0, (12c)

A(s, 0) = A(s, 1) = 0, (12d)

⇒ R(t + L(t )) − R(t − L(t )) = 2. (12e)

In the new frame, the solutions have the form of the fixed
box, Eq. (11), while the transformation function is found by
requiring that it fixes the boundary. In the original coordinates,
the eigenmodes are given by

fn(x, t ) = i√
nπ

e−inπR(t+x) − e−inπR(t−x)

2
, (13a)

R(t + L(t )) = R(t − L(t )) + 2. (13b)

Note that in order to define the transformation function
R(z) uniquely, one needs to set the value of R(z) in an interval
z ∈ (t − L(t ), t + L(t )) for some fixed value of t , which can
then be used to exactly evaluate R(z) numerically [19]. The
complete evolution of the system is then given by realizing
that for t � 0 the box size was constant and the system was
in the ground state. The system must then be in the vacuum
state of annihilation operators, {cm(0)}, defined such that their
basis functions take the fixed box form at t = 0:

fn(x, t = 0) = i√
nπ

(
e−inπ

(t+x)
L0 − e−inπ

(t−x)
L0

)
2

. (14)

The modes should be identical to the fixed box modes
throughout the box, x ∈ (0, L(t )), which translates to the
following initial condition for R(z):

R(z) = z

L0
, z ∈ (−L0, L0). (15)

To recap, the set of modes in Eqs. (13)–(15) defines a set
of annihilation operators, {cm(0)}, for which the ground state
at t = 0 corresponds to their vacuum state. However, since
both the state and the operators are time independent, the
system remains in the vacuum of these operators while all the
time dependence is taken into account by the eigenfunctions,
fn(x, t ).

Having successfully quantized the theory, we are now in
a position to calculate the nonequilibrium Green functions of
the system. We will be interested in both the symmetric and

053615-5



MICHAEL, SCHMIEDMAYER, AND DEMLER PHYSICAL REVIEW A 99, 053615 (2019)

antisymmetric correlation functions:

DK (x, t ; x′, t ′) = −i〈{A(x, t ), A(x′, t ′)}〉 (16a)

= −2iRe

[∑
n

fn(x, t ) f ∗
n (x′, t ′)

]
, (16b)

DR(x, t ; x′, t ′) = −iθ (t − t ′)〈[A(x, t ), A(x′, t ′)]〉 (16c)

= 2θ (t−t ′)Im

[∑
n

fn(x, t ) f ∗
n (x′, t ′)

]
. (16d)

While most of the discussion in this section addresses
the problem described by the homogeneous Eqs. (4), let us
make a detour and consider the inhomogeneous version of this
problem: (

∂2
t − ∂2

x

)
A(x, t ) = −V (x, t ). (17)

As we will see, a problem of this type appears in our
discussion of the single shaken box protocol. We observe that
a solution to Eq. (17) can be easily obtained using the Green
function for the homogeneous problem [Eq. (16d)]. We know
that the retarded Green function, DR, satisfies the equation
(see Appendix A for details)(

∂2
t − ∂2

x

)
DR(x, t ; x′, t ′) = −δ(x − x′)δ(t − t ′) (18)

with the boundary condition DR(t < t ′) = 0. The solution of
Eq. (17) can then be written as

〈A〉(x, t ) =
∫ t

0
dt ′

∫ L(t ′ )

0
dx′DR(x, t ; x′, t ′)V (x′, t ′). (19)

Returning to the homogeneous problem, Eq. (4), we ob-
serve that the covariance matrix, C(x, x′, t ), encodes the fluc-
tuations of the variable Â through

C(x, t ; x′, t ′) = 1

2
〈{A(x, t )A(x′, t )}〉 (20a)

= i

2
DK (x, t ; x′, t ). (20b)

Therefore, the retarded and Keldysh Green functions can
be used to analyze the classical response and quantum fluctu-
ations respectively.

In order to make concepts such as squeezing and paramet-
ric resonance more transparent, it is convenient to relate the
eigenmodes to the instantaneous Fourier components of the
field and their fluctuations. This is achieved by introducing
the notion of instantaneously-at-rest modes. Instead of using
Eq. (15) as initial conditions for R(z) so that the eigenmodes
have the fixed box eigenmodes’ form at t = 0, we could have
chosen the initial condition:

R(z) = z

L(t ′)
, z ∈ (t ′ − L(t ′), t ′ + L(t ′)). (21)

This would correspond to a different set of eigenmodes that
have the fixed box solution’s form at t = t ′:

fn,t ′ (x, t = t ′) = i√
nπ

(
e−inπ

(t+x)
L(t ′ ) − e−inπ

(t−x)
L(t ′ )

)
2

. (22)

In fact, we are always free to define fixed box initial conditions
for R(z) throughout the box for any time t ′, as long as the

wall’s motion is not supersonic, | dL(t )
dt | < vs, as shown in

Appendix B. Working with the instantaneously-at-rest modes
is convenient since they correspond to the Fourier transform
of the signal at t = t ′. Different modes define different sets
of creation and annihilation operators that define different
vacua. A set of instantaneously-at-rest operators at time t is
related to the set of instantaneously-at-rest operators at time
t = 0, whose vacuum defines the state of the system, via a
Bogoliubov transformation that is found using Eqs. (9) and
(10):

c(t ) = U (t ) · c(0) + V (t ) · c†(0), (23a)

Un,m = −{ f ∗
n,t | fm,0} = { fm,0| f ∗

n,t }, (23b)

Vn,m = −{ f ∗
n,t | f ∗

m,0} = { f ∗
m,0| f ∗

n,t } (23c)

Two bases that are related to each other via a Bogoli-
ubov transformation, generically, see each other’s vacuum
as a squeezed state. As a result, the instantaneously-at-rest
operators, c(t ), will see the vacuum of the c(0) operators
as a squeezed state as long as V �= 0. In other words, the
ground state is continuously squeezed with respect to the
instantaneously-at-rest phonon operators while the boundary
is moving. In particular, if we turn off the drive at t = t ′, the
system will remain in the squeezed state seen by the operators,
{cm(t ′)}.

IV. QUANTUM FLUCTUATIONS

We now use results of the previous section to discuss
quantum fluctuations of the phase, φrel, in the quantum zipper
problem. We use the standard description of the fluctuations
in terms of the symmetric correlator:

C(x, t ; x′, t ′) = 1

2
〈{φrel(x, t )φrel(x

′, t )}〉 (24a)

= i

2
DK (x, t ; x′, t ). (24b)

We define instantaneous spatial eigenmodes using the
Fourier transform:

φrel(m, t ) = 2

L(t )

∫ L(t )

0
sin

(
nπ

L(t )
x

)
φrel(x, t )dx

= 1√
nπ

[cn(t )e−inπt/L(t ) + c†
n(t )einπt/L(t )]. (25)

Quantum fluctuations due to squeezing can then be calculated
in the Fourier basis by the following formula, as shown in
Appendix C:

〈φrel(n, t )φrel(m, t )〉

= 1

π
√

nm

∑
l

(V †
n,lVl,mei(n−m)πt/L(t )

+ Un,lU
†
l,me−i(n−m)πt/L(t ) + V †

n,lU
†
l,mei(n+m)πt/L(t )

+ Un,lVl,me−iπ (n+m)t/L(t ) ). (26)

The covariance matrix in the Fourier representation takes the
form

C(n, m; t ) = Re[〈φrel(n, t )φrel(m, t )〉], (27)
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FIG. 3. Matrix plots of the correlation matrix 〈φres(n, t )φres(m, t )〉 for short times when driven on resonance at different resonant
frequencies, ωn = vs

nπ

L0
: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, and (e) n = 5. At short times, the weight is transferred from the diagonal

to off-diagonal elements that differ by the frequency of the drive. Units of the plots are the phase quantum, while the plots where taken for
ε = 0.01 and t = 10L0/vs.

The overlaps, Un,m(t ),Vn,m(t ), are given by

Un,m = −{ j∗n,t | jm,0} = { jm,0| j∗n,t } (28a)

=
√

n

m

1

2L(t )
×

∫ L(t )

−L(t )
dxeiπ (n t+x

L(t ) −mR0(t+x)), (28b)

Vn,m = −{ j∗n,t | j∗m,0} = { j∗m,0| j∗n,t } (28c)

= −
√

n

m

1

2L(t )
×

∫ L(t )

−L(t )
dxeiπ[n t+x

L(t ) +mR0(t+x)]. (28d)

A. Perturbative regime: Mode mixing

First, we study the problem using perturbation theory
valid only at short times. R(z) is expanded in powers of the
perturbing function ε(t ) presented here up to second order:

R(z) = z

L0
− 2nε(z) + n2L0

dε2(z)

dz
,

(29)
z ∈ (−L0 + 2nL0, L0 + 2nL0),

In this situation, n is an integer labeling time intervals of
2L0, i.e., n = tmod2L0. This expansion was first suggested by
Ref. [20]; however, for completeness we provide an alterna-
tive derivation in Appendix D.

Because of the secular terms, this expansion is only valid
for

tpert. <
1

εω
(30)

and at t = 1
εω

the second-order term becomes comparable to
the first order-term and the expansion breaks down. Expand-
ing the Bogoliubov matrices to linear order in ε gives

Uk,l (t = n2L0) = eikπ2nε[δk,l − iπ
√

klnε(δk−l,ω + δk−l,−ω )],

(31a)

Vk,l (t = n2L0) = e−ikπ2nε (iπ
√

klnε)(δk+l,ω + δk+l,−ω ).

