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Cavity-induced superconducting and 4kF charge-density-wave states
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We propose two experimental setups for fermionic atoms in a high-finesse optical resonator in which either
a superconducting state with s-wave symmetry of the pairs or a 4kF charge-density wave can self-organize.
In order to stabilize the s-wave pairing, a two component attractively interacting fermionic gas is confined
to a one-dimensional chain structure by an optical lattice. The tunneling of the atoms along the chains is
suppressed initially by an energy offset between neighboring sites. A Raman transition using the cavity mode
and a transversal pump laser then reintroduces a cavity-assisted tunneling. The feedback mechanism between
the cavity field and the atoms leads to a spontaneous occupation of the cavity field and of a state of the fermionic
atoms which is dominated by s-wave pairing correlations. Extending the setup to a quasi-one-dimensional
ladder structure where the tunneling of atoms along the rungs of the ladder is cavity assisted, the repulsively
interacting fermionic atoms self-organize into a 4kF charge-density wave. We use adiabatic elimination of the
cavity field combined with state-of-the-art density-matrix renormalization-group methods in finite systems in
order to identify the steady-state phases of the system.
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I. INTRODUCTION

The coupling of light to matter has been the subject of
exciting investigations. In particular, the coupling of ultracold
atoms to the light field of an optical resonator has lead to
many interesting phenomena [1]. This includes the realization
of the Jaynes-Cummings model by the coupling of a single
two-level atom to the radiation field of an optical high-finesse
cavity [2,3] and the recent open-system realization of the
Dicke model by the loading of a Bose-Einstein condensate
into an optical cavity [4,5]. The Dicke model exhibits a
quantum phase transition due to a collective coupling of
the atoms to the light field; the condensed atoms can either
be in a phase characterized by a homogeneous density and
a vanishing cavity field or self-organize into a supersolid
phase with checkerboard density patterns and occupied cavity
field. This phase transition, which was predicted theoretically
[6–9], is driven by the cavity-induced long-range interac-
tions between atoms. In the open-system realization the self-
organized phase is the so-called attractor state of the dissi-
pative system due to the photon loss from the mirrors of the
cavity.

The additional application of underlying static lattices
has been achieved in order to investigate the direct com-
petition between short-range interactions of the atoms and
the cavity-induced long-range interactions [10–18]. The in-
terplay between these interactions leads to the emergence
of complex phases, e.g., a self-organized Mott insulator or
a self-organized charge-density-wave state [19,20]. A va-
riety of different self-organized phases has been proposed
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theoretically [1]. For example, the self-organization of
bosonic atoms into different geometries [21,22], of fermionic
atoms into super-radiant phases [23–28], and of multimode
cavities [29–35] has been studied.

Moreover, different theoretical proposals have been de-
signed in order to realize a spin-orbit coupling [36–41] and
artificial gauge fields [42–48] mediated by the cavity field. In
these systems the self-organized phases can be topologically
nontrivial and carry chiral current.

In this paper interacting fermions are coupled to a cavity
mode exploiting Raman processes involving a cavity mode to
induce tunneling between two sites of a preexisting lattice.
We show the self-organization of fermions into an s-wave
superconducting state in the case of one-dimensional chains
with attractive interaction and into a charge-density wave
with 4kF oscillations in the case of a ladder geometry with
repulsive interaction.

In the following we first describe the setup for the in-
teracting fermions in one dimension coupled to a cavity
mode and introduce the corresponding theoretical model in
Sec. II. Particularly, by adiabatically eliminating the cavity
mode we derive an effective Hamiltonian for the fermionic
atoms together with a self-consistency condition. We also
give the stability condition for the nontrivial self-organized
solutions of the effective Hamiltonian in which the cav-
ity is occupied. In Sec. III we study the system, solving
the self-consistent equation numerically by density-matrix
renormalization-group (DMRG) methods. Also the stability
of the s-wave superconducting phase induced by the cavity
is investigated. In Sec. IV we introduce the fermionic system
in the ladder geometry coupled to the cavity. In Sec. V we
discuss the properties and stability of self-organized phases of
this model.
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FIG. 1. (a) Two different internal states of fermionic atoms represented by spin ↑ and ↓ are loaded into decoupled one-dimensional
structures formed by optical lattices and coupled to the dynamical field of an optical cavity. Tunneling along the chain (y direction) is strongly
suppressed by a potential offset � between neighboring lattice sites. (b) Cavity-assisted Raman processes induced by two running-wave pump
beams, restore tunneling along the y direction for each spin state of the atoms. The ground states are |g↑〉 and |g↓〉 and the intermediate states
of the Raman process are |e↑〉 and |e↓〉, respectively. The two pump laser beams are coupled differently to spin σ =↑, ↓ with Rabi frequencies
�p1σ and �p2σ , and g0 is the vacuum-Rabi frequency of the cavity. The cavity-pump detuning is denoted by δCP.

