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The realization of artificial gauge fields in ultracold atomic gases has opened up a path towards experimental
studies of topological insulators and, as an ultimate goal, topological quantum matter in many-body systems. As
an alternative to the direct implementation of two-dimensional lattice Hamiltonians that host the quantum Hall
effect and its variants, topological charge-pumping experiments provide an additional avenue towards studying
many-body systems. Here, we consider an interacting two-component gas of fermions realizing a family of
one-dimensional superlattice Hamiltonians with onsite interactions and a unit cell of three sites, the ground states
of which would be visited in an appropriately defined charge pump. First, we investigate the grand canonical
quantum phase diagram of individual Hamiltonians, focusing on insulating phases. For a certain commensurate
filling, there is a sequence of phase transitions from a band insulator to other insulating phases (related to the
physics of ionic Hubbard models) for some members of the manifold of Hamiltonians. Second, we compute the
Chern numbers for the whole manifold in a many-body formulation and show that, related to the aforementioned
quantum phase transitions, a topological transition results in a change of the value and sign of the Chern number.
We provide both an intuitive and a conceptual explanation and argue that these properties could be observed in
quantum-gas experiments.
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I. INTRODUCTION

One of the most prominent examples of topological effects
in condensed-matter physics is the quantum Hall effect [1].
On a lattice, the physics of the quantum Hall effect can
be described using a two-dimensional (2D) square-lattice
model pierced by a homogeneous magnetic field, the Harper-
Hofstadter model [2,3]. Using linear-response theory [4], one
can show that the Hall conductivity is quantized [5] due to the
topology of the band structure.

A rather new experimental approach for the implementa-
tion of topological lattice models is given by ultracold atomic
gases in optical lattices [6–9] in the presence of artificial
gauge fields. There are different methods to emulate artificial
gauge fields, such as lattice shaking [10–12], synthetic lattice
dimensions [13–15], or laser-assisted tunneling [16,17]. Using
the last one, the Harper-Hofstadter model has been realized
with ultracold bosons [16–19].

Accessing the regime of strong interactions while at the
same time staying sufficiently close to the ground state re-
mains a significant experimental challenge. This is partly
due to the periodic driving used to emulate gauge fields
[20] which leads to heating in generic many-body systems
[21,22]. Significant experimental efforts are geared towards
minimizing both systematic and technical sources of heating
in multiband Floquet systems [23–25].
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The aforementioned examples aim at direct implemen-
tations of two-dimensional band structures with topologi-
cal properties. There is, however, another manifestation of
quantum Hall physics: By choosing the Landau gauge, the
noninteracting 2D Harper-Hofstadter model maps to a family
of uncoupled one-dimensional (1D) Hamiltonians [3] that
are parametrized by a phase δ (see Fig. 1 for a sketch of
the model). Such systems are readily available in several
quantum-gas groups [26–29]. By adiabatically and periodi-
cally changing a set of Hamiltonian parameters, one obtains
a Thouless charge pump [30], in which a quantized amount
of charge is transported during each pump cycle. Such charge
pumps have been studied in ultracold atoms by using superlat-
tices realized by two standing-wave laser potentials, the rela-
tive phase of which is varied slowly in order to drive the pump
[28,29,31] (see [32,33] for higher-dimensional versions).

These experiments with (commensurate) superlattices, as
well as the theoretical interest in charge pumps, triggered
theoretical investigations of 1D superlattice Hamiltonians and
the many-body physics of fermions and bosons in these sys-
tems (see, e.g., [34–38]). For a superlattice with a wavelength
double the base lattice length, as studied previously [28,29],
one produces the Rice-Mele model [39], a paradigmatic
model for topological charge pumps with spatially dependent
potentials and tunneling strengths. Superlattices with differ-
ent commensurate wavelengths induce a variety of effective
models, including the model used in this paper (see the
sketch in Fig. 1), which contains a superlattice potential and
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FIG. 1. Schematic representation of the superlattice model.
Fermions hop between adjacent sites with rate t and the onsite
potential strength varies cosinusoidally with amplitude V = 3t . The
superlattice potential is invariant under translations by q = 3 sites
and shifted with the phase δ. If there are two particles on one lattice
site, energy is increased by U .

corresponds exactly to the noninteracting 2D Harper-
Hofstadter model [39].

The topological quantization of charge transport in Thou-
less pumps requires that the system remains in its ground state
as the Hamiltonian parameters are varied. This implies that the
many-body ground state must remained gapped, such that an
adiabatic limit is well defined. Therefore, there has been great
interest in finding insulating quantum phases for both bosonic
[37,40–43] and fermionic [35,40] systems.

Furthermore, one can also establish an analogy to the
spin-Quantum Hall effect by studying families of such 1D
Hamiltonians with a spin-dependent optical potential [35,40].
This requires that one works with two-component gases.
Recently, anyons have also been studied: A variation of the
statistical angle, i.e., exchange statistics, can also drive tran-
sitions between phases with different topological properties
[44].

In a recent study [38], some of the authors of the present
paper investigated a topological charge pump in the interact-
ing bosonic Rice-Mele model. In that case, interactions of a
finite strength are necessary to establish an insulating phase to
begin with [38,45,46]. In the case of spinful fermions, starting
from the noninteracting case, either one has a band insulator
(BI) initially or one works at a half-integer filling (an odd
number of fermions per unit cell), where in one dimension,
usually, any arbitrarily small onsite interaction leads to a
Mott-insulating state.

In this paper, we study the effect of interactions on a three-
band Fermi-Hubbard-Harper superlattice model in a one-
dimensional system of spin-1/2 fermions (see Fig. 1). We dis-
cuss the fate of band-insulating phases and the emergence of
Mott insulators (MIs) at various fillings and employ density-
matrix renormalization-group (DMRG) techniques [47–49] to
compute and characterize the grand canonical phase diagram.

The Hubbard model in the presence of onsite potentials has
been studied previously in the context of the ionic Hubbard
model [50–68]. Most of this attention has been to the two-site
periodic potential [50–52,54–61,63–66,68], although some

FIG. 2. Schematic representation of band-insulator and
correlated-insulator phases in one superlattice cell. These states
occur for α = 1/3 and superlattice phase δ = π/3 at density
ρ = 2/3. For this configuration, the two “upper” lattice sites are
degenerate. (a) For a weak repulsion U � V , both particles are
localized at the lowest potential site. (b) Double occupation is
suppressed for strong interactions, U � V .

relevant extensions to the three-site model have also been
studied [53,62,67], which apply to our model at certain values
of the superlattice phase. In the two-site version, it was found
that at half filling the system undergoes a sequence of tran-
sitions from a band-insulating state to a correlated insulator
(CI) with increasing U , with an intermediate spontaneously
dimerized insulating (SDI) phase which breaks the lattice-
inversion symmetry [50–52,54–61,63–66,68].

We then use our knowledge of the phase diagram to study
the topological properties of various families of adiabatically
connected 1D Hamiltonians, parametrized by δ and a twist
angle θ (introduced via twisted boundary conditions). We
classify these families by a many-body Chern number, an
integer-quantized topological invariant. In the limit of large
systems, the Chern number corresponds to the quantized
charge transport in a Thouless charge pump [5], which could
readily be carried out in an experiment.

We find that the presence of quantum phase transitions
in our model leads to interaction-induced changes in the
Chern number. Along with numerical evidence, we provide
an intuitive explanation for these topological transitions based
on the atomic limit and properties of the band structure. An
essential aspect is sketched in Fig. 2: depending on whether
U � V or U � V , the lowest site in the unit cell is doubly
or singly occupied, respectively. This behavior survives away
from the atomic limit, in the sense that one can think of the
U � V case as a (doubly) filled lowest band, while in the
U � V case the two lowest bands are effectively filled with
only one component. These situations translate into different
total Chern numbers on finite systems.

Furthermore, we show that the topological structure can be
understood in terms of degeneracies associated with the tran-
sition between symmetry-protected topological phases driven
by the Hubbard interaction. We note that the interpretation
as a topological charge pump may not be justified in the
thermodynamic limit since there exist parameter regions with-
out a global many-body gap, as required for the adiabatic
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charge pumping. These regions occur for special values of
the superlattice phase δ, as will be discussed later, and exhibit
vanishing spin gaps resulting in globally gapless states. We re-
mind the reader that in ultracold quantum-gas experiments we
are dealing with finite particle numbers that are comparable to
what we reach in our numerical simulations.

Our results agree with previous literature wherever we
overlap [34,35,37]. Furthermore, a similar transition from a
band to a strongly correlated insulator was observed in the
spin-imbalanced case in the same model in Ref. [35], in this
case leading to a change in the spin Chern number.