(31b)

Perturbation theory shows that at short times the drive
couples only modes that are related to each other by adding
or subtracting the drive’s frequency. However, the nonzero
V Bogoliubov matrix already demonstrates phonon creation
since the phonon number Pn is given by

Pn = (V †V )n,n. (32)

This quantity grows quadratically with time since V grows
linearly in perturbation theory. Figure 3 shows the fluctuations
of φrel when the system is driven on resonance with the first
five eigenmodes at stroboscopic times. In the plots, we see the
emergence of a checker-board pattern where modes that differ
by the driving frequency become correlated.

B. Asymptotic state: Parametric pattern

We now discuss the driven quantum zipper in the limit of
long modulation time. When the boundary oscillates at one
of the resonant frequencies, the system is expected to display
parametric resonance, where the dominant process is pair
production of phonons whose individual frequency adds up
to the drive frequency. The signatures of such resonances are
enhanced correlations (divergent in the limit at t → ∞ and in
the absence of a cutoff) between modes involved in this dom-
inant process as well as between all other modes connected to
them by integer multiples of the frequency, leading to patterns
shown in Fig. 5. This can be demonstrated analytically using
the formalism developed by Cole and Schieve [19], which
states that in the case of resonant driving frequencies, ω =
nπ
L0

, the asymptotic behavior of R(z) is a staircase function
independent of the amplitude of the drive.

An example of the asymptotic behavior of R(z) for a
boundary motion of the form L(t ) = L0(1 − ε[1 − cos (ωt )])
and frequency, ω = nπ

L0
, is given by

R0(z) → 2(l + 1)

n
+ 1,

2L0l

n
< z − L0 <

2L0(l + 1)

n
, l ∈ Z,

(33)
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FIG. 4. Example of the transformation function, R(z), plotted
against its asymptotic behavior for a wall that oscillates at the second
harmonic frequency, L(t ) = L0(1 + ε[1 − cos ( 2π

L0
t )]). At late times,

R(z) approaches the staircase function. How quickly this occurs
depends on the driving amplitude; however, in this example for ε =
5% the asymptotic behavior is established after a few oscillations.

where T = 2L0
n is the period of the drive. The case of ω = 2π

L0
and ε = 5% is shown in Fig. 4, where one can see that the
numerically integrated transformation function approaches
the suggested staircase function at late times.

In this regime, the matrices U † and V † can be analytically
calculated (for details, see Appendix E):

Vν,μ = − n√
μνπ

sin
(μπ

n

)
e−i πμ

n eiπ (ν+μ)( 2l0
n −1+ 2

n )

×
ρ=∞∑
ρ=1

δμ+ν,ρn, (34a)

Uν,μ = − n√
μνπ

sin
(μπ

n

)
ei πμ

n eiπ (ν−μ)( 2l0
n −1+ 2

n )

×
ρ=∞∑

ρ=−∞
δν−μ,ρn, (34b)

which shows that asymptotically Vν,μ is 0 everywhere apart
from when μ + ν = λn, where μ, ν, λ, n ∈ Z .

Parametric resonances are expected for ω = nπ
L0

at n � 2.

As an illustration of the resonance at ω = 2π
L0

, the element∑
l U1,lU

†
l,1 is calculated which contributes to the phase quan-

tum fluctuations:

(U · U †)1,1 =
ρ=∞∑
ρ=0

4

2ρ + 1
→ ∞. (35)

The divergence is associated with the fact that at infinite
time, the first mode obtains contributions from arbitrarily high
momenta. In any physical situation, there will be a momentum
cutoff � up to which our theory is valid. As discussed in
Sec. II, in the Luttinger liquid model this cutoff is given by
the healing length, � = 1

ξh
. Since the expression in Eq. (35)

diverges logarithmically with the momentum cutoff, we can
find an estimate of the asymptotic values of resonant quantum

fluctuations:

(U · U †)1,1 ∼ 2 ln

(
L0

ξh

)
. (36)

Therefore, if the box length, L0, is two to three orders of
magnitude larger than the healing length, ξh, the resonant
quantum fluctuations would be expected to be

φ2
res(m = 1, t → ∞)

φ2
res(m = 1, t = 0)

∼ O(10), (37)

with this figure falling off at higher momenta. This estimate is
confirmed numerically with a hard cutoff as shown in Fig. 5,
where the fluctuations’ matrix 〈φres(n, t )φres(m, t )〉 as t → ∞
was plotted for different resonant frequencies of the drive.

Introducing a UV cutoff in the wave equation is justified on
physical grounds since at momenta 1

ξh
the dispersion relation

is no longer linear. As a result, the mode coupling mechanism
is not efficient anymore and higher momenta become off
resonant in relation to lower ones.

In order to show the range of validity of this approach, we
also investigate the crossover from the perturbative state to the
asymptotic one. To this end, it is more convenient to consider
the phonon occupation number of the parametric resonant
mode. Following the results obtained in Ref. [21], the late
time asymptotic expansion of the V matrix when driving at
frequency ωd = 2rπ

L0
is given by

Vm,n =
√

m

n

sin
[

π (2rnδ+m)
2r

]
π (2rnδ + m)

sin[π (m + n)]

sin
[

π (n+m)
2r

] eiπ (n+m)(1− 1
2r ),

(38a)

δ = e−rπεt

πr
. (38b)

Thus, for an infinite cut-off momentum, the occupation
number of parametrically resonant modes increases linearly
without a bound:

P(m) =
∞∑

n=0

∣∣Vn,m

∣∣2 ∝ t, for t � 1

εω
. (39)

Therefore, there is a crossover behavior between the per-
turbative regime and the asymptotic regime, where phonon
occupation changes from a quadratic growth to a linear one.

In Fig. 6, we present results for the system with the wall
oscillating at wdr = 2π

L0
. We compute occupation number of

the first eigenmode, which is parametrically resonant with
the drive. We use both the direct numerical solution and the
asymptotic expansion. The situation is demonstrated both us-
ing the asymptotic expansion with a momentum cutoff as well
as numerically in Fig. 6 for a wall oscillating at ωdr = 2 π

L0
vs

and focusing on the occupation of the first eigenmode which is
parametrically resonant (in this example, even modes are not
parametrically resonant and their occupation number goes to
zero at late times). The figure shows that the linear occupation
growth of a particular mode is unaffected by the momentum
cutoff up until the maximum occupation is reached. For this
particular example, the occupation grows as

P(1) ∼ 2εvs

πL0
t . (40)
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FIG. 5. Matrix plots of 〈φres(n, t )φres(m, t )〉 − 〈φres(n, 0)φres(m, 0)〉 as t → ∞, evaluated at stroboscopic times for different drive
frequencies, ωn = vs

nπ

L0
, (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, and (e) n = 5. The values are obtained using up to 100 modes, corresponding

to a momentum cutoff, � ∼ 100 π

L0
. As expected for parametric resonance, we get resonances for n � 2. The numerical values of the plots are

of order O(10) as anticipated from Eq. (37).

Saturation to the cutoff-dependent maximum occupation
value is reached at

t = ln(�)

εω
. (41)

As expected, due to the linear relationship between oc-
cupation number and time, the saturation time also grows
logarithmically with the cutoff. As a result, there is a window
where perturbation theory breaks down and at the same time
the asymptotic state can make predictions independent of the
UV physics of the theory:

1 � εωtasym � ln(�). (42)

Numerically, from Fig. 6, one can see the initial quadratic
growth in the perturbative regime and the asymptotic ap-
proach to the saturation value.

Before concluding this section, we note that a complemen-
tary way of looking at the problem is through a Floquet picture
as discussed by Martin [22]. In our language, the Floquet map
is the Bogoliubov transformation relating two instantaneous
reference frames that differ by one period, T . From that point
of view, fixed points in the Floquet map is the cause of the
staircase form of the late time asymptotic solution of the
transformation function R(z).

V. SHAKING BOX

We now turn our attention to a different setup motivated by
the recent experiments in Ref. [9]. We consider a single box
of a 1d quantum fluid with a moving wall. We parametrize
the length dependence of the box as L(t ) = L0(1 + ε(t )).
As before, we will use Luttinger liquid-based wave equation
to describe dynamics. We also allow for a time-dependent
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FIG. 6. Approach to the asymptotic state using (a) the analytic asymptotic expansion with various cutoff momenta and (b) numerical results
with a cutoff � = 10. One can see that before a time threshold is reached the phonon occupation of a single mode is independent of the cutoff
and grows linearly for resonant modes. From the analytical graph, one can see that both the time and the maximum occupation grow as ln(�).
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external potential, Vext. which will be useful for separating the
classical and quantum parts of the response:

∂tρ(x, t ) = − h̄

m
∂x(ρ∂xφ(x, t )), (43a)

h̄∂tφ(x, t ) = −U0ρ(x, t ) − Vext.(x, t ), (43b)

[ρ(x, t ), φ(x′, t )] = iδ(x − x′). (43c)

Boundary conditions. In the fixed box case, boundary con-
ditions are given by the requirement that the current, j(x, t ) =
h̄ρ0

m ∂xφ(x, t ), vanishes at the edges of the box. However, when
the wall is moving, the current should be finite near the wall
in order for the fluid to follow the motion of the wall. To
derive the new boundary conditions, we start by writing the
conservation of the particle number:∫ L(t )

0
ρ(x, t )dx = N0. (44)

We require that

dN0

dt
= 0, (45)

which can be written as
h̄ρ(L(t ))

m
(∂xφ[x = L(t )] − ∂xφ[x = 0]) = dL(t )

dt
ρ(L(t )).

