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Quench dynamics in a trapped Bose-Einstein condensate with spin-orbit coupling
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We consider the phase transition dynamics of a trapped Bose-Einstein condensate subject to Raman-type spin-
orbit coupling. By tuning the coupling strength the condensate is taken through a second-order phase transition
into an immiscible phase. We observe the domain wall defects produced by a finite speed quench is described
by the Kibble-Zurek mechanism, and quantify a power-law behavior for the scaling of domain number and
formation time with the quench speed.
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I. INTRODUCTION

Nonequilibrium physics is an active area of current re-
search. While fewer tools exist for understanding out-of-
equilibrium processes, universal behavior can still emerge.
For instance, in the formation of topological defects in
symmetry-breaking phase transitions, or in the self-similar
growth of domains via defect annealing in phase-ordering
dynamics.

The Kibble-Zurek mechanism (KZM) [1,2] is a theory
used to describe the formation of defects at a phase transition
in terms of the relevant critical exponents. There are many
theoretical studies of the KZM in various systems, such as
Landau-Zener transitions [3,4], temperature quenching across
the Bose-Einstein condensation (BEC) transition [5], Ising
model [6], and various types of spinor condensates [7–15].
To date experimental tests of the KZM have been performed
in liquid crystals [16], cold atomic systems [17–19], linear
optical systems [20], and ion Coulomb crystals [21]. A key
challenge is to have a system in which there is good control
over the rate at which the phase transition is crossed, and
where the defects are relatively stable and able to be mea-
sured.

Experiments with cold atoms are able to dynamically en-
gineer interesting single-particle properties and control inter-
actions. This makes for a rich system to control and explore
phase transition dynamics, particularly since topological de-
fects can be readily detected in experiments [22–25].

In this paper we are motivated by the phenomenal devel-
opment made in experiments producing spin-orbit coupling
(SOC) terms in cold atom systems. We study the phase tran-
sition dynamics of a two-component BEC with a Raman-type
SOC [26]. As the coupling strength is varied the system under-
goes a quantum phase transition where the spin components
change from being miscible to immiscible, also accompanied
by changes in the momentum distribution. We study this
problem in an experimentally realistic case of a quasi-(one-
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dimensional (1D) harmonic trap using the truncated Wigner
method. We find that domain walls defects form separating
the spin components in the immiscible phase. The number of
these defects follows a scaling law related to the rate that the
phase transition is crossed.

This article is organized as follows. In Sec. II, we briefly
introduce some background on BEC with SOC and KZM, and
we define the quench parameters. In Sec. III, we introduce
the system parameters for numerical simulation, derive the
Bogoliubov–de Gennes equations for SOC with BEC, intro-
duced the truncated-Wigner method. In Sec. IV and V, we
present and discuss the numerical analysis of our system.

II. BACKGROUND

A. Bose-Einstein condensate with SOC

The Raman-type SOC has been experimentally realized
in cold atom systems [26]. Here a pair of lasers couple
two internal atomic states denoted by 1 and 2 with Raman
coupling strength � and two-photon momentum transfer of
h̄kr . Here we focus on an elongated quasi-one-dimensional
system in a harmonic trap of angular frequency ωx and with
the SOC momentum vector kx taken to be along x.

Choosing a0 = √
h̄/mωx, t0 = 1/ωx, and E0 = h̄ωx as the

units of length, time, and energy, respectively, the dimension-
less time-dependent Gross-Pitaevskii equation (GPE) for this
system is (e.g., see [26–29]) i∂t� = H�, where

H =
(

k2
x
2 + γ kx + I1

1
2�

1
2�

k2
x
2 − γ kx + I2

)
+ x2

2
+ δ

2
σz, (1)

� = (ψ1, ψ2)T , I j = g j1|ψ1|2 + g j2|ψ2|2, with ψ j being the
condensate wave function for spin j and kx denoting the
quasimomentum, γ = a0kr is a dimensionless constant.

The interactions between the spin components are de-
scribed by the short-ranged intra-species {g11, g22} and the in-
terspecies g12 = g21 coupling constants. Here δ is the detuning
of the Raman coupling, with σz the Pauli z matrix. From now
on we set δ = 0, and take the intraspecies interactions to be
identical, i.e., g11 = g22 = g.
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FIG. 1. Scheme of KZM. Inset: Lower branch E− of the disper-
sion of the single-particle part of the SOC Hamiltonian in the absence
of trapping for � = 1.5�c (left) and � = 0.75�c (right).