The paper is structured as follows. In Sec. II, we start by
introducing the Fermi-Hubbard-Harper model in detail and
discuss symmetries of the model. Section III outlines our
numerical method, the DMRG algorithm, and we describe
observables studied in this paper. In Sec. IV, we present a
grand canonical phase diagram for the Fermi-Hubbard-Harper
model, and we discuss physical properties of the insulating
phases for single Hamiltonians Ĥ (δ, θ ) of the family. Then,
in Sec. V, we discuss topological properties of the family of
ground states for {Ĥ (δ, θ )}T2 . We conclude this exposition
with a summary and an outlook in Sec. VI.

II. FERMI-HUBBARD-HARPER MODEL

We consider a one-dimensional tight-binding chain with
spin-1/2 fermions. The model Eq. (1) is expressed in terms
of real-space fermionic annihilation (creation) operators ĉ(†)

j,σ
and particle-number operators n̂ j = n̂ j,↑ + n̂ j,↓, acting on site
j on spin component σ :

Ĥ (δ) = −t

⎡
⎣ L−1∑

j=0,σ

ĉ†
j,σ ĉ j+1,σ + H.c.

⎤
⎦

+V
∑

j

cos(2πα j + δ)n̂ j + U
∑

j

n̂ j,↑n̂ j,↓, (1)

where L is the number of sites. Here, t is the nearest-neighbor
tunneling strength, and U is the onsite Hubbard interaction.
Additionally, there is a commensurate superlattice potential
with amplitude V and wave number α ≡ p/q ∈ Q, with p
and q coprime. A schematic representation of the model is
shown in Fig. 1.

We consider both open boundary conditions, ĉL,σ = 0,
and twisted boundaries, ĉL,σ = eiθ ĉ0,σ . The twist angle θ ∈
[0, 2π ) corresponds to a flux piercing of the ring. Periodic
boundary conditions are obtained for θ = 0. We define total
electron density, ρ = N/L, which is related to the filling factor
by a factor of 2, owing to the spin degree of freedom. N =∑

j〈n̂ j〉 is the total number of particles. The insulating states
of interest appear at commensurate densities, i.e., ρ = l/q
for some integer 0 � l � 2q, which corresponds to l total
fermions per unit cell.

We will primarily focus on the case α = 1/3, which is
the simplest case in the Harper-Hubbard model that has band
gaps. However, similar physics is expected to be found for
higher values of q, as is the situation in the bosonic case
[43]. The case of even q (e.g., α = 1/4) potentially offers
further interesting physics, due to the presence of a band
touching around E = 0, although this touching is expected to

be lifted in optical-superlattice experiments due to the induced
modulated tunneling. However, we leave the study of these
effects to later work.

Throughout this paper, we are also interested in families of
Hamiltonians parametrized by δ, θ ∈ [0, 2π ) defining a torus.
We will refer to such families as {Ĥ (δ, θ )}T2 .

A. Correspondence to the Harper-Hofstadter model

The commensurate superlattice can be motivated from the
noninteracting, two-dimensional Harper-Hofstadter model:
By working in the Landau gauge, the system can be Fourier
transformed along one axis [3]. After transforming into the
quasimomentum basis, the system is separable into a set of
one-dimensional lattice models, each parametrized by the
quasimomentum ky.

Therefore, we can interpret it as a family of decoupled
chains, where the periodic potential stems from the increased
unit cell due to the magnetic flux. Not taking interactions ∝U
into account, Eq. (1) is thus a hybrid-space representation of
the Hofstadter model: δ = ayky is the position in y-momentum
space, where ay is the lattice spacing and V = 2ty corresponds
to the hopping rate along that direction.

Furthermore, there is an important relationship between
the magnetic field in the two-dimensional Hofstadter model
and the one-dimensional family of chains: The superlattice
period α is exactly the fraction of magnetic flux per unit
cell of the two-dimensional model. When α = p/q is rational,
one recovers the Harper model considered here. At irrational
values of α one instead obtains the Aubry-André model [69].
This model has found important applications in the study of
quasirandomness in quantum systems [26,27,70–76].

Expressing the onsite interaction term ∝U in the original
2D Harper-Hofstadter picture, the interaction would be semi-
“local”. That is, the repulsion is onsite in the x direction
but infinite range along the y direction. Such interactions
are not found in traditional electronic materials; however,
anisotropic interactions could possibly be implemented us-
ing synthetic lattice dimensions [77–79]. Furthermore, 1D
superlattices have been realized with ultracold atoms [26–29].
These 1D systems provide the main motivation for this
research.

B. Topological properties of the Harper-Hofstadter model

The Harper-Hofstadter model hosts topological insulator
phases, since its bands have nontrivial Chern numbers [5] (see
Fig. 3). The Berry curvature is usually expressed in terms of
antisymmetrized derivatives with respect to quasimomentum
kx, ky:

F (k, ν) ∝ i
(
∂kx 〈uk,ν |

)
∂ky |uk,ν〉 − (kx ↔ ky), (2)

Cν = 1

2π

∫
BZ

dk F (k, ν), (3)

where |uk,ν〉 are the eigenstates of the free 2D Hamiltonian for
the νth band.

This definition Eq. (2) of the Berry curvature F can only be
used in the noninteracting case, where quasimomentum k is a
good quantum number. In our hybrid space one-dimensional
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FIG. 3. Topological band structure. Band structures for the non-
interacting Fermi-Hubbard-Harper model for α = 1/3, V = 3t , as
a function of δ. The bands correspond to the dispersion relation
of the Harper-Hofstadter model, identifying δ with the transversal
momentum ky. Thus the Chern numbers describing the topology
associated with each set of bands share the topology of the bands
of the 2D Harper-Hofstadter model, where C{l,m,u} = {−1, 2, −1} for
the lower, middle, and upper band, respectively.

model, we differentiate with respect to kx and δ, using the
replacement ∂ky ∝ ∂δ .

In the interacting case, the Berry curvature is generally
defined on a family of Hamiltonians [80,81]. For a many-body
system, we can introduce twisted boundary conditions, such
that the Chern number is defined with respect to the twist
angle θ [82]:

C({|ψ〉}) = 1

π

∫ 2π

0
dθ

∫ 2π

0
dδ Im[(∂δ〈ψ |)∂θ |ψ〉], (4)

where |ψ〉 ≡ |ψ (δ, θ )〉 is the unique many-body ground state.
For L → ∞, twisted boundaries do not affect bulk prop-

erties [82–84], and the family {Ĥ (δ, θ )}T2 [where Ĥ (δ) was
defined in Eq. (1) and the θ dependence results from using
twisted boundary conditions] can realize a topological charge
pump: As δ is changed adiabatically to δ + 2π , a quantized
amount of C charges is transported through the system.

C. Symmetries

The Fermi-Hubbard-Harper model possesses several sym-
metries that can be exploited to understand the ground-state
physics and to improve the computational effort. These sym-
metries are used throughout the paper and we detail the
relevant ones here.

In the gauge chosen for Eq. (1), it is obvious that Ĥ (δ, θ ) is
invariant under shifts by 2π of both twist angle θ and superlat-
tice phase δ. However, for periodic boundary conditions, there
is a higher symmetry related to the superlattice phase: Shift-
ing δ → δ + 2π/q with an additional gauge transformation
merely corresponds to a translation T̂j′− j of the superlattice
by j′ − j sites, defined through the modulo inverse:

p( j′ − j) = 1 mod q, (5)

where α ≡ p/q. Thus, it suffices to compute ground states
for δ ∈ [0, 2π/q). Due to the gauge choice in Eq. (1), i.e.,
complex hopping on one bond only, the Berry curvature is not

invariant under δ → δ + 2π/q. We need to construct states for
2π/q � δ < 2π explicitly:

|ψ (δ + 2π/q, θ )〉 = T̂j′− je
−iθ

∑ j− j′
l=1 n̂l |ψ (δ, θ )〉. (6)

We choose j � j′ < q and |ψ (δ, θ )〉 is the ground state for
given values of δ and θ .

The 2D Harper-Hofstadter model is particle-hole symmet-
ric around E = 0. For the Fermi-Hubbard-Harper model of
Eq. (1), this symmetry is not present at any individual value
of δ. However, under a shift of δ → δ + π , and θ → −θ , the
particle-hole symmetry is recovered.

The interaction term in Eq. (1) also preserves the particle-
hole symmetry: Exchanging ĉ†

j,σ ↔ ĉ j,σ in Eq. (1), we find
a shifted superlattice δ → δ + π and reversed flux θ → −θ .
Shifting θ does not change the Chern number as the curvature
is integrated over the entire torus. But changing the direction
of the flux θ flips the sign of the Berry curvature in Eq. (4)
and thus changes the many-body Chern number: C(ρ,U ) →
−C(2 − ρ,U ). Note that this implies C(1,U ) = −C(1,U ) =
0. Because of the particle-hole symmetry, it is sufficient to
study phases and their topological properties for ρ � 1.