II. SETUP AND THEORETICAL MODEL FOR
THE ONE-DIMENSIONAL CHAINS

We consider an ultracold spin-balanced interacting
fermionic gas inside an optical cavity, where the cavity is
oriented along the x direction [see Fig. 1(a)]. The fermions are
subjected to an anisotropic, three-dimensional optical lattice
which confines them into an array of decoupled chains along
the y direction. Tunneling in the y direction is suppressed
by an energy offset � between neighboring sites which,
for example, can be created by an ac Stark shift gradient
or a superlattice. For both spin states, tunneling is restored
by two resonant two-photon Raman transitions similar to
the setups discussed in Ref. [49] for the gradient and in
Ref. [50] for the superlattice. We describe here the situation
for the gradients in detail which can then be adapted to the
superlattice setup. The Raman transitions use two standing-
wave pump laser beams with frequencies ωp1 and ωp2 along
the y direction and one mode of the cavity with resonance
frequency ω̃c ≈ ωp1 + �/h̄ ≈ ωp2 − �/h̄ [see Fig. 1(b)]. We
assume all other cavity modes to be far detuned. The two
pump laser beams are coupled differently to two spin states
with Rabi frequencies �p1σ and �p2σ where σ =↑,↓. The
intermediate states of the Raman process for each spin are
|e↑〉 and |e↓〉 with internal atomic transition ωe↑ and ωe↓. The
detuning of the pump and cavity modes remains large, i.e.,
ωe↑, ωe↓ � ω̃c, ωp1 , ωp2 , so that excitation by single-photon
absorption is negligible in comparison to the coherent transfer
from one site to the neighboring site. We can eliminate the
excited state adiabatically and describe the system in terms of
the atomic spin-up and spin-down states and the cavity mode.
Considering the periodic structure of the underlying lattice we
can express the Hamiltonian in the tight-binding approxima-
tion. Using the rotating frame with frequency ωp = ωp1 +ωp2

2 ,

we obtain

H = Hc + Hac + Hint,

Hc = h̄δCPa†a,

Hac = −h̄�̃(a† + a)
∑
j,σ

(c†
j,σ c j+1,σ + H.c.),

Hint = U
∑

j

n j,↑n j,↓. (1)

Here, c j,σ (c†
j,σ ) annihilates (creates) a fermionic atom with

spin σ =↑,↓ on site j of the chain. The operator n j,σ =
c†

j,σ c j,σ is the density operator. The fermions interact with the
on-site interaction strength U . The cavity field operator a (a†)
annihilates (creates) a cavity photon in the considered cavity
mode and Hc represents the dynamics of the cavity field in the
rotating frame. The average cavity-pump detuning is denoted
by δCP = (ω̃c − ωp).

The cavity-assisted tunneling along the chain is described
by the term Hac with the effective Rabi frequency h̄�̃ =
h̄�p1↑g0

ωe↑−ωp1
φ‖φ⊥. �p1↑ denotes the Rabi frequency of the first

pump beam for the spin-up state and g0 denotes the vacuum-
Rabi frequency of the cavity. The overlap integrals φ‖ and
φ⊥ are effective parameters depending on the Wannier states
and can be tuned via the geometry of the optical lattice and
the cavity mode [43]. In order to balance the strength of the
tunneling in two directions along the chain for both spin-up
and -down states, the Rabi frequency of the pump beam i =
1, 2 for spin σ =↑,↓ is chosen as �piσ = �p1↑(ωeσ −ωpi )

(ωe↑−ωp1 ) .