The dispersion relations for the single-particle part of the
Hamiltonian (1) in the absence of the harmonic trap are

E± = k2
x

2
±

√
k2

x γ
2 + �2

4
. (2)

The lower branch E− has one or two minima depending on the
value of �. As shown in the insets of Fig. 1, for � > �c ≡
2γ 2, the minimum is at kx = 0, and for � < �c, the minima

are at kx = ±k0, where k0 =
√

γ 2 − �2

4γ 2 .

Including interaction effects this system exhibits three dif-
ferent phases that are accessible under appropriate conditions.
Denoting the total density as n = |ψ1|2 + |ψ2|2, and defining
G± = 1

4 n(g ± g12), the system can access all three phases if
the density is less than the critical value nc = γ 2G+/2gG− as
follows.

(i) Stripe phase: The condensate is in a superposition of
±k0 momentum states, occurring for � < �c

1. In this state
the overall magnetization of the state is zero, i.e., Mz ≡∫

dx(|ψ1|2 − |ψ2|2) = 0.
(ii) Plane-Wave phase: The condensate prefers to occupy

either of the ±k0 momentum states when �c
1 < � < �c

2.
This phase breaks the spin symmetry with the magnetization
Mz being nonzero, taking the value Mz = ±k0N , where N =∫

dx n.
(iii) Zero-Momentum phase: When � > �c

2, k0 = 0 and the
condensate occupies the zero-momentum mode. This state has
Mz = 0, although exhibits transverse magnetization.

In describing the phases above we introduced �c
1 ≡√

8G−(γ 2+G+ )(γ 2−2G− )
G++2G−

and �c
2 ≡ 2(γ 2 − 2G−). We also note

that the transition from zero-momentum phase to plane-wave
phase is second order [29,30] and we can explore KZM in this
scenario.

The system breaks a Z2 symmetry and chooses between
the two possible ground states when it crosses from zero-
momentum phase to plane-wave phase. These ground states
can be distinguished by their momenta and spin composition
(magnetization). When phase transition is crossed at finite
rate, the ground-state choice is made locally in the system,

giving rise to domains. We characterize the local order using
normalized magnetization density

jz(x) = |ψ1(x)|2 − |ψ2(x)|2
|ψ1(x)|2 + |ψ2(x)|2 , (3)

which will gain a nonzero value of either ±k0/γ in the plane-
wave phase.

B. Kibble-Zurek mechanism

For a homogeneous system (without a trap) crossing a
second-order phase transition point, we can introduce a pa-
rameter ε to quantify the distance from the critical point.
For instance, ε could be some thermodynamic parameters
like temperature (e.g., [31]) or some Hamiltonian control
parameter (e.g., [18]). Near the critical point the correlation
length and relaxation time diverge as

ξ = ξ0/|ε|ν, τ = τ0/|ε|νz, (4)

respectively, where ξ0 and τ0 depend on the specific system,
the critical exponents ν and z are determined by the universal-
ity class of the phase transition.

According to KZM, when the phase transition is crossed,
critical slowing-down intervenes [31]: As the relaxation time
diverges correlations freeze in at a length scale determined by
the speed that the system crosses the transition. Thus different
parts of the system make different choices for the symmetry
broken order parameter and domains of order are produced.

The frozen time t̂ is a pivotal quantity in KZM, defining
when the evolution becomes nonadiabatic (see Fig. 1). We
identify this time by equating the quench time scale ε/ε̇ to
the relaxation time

τ (t̂ ) = ε(t̂ )/ε̇(t̂ ). (5)

For a linear quench ε = t/τq, where τq is the quench time, we

obtain t̂ = (τ0τ
νz
q )

1
1+νz ∼ τ

νz
1+νz

q , and the correlation length that
freezes in at t̂ is

ξ̂ = ξ0(τq/τ0)
ν

1+νz , (6)

then, for 1D system, the defects number is given by

Nq = L/ξ̂ ∼ τ
− ν

1+νz
q , (7)

where L is the system size.
Above we talked about KZM in a uniform system, but

it is always a inhomogeneous system we need to test our
results in experiments. For a trapped BEC system, the critical
phase transition point is different everywhere, and so is the
sound velocity, which is the key parameter in KZM. There
are several papers that addressed the inhomogeneous effect in
KZM [32–34], the results indicate that there will be a different
scaling law for the inhomogeneous system which will give
different scaling exponents ν and z. They found the system
is well described by homogeneous KZM (HKZM) for fast
quench times, and the inhomogeneous KZM (IKZM) will be
needed for slow-enough quench times.