We further note that in the case of periodic boundary
conditions, at values of δ = 2πn/3 and 2π (1/6 + n/3) for
n ∈ Z, the system also possesses an inversion symmetry.
The presence of an inversion symmetry allows for the ex-
istence of one-dimensional symmetry-protected topological
states [85,86]. These special δ points are important for the
understanding of the possible topological properties of a
family of Hamiltonians, {Ĥ (δ, θ )}T2 . For δ = 0, 2π/3, and
4π/3, there are no topological transitions at ρ < 1, yet they
occur at ρ ′ = 2 − ρ by particle-hole symmetry.

More specifically, a lattice-inversion symmetry constrains
the many-body Zak phase which is defined as

ϕ = i
∫ 2π

0
dθ〈ψ (δ, θ )|∂θψ (δ, θ )〉. (7)

The Zak phase can have only two values ϕ = 0, π mod 2π ,
differing by exactly π . These two values of the Zak phase
are topological invariants that cannot change under symmetry-
preserving perturbations of the Hamiltonian without closing
the many-body gap.

For open boundary conditions, the choice of the unit
cell can become important. This is typical of symmetry-
protected topological states, where the choice of boundaries
determines the presence or absence of gapless edge states
[87]. In our case, a choice of δ = π/3 leads to an intracell
site-centered symmetry, meaning that the lattice will retain its
inversion symmetry. For δ = π and 5π/3 the lattice loses
its inversion symmetry with open boundary conditions. We
refer to these situations as symmetric and asymmetric lattice
configurations, respectively.

III. METHODS AND OBSERVABLES

A. DMRG

All numerical results presented in this paper were obtained
using the DMRG algorithm [47,49]. We employ a single-site
variant called DMRG3S [88]. Particle-number conservation
and SU(2) symmetry in the spin sector with an associated
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quantum number S of the model are exploited. Thus, we fix
the number of particles and the total spin for each computa-
tion.

In DMRG, the ground state is represented as an open
chain of rank-3 tensors, a matrix-product state (MPS) [49].
Throughout this paper, we consider both periodic boundaries,
required for the flux piercing, and open boundaries, which are
numerically less challenging.

For periodic boundaries, we show data for up to L = 42
sites, while calculations with open boundary conditions were
performed up to L = 600. In both cases we used SU(2)-
reduced bond dimensions up to m = 2000 [89], which
roughly corresponds to m = 5000 when only using Abelian
symmetries.

B. Observables

As DMRG performs a ground-state search, the energy of
the state is obtained in each step. Furthermore, we estimate
[90] the energy variance var(Ĥ ) = 〈Ĥ2〉 − 〈Ĥ〉2 in order to
quantify convergence. We can estimate the energy difference
to the true ground state δE := EDMRG − E0 ≈ var(Ĥ )/(E1 −
E0) using the energy difference of the two lowest states E0

and E1, assuming the DMRG wave function is a superposition
of these two states.

This error estimate results from the following arguments.
We assume that the DMRG wave function |ψ〉DMRG is an
overlap of the ground |ψ0〉 and the first excited state |ψ1〉 with
0 < α � 1:

|ψ〉DMRG = α|ψ0〉 +
√

1 − α2|ψ1〉. (8)

Then

δE = 〈ψDMRG|Ĥ |ψDMRG〉 − E0 = (1 − α2)(E1 − E0). (9)

The variance is

var(Ĥ ) = α2(1 − α2)(E1 − E0)2

≈ (1 − α2)(E1 − E0)2 (10)

and, therefore, δE ≈ var(Ĥ )/(E1 − E0).

1. Energy gaps

Using DMRG, we compute ground states in different
particle number N and SU(2) spin-symmetry sectors to ob-
tain different many-body gaps. Excitation gaps are crucial
for obtaining quantum phase diagrams and for establishing
topological properties: The Chern number is defined only for a
ground-state manifold which is gapped everywhere. Topolog-
ical transitions, changing the Chern number, require degen-
erate points on the ground-state manifold. The ground state
is always in the spin-singlet sector S = 0, but we also com-
pute the lowest-energy state in the spin-triplet sector S = 1.
Comparing these energies, we can find different types of
many-body gaps.

First, varying the particle number and keeping the total spin
fixed gives the chemical potential μ = μ(N ). We search for
incompressible states where ∂μ/∂n → ∞, indicating insulat-
ing behavior.

The charge gap is defined as

�charge(N ) = [E0(N + 2, S = 0) + E0(N − 2, S = 0)

− 2E0(N, S = 0)]/2. (11)

Keeping the particle number constant, we define the spin gap
between singlet S = 0 and triplet S = 1 sector:

�spin(N ) = E0(N, S = 1) − E0(N, S = 0). (12)

We also compute the first excited state in the same symmetry
sector, by orthogonalizing both states during the DMRG run.
Using E1, we obtain the internal gap:

�int (N ) = E1(N, S = 0) − E0(N, S = 0). (13)

We note that the internal gap need not be the smallest gap
in the system, as states in other spin sectors may have lower
energies.

2. Computing topological properties

To compute the Berry curvature, we find ground states for a
discretized grid on {Ĥ (δ, θ )}T2 . As described in Sec. II C, with
periodic boundary conditions, the system is symmetric under
shifts in the superlattice phase: δ → δ + 2πn/3. Therefore, it
is possible to relate the ground-state wave function found in
the range δ ∈ [0, 2π/q) to other states on the {δ, θ} manifold
via a translation and a gauge transformation.

We compute overlaps of all ground states adjacent on the
{δ, θ} discretized torus and evaluate the Berry curvature using
the method by Fukui et al. [91]:

F (δ, θ ) = Im ln
〈ψ (δ, θ )|ψ (δ′, θ )〉〈ψ (δ′, θ )|ψ (δ′, θ ′)〉
〈ψ (δ, θ ′)|ψ (δ′, θ ′)〉〈ψ (δ, θ )|ψ (δ, θ ′)〉 ,

δ′ = δ + �δ, θ ′ = θ + �θ, (14)

where �δ,θ is the grid spacing in parameter space. This
expression can be understood as the Berry phase gained when
moving along a closed loop in the {δ, θ}-parameter space.
Overlaps can easily be computed from MPS representations
[48]. The Berry curvature for one configuration in the strongly
correlated insulator is plotted in Fig. 4.

By construction, the numerically computed Chern number,

C(ρ,U ) = 1

2π

∑
δ,θ∈[0,2π )

F (δ, θ, ρ,U ), (15)

is always an integer. This remains true even if the grid spacing
is too coarse or the ground-state manifold is not gapped
everywhere. However, in these cases the computed Chern
number will not necessarily be stable under small changes.

We verify the degree of convergence by using the real
part of the logarithm in Eq. (14). This measure is small
when the overlap between wave functions at adjacent points
on the grid is close to unity. We choose a 6 × 6 grid for
δ ∈ [0, 2π/q), θ ∈ [0, 2π ) such that the absolute values of all
overlaps are large, except when the internal gap is zero.

Furthermore, when studying open boundary conditions,
we compute the center-of-mass coordinate X (δ), which can
easily be computed using DMRG and can be measured in
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FIG. 4. Berry curvature in the strongly interacting regime. Com-
puted from ground states for L = 24 and V = 3t at U = 12t and
ρ = 2/3. The integrated curvature thus yields a Chern number
C(ρ,U ) = 1. Only ground states for δ ∈ [0, 2π/3) were calculated;
all other overlaps were obtained exploiting the respective symmetry
(see Sec. II C). The curvature is nonzero close to δ ∈ {1, 3, 5}π/3.
Note that the curvature is not invariant under shifts δ → δ + 2π/3
due to the inhomogeneous gauge choice (see Sec. II C).

experiments [28,29]. The definition of X (δ) is

X (δ) = 1

L

∑
j

j〈ψ (δ)|n̂ j |ψ (δ)〉. (16)

Here, |ψ (δ)〉 is the ground state at a given δ. Note that a flux
θ is merely a static gauge transformation for open boundaries,
and thus does not matter here. As we compute ground states
for each value of δ independently, there is no accumulation of
charge at either end during a pump cycle: The center-of-mass
coordinate returns to its initial value as δ → δ + 2π . Instead,
quantized charge transport can be observed as discontinuities
of the change of the center-of-mass coordinate. These discon-
tinuities correspond to the shift of an occupied edge mode
from one side of the system to the other [92].