Considering the dissipative nature of the imperfect optical
resonator, the dynamics of the system follows the Lindblad
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master equation:

ρ̇(t ) = − i

h̄
[H, ρ(t )] + D[ρ(t )],

D(ρ) = κ (2aρa† − ρa†a − a†aρ), (2)

where κ is the bare cavity loss rate. The resulting equation of
motion for the cavity mode is given by

i∂t a = −�̃K + (δCP − iκ )a. (3)

Here, K = ∑
j,σ (c†

j,σ c j+1,σ + H.c.) is defined as the tunneling
operator. Further, we eliminate the cavity field dynamics
adiabatically from the equations of motion by using its steady-
state solution α of the equation ∂t 〈a〉 = 0 which is given by

α = 〈a〉 = �̃

δCP − iκ
〈K〉. (4)

Replacing the cavity operator by its stationary state value in
the equations of motion for the fermionic operators leads us to
an effective Hamiltonian for the fermions which is the well-
known Hubbard model:

HF = −JK + Hint. (5)

The feedback of the cavity field on the dynamics of the
atoms appears through the self-consistent determination of
the tunneling amplitude J = A〈K〉 with A = 2h̄�̃2δCP

δ2
CP+κ2 . We will

call A loosely the pump strength, since this is typically one
of the easiest experimental ways to tune the value of A.
The stationary states of the system are determined by the
solution of the effective Hamiltonian [Eq. (5)] together with
the self-consistency equation. In order to determine the steady
states, we calculate the dependence of the expectation value
of the tunneling 〈K〉/L on the tunneling amplitude J within
the effective model and solve numerically the self-consistency
condition. Additionally to the existence of nontrivial solu-
tions, their stability needs to be assured.

A stability condition can be derived by probing the dy-
namics of the cavity field and only considering its linear
fluctuations above the desired solution similar to the approach
in Refs. [1,51]. Using Eq. (3), the equations of motion of the
coordinate and momentum quadratures of the cavity field, i.e.,
xa = 〈a + a†〉 and pa = −i〈a − a†〉, are

∂t xa = −κxa + δCP pa, (6)

∂t pa = −δCPxa − κ pa + 2�̃〈K〉

with stationary solutions x(s)
a = 2δCP�̃〈K〉(s)

δ2
CP+κ2 and p(s)

a = 2κ�̃〈K〉(s)

δ2
CP+κ2 .

We consider linear fluctuations around the stationary solu-
tions, xa = x(s)

a + x̃a and pa = p(s)
a + p̃a, and also linearize the

average of the tunneling in terms of the fluctuations 〈K〉 ≈
〈K〉(s) + d〈K〉(s)

dx(s)
a

x̃a , where 〈K〉(s) is the value of the tunneling

corresponding to the stationary solution x(s)
a . From Eqs. (6) we

can derive a set of differential equations for the fluctuations:

∂t x̃a = −κ x̃a + δCP p̃a,

∂t p̃a =
(

−δCP + 2�̃
d〈K〉(s)

dx(s)
a

)
x̃a − κ p̃a. (7)

The eigenvalues of the Jacobian of this set of differential
equations are given by

λ± = −κ ±
√(

−δ2
CP + 2δCP�̃

d〈K〉(s)

dx(s)
a

)
. (8)

The stable stationary solutions are the ones for which
the eigenvalues have a negative real part. Thus, the stability
condition for the system with δCP > 0 reads(

d〈K〉(s)/L

dJ (s)/|U |
)

<
|U |
AL

(9)

where the derivative of the tunneling is evaluated at the
stationary solution.

The model [Eq. (2)] possesses a Z2 symmetry, since it is in-
variant under the transformation a → −a, c j,σ → (−1) jc j,σ .
For the parameters under consideration, the tunneling K has
the same sign as J , such that there exists only a nontrivial
steady state if the cavity-pump detuning δCP is positive (blue
detuned). Without loss of generality we consider J � 0 in our
calculations.