(46)

This gives us

h̄

m
∂xφ(x = 0) = 0, (47a)

h̄

m
∂xφ[x = L(t )] = dL(t )

dt
. (47b)

Unsurprisingly, we find that the fluid velocity,
h̄
m ∂xφ[x = L(t )], at the boundary should match the velocity
of the wall. This causes a sloshing motion which is associated
with the change of the average density due to the change
of the box length. It is convenient to simplify the boundary
conditions by subtracting this sloshing motion using the
transformation

ρ(x, t ) = ρ̃(x, t ) − ε(t )ρ0, (48a)

φ(x, t ) = φ̃(x, t ) + dε(t )

dt

m

2h̄
x2. (48b)

This choice of transformation simplifies the boundary
conditions at the cost of introducing an effective quadratic
potential perturbation:

∂

∂t
ρ̃(x, t ) = − h̄ρ0

m
∂2

x φ̃(x, t ), (49a)

h̄
∂

∂t
φ̃(x, t ) = −U0ρ̃(x, t ) − V (x, t ) − Vext (x, t ), (49b)

[ρ̃(x, t ), φ̃(x′, t )] = iδ(x − x′), (49c)

dφ̃

dx

∣∣∣∣
x=0

= dφ̃

dx

∣∣∣∣
x=L(t )

= 0, (49d)

V (x, t ) = d2e(t )

dt2

mx2

2
− e(t )U0ρ0. (49e)

The new density variable, ρ̃(x, t ), from which the sloshing
motion has been subtracted, now has a constant average
density:

ρ̃av. = ρav. + ε(t )ρ0, (50a)

ρ̃av. = N0

L(t )
+ ε(t )

N0

L(t )
, (50b)

ρ̃av. = N0

L0
. (50c)

In order to proceed, we make a change of variables to the
current density, j = h̄ρ0

m ∂xφ̃(x, t ), and its conjugate momen-
tum, ρ̃(x, t ) = h̄ρ0

m ∂xθ (x, t ). Substituting these definitions in
Eq. (49), we find

h̄ρ0

m
∂tθ = − j, (51a)

∂t j = −h̄
ρ2

0

m2
∂2

x θ − ρ0
d2ε(t )

dt2
x − Vext (x, t ),

(51b)

[ j̃(x, t ), θ̃ (x′, t )] = iδ(x − x′), (51c)

j̃(0, t ) = j̃(L(t ), t ) = 0. (51d)

Combining Eqs. (51a) and (51b), we finally arrive at

(
∂2

t − v2
s ∂

2
x

)
j(x, t ) = −ρ0

d3ε(t )

dt3
x − ∂xVext (x, t ), (52)

where the sound velocity, vs, is given by v2
s = U0ρ0

m . Equation
(52) with moving boundaries is what we will call inhomoge-
neous dynamical Casimir effect. This equation is an analog of
the dynamical Casimir effect where the current can be mapped
onto the vector potential in a 1d cavity and in the absence
of the effective driving term. From Eq. (52), it is clear that a
compensating external potential can be applied to modulate
the strength of the inhomogeneous drive, even cancel it com-
pletely, by choosing a suitably varying perturbing harmonic
potential:

Vext (x, t ) = (α − 1)
d2e(t )

dt2

mx2

2
. (53)

Equation (52) becomes

(
∂2

t − v2
s ∂

2
x

)
j(x, t ) = −αρ0

d3ε(t )

dt3
x, (54)

where the inhomogeneous drive’s strength is now determined
by the parameter α. The density response is found by using
the continuity equation:

∂tρ = −∂x j. (55)

(In fact, directly calculating the density using the equations
of motion may lead to results that do not take into account
the boundary conditions correctly. A small discussion of this
pitfall is discussed in Appendix F.)

In solving Eq. (52), one notices that, since the equation
is linear, the solution can be decomposed into a particular
solution that satisfies the inhomogeneous equation plus an
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arbitrary solution of the homogeneous equation:

ĵ = jcl + ĵq, (56a)

(
∂2

t − v2
s ∂

2
x

)
jcl (x, t ) = −αρ0

d3ε(t )

dt3
x, (56b)(

∂2
t − v2

s ∂
2
x

)
ĵq(x, t ) = 0. (56c)

We put a hat on ĵq to point out that it should be interpreted
as an operator to be quantized, while jcl is a classical function
that satisfies the inhomogeneous equation. The term jcl is the
classical contribution generated by the effective potential and
is independent of the underlying quantum state, while the term
jq gives the quantum fluctuations that depend sensitively on
the quantum state of the system and contain the effects of
vacuum squeezing:

jcl = 〈 j〉, (57a)〈
jq jq

〉 = 〈 j j〉 − 〈 j〉〈 j〉. (57b)

As a result, by studying the distribution function of the
current over many experiment realizations, the average value
of the current gives information about the classical response
of the field while the second cumulant contains information
about the quantum effects.

In the next section, the perturbative consequences of the
effective driving potential are presented to built up intuition
in a simple context. Then, we proceed to find the coherent
evolution exactly using the formalism developed in Sec. III.

Before proceeding, however, we first comment on the
subtle way in which quantum fluctuations differ from the
cavity QED example of dynamical Casimir effect due
to the commutation relations.

Commutation relations

As mentioned in the previous section, despite the seem-
ingly straightforward identification between the shaken 1d
condensate and the gauge field in a 1d cavity QED system due
to the shared equations of motion and boundary conditions,
the two systems are different in a subtle way. In particular,
quantum variables in the former system are interchanged
relative to the latter one. This is best demonstrated by the
Hamiltonian formulation in the fixed length problem, where
the Hamiltonian density and commutation relations for cavity
QED is given by

H = E2

2
+ (∂xA)2

2
, (58a)

[E (x, t ), A(x′, t )] = iδ(x − x′), (58b)

while the Hamiltonian formulation of the current in dimen-
sionless units takes the form

H = j2

2
+ (∂xθ )2

2
, (59a)

[ j(x, t ), θ (x′, t )] = iδ(x − x′). (59b)

Comparing Eq. (58) to Eq. (59), we see that to pre-
serve commutations relations, we should identify A(x, t ) with
θ (x, t ) rather than the current. However, in the moving box

case, focusing on θ as the original field to quantize, the
boundary condition is no longer conformally invariant:

∂tθ (L(t ), t ) = 0. (60)

For j, we have conformally invariant boundary conditions
j|bound = 0 but the conjugate momentum is the time integral
of j and not the time derivative of j. This follows from the
equation on θ : ∂tθ = − j. If we tried to follow the formalism
we presented earlier in Eqs. (7)–(10), we would find the
commutation relations

[A(x, t ), ∂t A(x′, t )] = iδ(x − x′), (61)

which do not hold for j. Surprisingly, the retarded Green
function DR is unaffected by the difference in the commuta-
tion relations, as long as the function satisfies Eq. (18). This
follows from the fact that DR is a purely classical object and is
not affected by the commutations relations of the system. The
retarded Green function defined in Eq. (16) is applicable for
the shaking box as well.

As a result, we will limit our discussion to the coherent
dynamics in the subsequent sections, while the quantum fluc-
tuations for the shaking box will be addressed in subsequent
publications.

VI. COHERENT DYNAMICS: FIRST-ORDER
APPROXIMATION

When we want to analyze driving to linear order in ε(t ), it
is sufficient to analyze Eq. (49) including V (x, t ) + Vext.(x, t )
and neglecting the moving boundary conditions. The effective
quadratic potential V (x, t ) + Vext. is already linear in ε and
boundary conditions can only modify 〈 j〉(x, t ) and 〈θ〉(x, t )
at higher order in ε. Corrections beyond linear order due to
the moving boundary will be discussed in Sec. VII. Within
linear approximation, the phonon modes become a collection
of uncoupled harmonic oscillators with resonant frequencies
ω = n π

L0
vs. In Fourier space, Eq. (52) is easily solved by

M(n, ω) = 2

L0

∫ L0

0
dx sin

(
nπ

L0
x

)

×
∫ ∞

−∞
dteiωtαρ0

d3ε(t )

dt3
x, (62a)

jcl (n, ω) = 2

L0

∫ L0

0
dx sin

(
nπ

L0
x

)

×
∫ ∞

−∞
dteiωt jcl (x, t ), (62b)

jcl (n, ω) = M(n, ω)

(ω + iη)2 − (
nπ
L0

)2 . (62c)

In the absence of damping, η → 0 (included infinitesimally
to preserve causality), the real-time evolution for each mode
is nonzero only for the resonant mode, ω = n π

L0
, which os-

cillates with a linearly increasing amplitude as a function of
driving time as shown in Fig. 7. The slope of the amplitude in-
crease on resonance is proportional to the resonant frequency
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FIG. 7. In the absence of damping, driving leads to a linearly
growing resonant mode for ω = nπ

L0
vs. The slope of the amplitude in-

crease of the resonant mode is proportional to the driving frequency.

and the average density of the superfluid:

Amplitude[ jcl (n, t )] = αεvsωnρ0t . (63)

A. Effects of damping

In this subsection, we include the possibility of damping
at each mode. The main mechanism with which coherent
dynamics can be damped is through phonon-phonon non-
linearities. Taking the point of view that a standing density
wave is a condensate of the particular phonon mode resonant
with the drive, interactions would be expected to deplete this
condensate. Another way to say it is that through phonon-
phonon interactions a phonon mode can decay into other

phonon modes through real or virtual processes. Damping
in single-mode 1d models is expected to be suppressed due
to integrability, as argued by Tan et al. [23]. However,
integrability-breaking contributions such as three-body colli-
sions and virtual hopping to higher transverse modes can still
lead to damping, which was investigated in earlier works both
theoretically and experimentally [24–28]. Additionally, mov-
ing the boundary could break integrability such that protection
from damping is not present. Here, we will simply include it
as a phenomenological parameter and leave the discussion of
its origin for future publications.

Including this term, each mode becomes a damped driven
harmonic oscillator with a potentially frequency- and mode-
dependent decay rate:[

∂2
t + 2γ (n, ω)∂t + ω2

n

]
jcl (n, t ) = −M(n, t ), (64)

where ωn = nπ
L0

vs. We point out that decay in this context is
merely a redistribution of energy from the classical expecta-
tion value to quantum noise.