3. Additional observables

For each ground state, we compute the one-particle (re-
duced) density matrix (OPDM), containing all (normal)
single-particle observables. Since we enforce SU(2) spin sym-
metry, we can only compute the spin-independent OPDM
ρ (1):

ρ
(1)
i, j =

∑
σ

〈ĉ†
i,σ ĉ j,σ 〉. (17)

We exploit translational symmetry to restrict one index to
0 � i < q for nondegenerate states. From the OPDM, we can
extract occupations of eigenstates of the free Hamiltonian,
U = 0. The noninteracting eigenbasis is obtained from a lin-
ear transformation ĉν,k̃,σ = ∑

j (aν,k̃ ) j ĉ j,σ . For nondegenerate
states, we can thus compute the total occupation nν of the νth
band:

nν ≡
∑

k̃

〈n̂ν,k̃〉 =
∑
i, j

(aν,k̃ )†
i ρ

(1)
i, j (aν,k̃ ) j, (18)

where 〈n̂ν,k̃〉 = ∑
σ 〈n̂ν,k̃,σ 〉 and 〈n̂ν,k̃,σ 〉 is the quasimomentum

distribution function of fermions with spin σ in the νth band,

with ν ∈ {l, m, u} corresponding to the lower, middle, and
upper band, respectively.

In addition to real-space occupation numbers 〈n̂ j〉 = ρ
(1)
j, j ,

we compute expectation values for local single P̂(1)
j and

double occupation P̂(2)
j , respectively, related via n̂ j = P̂(1)

j +
2P̂(2)

j . Here, P̂(i)
j is the projector onto the manifold with i

particles at the jth site.
To identify the spontaneously dimerized phase, we com-

pute the bond-order parameter:

〈B̂〉 = 1

L/3

L/3−1∑
j=0,σ

〈ĉ†
3 j,σ ĉ3 j+1,σ − ĉ†

3 j+1,σ ĉ3 j+2,σ + H.c.〉. (19)

For our case of a three-site superlattice (q = 3) with phase δ =
π/3 according to Fig. 2, sites zero and two are energetically
degenerate while site one is lower in energy.

IV. QUANTUM PHASES OF THE 1D
FERMI-HUBBARD-HARPER MODEL

In this section, we discuss quantum phases of ground
states for individual Ĥ (δ, θ ) from the family of Hamiltonians
{Ĥ (δ, θ )}T2 . As the twist angle θ is a boundary effect, it does
not affect bulk physics in the thermodynamic limit [83,84].
However, the superlattice phase δ can affect quantum phases.
For example, the SDI phase (to be discussed below) appears
only for certain values of δ, related to the lattice-inversion
symmetry discussed in Sec. II C.

Quantized charge transport in the family of Hamiltonians
can only occur if the physical state is insulating for the entire
pump cycle [30,82]. Conversely, the Chern number of the
manifold of ground states can only change when the many-
body gap closes. We thus start by studying insulating phases.

In the following sections, we restrict ourselves to a three-
site superlattice, α ≡ p/q = 1/3. For this configuration, there
are three separated energy bands, which are all topologically
nontrivial (see Fig. 3). Furthermore, we will choose V =
3t as the strength of the potential unless stated otherwise.
For this value of V/t , the band gaps are comparable to the
hopping matrix elements t . We find that significantly stronger
superlattice potentials do not change the physical behavior
qualitatively.

A. Grand canonical phase diagram

In order to obtain the phase diagram for the Fermi-
Hubbard-Harper model we compute ground states for various
particle numbers and interaction strengths U . As described in
Sec. III B 1, we can infer the chemical potential μ and the
{μ,U }-phase diagram.

A phase diagram obtained from DMRG data for open
boundaries is shown in Fig. 5 for δ = π/3. The analysis of the
charge gap [see Eq. (11)] suggests the existence of insulating
phases for five different fillings. At ρ = 2/3 and 4/3, there
are band insulators, already present without interactions at
U = 0. Furthermore, for half-filled bands, ρ = 1/3, 1, and
5/3, Mott-insulating phases emerge for U > 0.

An interesting sequence of phases exists at filling ρ = 2/3:
Upon increasing U/J , the BI ultimately (via two transitions)
turns into a correlated insulator at U � J . We use the term CI
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FIG. 5. Grand canonical phase diagram. Ground-state phases
of the Fermi-Hubbard-Harper model with α = 1/3, computed for
δ = π/3 and V = 3t with open boundaries. For ρ ∈ {2, 4}/3 there
are band insulators (BI) for U = 0. At U ≈ 8t, ρ = 2/3 there is
a transition to a spontaneously dimerized insulator (SDI) and then
to a strongly interacting correlated insulator (CI). Mott insulators
(MI) appear for half-filled bands, ρ = 1/3, 1, and 5/3. The phase
boundaries μ(U, ρ ± 1/L) are extrapolated in L → ∞. The density
ρ in each of the incompressible phases is indicated in the top of the
figure.

to distinguish this large U/J phase from MIs since at filling
ρ = 2/3 the bands are either empty or filled. The term CI is
also used in parts of the literature in the same context [58]. We
find evidence (see Sec. IV C 2) that the intermediate phase is
a bond-ordered SDI phase separating the BI and CI phases at
density ρ = 2/3, indicated in Fig. 5.

We also draw attention to the linear behavior of the phase
transitions for large μ and large U . In this regime, the insulat-
ing phases have density ρ � 1, i.e., at least one fermion per
site. This makes the energy of adding a particle dominated by
the interaction energy and therefore directly proportional to
the interaction U .

B. Mott insulator at density ρ = 1/3

For particle density ρ = 1/3 and without interactions U ,
the lowest band is half filled, and we are in a metallic phase
for all δ, θ . As we saw in Fig. 5, a charge gap opens for weak
interactions and the phase appears to be a Mott insulator for
all U > 0.

While the charge gap [see Eq. (11)] is comparable to the
size of the gaps for the band-insulating phases in Fig. 5, there
can be gapless spin excitations for the infinite system in this
Mott insulator (see the discussion in Sec. IV B).

Increasing onsite repulsion U/t obviously suppresses the
double occupation 〈P̂(2)

j 〉 on all lattice sites j. In Fig. 6, we
illustrate that real-space double occupation decreases with
U/t . Moreover, also in momentum space, occupation numbers
change as a function of increasing interaction strength. As
shown in the same figure, for U = 0, the lower half of the
lowest band is fully occupied by each spin species. When
interactions increase (in the range considered in Fig. 6), the
particles mostly remain in the lowest band of the nonin-
teracting model, but we approach a constant momentum-
distribution function 〈n̂ν=l,k〉 = 1 for the entire lowest band.

FIG. 6. Partially integrated momentum-distribution function and
real-space double occupation for ρ = 1/3. We show data for super-
lattice amplitude V/t = 3 and phase δ = π/3. P(2) is the double oc-
cupation averaged over one superlattice cell. Increasing the strength
U of the interaction suppresses double occupation for the MI phase.
In momentum space, all particles remain in the lowest band, but, as U
increases, states below and above the Fermi wave number kF become
evenly occupied. The lines are guides to the eye.

Only considering single-particle observables ĉ†
i,σ ĉ j,σ , such as

particle density 〈n̂ j〉 or the momentum-distribution function
〈n̂ν,k〉, the system behaves much like free spinless fermions
at the same particle density: For a single species of fermions,
double occupation is prohibited by Pauli’s exclusion principle
and, without interactions, the lowest band would be singly
filled at density ρ = 1/3.

1. Strong-coupling limit

In order to understand the phases present in our model, we
use Schrieffer-Wolff (SW) perturbation theory to simplify the
problem in certain limits. In particular, SW theory allows us to
understand the effective spin-sector behavior typical of Mott
insulators when there is a significant charge gap.

For the single-band one-dimensional Hubbard model at
half filling (ρ = 1), any nonzero Hubbard interaction induces
a charge gap [93]. In the limit of t � U , the Hubbard inter-
action projects out doubly occupied sites, as these sites have
energy U . The ground state therefore lives in the manifold of
singly occupied sites.

One can then use Schrieffer-Wolff perturbation theory to
derive an effective Hamiltonian which describes the low-
energy physics in this manifold of states [93]:

Ĥ eff
S = J

∑
i

Ŝi · Ŝi+1 + O(t2/U 2). (20)

Here, Ŝi labels the spin-1/2 degree of freedom on site i and
J = t2/U is the induced spin-spin interaction. This effective
model is the well-known isotropic Heisenberg chain, which
has gapless spin excitations [94]. Importantly, as the ground-
state manifold and the original Hamiltonian have a global
SU(2) symmetry, the effective Hamiltonian will also contain
only SU(2) invariant terms.