III. SELF-ORGANIZED S-WAVE
SUPERCONDUCTING STATE

We determine the physical properties of the effective model
using the DMRG algorithm. A high-performance DMRG
code for finite systems with open boundary conditions which
uses the ITensor library [52] enables us to target correla-
tions over long distances. We focus in our simulations on
a filling n = N↑+N↓

L = 0.9375 and zero magnetization Mz =
N↑ − N↓ = 0 where N↑ (N↓) is the number of fermions with
spin up (down) and L is the number of sites of the chain. We
expect the main findings to be stable with respect to parameter
changes. In DMRG simulations we use a chain of L = 192
with N↑ + N↓ = 180 or L = 384 with N↑ + N↓ = 360. The
results presented in this paper are calculated using a bond
dimension of up to M = 5000 which leads, as we verified,
to a good accuracy for the considered cases.

Before we determine the self-consistent solutions, we give
a brief summary of the phase diagram of the one-dimensional
Hubbard model [Eq. (5)]. At the considered filling n =
0.9375, the noninteracting model has a normal phase and
for any weak attractive interaction a superconducting phase
occurs (Fig. 2). The properties of this s-wave superconducting
phase have been investigated previously (see, for example,
Refs. [53,54]). In one dimension, this superconducting phase
is characterized by dominating s-wave pairing correlations
defined by 〈�s( j)�†

s ( j + l )〉 with the onsite pairs �s( j) =
c j,↑c j,↓ − c j,↓c j,↑ which decay algebraically with distance.
In this superconducting phase a gap in the spin sector is
present such that the spin correlations decay exponentially fast
with distance. Other correlations which have a contribution
of the gapless sector—as, for example, the density-density
correlations—show an algebraic decay which, however, is
faster than the decay of the superconducting correlations.

At repulsive interaction, a charge-density wave is the dom-
inating feature. In the Hubbard model, due to its symmetries,
the average value of the density still remains constant, since
the state consists of a coherent superposition of two density
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FIG. 2. Phase diagram of the Hubbard chain with doping. The
s-wave superconductor is the dominant phase for the attractive
interaction (U < 0). The sketch shows the onsite singlet pairs which
then condense. The charge-density wave with wave vector 2kF is the
dominant phase for repulsive interaction (U > 0). It is characterized
by oscillating density-density correlations which are depicted in the
sketch.

waves which then add up to constant density. The density
wave nature shows up as an oscillating slow algebraic decay
in the density-density correlations. The oscillation period
in the Hubbard chain depends on the density and is given
by 2πn = 2kF . Therefore, it is called a 2kF -charge-density
wave. We note that in the weakly interacting regime the
bosonization method predicts a relation between the exponent
of the algebraic decay of the superconducting correlations and
the exponent of the algebraic decay of the density-density
correlations; the density-density correlation decays as l−Kρ , in
which Kρ is known as the Luttinger liquid parameter, while
the s-wave pairing correlation decays as l−1/Kρ . Thus, the
value of Kρ decides which of the correlations dominates.
For U < 0, the superconducting correlation is the dominant
one and Kρ > 1, whereas, for U > 0, Kρ < 1 such that the
density-density correlation decays slowest.

In order to determine the nontrivial self-consistent solu-
tions, we calculate using DMRG methods the dependence of
the expectation value of the tunneling 〈K〉 on the tunneling
amplitude J and solve the self-consistency condition numeri-
cally. In Fig. 3 the expectation value of the tunneling 〈K〉/L is
represented for different tunneling amplitudes rescaled by the
interaction. The self-consistency condition can be rewritten
as 〈K〉/L = |U |

AL J/|U |. This form makes it clear that the self-
consistency condition has an easy graphical interpretation.
Using the dependence of the expectation value of the tunnel-
ing on the tunneling amplitude shown in Fig. 3, the condition
can be interpreted graphically by determining the intersection
of this curve 〈K〉/L with a linear curve |U |

AL J/|U | where its
slope ( AL

|U | )
−1 depends on the pump strength A. Moreover the

graphical interpretation of the stability condition is that a solu-
tion is stable if at the corresponding intersection the derivative
of the curve for the expectation value of the tunneling is less
than the slope of the linear curve. For large values of the pump
strength there exists a stable nontrivial self-consistent solution
of the self-consistency equation as shown for one example
in Fig. 3. The exact dependence of the expectation value
of the tunneling at low values of the tunneling amplitude J
determines whether there exists a critical pump strength below
which only an empty cavity field is the trivial solution of the

FIG. 3. The expectation value of the tunneling 〈K〉/L for an
attractive Hubbard chain U < 0 vs the rescaled tunneling amplitude
J/|U |. Shown are two system sizes L = 192 and 384 with filling
n = 0.9375 which lie on top of each other. When the tunneling is
very large compared to the interaction the value of the tunneling
approaches the noninteracting value (U = 0) shown by the red arrow.
The green solid line is the linear curve with slope ( AL

|U | )
−1 ≈ 3.87.