Substituting d3ε(t )
dt3 = εω3 sin(ωt ), the driving term has the

form

M(n, t ) = αερ0
L0ω

3

nπ
sin(ωt )(−1)1+n, (65)

where we have used that the Fourier transform of x =
(−1)1+nL0

nπ
. If we define the response function as

χ (ω, n) = 1

ω2 + iγ (n, ω)ω − ω2
n

, (66)

the solution is given by

jcl (n, t ) = (−1)1+nαερ0
L0ω

3

nπ

{
Im{χ (ω, n)}[ cos(ωt ) − e−γ (n,ωres.

n )t cos
(
ωres.

n t
)]

+ Re{χ (ω, n)}
[

sin(ωt ) − ω

ωres.
n

e−γ (n,ωres.
n )t sin

(
ωres.

n t
)]}

. (67)

Note that this solution satisfies the initial conditions
jcl (n, t ) = ∂t jcl (n, t ) = 0, ωres.

n = ω2 + γ 2(n, ωres.
n ).

B. On resonance

For ω = ωn, the bare resonance frequency, the early time
behavior for t < 1

γ (n,ωres.
n ) is independent of damping with the

amplitude growing linearly as in Eq. (63):

χ (n, ωn) = 1

iγ (n, ωn)ωn
, (68a)

jcl (n, ωn) = (−1)nαερ0L0ω
2
n

nπγ (n, ωn)

×[
cos(ωnt ) − e−γ (ωres

n ,n)t cos
(
ωres.

n t
)]

, (68b)

= (−1)nαερ0vsωnt cos(ωnt ), (68c)

where in the last equality the fact that cos(ωnt ) ≈ cos(ωres.
n t ),

for t < 1/γ (n, ωn), was used; i.e., Fourier broadening does
not allow us to distinguish between the two frequencies.

Moreover, the frequency dependence on γ is assumed to be
weak such that γ (n, ωn) ≈ γ (n, ωres.

n ). Eventually, it reaches
a steady state with an amplitude given by the damping:

jcl.

(
n, t >

1

γ (nωn)

)
= (−1)nαερ0vsωn

γ (n, ωn)
cos(ωnt ). (69)

This situation is illustrated in Fig. 8 for n = 2 and several
values of γ (n, ωn).

C. Off resonance

For ω �= ωn, as illustrated in Fig. 9, the transient response
is less predictable. However, one can still extract information
about the damping from the steady-state solution that will
have the following amplitude:

Amplitude [ jcl.(n, t > 1/γ )] = αερ0
L0ω

3

nπ√
γ (n, ω)2ω2 + (

ω2 − ω2
0

)2
.

(70)
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FIG. 8. The plot shows that in the case of resonance where ω =
ωn, the amplitude of the mode grows linearly with a rate independent
of damping at early times. For times, t > 1/γ , the current reaches
a steady state with an amplitude determined by the damping. The
steady-state value is illustrated in the figure with dashed horizontal
lines.

Finally, note that the decay rate of the transient dynamics
depends on γ (n, ωres.

n ) while the decay of the steady state once
the driving is switched off depends on γ (n, ω).

VII. COHERENT DYNAMICS: FULL EVOLUTION

In this section, we revisit the coherent response of the
superfluid to the effective external field, jcl ., in order to derive
an exact solution of Eq. (52) and go beyond the perturbative
expansion. Using the tools developed in the previous sections,
we notice that remarkably the retarded Green function of the
quantum homogeneous theory defined in Eq. (16), in terms of
jq, constitutes the desired response function, which obeys

(
∂2

t − v2
s ∂

2
x

)
GR(x, t ; x′, t ′) = −δ(x − x′)δ(t − t ′). (71)

This is shown explicitly in Appendix A (in dimensionless
units t ± x

vs
→ t ± x). As a result, the classical response of

jcl(n,t)

0 5 10 15 20
t/(No. of cycles)

FIG. 9. This an example of an off-resonant response, for which
ω = 2π

L0
, ωn = 3π

L0
, and γ (n, ω) = 0.05 2π

L0
. The initial response is no

longer an oscillating function with a linearly increasing amplitude
but for t > 1/γ it settles into a steady state.

the fluid obeying Eq. (52) is then given by

jcl (x, t ) =
∫ ∞

−∞
dt ′

∫ L(t ′)

0
dxGR(x, t ; x′, t ′)M(x′, t ′),

= 2Im

[∑
n

jn,0(x, t )
∫ t

0
dt ′

×
∫ L(t ′)

0
dx′ j∗n,0

(
x′, t ′)M(x′, t ′)

]
. (72)

where M(x, t ) = αερ0
d3ε(t )

dt3 x is the effective driving force.
This expression gives the full nonperturbative solution of
the classical response in the presence of moving boundaries
and allows one to study jcl beyond perturbative short time
expansion. As before, we gain intuition by moving to the
Fourier basis and by decomposing { jn,0(x, t )} in terms of
{ jn,t (x, t )}:

jn,0(x, t ) =
∑

m

−{ j∗m,t | jn,0} jm,t (x, t )

+{ jm,t | jn,0} j∗m,t (x, t ) (73a)

=
∑

m

Um,n(t ) jm,t (x, t ) + V ∗
m,n(t ) j∗m,t (x, t ) (73b)

=
∑

m

Um,n(t )e−i mπ
L(t ) t + V ∗

m,n(t )ei mπ
L(t ) t

√
mπ

× sin

(
mπ

L(t )
x

)
. (73c)

Fourier transforming this result simply gives the coefficient
in front of the sin function:

jn,0(m, t ) = Um,n(t )e−i mπ
L(t ) t + V ∗

m,n(t )ei mπ
L(t ) t

√
mπ

. (74)

Finally, using Eqs. (74) and (72), the classical response is
given in Fourier space by

jcl (m, t ) = 2Im

[∑
n

Um,n(t )e−i mπ
L(t ) t + V ∗

m,n(t )ei mπ
L(t ) t

√
mπ

×
∫ t

0
dt ′

∫ L(t ′)

0
dx′ j∗n,0(x′, t ′)M(x′, t ′)

]
. (75)

A. Frequency conversion

In the fixed box case, Un,m = δn,m and Vn,m = 0. As a result,
the system oscillates at the frequency of the drive, increasing
in amplitude linearly for resonant modes as predicted in
Sec. VI. However, to second order in the drive strength O(ε2),
the resonant mode couples to twice the resonant mode, ωd →
2ωd . Remarkably, this frequency conversion, a hallmark of
nonlinearities, happens in the absence of any nonlinearity.
Perhaps this phenomenon is unsurprising since moving the
boundary breaks time-translation invariance and temporal
Fourier components are no longer a good basis for the system,
causing them to mix. In particular, we find that when driving
at the nth eigenfrequency, the nth eigenmode and the 2nth
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FIG. 10. The graph shows the current amplitude of the resonant mode and the second harmonic when driving at the first four resonances,
ωn = vs

nπ

L0
, with (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4 and an amplitude of ε = 0.5%. At early times, there is a linear growth of the

resonant mode as well as a quadratic second-order growth of the second harmonic.

eigenmode have the following amplitude ratio:

jωd

j2ωd

= 2L0

ε
√

ntvs.
(76)

This relationship should be a quantitative test of the theory.
The situation is illustrated in Fig. 10.

Perturbation theory breaks down at t ∼ 1
εω

as mentioned
earlier at which time the above ratio no longer holds.

B. Late time suppression

The linear growth of the resonant mode at perturbative
times,

jres(t ) ≈ αvsρ0ωt, (77a)

ρres(t ) ≈ αρ0ωt, (77b)

together with the time at which perturbation theory breaks
down,

t = 1

εω
(78)

conspire so that the resonant mode stops increasing at

jres. ∼ αvsρ0, (79a)

ρres. ∼ αρ0. (79b)

By introducing an external potential that interferes with the
effective potential created by the shaking, we have effectively
introduced a control parameter α that determines the overall
magnitude of coherent dynamics.

Surprisingly, following the saturation at times where per-
turbation breaks down is a suppression of the resonant mode
at late times even as the box is continuously driven at res-
onance with this very mode. This counterintuitive effect can
be explained by first noting that a significant mode coupling
causes the mode to transfer amplitude to higher modes, and
at late times these modes couple back to the resonant dis-
tractively interfering with it and causing a suppression even
as the drive stays turned on. This process starts as soon as
perturbation theory breaks down and it is demonstrated for
resonance with second mode at different driving amplitudes in
Fig. 11.

Mathematically, this is also seen in the asymptotic behavior
of U and V where, as shown in Appendix E at stroboscopic
times, both U and V decouple from the resonant mode and
their multiples

U,V ∝ sin
(μπ

n

)
, (80)

where n is the resonant mode and μ is one of the indices of
the two matrices. While this appears as a checkered pattern
in the quantum fluctuations of the quantum zipper, in the
classical response it appears as a suppression of the resonant
mode.
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FIG. 11. Response of the resonant mode when driving at the
second harmonic for four different driving amplitudes. For large
amplitudes, perturbation theory breaks relatively quickly and the
resonant mode starts becoming suppressed.

C. Density response

For convenience, we used current as our main variable. To
translate back to density, we use Eq. (55), repeated here:

∂tρ = −∂x j. (81)

An experimental protocol to relate the current amplitude of
Fourier modes to density amplitude is to switch off the drive
at stroboscopic times and let the fluid evolve freely in a box of
constant size. During the free evolution, current and density
modes oscillate at their natural frequency out of phase with
each other and their amplitude is related by

ρampl(n) = jampl(n)

vs
. (82)

VIII. RANGE OF VALIDITY AND EXTENSIONS

In this section, we provide a discussion of several contri-
butions to dynamics beyond the T = 0 Luttinger liquid model
that we discussed so far. We give a parameter region where our
theory is expected to work well and more importantly how
control parameters of the experiment can be used to access
this region. The effects that go beyond our analysis include
nonlinearities, temperature, and nonlinear dispersion. When
these effects become important, we give a discussion of how
they might affect the results and propose ways one could take
these into account.