Let us consider the case where we include the trapping
potential and the external quench parameter is homogeneous
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(not depends on position) and linear in time

�(t ) = � f − �i

τq
t + �i, (8)

the local critical point depends on the position

�c(x) = �c − 4G−(x), (9)

the change rate for the quench parameter is

v0 = �i − � f

τq
, (10)

this gives us the speed of the front where the critical Rabi
coupling strength is reached

vp(x) = v0

4G′−(x)
. (11)

The Thomas-Fermi approximation is valid for zero-
momentum phase (Phase III) since in this phase the two
components have the same density distribution, and the den-
sity profile is given like n(x) = C(1 − x2/R2

TF), where C is a
normalization constant. Define �g = g12 − g, then the speed
of front follows:

vp(x) = v0R2
TF

2C�gx
= (�i − � f )R2

TF

2τqC�gx
, (12)

we can see the speed of front in the trap center diverges,
this means the defects form first at the trap center, and only
form within the radius that satisfies condition that the speed
of sound is smaller than that of the front. According to [33],
for slower-enough quench rate, the scaling law between the
quench time τq and number of defects Nq is

Nq ∼ τ
− 1+2ν

1+zν
q , (13)

in the above formula, the number of defects is obtained within
a region that the size of it depends on the quench rate.

C. Quench parameters

In our simulation, the quench parameter is defined as

ε = � − �c

�c
, (14)

where �c = 2γ 2 and � is linearly quenched from �i = 1.5�c
2

to � f = 0.75�c
2, so we have

�(t ) = � f − �i

τq
t + �i, (15)

from above we can get the time tC that �(tC ) = �c

tC = �c − �i

� f − �i
τq. (16)

From Sec. II B, we know that the correlation length and re-
laxation time satisfy τ = τ0/|ε|νz and ξ = ξ0/|ε|ν . We choose
t = tC + t ′, then

ε(t ) = ε(tC + t ′) ≡ η(t ′), (17)

this gives us

τ = τ0/|η|νz. (18)

The frozen time is defined as τ (t ′) = η(t̂ ′ )
η̇(t̂ ′ ) , we get

t̂ ′ =
(

�c

�i − � f

)νz/1+νz

τ
1

1+νz

0 τ
νz

1+νz
q . (19)

Finally, we have

t̂ − tC =
(

�c

�i − � f

)νz/1+νz

τ
1

1+νz

0 τ
νz

1+νz
q ∝ τ

νz
1+νz

q , (20)

and

|�(t̂ ) − �c| = �c

(
�c

�i − � f

) −1
1+νz

τ
1

1+νz

0 τ
− 1

1+νz
q ∝ τ

− 1
1+νz

q .

(21)

III. QUENCH DYNAMICS OF TRAPPED BEC WITH SOC

A. System parameters

As described above, G− = n(x)(g − g12)/4 depends on
position if the system is trapped, so the critical �c

2(x) =
2[γ 2 − 2G−(x)] depends on position, where n(x) is taken
to be the initial total density. To implement a quench we
ramp down � from an initial value �i = 1.5�c

2(x) in the
zero-momentum phase to � f = 0.75�c

2(x) in the plane-
wave phase. In the ramp � changes linearly in time over a
time interval τq that we take to define the quench time, i.e.,
�(t ) = max ([� f ,�i − (�i − � f )t/τq )]), where t � 0. Here
we study quench times ranging from 10 to 1000 ms.

We consider a system of N = 104 87Rb atoms with trap
frequency ωx = 2π × 5 Hz, ωy = ωz = 2π × 2 kHz, and
interspecies interaction strength of g12 = 1.05g, with g =
4πash̄

2/m, where a = 100.86 a0 and a0 is the Bohr radius.
We consider the SOC to be produced by two λ = 784 nm
lasers crossed at an angle of π/2, so the recoil momentum
is kr = √

2π/λ. Under this condition, G− = n(g − g12)/2 =
ngs/2 (where gs = g − g12) is small and negative, this gives
�c

1 < 0, so we can exclude the stripe phase from our analysis.
To simulate the quench dynamics we use the truncated-

Wigner method [35], whereby initial noise is added to the
Bogoliubov quasiparticle modes to simulate the effects of
vacuum fluctuations. The initial condensate (at � = 1.5�c

2)
is obtained by imaginary time propagation, and then the
quasiparticle modes are calculated by numerical diagonaliza-
tion and used to add noise to construct the initial field. The
simulation is then performed by evolving the initial field in
real time with the GPE as � is linearly ramped to effect the
quench.