In the present case of a model with a lower degree of trans-
lational symmetry and away from half filling, the effective
model is more complicated. Following [62], we can write the
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effective strong-coupling model as follows:

Ĥ = −t
∑
i,σ

P̂(ĉ†
i+1,σ ĉi,σ + H.c.)P̂ +

∑
i

�in̂i

+
∑

i,δ=±1

t ch
i P̂

[
ĉ†

i+δ,σ ĉi−δ,σ

(
2Ŝi · Ŝi−δ − 1

2
n̂i

)]
P̂

+
∑

i

Ji

(
Ŝi · Ŝi+1 − 1

4
n̂in̂i+1

)
. (21)

Here, P̂ = ∏
i (1 − n̂i,↑n̂i,↓) projects out all doubly occupied

sites, Ŝμ
i = (1/2)

∑
αβ ĉ†

i,ασ
μ
αβ ĉi,β are the components (μ =

x, y, z) of the spin-1/2 operators Ŝi and σμ are the Pauli
matrices. t ch

i are the effective correlated tunneling strengths,
and Ji are the effective spin couplings:

Ji = 4t2U

U 2 − �2
i,i+1

,

t ch
i = 1

2

(
t2

U + �i,i+1
+ t2

U − �i,i−1

)
, (22)

where �i, j = V cos(2π j/3 + δ) − V cos(2π i/3 + δ) is the
potential difference between sites i and j. Terms of higher
order in t/U have been omitted. This model describes a
generalized t − J model, which reduces to the homogeneous
case when V = 0.

The strong-coupling limit (U � �, t) can be studied by
solving first for the distribution of the charge degrees of
freedom, and then treating the terms proportional to Ji and t ch

i
perturbatively. This charge distribution can be determined by
finding the ground state of a system of noninteracting spinless
fermions ĉ†

i on the lattice in question. The effective spin
Hamiltonian is then obtained by projecting the Hamiltonian
in Sec. IV B 1 onto the charge distribution.

For ρ = 1/3, the charge distribution is the same as that of a
system with a filled lowest band of the noninteracting spinless
model. One then recovers the effective model:

Ĥ eff = 1

2

∑
i, j

Jeff
i, j

(
Ŝi · Ŝ j − 1

4

)
, (23)

where

Jeff
i,i+1 ≈ 1

N

N−1∑
i=0

[
Ji〈n̂in̂i+1〉′ + 2t ch

i 〈ĉ†
i−1ĉi+1n̂i〉′

+ 2t ch
i+1〈ĉ†

i+2ĉin̂i+1〉′
]
. (24)

The expectation values 〈·〉′ are taken with respect to the
spinless-fermion background [62]. This model is a “squeezed”
Heisenberg chain, where the empty sites have been elimi-
nated, and the Ŝi refer to the spins attached to the ith fermion,
which will be centered at the ith unit cell on average. This
chain therefore has length N = ρL.

The spin chain inherits symmetries from the underlying
lattice and the charge distribution. For ρ = 1/3, this implies
that the Jeff

i are homogeneous, and we recover the standard
Heisenberg model, with one spin per unit cell. The effective
spin model therefore predicts that the system has gapless spin
excitations in the strong-coupling limit, which is consistent

FIG. 7. Phase diagram for the ρ = 2/3 insulator. The system,
throughout the {δ,U } plane, is adiabatically connected to a band
insulator at U = 0. However, along three lines at δ = π/3, π , and
5π/3, the lattice has a symmetry in the superlattice potential which
leads to the phase structure outlined in Fig. 8.

with our numerical data. Note that this result is independent
of δ and θ .

C. Insulators at density ρ = 2/3

The system at density ρ = 2/3 has a complicated phase
diagram with several transitions. The basic structure of the
phase diagram is illustrated in Fig. 7. In this section, we
discuss the sequence of phases. To give a brief overview, at
U = 0 the system is a band insulator with a filled lower band.
Apart from the symmetric lines along δ = π/3, π , and 5π/3,
the BI survives at all U/t and becomes strongly correlated as
U/t increases.

Along the symmetric lines, there are two phase transitions,
which are sketched in Fig. 8. First, at Uc1 the system undergoes
an Ising-like transition from the BI to a doubly degenerate
SDI [55,58,62,65,95]. At a larger interaction strength Uc2 ,
there is a second transition of the Berezinskii-Kosterlitz-
Thouless (BKT) type to a CI with gapless spin excitations
[52,55,56,58,62,65,95].

1. Band insulator

At fermion density ρ = 2/3 there is a charge gap at U = 0
(see Fig. 5), corresponding to the band gap of the Hofstadter
model (see Fig. 3). We find that even strong interactions
preserve the properties of the band-insulating phase for most
parameters δ of the family Eq. (1). This band insulator is
adiabatically connected to all points in the {U, δ}-parameter
space, except for the lines with the SDI and the gapless CI
phases, as sketched in Fig. 7. While there is no phase tran-
sition throughout this region (except at δ = π/3, π, 5π/3),
there is a smooth change to a gapped strongly correlated state
as U/t increases.

2. Spontaneously dimerized insulating phase

At δ = 2π/6 + 2πn/3, between the CI phase and the BI
phase, there is an intermediate bond-ordered phase, typical of
ionic Hubbard models [50,51,54,55,57–61,63–66,68,95]. This
phase has been studied by a mapping to an exactly solvable
SU(3) antiferromagnetic Heisenberg chain [57] where the
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FIG. 8. Schematic representation of the energy gap structure for
δ = π/3 at ρ = 2/3. Along this line, there are two critical values
of U : Uc1 and Uc2 . Uc1 marks an Ising-like transition between a
band insulator (BI) and a spontaneously dimerized insulator (SDI)
as was demonstrated in previous works [55,58,62,65]. The second
critical value Uc2 is the point of a BKT-like transition between the
SDI and a correlated insulator (CI). We also show the behavior of
various energy gaps in these different phases for various types of
excitations. The band insulator is completely gapped throughout. The
global many-body gap is identical to the internal gap in the BI and
closes at Uc1 when the ground state becomes doubly degenerate in
the SDI, while the charge and spin excitations remain finite. The
transition between the SDI and CI at Uc2 occurs when the spin gap
closes.

state was found to have both spin and charge dimerization.
The dimerization spontaneously breaks the lattice-inversion
symmetry which occurs at these values of δ.

The situation is illustrated in Fig. 9. The choice of bound-
ary conditions is particularly relevant for the SDI phase, where
the symmetric configuration at δ = π/3 splits a dimer, leading

FIG. 9. Lattice configurations for open boundary conditions. Dif-
ferent choices of δ change the boundary conditions. These boundary
conditions determine edge-state properties of the ground state of the
SDI phase: The two asymmetric lattice configurations, δ = π and
5π/3, support left and right dimerized ground states, respectively.
These dimers are combinations of the two configurations illustrated
in Fig. 2. However, for δ = π/3, the symmetric lattice configurations
support neither ground state, leading to the existence of gapless edge
modes.

FIG. 10. Bond-order parameter across the BI-SDI-CI transition.
At δ = π/3, the system is as depicted in Fig. 2, i.e., the potential
energies on sites 0 and 2 are degenerate, and site 1 is lower in energy.
Data were computed for open boundaries without inversion sym-
metry for L ∈ {90, 120, 150, 180, 240, 300, 360, 450}. The vertical
lines indicate the two phase transitions, as determined from the gap
data shown in Fig. 11.

directly to the existence of gapless edge modes, and the
asymmetric configurations each support one of the two SDI
ground states.

A numerical study of the two-site ionic Hubbard model
[58] suggests that bulk many-body gap and spin gap close
at different interaction strengths, indicating the two-step se-
quence of phase transitions, while the charge gap does not
close at any point. The case of a three-site unit cell, relevant
to the present case of α ≡ p/q = 1/3, was studied in both [62]
and [67], where the same situation was found.

For a system with periodic boundary conditions, the BI and
CI phases preserve the lattice-inversion symmetry, implying
that the bond-order parameter vanishes, i.e., 〈B̂〉 = 0. How-
ever, in the SDI, the lattice symmetry is spontaneously broken,
leading to a doubly degenerate ground state, and a finite
value for 〈B̂〉. In Fig. 10, we show the bond-order parameter
〈B̂〉 as a function of U for open boundary conditions. The
finite length of the system leads to a nonzero 〈B̂〉 in the
BI and CI phases, but 〈B̂〉 disappears in the thermodynamic
limit [58,62]. However, the appearance of the SDI phase is
consistent with our data for large, but finite, system sizes.
The precise effects of the open boundary conditions and the
relationship to lattice symmetries are subtle and are discussed
in more detail in the Appendix.

We show finite-size data in Fig. 11(a) for all three gaps
defined in Eqs. (11)–(13). Data were obtained with open
boundary conditions and L = 600 for superlattice phase δ =
π/3. The charge gap exhibits a minimum at U/t ≈ 8 while
spin and internal gap decrease monotonously with U . This
behavior is suggestive of a vanishing of the spin gap at large
U/t and a zero of the internal gap at a lower critical value
of U , which we will further substantiate below. The fact that
the internal gap becomes very small for U/t � 8 is due to
degenerate edge modes (see the Appendix).