In the case of the shaking box, one might further object
that the walls are not perfectly steep. This aspect is discussed
in Appendix H.

A. Nonlinearities

There are several sources of nonlinear corrections to the
Luttinger liquid formalism. The full continuity equation in
Eq. (1a) is nonlinear (speed of sound depends on density)
although so far we analyzed its linearized version. The ex-
act fluid derivative in the Navier-Stokes equation is intrin-
sically nonlinear, Dtv(x, t ) = ∂tv(x, t ) + v(x, t )∂xv(x, t ), and

we only used its linear part in the Luttinger liquid formalism.
Finally, when relating pressure to changes in the density one
generally expects terms beyond linear ones, which should
offer equally important sources of nonlinearities.

Nonlinearities in the system can affect dynamic evolution
in two qualitatively different ways. Classically, this is the
realm of nonlinear hydrodynamics where interactions can lead
to typical nonlinear effects such as shock waves and soliton
formation. On the other hand, these interacting terms couple
fluctuations to expectation values. For the coherent dynamics,
this can appear as a damping term that we took into account
only phenomenologically. Physically, the process where the
classical expectation values can be converted into quantum
fluctuations through the interaction appears as dissipation in
the classical equations of motion.

While the latter was addressed in Sec. VI, the former and
its relative importance to the effects presented up to now is
discussed below.

Classical nonlinear hydrodynamics

In the nonlinear acoustics community, a lot of attention was
given to the problem of resonant oscillations in a 1d closed
tube with a moving piston [16]. This represents the classical
limit of our theory where a classical fluid in a tube is driven
by a moving boundary.

The magnitude of nonlinear effects can be deduced by
the so-called Kuznetsov’s equation, which represents the
fluid equations up to second order in small parameters (see
Ref. [16] for details) such as velocity amplitude and damping
for an irrotational flow (for an ideal adiabatic gas),

∂2
t φ − v2

s ∂
2
x φ = ∂t

[
(∂xφ)2 + 1

2v2
s

(γ − 1)(∂tφ)2 + b

ρ0
∂2

x φ

]
,

(83)

where b is the damping coefficient and φ in this equation plays
the same role as the variable φ defined earlier in this paper. For
the classical limit of a BEC, a similar equation can be derived,
which is given by

∂2
t φ − v2

s ∂
2
x φ + v2

s ξ
2
h ∂4

x φ

= ∂t

[
(∂xφ)2 + 1

2v2
s

(∂tφ)2 + b

ρ0
∂2

x φ

]
, (84)

where the main difference is the inclusion of a nonlinear
dispersion whose effects are addressed in Subsec. VIII C.

In both equations, the left-hand side represents linear hy-
drodynamics and is accounted for simply by a dispersion
relation. The right-hand side contains nonlinear terms. The
relative magnitude of the nonlinear terms compared to the
linear once is given by

Linear terms

Nonlinear terms
= vs

v(x, t )
. (85)

This relationship shows that linear hydrodynamics break
down only when the fluid velocity approaches the speed of
sound.

From Sec. VII, it was shown that under the influence of
wall oscillations the fluid velocity grows linearly until pertur-
bation theory breaks down where it starts getting suppressed.
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FIG. 12. Comparison between the resonant mode behavior pre-
dicted by the dynamical Casimir approach and the acoustic approach.
While in the acoustic approximation the resonant mode seems to
saturate under continuous driving, we argue that the correct be-
havior is a suppression that is somehow neglected in the acoustic
approximation.

The maximum velocity achieved during this evolution is
therefore given by

v(x, t ) ∼ αvs. (86)

Applying a compensating external potential as described in
Sec. V tunes α and can adjust the overall amplitude of the
classical dynamics. The corresponding timescales at which
the moving boundaries and nonlinearities affect the system are
given by

tmov.bound. = 1

εω
, (87a)

tnonlin. = α

εω
. (87b)

This implies that in the regime

α � 1, (88)

the nonlinearity effectively plays no role in the problem,
throughout the duration of the experiment.

It is useful to compare our solution of the linearized version
of the moving piston problem to what has been discussed
in the acoustics community before. Several earlier papers
(Ref. [15] and citations therein) attempted to solve the prob-
lem with linear hydrodynamics and moving boundaries by in-
troducing an approximate nonlinear equation which takes the
moving boundaries into account. In their analysis, they found
a formation of cusps that increase in height logarithmically in
time [15].

Our treatment is exact and takes into account the boundary
conditions fully within linear hydrodynamics. Our answer
is expressed as infinite sum of modes, and hence the only
approximation in our numerical calculations was the choice
of the mode cutoff. We have argued, however, in Sec. III
that there is a window in the evolution of the system that is
unaffected by this cutoff. Our theory does not predict cusps
and predicts a late time suppression in the Fourier component
of the resonant mode that is neglected in the approximate
solution, as seen in Fig. 12.

In the opposite limit,

α � 1, (89)

nonlinear effects develop at timescales much shorter than
effects from the moving boundary. Therefore, the system can
be treated as a nonlinear hydrodynamic system with fixed
boundaries but inhomogeneous boundary conditions. While
the details involve a series of simplifying approximations
found in Ref. [15], it is useful to present here the final equation
used to model these systems for right-moving and left-moving
waves:

∂T U (x, t ) + �∂ξU (x, t ) − πεU (x, t )∂ξU (x, t ) − �∂2
ξ U (x, t )

= −M

2
sin (ωξ ), (90a)

v(x, t ) = vs(U (ωt − kx) − U (ωt + kx)), (90b)

ξ = ω

(
t ± x

vs

)
, (90c)

where ξ is the light cone coordinate depending on whether we
are talking about the right-moving or left-moving wave and
T is a time coordinate of the slowly changing profile of these
waves.

At late times, T → ∞, the system reaches a steady state
with a constants profile ∂T → 0 and the equation is solved by

F (χ ) = bωd

v2
s ρ0g

d

dχ
ln

(
ce0

(
χ

2
, q = 2gεv4

s ρ
2
0

b2

))
, (91a)

v(x, t ) = vs

(
U

(
ω

(
t − x

vs

))
− U

(
ω

(
t + x

vs

)))
, (91b)

where ce0 is the even Mathieu function and the small damping
limit is q → ∞. The behavior of the profile in Eq. (91)
is in general very complicated but qualitatively it includes
the formation of sharp shocks and on parametric reso-
nance the solution blows up, which is qualitatively different
than the results predicted by our approach.

Interestingly, in the spirit of expanding the equation of
motion to second order in small parameters, in this regime,
α � 1, the conformal coordinate transformation presented in
the previous sections can be used to include the effects of
the moving boundary perturbatively. The coordinate transfor-
mation for times t < 1

εω
will leave the equation of motion

unchanged while the effects of breaking conformal invariance
via the interaction will contribute only to higher than second-
order terms in the equations of motion. As a result, one can
replace the light-cone coordinates u, v with the conformal
transformed ones to obtain an answer that both obeys the
boundary conditions on the moving boundaries and satisfies
the equations of motion to the same level of approximation:

v(x, t ) = vs

(
U

(
ωvs

L0
R

(
t − x

vs

))
− U

(
ωvs

L0
R

(
t + x

vs

)))
,

(92)

where R(z) is the transformation function defined in Sec. III.

B. Temperature

Temperature in many cases acts in a way that broadens
and washes out features of the spectrum. This is not the
case for the quantum noise predictions made in Sec. IV. In
particular, the parametric resonance pattern of the correlation
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FIG. 13. Fluctuation matrix plotted for a driven system at ω = vs
5π

L0
at various temperatures, (a) T = 0, (b) T = vs h̄

π

L0
, and (c) T =

10vs h̄
π

L0
, and compared against the undriven fluctuations for the same temperatures, (d) T = 0, (e) T = vs h̄

π

L0
, and (f) T = 10vs h̄

π

L0
. The

pattern of resonances is not affected by the temperature; in fact, temperature makes the peaks more prominent and correlations of the driven
state are more greatly enhanced by temperature compared to the undriven state. The undriven state at each temperature can be thought of as
the initial thermal state before driving takes place.

matrix, 〈φrel(m, t )φrel(n, t )〉, defined in Eq. (26), remains the
same while the effect of the temperature is simply to enhance
noise across the board, but only for the nonzero values of the
correlation matrix. Remarkably, this only serves to improve
the signal-to-noise ratio between resonant and nonresonant
correlations, as can be seen in Fig. 13 where the correlation
matrix has been plotted at stroboscopic late times for three
different temperatures at driven and undriven systems (the
undriven state can be thought of as the initial thermal state
before driving). Details of the calculation of the correlation
matrix in the presence of a thermal distribution are given in
Appendix G.

For the coherent dynamics within linear hydrodynamics,
there is no concept of temperature since thermal fluctuations
and expectation value of fields decouple.

Temperature is expected to be important when consid-
ered in combination with interactions that allows classical
expectation value amplitude to be converted into quantum
noise by exciting quasiparticles. This process can be highly
temperature dependent since pre-existing high-momentum
quasiparticles would make interaction with the resonant mode
possible by providing more ways to satisfy energy-momentum
conservation and depleting the classical expectation. This can
lead to an effective highly temperature-dependent damping.