B. Bogoliubov–de Gennes equations for SOC BEC

In the following we use Bogoliubov–de Gennes (BdG)
method [36] to get the excitation energies and the correspond-
ing wave functions.

For the ground-state wave function �g of SOC BEC, we
have the stationary GPE

μ�g = H�g, (22)

where �g = (φ1g, φ2g)T . We assume the time-dependent wave
function is

� = [�g + δ�] exp (−iμt ), (23)

where δ� is the fluctuation.
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Substitute the above wave function into the time-dependent
Gross-Pitaevskii equation and make use of the stationary
GPE, we get two equations on δ�

i
∂

∂t
δψ1 = L1δψ1 + gφ2

1gδψ
∗
1 +

[
g12φ1gφ

∗
2g + �

2

]
δψ2

+ g12φ1gφ2gδψ
∗
2 (24)

and

i
∂

∂t
δψ2 = L2δψ2 + gφ2

2gδψ
∗
2 +

[
g12φ

∗
1gφ2g + �

2

]
δψ1

+ g12φ1gφ2gδψ
∗
1 , (25)

where L1 = k2
x
2 + γ kx + Vtrap + g12|φ2g|2 + 2g|φ1g|2 − μ and

L2 = k2
x
2 − γ kx + Vtrap + g12|φ1g|2 + 2g|φ2g|2 − μ.

We choose the following excitation form [37]:

δψ1 = u1(x) exp (−iωt ) − v∗
1 exp (iωt ),

δψ2 = u2(x) exp (−iωt ) − v∗
2 exp (iωt ). (26)

Substitute Eq. (26) into Eqs. (24) and (25) and com-
pare the coefficients, we get the BdG matrix equation for
[u1(x), v1(x), u2(x), v2(x)]T

MBdG

⎛
⎜⎝

u1

v1

u2

v2

⎞
⎟⎠ = ω

⎛
⎜⎝

u1

v1

u2

v2

⎞
⎟⎠, (27)

in which MBdG is the BdG matrix⎛
⎜⎝

A + B −D F −E
D∗ −A∗ − B∗ E∗ −F ∗
F ∗ −E A + C −G
E∗ −F G∗ −A∗ − C∗

⎞
⎟⎠, (28)

where A = k2
x
2 + γ kx, B = Vtrap + 2g|φ1g|2 + g12|φ2g|2 − μ,

C = Vtrap + 2g|φ2g|2 + g12|φ1g|2 − μ, D = gφ2
1g, G = gφ2

2g,
E = g12φ1gφ2g, F = �

2 + g12φ1gφ
∗
2g.

Substitute the ground-state wave function {φ1g, φ2g} into
Eq. (27), then diagonalize the BdG matrix to get the collective
excitation energies {ω j} and the corresponding excitation
wave functions {u1 j, v1 j, u2 j, v2 j}.

After we get the excitation energies and excitation wave
functions, we form the initial wave function for the real time
evolution as follows:

ψ1(x) = ψ1g +
∑
j=1

[β ju1 j (x)e−iωt − β∗
j v

∗
1 j (x)eiωt ],

ψ2(x) = ψ2g +
∑
j=1

[α ju2 j (x)e−iωt − α∗
j v

∗
2 j (x)eiωt ],

(29)

the coefficients {α j, β j} are random numbers sampled from
the Wigner distribution for zero-temperature thermal state
[38], i.e.,

W (α, α∗) = 2

π
exp (−2|α|2). (30)

IV. NUMERICAL RESULTS

A. Scaling laws

For each quench time τq we conducted 100 trajectories of
the truncated Wigner simulations which we use to compute
statistics. In each trajectory a different sampling of noise is
used to construct the initial condition, and has the effect of
providing a different seed for the growth of the symmetry-
breaking domains during the quench. In the upper panel of
Fig. 2 we show single realization of jz(x) for several quench
times. We can clearly see the typical domain sizes and the
number of domains vary with time. The domains are less
prominent towards the edge of the condensate because the
density is lower there. Noise or thermal excitations from
the quench can be more important in the low density wings
making the identification of the domains difficult in this
region, so we only count the domains number within the
Thomas-Fermi radius. As described before, the single-particle
dispersion transitions from having a single minimum at k0 = 0
to having two degenerate minima at k = ±k0 in the quench
process. According to KZM, there will be a delay for the
momentum bifurcation for finite quench speed, and this delay
effect can be seen in the lower panel of Fig. 2 and we can use
this effect to determine the domain formation time as we will
discuss below.