Quantitatively, we determine exponents and critical values
of the interaction strength for the first transition from a scaling
collapse of the charge and internal gap in Figs. 11(c) and
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FIG. 11. Gaps at the phase transitions for δ = π/3. All data
were computed with open boundaries. (a) Finite-size gaps �

vs interaction strength U for L = 600. (b) Spin gap, divided by
chain length L such that the data should collapse above the BKT
transition. (c), (d) Rescaled data for (c) charge and (d) internal
gap computed for L = 30 (dark) to L = 600 (bright) (L ∈
{30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 360, 450, 600}). In
(c) and (d), we present a scaling collapse using Ũ = L1/ν (U − Uc ),
�̃ = L−ζ/ν� with different parameters ν, ζ ,Uc, estimated from the
finite-size data.

11(d): we assume these scaling relations:

Ũr = L1/ν (U − Ur ), �̃r = L−ζr/ν�r . (25)

Here, r ∈ {int, charge} labels the gaps and the critical U , with
Uint = Ucharge = Uc1 . We find general agreement between the
data for the excitation gaps shown in Fig. 11 and the data
for 〈B̂〉 = 0 shown in Fig. 10 regarding the extent of the SDI
phase. The scaling collapse of both gaps leads to the same
value for critical interaction strength Uc1 related to the first
transition and the exponent ν ≈ 1 matches an Ising transition
(see, e.g., [58,65]).

The spin gap should scale according to the BKT universal-
ity class at the transition from SDI to CI and, therefore, L�spin

is expected to become independent of L at the phase transition.
The data shown in Fig. 11(b) are consistent with a BKT tran-
sition at some Uc2/t � 8. We estimate the critical interaction
strength Uc2 using a (conventional non-BKT) scaling collapse
shown in Fig. 19 and obtain Uc2/t ≈ 8.03.

3. Correlated insulator

Only for particular values of the superlattice phase δ ∈
{1, 3, 5}π/3, we observe transitions to correlated insulating
phases. For these values of δ, the model corresponds to the
AB2 ionic Hubbard chain [67]. This lattice configuration is
sketched in Fig. 2: Two lattice sites are energetically degen-
erate, while the third site is lower in energy. In an “atomic
picture” (i.e., t → 0), for density ρ = 2/3, we would expect
different states for small and large interaction strength U
compared to the superlattice potential V : If U is weak, there

FIG. 12. Band occupation for ρ = 2/3. We show the band in-
sulator to correlated-insulator transition with the lowest band filled,
ρ = 2/3, for δ = π/3, θ = 0. For a given superlattice potential
strength V , particles are transferred to the middle band as the
interaction strength increases. The occupation of the upper band
remains small (nu � 0.1) everywhere. The gray solid line indicates
the topological phase transition where the Chern number changes, as
in Fig. 15. Calculations were performed for L = 18.

are two particles localized in the site of the lowest energy.
Strong repulsion U � V prohibits double occupation and,
therefore, there is only one particle in the potential minimum,
while the other particle is delocalized over the remaining sites.

Assuming the atomic limit t � V , we can relate real-
space and band occupations. When we choose a homogeneous
gauge, quasimomentum k is a conserved quantity for the
noninteracting Hamiltonian Eq. (1). Thus, we can express it in
momentum space, using a vector of q = 3 creation operators
ĉk,σ for each spin σ and momentum k:

Ĥ =
∑
k,σ

ĉ†
k,σ

hk ĉk,σ ,

hk =
⎛
⎝ V cos(δ) −t −tei(k−3θ/L)

−t V cos
(

2π
3 + δ

) −t
−te−i(k−3θ/L) −t V cos

(
4π
3 + δ

)
⎞
⎠.

(26)

This q × q matrix becomes diagonal for strong potentials
t/V → 0. In this limit, the states of each band are supported
on only one lattice site in each superlattice cell. Therefore, we
should expect that, given a strong potential V , the interaction
suppresses double occupation not only in real space but also
in momentum space.

We show the density difference for the band occupation
of the lower two bands for different U and V in Fig. 12. For
a sufficiently large potential strength V/t � 3 our argument
seems to hold and double occupation of bands is suppressed
monotonically by increasing U/V . In the large U limit, we
find that the two lowest bands are occupied evenly. This
corresponds to the charge density of a spinless-fermion model
with the same density. In the atomic limit, where U,V � t ,
we can estimate the location of the crossover to occur at
V = 3U/2, where the double occupancy becomes energeti-
cally unfavorable for increasing U .
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4. Strong-coupling limit

We can again study the spin sector in the strong-coupling
limit by performing Schrieffer-Wolff perturbation theory, as in
Sec. IV B 1. For ρ = 2/3, we recover an effective spin chain
of length Leff = Lρ = N . This also implies that the effective
spin model has a unit cell of two spins, which we label A
and B. The spin physics is then governed by the effective
Hamiltonian:

Ĥ eff
S =

∑
i

[JŜi,A · Ŝi,B + J ′Ŝi,B · Ŝi+1,A]. (27)

Here, the Ŝi,A(B) labels the A(B) spin in the ith unit cell, and J
and J ′ are the effective couplings derived from Sec. IV B 1 by
averaging over the ground-state charge distribution.

The intracell (J) and intercell (J ′) couplings are in general
different. However, in certain symmetrical cases, which we
discuss in more detail further on, the couplings can indeed
become identical.

In the generic case of J �= J ′, this periodic variation in the
spin coupling opens a gap and gives rise to a dimerized state
in the spin sector in the strong-coupling limit [94]. At the
points δ = π/3, π, 5π/3, described by the ionic AB2 Hubbard
model [62], the system has a site-centered inversion symmetry
resulting in J = J ′ and the spin excitations again become
gapless.

To help illustrate the nature of these states, we consider two
specific cases of δ in the atomic limit U � V � t . For δ = 0
and in the atomic limit with U � V � t , the unit cell has two
sites with energy −3/4V , coupled with intersite tunneling t ,
and one site with on-site potential +3/4V . At density ρ =
2/3, the ground state has both lower sites occupied and the
energetically unfavorable site is unoccupied. This high-energy
site can be adiabatically eliminated, resulting in an effective
intercell tunneling t ′ = 3t2/2V . The result is an intrasite spin
coupling J ′ = 4t2/U , and a much lower intercell coupling
J = 9t4

UV 2 . Thus, here, the spin sector is gapped.
For δ = π/3, the potential structure of the unit cell is

inverted, compared to the δ = 0 case. This precise case has
been studied in detail by Torio et al. [62]. Here, we have one
occupied site with onsite potential −3V/4, and two sites with
energy +3V/4 sharing a fermion. This state has an inversion
symmetry around the lower occupied site. Combined with the
lattice-translation symmetry, this implies

J = J ′ ∼ t2U

U 2 − (
3V
2

)2 . (28)

Thus, at points where δ ∈ {1, 3, 5}π/3, the spin dimerization
disappears and the spin sector becomes gapless [56].

The different phases in the strong- and weak-coupling
limits can be understood in the context of symmetry-protected
topological states. At the δ = π/3 point, the model has a
lattice-inversion symmetry around the first site in the unit
cell. This lattice-inversion symmetry, combined with the
U (1) charge conservation, can give rise to a one-dimensional
symmetry-protected topological phase. Such phases can be
classified by the many-body Zak phase ϕ [see Eq. (7)], which
can only take values of zero and π when the inversion sym-
metry exists. We consider the atomic limit, where U,V � t :
In this limit, when U � V , we have the lowest site occupied

with a spin singlet. This state has ϕ = 0. Alternatively, in the
U � V limit, the lowest site is occupied with one fermion
and one intersite dimer occupied. This phase has ϕ = π . As
these states are characterized by different values of a topo-
logical invariant (as long as the lattice-inversion symmetry
is preserved), the many-body gap necessarily closes as the
Hamiltonian is adiabatically transformed between the two
limits.

In summary, for U � t,V , the ρ = 2/3 insulator has a
gapped spin-dimerized ground state, except for the special
symmetric lines, where there is a gapless correlated-insulator
phase.

V. TOPOLOGICAL PROPERTIES

The family {Ĥ (δ, θ )}T2 of 1D models Eq. (1) inherits
topological properties from the 2D Harper-Hofstadter model
for U = 0: At density ρ ∈ {2, 4}/3, the filled Hofstadter bands
(see Fig. 3) are topologically nontrivial. Thus, a quantized
amount of charge is pumped during a cycle δ → δ + 2π in
the infinite 1D model, Eq. (1).

When we include interactions and the ground-state man-
ifold remains gapped, we can compute Chern numbers as
described in Sec. III B 2. In this section we study topologi-
cal properties of the interacting insulating phases discussed
previously.