C. Dispersion

Working with the linearized dispersion rather than the full
Bogoliubov dispersion relation is a standard approximation
used in order to be able to invoke the power of conformal
invariance and arrive at the analytic formulas presented earlier
in the paper. At sufficiently high momenta, the Luttinger-

liquid theory eventually breaks down and the nonlinear
dispersion relation becomes evident. This occurs at mode
numbers

kh = L0

ξh
. (93)

In Sec. IV, we showed that low-energy modes of the system
will not be affected by the cutoff up to times

t ∝ ln(kh)

εω
. (94)

This suggests that by taking a quantum fluid in a suffi-
ciently large box we can make this time to be longer than
the duration of the experiment. If one wishes to examine
the behavior after that time this term should be included,
which would probably offer corrections to our prediction
of a complete leveling off of the energy absorbed. Model-
ing the system by a hard cutoff is physically motivated by
arguing that once higher orders in the dispersion become
important the spacing between energy levels starts to increase,
making those higher energy modes off resonant with the
drive.

The equation that includes the dispersion has the form

(
∂2

t − ∂2
x + ξ 2

h ∂4
x

)
φ(x, t ) = 0, (95a)

φ(0, t ) = φ(L(t ), t ) = 0. (95b)

To investigate approximately the effects of dispersion,
corrections to the fixed box eigenstates from the nonlinear
dispersion could be used and the effects of the boundaries
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included perturbatively:

fn(w, s) = i

2

√(
n + n3 ξ 2

h

2L2
0

)
π

{
e
−iπ

[(
n+n3 ξ2

h
2L2

0

)
s+nw

]

−e
−iπ

[(
n+n3 ξ2

h
2L2

0

)
s−nw

]}
, (96a)

fn(x, t ) = i

2

√(
n + n3 ξ 2

h

2L2
0

)
π

[e−iπnR(t+x) − e−iπnR(t−x)]

×e
−iπn3 ξ2

h
4L2

0
[R(t−x)+R(t+x)]

, (96b)

where s and w are the conformal coordinates as usual.
This is a good set of eigenstates in the perturbative regime

t < 1
εω

because it solves Eq. (95) to order O( ξ 2
h

L2
0
ε), which is an

improvement of order O(ε). Moreover, it is an orthonormal
set which can be easily verified by direct calculation of the
KG inner product in the conformal frame, and of course it
satisfies the boundary conditions.

IX. BEYOND LUTTINGER LIQUID

Our analysis relied heavily on the emergent conformal
symmetry of the low-energy dynamics of one-dimensional
systems. This, however, is not true for the entire spectrum. It
is then important to consider generalizations of the space-time
transformations which allow one to map systems with time-
dependent geometry to more familiar classes of problems. In
this section, we discuss the scaling transformation which al-
lows one to map the system of atoms in a time-dependent box
into a system in a fixed box but with time-dependent param-
eters. In a different context, such transformations have been
discussed earlier in Refs. [29,30]. We note that transforming
the problem into a more familiar setting of the Hamiltonian
with time-varying parameters makes it easier to connect to
the general ideas of linear response formalism. We will see,
however, that time-dependent perturbations that appear in this
case are very nonlocal: They involve changes in the mass of
the particles, the interaction strength, and the overall quadratic
potential.

In the absence of shaking, the system is described by the
Hamiltonian

H0 =
∑

i

p2
i

2m
− U0

2

∑
i, j

δD(xi − x j ), (97)

where m is the mass of the atoms and U0 is the strength of the
point interaction. Upon shaking, we can recover the constant
length of the box by performing a time-dependent dilation
transformation,

Udil. = e−iα(t )
∑

i xi pi , (98a)

U †
dil.x jUdil. = eα(t )x j, (98b)

U †
dil. p jUdil. = e−α(t ) p j, (98c)

where we need to take α(t ) = − ln ( L(t )
L0

), so that the length
of the box is restored to its original value, L(t ) → L0. After
the scaling transformation, the new Hamiltonian will contain
terms that couple position and momentum, Hnew ⊃ xi pi. These
can be simplified by an additional rotating frame transforma-
tion,

Urot = e−iF (t )
∑

i
x̂i

2

2 , (99)

with F (t ) = m∂t L(t )
2L(t ) . The full transformation

U = Udil.Urot. (100)

leads to the following Schrödinger equation:

i
∂

∂t
|�({xi}, t )〉 = Ĥ ′|�({xi}, t )〉, (101a)

Ĥ ′ = UĤU † − iU∂tU
† = 1

2m(t )

∑
i

p2
i + a(t )

2

∑
i

x2
i

+ g(t )

2

∑
i, j,i �= j

δD(xi − x j ), (101b)

|�({xi = 0}, t )〉 = |�({xi = L0}, t )〉 (101c)

and the time-dependent parameters are given by

m(t ) = m
L2(t )

L2
0

, (102a)

a(t ) = m
L(t )

L3
0

∂2
t L(t ), (102b)

g(t ) = gLD
0

L(t )D
. (102c)

If the model requires a high energy cutoff � (for exam-
ple, in higher dimensions), it would also be affected by the
transformation as �(t ) = � L(t )

L0
. Therefore, we can replace

the effects of the moving boundaries by introducing time
dependence into both the mass and the interaction strength,
while adding a time-varying quadratic external potential. In
particular, note that to first order this quadratic potential is the
same as the one found within the Luttinger liquid formalism
in Eq. (49).

Experimentally, this can be an indispensable tool for prob-
ing the system in new ways, potentially capable of exciting
collective excitation that was elusive in experiments with
previous probes.

X. SUMMARY AND OUTLOOK

In this paper, we considered two types of geometric para-
metric driving of 1d systems and provided a detailed theoreti-
cal analysis for both. The first setup that we discussed is based
on an atomic interferometer of variable length. It provides
an acoustic resonator analog of the dynamical Casimir effect
in cavity QED. The second system that we analyzed is a 1d
condensate in a box with periodically modulated length. The
unique feature of this system is that it combines classical driv-
ing with dynamical Casimir-like parametric mode squeezing.
In both systems, we focused on analyzing dynamics of the
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low-energy modes which can be described within the Lut-
tinger liquid framework and thus exhibit effective conformal
invariance. The key advantage of cold atoms analogues of the
dynamical Casimir effect is that relativistic dynamics requires
velocities comparable to the speed of sound, in contrast to
the speed of light in the case of QED. Hence, the systems
that we discuss should make it possible to achieve intermode
coherence and not only the squeezing of individual modes
observed in earlier experiments. We used the intricate con-
nection between correlation functions and Green functions
to determine the classical evolution of expectation values
of a single BEC in a box with a moving wall. A moving
boundary through Doppler shift gives rise to mode coupling.
Mode coupling appears, in this context, as higher harmonic
generation, where on resonance the resonant mode increases
linearly, while the second harmonic grows quadratically in
time. Interestingly, at late times the amplitude of the resonant
mode becomes suppressed even under continuous driving,
an effect we ascribe to higher modes coupling back to the
resonant one and destructively interfering.

Our results are expected to be accurate when the following
conditions are satisfied:

ξh

L0
� 1, (103a)

α → 0, (103b)

T � μ,ωL, (103c)

where the ratio of the healing length over the size of the
box ξh

L0
is indicative of how important effects from the true

nonlinear dispersion are in both the zipper and the shaken
box. The parameter α, defined in Eq. (53), controls the overall
scale of the classical response by including a compensating
quadratic potential in the shaken box experiment. A small
α suppresses nonlinear dynamics of the classical evolution
without influencing the mode squeezing effects from the
boundaries. Finally, T is the temperature which has to be low
enough so that the system is truly 1d and thermal excitations
are within the linear dispersion regime.

Before concluding the paper, we mention several interest-
ing directions in which our work can be extended. The main
part of our discussion relied on the Luttinger liquid formalism
with a high-energy cutoff on the scale of the healing length.
We pointed out, however, that one can define a general dilation
transformation which eliminates the time dependence of the
system size at the expense of introducing time-dependent
interactions and masses and adding a time-varying parabolic
potential. The nonperturbative effects of the strong potential
perturbation at the edges are swapped with a perturbation
of a more complicated operator that can be analyzed within
conventional linear response theory. This procedure is appli-
cable in any dimension and can be used as a probe in more
complicated systems to detect collective excitations of many-
body systems that do not couple to density perturbations, e.g.,
the Higgs mode in Fermi superfluids. Another future direction
is to extend our analysis from 1d systems to 2d superfluids
in box potentials, such as realized in experiments by Chomaz
et al. [31]. In this case, one can consider protocols that involve
moving the walls of the box in a way that excites modes

in both directions. Systems that we discuss offer interesting
questions about dynamics of nearly integrable models. For
particles in a fixed 1d box, integrability can be understood
as arising from the fact that momenta are exactly conserved
during both collisions of particles and reflections from static
walls. In the case of a shaken box, particles can change
their momenta due to Doppler shifts on moving walls. This
should act as integrability breaking; however, its role and
efficiency are not immediately clear. Finally, we point out
that in addition to exploring the dynamical Casimir effect,
cold-atom quantum resonators can be used to explore other
analogs of nonequilibrium phenomena in field theories in
nonstationary spacetime. For example, by moving the wall
of the box or the connection point in the case of the zipper
with relativistic acceleration, one can realize the Unruh effect
[32] or even simulate inflation of the universe of a rapidly
expanding gas [33].
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APPENDIX A: RETARDED GREEN FUNCTION

In this section, we show explicitly that the retarded Green
function, defined as the commutator of the quantum compo-
nent of the field in Eq. (16), is indeed a Green function of the
equations of motion and satisfies(−∂2

t + ∂2
x

)
DR(x, t ; x′, t ′) = δ(x − x′)δ(t − t ′). (A1)

In the definition of GR, rewritten here for convenience,

DR(x, t ; x′, t ′) = 2θ (t − t ′)Im

[∑
n

fn,t ′′ (x, t ) f ∗
n,t ′′ (x′, t ′)

]
,

(A2)

note that the subscript t ′′ implies that any valid set of modes
can be used in the summation since the retarded Green func-
tion depends only on the commutator of the fields and as a
result is independent of the underlying quantum state.