To extract the power law, we count the number of domains
Nq by counting how many times jz(x) crosses zero within
certain region. To make sure the growth of domains ceased
to increase, we take Nq to be the mean zero-crossing number
from time t = τq to t = τq + 20 ms.

We can explore the phase-transition scaling by seeing how
the number of domains produced in the quench depends
on the quench time. The number of domains will scale as
Nq ∼ 2R/ξ̂ ∼ τ−ν/(1+νz)

q , where R is the region’s radius and
ξ̂ is correlation length at frozen time t̂ (6), which depends
on the quench time. A power-law fit to the results summa-
rized in Fig. 3 allows us to extract the exponent ν

1+νz =
0.25 ± 0.05 for R = RTF. This means for sufficient quick
quench the system is well described by HKZM [39]. As the
quench time increases, the scaling exponent begins to deviate
from the predication of HKZM, as seen in Fig. 3, the red-
dashed line gives us a scaling exponent α = 0.42 ± 0.04. This
reason is that the causality determines the effective size of the
area where the defects form, leading to a more pronounced
dependence on the quench time.

When the system crossed the phase transition point
with finite speed, according to KZM, there will be two
peaks in the momentum distribution, we calculated the
time-dependent second moment of the momentum distribu-
tion σ 2

k = ∫
k2n(k)dk/

∫
n(k)dk − (

∫
kn(k)dk/

∫
n(k)dk)2,

where n(k) = |φ1(k)|2 + |φ2(k)|2, and φ j (k) are the Fourier
transformations of wave functions ψ j (x). In the inset of Fig. 4,
we can clearly see a sharp slope, and we choose a threshold
50 to indicate the domains formation time t̂ .

In Fig. 4 we plot t̂ − tC versus the quench time τq and
we extract another exponent νz

1+νz = 0.52 ± 0.03. From the
above two scaling laws, we can extract the scaling exponents
ν = 0.52 and z = 2.08. These two scaling exponents fit the
prediction of homogeneous KZM. In our simulation, we use
position-dependent quench parameter � to reduce the effect
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FIG. 2. Upper panel: Local magnetization jz(x) versus �/�c
2 for quench time (a) τq = 40 ms, (b) τq = 80 ms, (c) τq = 160 ms, and

(d) τq = 320 ms. Lower panel: Bifurcation of momentum distribution versus �/�c
2 for quench time (e) τq = 40 ms, (f) τq = 80 ms, (g)

τq = 160 ms, and (h) τq = 320 ms. The black solid curve indicate the instantaneous momentum distribution. We only plotted the region within
the Thomas-Fermi radius.

caused by the trap. Our results show that it is impossible to get
rid of this inhomogeneous effect totally, this inhomogeneous
effect is more important for slow-enough quench times.

B. Inhomogeneity of the system

For quench time τq between ∼10 and ∼100 ms, our quench
scheme shows that the system is well described by HKZM,

FIG. 3. Domains number Nq versus quench time τq. Circles with
error bars correspond to numerical results. Black-solid line is the
fitting for τq between 10 and 50 ms. Red-dashed line is the fitting
for τq between 150 and 1000 ms. A power law Nq = τ−α

q fits for the
data points of the black-solid line gives α = 0.25 ± 0.05. The same
law for the data points of the red-dashed line gives α = 0.42 ± 0.04.
Inset: Domains number Nq for quench time 1 ms < τq < 100 ms. The
shaded area indicates HKZM is invalid.

as in [15,40]. But for quench time τq < 10 ms, the domains
number saturated to a constant value as we can see from the
inset of Fig. 3, this constant value is reaching the maximum
domains number allowed by the system. In this region, the
KZM will not give the correct value due to the miscounting
of domain number. When the quench time τq > 150 ms,

FIG. 4. t̂ − tC versus quench time τq, these data are extracted
from the second moment of momentum distribution. Black solid line
is the fitting curve ln (t̂ − tC ) ∼ − νz