The crossing of the two curves gives the self-consistent solution with
J = 2

8 |U |.

self-consistency equation. Our numerical solution suggests
that above a critical pump strength the nontrivial solutions
emerge. Due to the finite resolution of the numerical data and
the slight finite-size effects, we cannot pinpoint an exact value
of this critical pump strength.

The nontrivial self-consistent solutions at large pump
strength A are stable, since the slope of the expectation
value of the tunneling 〈K〉/L versus the tunneling amplitude
J/|U | is smaller than the slope ( AL

|U | )
−1 and fulfills thus the

stability condition. In the nontrivial self-consistent solution,
the pump photons scatter via the cavity-assisted tunneling
into the cavity and lead to a finite cavity occupation. In
this steady state the fermions organize into an s-wave su-
perconducting phase which is formed by the pairs of spin-
up and spin-down fermions. The expected algebraic decay
of the superconducting correlations is shown in Fig. 4 for
an attractive interaction with J = 2

8 |U |. Compared to other
correlations in the system the decay of the s-wave pairing
correlation is the slowest decay. The faster algebraic decay
of the density-density correlations [〈�n( j)�n( j + l )〉 with
the density fluctuations �n( j) = n( j) − 〈n( j)〉] is shown in
Fig. 4. The density-density correlations oscillates with the
period of 2πn = 2kF where kF is the Fermi wave vector. For
the parameters used in Fig. 4 the Luttinger liquid parameter
extracted from the density-density correlations Kρ = 1.13 is
very close to the Luttinger liquid parameter extracted from the
s-wave pairing correlations Kρ = 1

0.89 = 1.124. One would
expect that in the thermodynamic limit (L → ∞) these two
values become equal and therefore confirm the predicted re-
lation by bosonization. The cavity-induced s-wave supercon-
ducting phase is stable by the cavity dissipation and leaking
of photons from the cavity signals the emergence of the super-
radiant phase and equivalently the superconducting phase.
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FIG. 4. The density-density and s-wave pairing correlations of
the attractive Hubbard chain with J = 2

8 |U | calculated from DMRG
for a system size L = 384 and N = 360 particles (n = 0.9375).
Whereas both correlations decay algebraically, the s-wave pairing
correlation is the dominant correlation. The density-density corre-
lation has oscillations with period of 2πn = 2kF on top and is fitted
with the function l−γ {a + b cos[2πn(l − l0)]} (dashed line). Fits with
algebraic functions ∼l−γ are also shown (solid lines).

IV. SETUP AND THEORETICAL MODEL FOR
THE LADDER STRUCTURE

We extend the model to an array of ladders in which
the tunneling along the legs of the ladders is the standard
tunneling and only the tunneling on the rungs of the ladders
is induced by the Raman process (see Fig. 5). In order to
reach this situation, decoupled ladders with an energy offset
� between their legs are generated by three-dimensional
optical (super)lattices (see, for example, Ref. [44] for more

FIG. 5. A balanced mixture of fermionic atoms in two internal
states is loaded into a structure of decoupled ladders formed by
optical lattices. Tunneling along the rung of the ladder is strongly
suppressed by a potential offset � between neighboring lattice sites
and restored by a cavity-assisted Raman process.

details). No energy offset along the legs of the ladders is
employed. Thus, the tunneling along the legs is the standard
tunneling and the tunneling along the rungs of the ladders
is initially suppressed and reenforced by the cavity-assisted
tunneling introduced in the previous section. Performing the
same approximations as before, the Hamiltonian describing
the ladder structures reads

H = Hc + H‖ + Hac + Hint,

Hc = h̄δCPa†a,

H‖ = −J‖
∑

j,σ,m=0,1

(c†
m, j,σ cm, j+1,σ + H.c.),

Hac = −h̄�̃(a† + a)
∑
j,σ

(c†
0, j,σ c1, j,σ + H.c.),

Hint = U
∑

j,m=0,1

nm, j,↑nm, j,↓. (10)