Explicit substitution of Eq. (A2) into the left-hand side of
Eq. (A1) gives(−∂2

t + ∂2
x

)
DR(x, t ; x′, t ′)

= −∂tδ(t − t ′)2Im

[∑
n

∂t ( fn,t ′′ (x, t )) f ∗
n,t ′′ (x′, t ′)

]

− 2δ(t − t ′)2Im

[∑
n

∂t ( fn,t ′′ (x, t )) f ∗
n,t ′′ (x′, t ′)

]
, (A3)

where the identity (−∂2
t + ∂2

x ) fn,t ′′ (x, t ) = 0 was used. The δ

function is only defined under integration and as a result we
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use the property

−∂t (δ(t − t ′)) f (t ) = δ(t − t ′)∂t f (t ). (A4)

This leads to the equation(−∂2
t + ∂2

x

)
DR(x, t ; x′, t ′)

= −δ(t − t ′)2Im

[∑
n

∂t ( fn,t ′′ (x, t )) f ∗
n,t ′′ (x′, t )

]
. (A5)

In order to calculate the sum, we can now use the freedom of
choosing any modes we like and, in particular, we can choose
t ′′ = t . Under this choice, we have

fn,t ′′=t (x, t ) =
e−i nπ

L(t ) t sin
(

nπ
L(t ) x

)
√

nπ
, (A6a)

∂t fn,t ′′=t (x, t ) = − inπ

L(t )
jn,t ′′=t (x, t ). (A6b)

Finally, putting everything together, we have

(−∂2
t + ∂2

x

)
DR(x, t ; x′, t ′)

= −δ(t − t ′)
2

L(t )

∑
n

(−nπ )
sin

(
nπ
L(t ) x

)
sin

(
nπ
L(t ) x

′)
nπ

,

(A7a)

= δ(t − t ′)
2

L(t )

∑
n

sin

(
nπ

L(t )
x

)
sin

(
nπ

L(t )
x′

)
, (A7b)

= δ(t − t ′)δ(x − x′), (A7c)

completing the proof.

APPENDIX B: INSTANTANEOUSLY-AT-REST MODES

In this Appendix, it is shown that as long as the wall is mov-
ing with subsonic speeds, it is always possible to construct
a basis of eigenmodes that have the fixed box eigenmode
form instantaneously at t = t ′. To achieve that, we need to
be able to assign the following boundary conditions to the
transformation function R(z):

R(z) = z

L(t )
, z ∈ [t − L(t ), t + L(t )], (B1)

and the rest of the function can then be determined using
the recursion relation, Eq. (13b). This is possible as long
as the recursion relation does not couple any two points within
the interval [t + L(t ), t − L(t )]. In particular, we need to show
that

(1) for any t ′ such that t − L(t ) < t ′ + L(t ′) < t + L(t ),
the quantity t ′ − L(t ′) is outside this interval, t ′ − L(t ′) < t −
L(t ), and

(2) similarly for any t ′ such that t − L(t ) < t ′ − L(t ′) <

t + L(t ), the quantity t ′ + L(t ′) is again outside this interval,
t + L(t ) < t ′ + L(t ′).

Consider two times t0, t1 such that t0 + L(t0) > t1+ =
L(t1)

⇒ t0 − t1 = �t > −�x = −[L(t0) − L(t1)]

and also require that the speed of the wall at any point is
smaller than the sound velocity, i.e., |�x

�t | < vs = 1. In this
situation, we have four scenarios:

(1) For �t > 0
�x > 0, trivially satisfies �t > −�x.

(2) For �t < 0
�x > 0 ⇒ |�t | < |�x| and hence it is not allowed.

(3) For �t > 0
�x < 0 ⇒ |�t | > |�x| and hence it is allowed.

(4) For �t < 0
�x < 0, �t > −�x is not satisfied and hence it is

not allowed.
Now consider the quantity �s = t0 − L(t0) − [t1 − L(t1)] =
�t − �x from the two allowed scenarios:

(i) For �t > 0
�x > 0, �s = |�t | − |�x| > 0 since |�t | > |�x|.

(ii) For �t > 0
�x < 0, �s = |�t | + |�x| > 0, trivially.

From the above analysis, we deduce that as long as | dL(t )
dt | <

1, if t1 + L(t1) ∈ [t0 − L(t0), t0 + L(t0)], then t1 − L(t1) /∈
[t0 − L(t0), t0 + L(t0)]. A similar analysis shows that if
if t1 − L(t1) ∈ [t0 − L(t0), t0 + L(t0)], then t1 + L(t1) /∈ [t0 −
L(t0), t0 + L(t0)].

⇒ No two points are coupled in a chosen interval and
we are free to choose the value of R(z), throughout such an
interval. This choice uniquely specifies the transformation.

APPENDIX C: COMPUTING OVERLAPS

For general two sets of solutions, we have

gn(x, t ) = i√
nπ

e−inπR(t+x) − e−inπR(t−x)

2
, (C1a)

fn(x, t ) = i√
nπ

e−inπR′ (t+x) − e−inπR′ (t−x)

2
. (C1b)

It is convenient to define complementary functions:

g̃n(x, t ) = i√
nπ

e−inπR(t+x) + e−inπR(t−x)

2
, (C2a)

f̃n(x, t ) = i√
nπ

e−inπR′ (t+x) + e−inπR′ (t−x)

2
, (C2b)

for which we have the following relations,

∂t fn = ∂x f̃n, (C3)

and similarly for gn. The inner product between two modes
takes the form

{ fm|gn} = −i
∫

dx( fm∂t gn − gn∂t fm), (C4a)

= −i
∫

dx( fm∂t gn + f̃n∂xgn). (C4b)

This inner product is itself time independent. As a result,
we are free to choose to evaluate it at any time. In particular,
it is convenient to choose the time for which gn looks like the
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stationary solution, Eq. (11):

gn(x, t ) = i√
nπ

e−inπ t+x
L(t ) − e−inπ t−x

L(t )

2
, (C5a)

∂t gn = − inπ

L(t )
gn, (C5b)

∂xgn = − inπ

L(t )
g̃n, (C5c)

⇒ { fm|gn} = − nπ

L(t )

∫
dx( fmgm + f̃mg̃n), (C5d)

=
√

n

m

1

2L(t )
(C5e)

×
∫ L(t )

0
dx

(
e−iπ[n t+x

L(t ) +mR′(t+x)] (C5f)

+ e−iπ[n t−x
L(t ) +mR′(t−x)]

)
. (C5g)

The two terms in the integrand of the final expression can
be combined by changing the variables of the second term,
x → −x, leading to

{ fm|gn} =
√

n

m

1

2L(t )
×

∫ L(t )

−L(t )
dxe−iπ[n t+x

L(t ) +mR′(t+x)]. (C6)

Similarly, one can derive the formulas shown in the text for
the Bogoliubov coefficients.

APPENDIX D: PERTUBARTIVE EXPANSION OF R(z)

A pertubative expansion of R(z) is found using the recur-
sion relation and initial conditions of R(z):

R(z + L(z)) − R(z − L(z)) = 2, (D1a)

R(z) = z

L0
, for z ∈ (−L0, L0). (D1b)

The next step is to expand R(z) in power series of the
perturbing function, ε(t ):

L(t ) = L0(1 + e(t )), (D2a)

R(z) =
∑

n

R(n)(z)e(z)n. (D2b)

Expanding terms in the recursion relation and matching
term by term gives us the perturbative expansion. The recur-
sion relation becomes∑

n

1

n!

{
dnR(x)

dxn

∣∣∣∣
z=z+L0

[L0e(z)]n

− (−1)n dnR(x)

dxn

∣∣∣∣
x=z−L0

[L0e(z)]n

}
= 2.

(D3)

Using the equation above, the zeroth-order term is

R(0)(z + L0) − R(0)(z − L0) = 2, (D4a)

R(0)(z) = z

L0
, for z ∈ (−L0, L0),

(D4b)

⇒ R(0)(z) = z

L0
. (D4c)

To first order, we have

R(1)(z + L0)e(z) − e(z)R(1)(z − L0) = −2e(z), (D5a)

R(1)(z) = 0, for z ∈ (−L0, L0), (D5b)

⇒ R(1)(z) = −2n, for z ∈ (−L0 + 2nL0,

L0 + 2nL0). (D5c)

The second-order term becomes

R(2)(z + L0)e2(z) − R(2)(z − L0)e2(z)

= − R(1)(z + L0)

(
de(x)

dx

∣∣∣∣
x=z+L0

)
[L0e(z)]

− R(1)(z − L0)

(
de(x)

dx

∣∣∣∣
x=z−L0

)
[L0e(z)], (D6a)

R(2)(z) = 0, for z ∈ (−L0, L0), (D6b)

and for resonant wall motion we have e(z ± L0) = e(z).
Hence, the second-order term obtains the form

e2(z)R(2)(z) = e2(z)R(2)(z − 2L0)

+(2n − 1)L0
de(z)2

dz
, (D7a)

e2(z)R(2)(z) = n2L0
de2(z)

dz
,

for z ∈ (−L0 + 2nL0, L0 + 2nL0). (D7b)

Finally, joining the pieces together up to second order, our
expansion takes the form

R(z) = z

L0
− 2ne(z) + n2L0

de2(z)

dz
, (D8a)

z ∈ (−L0 + 2nL0, L0 + 2nL0). (D8b)

As claimed in the text, given Eq. (29), one can estimate
where the perturbative expansion breaks down. The nth order
scales as (te)nω(n−1). As a result, this perturbation is valid up
to times

tpert. <
1

eω
. (D9)

APPENDIX E: LATE-TIME BEHAVIOR
OF BOGOLIUBOV MATRICES

The asymptotic form of the Bogoliubov matrices can be
calculated using Eq. (28) and the asymptotic form of R(z),
Eq. (33).