1+νz ln τq, the fitting parameter is
νz

1+νz = 0.52 ± 0.03 for quench time τq between 10 and 50 ms, and
νz

1+νz = 0.89 ± 0.05 for quench time τq between 150 and 1000 ms.
Inset: Second moment of momentum distribution σ 2

k versus time
for quench time τq = 10 ms (black solid line), τq = 30 ms (blue
dashed line), and τq = 50 ms (green dash-dotted line). The shaded
area indicates HKZM is invalid.
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FIG. 5. Domains number Nq versus quench time τq. Circles and
diamonds with error bar correspond to numerical results for region
R = RTF and for region R = 0.6RTF, respectively. Black-solid and
red-dashed lines are the fittings. A power law Nq = τ−α

q fitting for
the data points of the black-solid line gives α = 0.66 ± 0.14, the
same law for the data points of the red-dashed line gives α =
1.00 ± 0.16.

the domains number and frozen time will not follow the
prediction of HKZM, as seen in Figs. 3 and 4.

To gain a better understanding of the effect of the trap and
the IKZM, we simulated the quench process for longer quench
times, and we quench � without position-dependent to maxi-
mally exploit the inhomogeneity of the system. In Fig. 5, we
plotted the numerical results for simulation with quench times
ranging from 103 to 104 ms. In this case, the HKZM always
give the wrong scaling exponents. The trapping potential gives
a smaller Thomas-Fermi radius, which reduces the speed of
front [Eq. (12)], and according to [33], the scaling exponent

should obey Nq ∼ τ
− 1+2ν

1+zν
q provided the density profile can

be calculated via Thomas-Fermi approximation, but this Nq

should only take into account a very small region and this
region’s radius depends on the quench times. In Fig. 5, the
black circles was obtained by taking account of all the defects
inside the Thomas-Fermi radius, the fitting gives us a scaling
exponent α = 0.66 ± 0.14. The red-dashed line is the fitting
for the data obtained within R = 0.6RTF, the fitting gives us
a scaling exponent α = 1.0 ± 0.16, which is consistent with
prediction of IKZM, where ν = 1

2 and z = 2 for our system.
The scaling exponent obtained here conforms that we need
to only consider a small region instead. Our findings suggest
that the HKZM only works for weak-enough trap potential
and fast-enough quench times [32,41,42].

V. DISCUSSION

We studied HKZM and IKZM in a trapped BEC with SOC
within the framework of truncated-Winger GPE and observed
domains formation in the quench process, we extracted two
power laws from the formation time and domains number
data. We get two scaling exponents ν and z. In our scheme,
the defects are formed in spatial space which makes it easier
to detect in experiments. The SOC effect can be viewed as
follows. The Rabi coupling term acts like a magnetic field
pointing in the x axis

B ∼
(

0 �

� 0

)
. (31)

As we linearly decrease �, the system will feel a equivalent
vortex electric field around the x axis, the particles will rotate
around x axis. There will be no shear flows since the whole
system is superfluity. This scenario changes after � crosses
the critical point, the superfluid density decays to zero as �

approaches the critical point. The shear flows will form since
the viscosity eventually restores. The smaller the quench time
τq is, the larger the vortex electric field is, and the width of the
shear flow decreases as the τq decreases. In our case, widths
of the shear flows are just the defects sizes.

Compared to the study of KZM in the Landau-Zener
system [3] or in the Ising model [6], our system includes the
interaction which makes it a many-body system instead of
single-particle system. Also, to make the system more exper-
imentally realistic, we included a harmonic trap potential.

In the experiment found in [43,44], they used two hyperfine
states |1〉 = |F = 1, mF = +1〉 and |2〉 = |F = 1, mF = −1〉
of 87Rb as the two pseudospin states. These two hyperfine
states have a property g11 ≈ g22 and they can tune g12 to be
very close to g11. For N = 104, ωx = 2π × 5 Hz, ωy = ωz =
2π × 2 kHz [40], the Thomas-Fermi radius is RTF ≈ 115 μm,

the healing length at the trap center is about ξ =
√

h̄2

2mn(0)g ≈
0.2 μm, the spin healing length ξs =

√
h̄2

2mn(0)|gs| is about 4.5ξ ,
there are about Nmax

d ∼ 250 defects maximum in our system.
So our scheme is feasible to be realized in the experiment with
current technology.
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