Here, cm, j,σ (c†
m, j,σ ) annihilates (creates) an atom with spin

σ =↑,↓ on rung j and leg m of the ladder. For notational
simplicity we introduce the tunneling operator along the rungs
of the ladder as K⊥ = ∑

j,σ (c†
0, j,σ c1, j,σ + H.c.). The dynam-

ics of the system is again described by a Lindblad master
equation due to the presence of losses from the cavity. Using
the adiabatic elimination of the cavity field, one can derive an
effective Hamiltonian for the fermions with a self-consistency
condition given by

HF = H‖ + H⊥ + Hint,

H⊥ = −J⊥K⊥,

J⊥ = A〈K⊥〉. (11)

The pump strength A = 2h̄�̃2δCP

δ2
CP+κ2 is defined as before. The

effective Hamiltonian is the Hubbard Hamiltonian on a ladder
which shows the power-law decay of the correlation functions
and has been studied before (see, e.g., [53,55] for analytical
studies and Refs. [56–59] for numerical studies). The stability
condition for the solutions is ( d〈K⊥〉(s)/L

dJ (s)
⊥ /J‖

) < ( AL
J‖

)−1.

We simulate the effective model employing the DMRG
method for a ladder of size 2 × L with L = 192, N = 360
particles, and Mz = 0. The maximum bond dimension we
consider is M = 5000 and we checked the convergence of our
results in this parameter.

V. SELF-ORGANIZATION OF THE 4kF

CHARGE-DENSITY WAVE

In order to obtain information about the properties of the
fermions in the steady states, we need to consider the prop-
erties of the effective Hamiltonian. At repulsive interaction
in the Hubbard model on a ladder, a crossover between two
interesting phases occurs.

At intermediate rung tunneling J⊥/J‖, an unconventional
superconductor emerges. This has a singlet pairing on a rung
and is therefore not of s-wave nature (see sketch in Fig. 6). At
small and large rung tunneling the corresponding ordered state
is a charge-density wave, i.e., a periodic modulation in the
charge sector here with wave vector 4kF which is called the
4kF charge-density wave (CDW4kF ) [53,55]. kF is the Fermi
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FIG. 6. Phase diagram of the Hubbard ladder at small doping
away from half filling. The unconventional superconducting state
with a singlet pairing on the rungs is the dominant phase for the
intermediate values of the ratio of the rung tunneling to the tunneling
within a leg (J⊥/J‖). The charge-density wave with wave vector 4kF

is the dominant phase for small and large J⊥/J‖.

wave vector which is set by the filling as 2πn = 4kF (see
Fig. 6). Due to symmetry arguments this oscillation is not
directly reflected in the average value of the charge density,
but in the density-density correlations.

Both the singlet-pair correlations, 〈�d ( j)�†
d ( j + l )〉 with

the singlet on a rung �d ( j) = c0, j,↑c1, j,↓ − c0, j,↓c1, j,↑, and
the density-density correlations, 〈�n( j)�n( j + l )〉, decay al-
gebraically. The slowest and, thus, the dominating decay is
characterizing the properties of the state. The algebraic decay
of the correlations in the Hubbard ladder has been studied
previously using DMRG [56–59].

FIG. 7. Graphical interpretation of the self-consistency condi-
tion. The dependence of the rung tunneling (blue circles) on different
ratios of the tunneling amplitudes J⊥/J‖ is shown for the repulsive
Hubbard ladder with U = 8J‖ in a system of L = 192 rungs and N =
360 particles (n = 0.9375) and for the noninteracting Hubbard ladder
(red dashed line). The intersections with the linear function (green
solid line) ( AL

J‖
)−1 ≈ 0.64 give the solutions of the self-consistency

condition. For U = 8J‖, the intersection at J⊥ = 2J‖ indicates a
stable nontrivial self-consistent solution. The intersection around
J⊥ = 1.5J‖ is not stable. The green shaded region marks the regime
of possible stable solutions.