Here, we will concentrate on calculating the Bogoliubov
matrices at stroboscopic times i.e., integer multiples of the
period of the drive, t = l02L0/n, l0 ∈ Z:

Vν,μ = −
√

μ

ν

ei 2μπ l0
n

2L0

∫ L0

−L0

dxei μπx
L0 eiνπR(l0T +x)

= −
√

μ

ν

ei 2μπ l0
n

2L0

∫ 0

−2L0

duei μπ

L0
(u+1)eiνπR( 2l0L0

n +u+L0 )
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= −
√

μ

ν

ei 2μπ l0
n

2L0

n−1∑
k=0

∫ −2L0+ 2L0 (k+1)
n

−2L0+ 2L0k
n

due
iμπ (u+L0 )

L0

× eiνπ ( 2l0
n + −2L0+2L0 (k+1)/n

L0
+1)

, (E1a)∫ −2L0+ 2L0 (k+1)
n

−2L0+ 2L0k
n

dxe
iμπx
L0

= L0

iμπ

[
eiμπ (−2+ 2(k+1)

n ) − eiμπ (−2+ 2k
n )

]

= 2L0

μπ
eiμπ ( 2k

n + 1
n ) sin

(μπ

n

)
, (E1b)

n−1∑
k=0

ei2πk μ+ν

n = nδμ+ν,ρn, where ρ ∈ Z, (E1c)

⇒ Vν,μ = − ei 2μπ l0
n

√
μνπ

sin
(μπ

n

)
neiμπ (−1+ 1

n )eiνπ ( 2l0
n −1+ 2

n )

×
ρ=∞∑
ρ=1

δμ+ν,ρn, (E1d)

Vν,μ = − n√
μνπ

sin
(μπ

n

)
e−i πμ

n eiπ (ν+μ)( 2l0
n −1+ 2

n )

×
ρ=∞∑
ρ=1

δμ+ν,ρn, (E1e)

as required. Uν,μ is found similarly.

APPENDIX F: INHOMOGENEOUS DIFFERENTIAL
EQUATIONS

The possible pitfalls of dealing with inhomogeneous dif-
ferential equations are presented here by way of a simplified
example similar to the equations of motion found in the main
text. To present the core issue, it is enough to work with an
inhomogeneous differential equation with fixed boundaries
and then discuss the consequences for the moving boundary
case. We wish to solve the following equation:

(
∂2

t − ∂2
x

)
j = 0, (F1a)

j(x = L0) = a(t ), j(x = 0) = 0. (F1b)

The most straightforward way to deal with this equation is
to shift j by a linear function:

j = j̃ + x
a(t )

L0
. (F2)

Now, the variable j̃ satisfies homogeneous boundary condi-
tions and in particular can be expanded in terms of a sin series:

j̃(x = 0) = j̃(x = L0) = 0, (F3a)

⇒ j̃(x, t ) =
∑

n

an(t ) sin

(
nπ

L0
x

)
. (F3b)

The cost is introducing an inhomogeneous term in the wave
equation:

(
∂2

t − ∂2
x

)
j = −x

a′′(t )

L0
, (F4)

where a′′ denotes second derivative with respect to time. This
equation is solved by substituting the expansion of Eq. (F3b)
in Eq. (F4) and take the Fourier transform on both sides:[

∂2
t +

(
nπ

L0

)2
]

a(t ) = 2

L0

∫ L0

0
dx

(
−x

a′′(t )

L0

)
sin

(
nπ

L0

)
.

(F5)

However, in arriving at Eq. (F5), we have effectively replaced
the linear potential by its sin-series expansion:

x →
∑

n

bn sin

(
nπ

L0
x

)
. (F6)

This is a drastic step, effectively eliminating all the cosine
contributions from the expansion. This is justified by the fact
that even though there is an external potential, the boundaries
exert normal forces, effectively canceling all cosine contri-
butions in order to preserve the boundary conditions. The
apparent paradox comes from trying to calculate the density in
this model, which involves taking the spatial derivative of cur-
rent, h(x, t ) = ∂x j̃(x, t ). As before, h(x, t ), can be expanded
in cosine series:

h(x, t ) =
∑

n

cn cos

(
nπ

L0
x

)
. (F7)

Naively, the equations of motion for h would be

(
∂2

t − ∂2
x

)
h(x, t ) = −a′′(t )

L0
. (F8)

However, the operation of taking a spatial derivative of the
inhomogeneous term and expanding that term in the suitable
cosine or sine series do not commute:

x →
∑

n

bn sin

(
nπ

L0
x

)
, bn → 1

n
, (F9a)

∂xx →
∑

n

dn cos

(
nπ

L0
x

)
, dn → 1, (F9b)

or ∂xx = 1 →
∑

n

gn cos

(
nπ

L0
x

)
, gn → 0. (F9c)

Equation (F9b) represents expressing x in a sine series first
and then taking a spatial derivative, while Eq. (F9b) represents
taking the derivative of x and then expanding in a cosine
series. It is clear, however, that the correct procedure is the
one that gives consistent results of the solution of h and j in
Eq. (F9b). Upon resumming the expansion, one can show that

∂xx →
∑

n

dn cos

(
nπ

L0
x

)
= 1 − δ(x − L0). (F10)

As a consequence, the naive guess, Eq. (F8), derived by taking
a spatial derivative of the equation of motion for j to find the
equation of motion for h, is wrong. Instead, we can find the
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correct result by replacing x → θ (x)xθ (1 − x). In the moving
wall case, relevant for this paper, the eigenmodes are not
simple sines and cosines in space and it becomes unclear
what equations of motion for the density are imposed by
the boundary conditions of the current. Instead, to avoid this
pitfall, one should calculate the response of the current first
and from there find the density using the continuity equation.

APPENDIX G: THERMAL FLUCTUATIONS

As mentioned in Sec. III, we are working in the Heisen-
berg picture where the state is time independent, but the
operators, like the current operator, ĵ, evolve in time. How-
ever, using the relativistic formalism, we were able to de-
fine time-independent creation and annihilation operators,
{cm(t ), c†

m(t )}. The variable t denotes the time during which
the corresponding orthonormal basis functions have the fixed
box basis functions’ form. The generalization of the state of
the system being the ground state of the {cm(0)} annihilation
operators at all times, for finite temperature, T , is the follow-
ing thermal density matrix:

ρ(T ) = e−β
∑

l
lπ
L0

c†
l (0)cl (0)

Z . (G1)

As a result, the Keldysh function, using 〈c†
n(0)cm(0)〉 =

δn,mnb( nπ
L0

) (nb is the bose distribution function), takes the
form

GK (x, t ; x′, t ′) = −i〈{ jq(x, t ) jq(x′, t ′)}〉 (G2a)

= −2i
∑

n

Re

{
jn,0(x, t ) j∗n,0(x′, t ′)

×
[

1 + 2nb

(
nπ

L0

)]}
. (G2b)

This equation is the finite-temperature generalization of
Eq. (24). In the absence of interactions, thermal fluctuations
leave the classical response unaffected. However, quantum
and thermal fluctuations are included in the self-energy in
the presence of interactions, leading to temperature-dependent
damping factors.

In order to understand the effect of temperature, it is helpful
to write out the equivalent expression of Eq. (26) for finite
temperature, T :

〈φrel(n, t )φrel(m, t )〉

= 1

π
√

nm

∑
l

(V †
n,lVl,mei(n−m)πt/L(t )

+ Un,lU
†
l,me−i(n−m)πt/L(t ) + V †

n,lU
†
l,mei(n+m)πt/L(t )

+ Un,lVl,me−iπ (n+m)t/L(t ) )

[
1 + nb

(
lπ

L0

)]
. (G3)

It differs only by a thermal factor on the summation over l . For
kbT < h̄vs

π
L0

, thermal effects are exponentially suppressed.
This factor enhances the significance of lower modes in the
summation but preserves the matrix pattern of resonances,
as can be seen in Fig. 13. The mode n = 5 was used as
an example for temperatures kbT = {0, h̄vs

π
L0

, 10h̄vs
π
L0

} and
compared to the undriven fluctuations of the system. The res-
onance effect is in fact enhanced by temperature, with peaks
in the correlations becoming more prominent. Furthermore,
fluctuations of the driven state are more greatly enhanced by
temperature compared to the undriven case.

APPENDIX H: SQUEEZING IN REALISTIC SYSTEMS

In realistic systems, the box potential is not perfectly steep
and moving of the boundary occurs by thickening the wall
via amplitude modulation of the light creating the wall. An
imperfect box potential can be thought of, expanding around
the middle of the box, as a Taylor series where low-order
terms have been eliminated, making it look very flat. The box
potential and the actual potential have the form

VBox = V0�

(
|x| − L0

2

)
,V0 → ∞, (H1a)

Vactual =
(

2x

L0

)2N

, N � 2. (H1b)

The actual potential becomes the box potential in the limit
of N → ∞. Upon driving, intensity modulation of the laser
creating the wall translates to a time-dependent multiplicative
factor in the potential:

Vactual = A(t )

(
2x

L0

)2N

, (H2a)

=
(

2x

L(t )

)2N

, (H2b)

where A(t ) is the intensity modulation and L(t ) = L0
A1/2N (t )

is the effective time-dependent box potential. For small
intensity fluctuations, A(t ) = 1 + ε f (t ), ⇒ L(t ) ≈ L0(1 +
ε

2N f (t )). The box limit N → ∞ must be associated with
ε → ∞ such that ε

N → const. As a result, for sufficiently
steep boxes we expect our analysis to be valid.
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