As the Chern numbers are computed for a finite L with
periodic boundary conditions there are some subtle points we
must address. First, for finite systems there are no gapless
excitations in any insulating phase. We can therefore com-
pute Chern numbers from unique ground states. However,
spin excitation gaps in some of the Mott-insulating and the
correlated-insulator phases close as L → ∞. Therefore,
the meaning of the Chern number in this limit or, equivalently,
the stability of charge transport quantization in the related
charge pump is not guaranteed. We discuss this issue in more
detail in Sec. V D.

A. Mott insulator at density ρ = 1/3

At density ρ = 1/3, the lowest band is half filled. As
discussed in Sec. IV B, adding onsite interactions opens a
charge gap for all δ, θ and the phase becomes insulating.
While this phase has gapless spin excitations for L → ∞, the
ground-state manifold for finite systems is gapped already for
0 < U � t . Thus, we compute Chern numbers for this phase
as described in Sec. III B 2.

For all system sizes 12 � L � 42 considered here we find
a Chern number C(ρ = 1/3,U > 0) = −1 = Cl , which is
equal to the Chern number Cl of the lowest band of the
noninteracting Hofstadter model. We motivated this finding
in Sec. IV B: Single-particle observables in the strongly inter-
acting phase approach the expectation values for spinless free
fermions in the charge sector. Therefore, we might expect to
find the Chern number for a single species of free fermions,
which would fill the lowest band, C(ρ = 1/3) = Cl .

We also compute the center-of-mass coordinate X in the
strongly interacting regime as a function of δ, shown in
Fig. 13. We observe a single jump of the center-of-mass
coordinate Eq. (16) by the negative value of the Chern number
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FIG. 13. Center-of-mass motion. Scaled center of mass of an
open system as a function of superlattice phase δ. For every cycle
of δ → δ + 2π , there are discontinuities corresponding to minus the
Chern number of the respective phase. The center-of-mass coordinate
X [see Eq. (16)] is divided by particle density ρ to show that
the results for the Mott-insulating phase at ρ = 1/3 agree with
the behavior of the noninteracting phase for ρ = 2/3. Data were
obtained for length L = 60.

(solid line in the figure). The discontinuity is located at
δ = 4π/3, when the two “lower” sites in the superlattice
potential are energetically degenerate (see Fig. 2).

Note that this center-of-mass curve perfectly lies on top of
the one for the free model (U = 0) at density ρ = 2/3. This
illustrates that the charge degrees of freedom in the strongly
interacting phase behave much like a single component, free
Fermi gas, underlining our analogy with spinless fermions.

B. Topological transition at density ρ = 2/3

At density ρ = 2/3, we find that there are (at least) two
different topological families, depending on the strength of
the interaction U . In Sec. IV C, we saw that at density ρ =
2/3 there are a number of phases in the {δ,U }-parameter
space. We find that the first of these phase transitions closely
coincides with a topological transition in the Chern number.
This transition occurs when the many-body gap closes in the
{δ, θ} manifold, at a critical U = Utop, which in general is
dependent on the system size, but should converge to Uc1 in
the L → ∞ limit [62]. Since the SDI phase is very narrow
for our choice of parameters, we do not make any statement
about the Chern number in the parameter regime that includes
the SDI phase.

1. Weak interactions at density ρ = 2/3

Without interactions, the system is a band insulator that
corresponds exactly to the ground state of the Harper-
Hofstadter model with the lowest band filled. Thus, the Chern
number for density ρ = 2/3 is given by two times the Chern
number of the lowest Hofstadter band, C(ρ = 2/3) = −2.
When we vary both interaction and superlattice potential
strength, we consistently find a Chern number C(ρ =
2/3,U < Utop) = −2.

We find that for a finite lattice with periodic boundaries
the many-body gap closes only at one critical interaction
strength Utop, and only at three points on the {δ, θ} manifold:

FIG. 14. Internal gap for the topological transition. The Chern
number of the ground-state manifold can only change when the
energy gap closes. The density is ρ = 2/3; results are for δ =
π/3, θ = 0. Data are shown for length L = 18; the line is a fit
using the absolute value of a second-order polynomial. Inset: Critical
interaction strength Utop/t extrapolated to infinite system size using
a quadratic fit in 1/L (orange line).

δ ∈ {1, 3, 5}π/3, θ = 0, as shown for δ = π/3 in Fig. 14. In
the thermodynamic limit, we expect this transition to occur
when the system undergoes a phase transition to the SDI phase
at Uc1 .

The center-of-mass coordinate for the weakly interacting
system during the pump cycle is shown in Fig. 13 (dot-dashed
line). The amplitude of the discontinuities agrees with the
negative Chern number, i.e., −C = 2. The values of δ where
the jumps occur are not directly related to the symmetry of the
lattice, but also depend on the interaction strength U .

2. Strong interactions at density ρ = 2/3

For strong interactions, with U > Utop, the internal gap
reopens for the entire ground-state manifold of {Ĥ (δ, θ )}T2

for finite system lengths (see Fig. 14). As shown in Fig. 15,
we consistently find C = +1 in the presence of strong

FIG. 15. Topological transition for ρ = 2/3. The Chern number
changes from C(U < Utop ) = −2 → C(U > Utop ) = 1 for the insu-
lators at ρ = 2/3. Data are shown for length L = 18 with twisted
boundary conditions. The solid line is the transition V = V (Utop ).
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interactions. However, the global many-body gap closes at
certain points due to the existence of gapless spin excitations.

Our data indicate a linear dependence of Utop on the po-
tential strength V . For large V/t ≈ 30, we find that the Chern
number changes for U ≈ 3V/2 (not shown in Fig. 15) which
we would expect for the strong-coupling limit discussed in
Sec. IV C 4.

Considering the center-of-mass coordinate for one cycle
δ → δ + 2π in an open chain, we find that strong interactions
change sign and amplitude of the jumps in Fig. 13. For
strong interactions U/t = 16 (dashed line in the figure), the
discontinuity always occurs at δ = π/3, the point of lattice-
inversion symmetry (see Sec. II C). Thus, the quantization of
the pump cycle directly corresponds to the edge states of the
SPT phase of the 1D chain at δ = π/3.

Similar to the charge pump at density ρ = 1/3 discussed
in Sec. V A, we can understand the change of the Chern
number from band occupations. We found in Sec. IV C 3
that interactions suppress double occupation of lattice sites
as well as double occupation of bands. Expectation values
of single-particle observables in the limit U � V � t thus
approach the values for spinless fermions. Indeed, for spinless
fermions at density ρ = 2/3, we would expect the Chern
number Cl + Cm = −1 + 2 = 1 which agrees with the numer-
ically computed many-body Chern number.

C. Interaction-induced degeneracies

The transition between the band and correlated-insulating
states at density ρ = 2/3 can be understood through certain
interaction-induced degeneracies, as exemplified in Fig. 14
for δ = π/3. These degeneracies exist as points in the two-
dimensional {U, δ}-parameter space, which has the topology
of a cylinder. The situation is illustrated in Fig. 16(a). The
entire {U, δ}-parameter space is simply connected through
adiabatic transport. However, it is not possible to deform
the entire closed path with CBI = −2 (in the band-insulating
region) into the CCI = 1 path (in the correlated region), as this
would require crossing the degeneracies.

Each of these degeneracy points has a Chern number Cd =
−1 associated with it, corresponding to the path encircling the
point in the {U, δ}-parameter space, as shown in Fig. 16(a). A
pump cycle which encircles one of these points will transport
a quantized charge of −1. This can be seen directly from the
change in the center-of-mass value as one moves along this
path in Fig. 16(a).

Finally, consider three paths each encircling one of
these points in the counterclockwise direction, as shown in
Fig. 16(b). These three paths can be composed to produce
two paths, one for the band-insulating path and one for the
correlated-insulator path, but in the direction of −δ. CBI = −2
for the Chern number of the band insulator at this density, and
CCI = 1 for the path in the large U/t phase that includes the
CI phases. This implies that CBI − CCI = 3Cd , which is indeed
the case.

D. Chern numbers on gapless systems

We must also address the question of the Chern number
in the thermodynamic limit. For finite systems, there are no

FIG. 16. Center-of-mass coordinate and topological structure for
paths in the {U, δ}-parameter space at ρ = 2/3. (a) Quantized charge
transport corresponds to discontinuities of X when computed from
ground states with open boundary conditions. The purple circles
at δ ∈ {1, 3, 5}π/3, Utop/t = U/t ≈ 8 symbolize three topologically
protected degeneracies in the case of V/t = 3. Any path encircling
counterclockwise exactly one of these degeneracies has a Chern
number Cd = −1, as it crosses exactly one jump changing X by
+1 (indicated by the dotted lines). Data were obtained for length
L = 60 and open boundary conditions. (b) Three paths encircling
one degeneracy each can be deformed and composed to form two
separate paths: the U < Utop path and a U > Utop path. As this is a
smooth deformation the sum of all Chern numbers cannot change,
and the difference in Chern numbers between the two paths must be
3 × Cd = −3.

gapless spin excitations in any insulating phase, such that
the Chern numbers computed in the previous sections are
well defined. However, in the case of Mott and correlated
insulators, the spin excitations can become gapless as L → ∞
(see the discussion in Secs. IV B 1 and IV C 4). This raises
the question of the validity of such a topological classification
in the thermodynamic limit: Do the gapless spin excitations
preclude the possibility of adiabatic charge transport, or does
the charge gap allow for quantized charge transport?