FIG. 8. The density-density correlations (orange squares) and
the unconventional pair correlations (blue circles) vs distance l
computed starting from site j = 20 in a Hubbard ladder with U =
8J‖, J⊥ = 2J‖ for systems of L = 192 rungs and N = 352 particles
(n = 0.9375). Both correlations decay algebraically with distance.
The curves are fitted with the function l−β{a + b cos[2πn(l − l0 )]}
with the period of 2πn = 4kF (dashed lines). The fits with only the
algebraic function are also shown as a guide to the eye (solid lines).
The density-density correlations decay slower than the superconduct-
ing correlations and, thus, are dominating, which is the signature of
the charge-density wave CDW4kF .

As in the previous situation, a graphical interpretation
of the self-consistency condition 〈K⊥〉/L = J‖

AL J⊥/J‖ exists.
Graphically, this means that in order to find the solutions of
the self-consistency equation one needs to find the intersec-
tions of 〈K⊥〉/L and a linear line with the slope ( AL

J‖
)−1. In

Fig. 7 the expectation value of the rung tunneling 〈K⊥〉/L is
plotted versus the tunneling amplitude J⊥/J‖. A monotonic
rise with a turning in the curvature is found. Due to this
complex dependence of the expectation value of the rung
tunneling on the tunneling amplitude, different situations can
occur depending on the value of the pump strength A: (i)
possibly no intersection, i.e., no nontrivial solution exists,
(ii) one intersection, and (iii) more than one intersection for
a certain pump strength (shown). Our numerical solution
suggests a critical pump strength below which no nontrivial
stable solution of the self-consistency condition exists, i.e., in
this steady state the cavity is not occupied and no tunneling
between the different legs of the ladders occurs. Above the
critical value in an interval of the pump strength Acr,1 < A <

Acr,2 our numerical solution gives at least two solutions of
the self-consistency condition. However, in the case of two
nontrivial solutions only the solution with the larger value
of the tunneling amplitude is stable according to the stability
condition. For strong values of the pump strength, A > Acr,2,
our results show only one stable nontrivial solution. As shown
in Fig. 7 the solutions with J⊥/J‖ > 1.65 are stable. For each
of the stable nontrivial solutions the cavity field becomes
dynamically occupied and the two legs of the ladder are
coupled by the cavity-induced tunneling.
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For the considered interaction strength of U = 8J‖ we
determine the crossover between d-wave superconductor and
4kF -charge-density wave by comparing the algebraic decay
of the singlet-pair correlations, i.e., 〈�d ( j)�†

d ( j + l )〉, and
density-density correlations for different rung tunneling. As
an example, we show in Fig. 8 the density correlation and
singlet-pair correlations for the solution with J⊥/J‖ = 2. The
period of 4kF = 2πn is clearly seen in both correlations.
Whereas at small distances the singlet-pair correlation has
a larger amplitude than the density-density correlation, at
long distances the 4kF -density-density correlation shows the
slower decay and is dominating. The bosonization predicts
that the exponent of the d-wave pairing correlation is equal to
the inverse of the exponent of the density-density correlation
which is not yet the case for the results shown in Fig. 8.
One would expect that this relation is fulfilled in the ther-
modynamic limit and here we can discuss the slower decay
of the d-wave pairing correlations compared to other corre-
lations up to the system size considered in the simulations
(L = 192).

The crossover between the phases approximately occurs at
(J⊥/J‖)cr ≈ 1.6 with a dominating CDW4kF phase for larger
values of J⊥/J‖ which corresponds to the stable nontrivial
solutions of the self-consistency condition (see Fig. 7). This
means that in the self-organized setup at the considered in-
teraction strength only the CDW4kF phase is stabilized. Let
us note that we find a similar behavior for different interac-
tion strength, different fillings, and different anisotropies of

tunneling along the legs of the ladder. Thus, it seems that
the unconventional superconducting state cannot be stabilized
easily by the coupling to the cavity.

VI. CONCLUSION

To summarize, the coupling mechanism we introduced be-
tween atoms and the cavity field can lead to a self-organization
into an s-wave superconducting phase for a chain of attrac-
tively interacting atoms and into a 4kF -charge-density wave
on a ladder geometry with repulsive interaction. These steady
states are stable and protected against dissipative fluctuations
of the system and can be realized in the experiment by the
super-radiant phase in which the cavity field is occupied and
photons leak from the cavity. We could not stabilize in the
ladder geometry the unconventional superconducting phase
for the considered parameters even changing the interaction,
particle filling, and anisotropy of the tunneling along the legs
of the ladder.
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