For the ρ = 1/3 Mott insulator, the system does not pass
through any phase boundaries. This would suggest that adia-
batic charge transport is well defined in this phase and remains
quantized, reflecting the topology described in Sec. V A.

For the ρ = 2/3 path in the strongly interacting regime,
the system is gapped everywhere, except at the three points at
δ = π/3, π, 5π/3 where there is a correlated insulator with-
out spin-charge separation [62]. This state is also associated
with a (weakly) divergent electric susceptibility [58,65] which
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would suggest a possible breakdown of adiabatic transport
when taking the system along this path. As our present results
do not provide further insight into these issues we leave them
for future work.

Next, we consider the consequence of these issues on the
practical question of experimental observations. It is expected
that the topological properties of our model will manifest
themselves in a quantized charge transport for ultracold atoms
in an atomic lattice acting as a charge pump. This has been
recently demonstrated in the case of bosons [28] and fermions
[29]. In both these cases, the experiment was conducted
with spinless particles, in a completely gapped phase. So far,
there have been no such experiments with strongly interacting
systems. In these experiments, the charge transported was
only approximately quantized, due to several factors: finite-
size effects, nonadiabaticity from finite pump time, technical
heating, and the presence of a harmonic trap. As such, it is not
clear that the fluctuations due to the spin degree of freedom
would be discernible, particularly at very strong interaction
strengths, where the prefactor of the electric susceptibility is
expected to be very small [58]. Moreover, quantum-gas exper-
iments work with finite particle numbers of typically N ∼ 100
atoms or less per one-dimensional system and charge pumps
are performed only for a limited number of cycles [28,31].
Therefore, we expect that an experiment would show the
predicted transition at ρ = 2/3 from C = −2 to 1 during the
accessible first pump cycles.

We note that the optical superlattices considered in these
cold-atom experiments induce modulated tunneling terms, in
addition to the staggered potential considered in this paper.
For the Rice-Mele model, such modulated tunneling is nec-
essary to open a gap at the inversion symmetric points of the
potential phase δ. In our case, the system is already gapped
at these points, and the additional modulated tunneling is
expected to only increase the size of gaps in the system. While
the altered tunneling will change the quantitative predictions
of this paper, for moderate modulations we suspect that this
will not lead to a qualitatively different phase structure or
topology from the one presented here.

VI. SUMMARY

In this paper, we studied a one-dimensional fermionic lat-
tice model with a superlattice potential and onsite repulsion.
For a family of these systems defined on a torus of parameters,
we can define a topological invariant which is invariant under
small perturbations. In the limit of large system sizes we can
also interpret such families as topological Thouless charge
pumps. Without interactions, the family of Hamiltonians maps
directly to the 2D Harper-Hofstadter model and thus is in the
same topological class.

A particularly interesting situation arises at certain values
of the superlattice phase, where, as a function of U/t , a series
of transitions exists, from a band insulator to a spontaneously
dimerized insulator to a correlated insulator. Theory and pre-
vious works [58,62,65] predict that these transitions are Ising
and BKT, respectively, which is consistent with our numerical
data. We argue that the first transition leads to a degeneracy in
the full two-dimensional parameter space and a change of the
Chern number from C = −2 to 1. The SDI phase is too narrow

for the parameters considered here and hence we do not make
a statement about the Chern number there. This change of
the Chern number can be understood from simple intuitive
arguments in the atomic limit resulting from a competition
of the superlattice potential strength V with the interaction
strength U . The change of the Chern number is clearly seen
in our finite-size data and we expect that this U -driven tran-
sition should be detectable in a charge-pumping experiment.
Different from the fermionic Rice-Mele model [37], we do
not observe a breakdown of the charge pump when studying
the same quantities as in Ref. [37] on finite system sizes. The
presence of gapless spin excitations along special points of
the pump cycle parametrized by δ may ultimately spoil the
quantization of C at large U/t , but we expect that for the first
pump cycles that can typically be accessed in a quantum-gas
experiment C, and hence the pumped charge, should remain
quantized. The clarification of this question, theoretically re-
lated to the degree of spin-charge separation, and its investiga-
tion in time-dependent simulations are left for future research.

There might be challenges for the experimental realization
in the regimes with correlated insulators due to the gapless
spin excitations. The vanishing or small finite-size many-
body gaps may pose constraints on the pump speed. Further
research is necessary to determine the optimum timescales
for adiabatic pumping in strongly interacting phases in time-
dependent simulations.
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FIG. 17. Gaps at the phase transitions and inversion symmetry.
Data were computed for open boundaries at L = 600 and ρ = 2/3.
We consider (a) δ = π/3, which is inversion symmetric, and (b) δ =
π , which is not inversion symmetric. Edge states only exist for
δ = π/3, explaining the qualitatively different behavior of the single-
particle gap in the large-U limit.
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FIG. 18. Gaps at other values of δ. Data were computed for
open boundaries at L = 600 and ρ = 2/3, corresponding to Fig. 17;
however, the superlattice is shifted via δ → δ + π corresponding to
V → −V . We consider (a) δ = 4π/3, which is inversion symmetric,
and (b) δ = 0, which is not inversion symmetric. The inversion-
symmetric lattice hosts a gapless spin mode at the boundaries,
leading to the vanishing spin gap.

APPENDIX: BULK AND EDGE SYMMETRY

In this Appendix, we provide more details regarding the
edge effects for our open-boundary condition data. As is well
known from DMRG studies [96], the particular choice of
lattice termination can have important effects on the excitation
spectrum. This is directly related to the presence of gapless
edge states in symmetry-protected topological states [97]. In
our model, we have this situation in the ρ = 2/3 insulating
phases, where the system has additional lattice symmetries
along δ = 2π/6 + 2πn/3.

When considering the three-site superlattice with open
boundaries, a shift of the superlattice phase δ by 2π/3 changes
the properties of the edge: For the configuration sketched in
Fig. 2, a shift δ → δ + 2π/3 removes the lattice-inversion
symmetry, such that we have two energetically higher sites
on one end. This explains why the discontinuities in Fig. 13,
related to edge states, do not have the same symmetry as the
bulk. Introducing the single-particle gap,

�single(N ) = E (N + 1, S = 1/2)

+ E (N − 1, S = 1/2) − 2E (N, S = 0), (A1)

we observe in Fig. 17 that the degenerate edge states only
appear for a “symmetric” choice of boundaries. We observe
in the same plot how the SDI is prohibited by asymmetric

FIG. 19. Scaling collapse for the spin gap at δ = π/3. Data and
colors are the same as for Fig. 11(b) and the parameters ν, ζ ,Uc2

for the finite-size scaling collapse were determined numerically from
Eq. (25). The system sizes used in the scaling collapse are L =
30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 360, 450, 600.

boundaries: Only one dimerization is allowed and thus the
internal energy gap has a local maximum for U/t ≈ 7.9, when
long-range dimer order appears.

In Fig. 18, we show the four gaps (charge, single-particle,
spin, and internal gap) as a function of U/t for δ = 0 and
4π/3. At these values, there is no gap closing as U/t increases
(compare Fig. 7). We observe that the charge and single-
particle gap are identical for the values of U/t considered
in the figure. The spin gap is the smallest gap in both cases,
while the internal gap exhibits a weak decrease with U/t . For
δ = 4π/3, which is inversion symmetric, there exist spin-edge
modes and, therefore, the spin gap vanishes. For systems with
open boundary conditions, the band insulator has gapless edge
states at δ = 4π/3. The value of δ at which these edge states
occur changes smoothly with increasing U .

Finally, Fig. 19 shows a scaling collapse of finite-size data
for the spin gap at δ = π/3 using Eq. (25). This results in an
estimate of the critical Uc2/t ≈ 8.03 of the second transition.
This transition is predicted to be of BKT type [58,62] [as
supported by the data shown in Fig. 11(b)], yet our system
sizes are not large enough to reliably extract the critical value
from a BKT scaling and a conventional scaling analysis works
as well. Therefore, Uc2/t ≈ 8.03 has to be understood as a
lower bound to the actual critical value.
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