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Anomalous frequency shifts in a one-dimensional trapped Bose gas
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We consider a system of interacting bosons in one dimension at a two-body resonance. This system, which
is weakly interacting, is known to give rise to effective three-particle interactions, whose dynamics is similar
to that of a two-dimensional Bose gas with two-body interactions, and exhibits an identical scale anomaly.
We consider the experimentally relevant scenario of a harmonically trapped system. We solve the three-body
problem exactly and evaluate the shifts in the frequency of the lowest compressional mode with respect to the
dipole mode, and find that the effect of the anomaly is to increase the mode’s frequency. We also consider the
weak-coupling regime of the trapped many-boson problem and find, within the local density approximation,
that the frequency of the lowest compressional mode is also shifted upward in this limit. Moreover, the
anomalous frequency shifts are enhanced by the higher particle number to values that should be observable
experimentally.
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I. INTRODUCTION

Systems of trapped ultracold atoms [1] provide a versatile
platform for the observation of intriguing few- and many-
body phenomena. Since the observation of the first Bose-
Einstein condensates with alkali atoms over two decades
ago [2,3], much progress has been made, and both bosonic
and fermionic ultracold atomic gases can nowadays be ma-
nipulated and controlled with unprecedented accuracy. This
includes the tunability of their effective interaction strengths
via magnetic [4] and even orbital [5] Feshbach resonances,
or external confinement [6,7] and their effective dimensional
reduction to one and two dimensions [8–11]. Among the
most interesting phenomena that have been observed using
ultracold atoms are the observation [12–14] of Efimov states
[15], whose low-energy, model-independent description re-
quires the introduction of three-body forces [16,17], the recent
observation of the effects of a quantum anomaly in a two-
dimensional Fermi gas [18,19], the realization of an antifer-
romagnetic few-spin Heisenberg chain [20] in the strongly
interacting limit [21], and the observation of quantum droplets
stabilized by quantum fluctuations [22,23].

Among those systems addressable within the capabili-
ties of current ultracold atomic experiments, reduced one-
dimensional systems are especially appealing for a number
of reasons. First, there exists a variety of models that are
exactly solvable by means of the Bethe ansatz [24]. Among
these, the Lieb-Liniger model [25], consisting of many bosons
interacting via zero-range potentials, is of particular relevance
to ultracold atoms, since it faithfully describes a variety
of interaction and temperature regimes, as has been shown
experimentally time and time again [10,11,26,27]. Second,
quantum fluctuations are very relevant in one-dimensional
systems and lead to the breakdown of Fermi liquid theory for
fermions, which are in this case described by the Luttinger

liquid theory [28] at low energies. Moreover, the distinc-
tion between bosons and fermions is rather blurred in one
dimension, with Luttinger liquid theory describing bosons as
well, while in the hard-core [29] and even in certain soft-
core [30] limits, fermions and bosons are related via duality
transformations, i.e., Bose-Fermi mapping theorems.

When we consider bosons in one dimension, the Lieb-
Liniger model is to be regarded as an effective field the-
ory at low energies [31,32]. In the weakly repulsive case,
it describes systems with (negative) scattering lengths that
are much larger in magnitude than the interaction’s effec-
tive range [33]. Effective range effects come into play as a
next-to-leading-order effect in the ground state. This effect,
however, identically vanishes if the scattering length diverges,
rendering the many-body system noninteracting to all orders
in the two-body effective interactions [34]. Typically, one
assumes that the noninteracting picture is accurate even in the
many-particle limit [6,35], which has been shown to be correct
within experimental uncertainty in Ref. [26], which, however,
focused entirely on the opposite, strongly interacting limit.
Interestingly, even in the ground state, next-to-leading-order
effects do contribute to the physics of the few- and many-
boson problems, and these come in the form of three-body
contact interactions [34,36–40]. When the effective three-
body forces are attractive, multiparticle bound states may be
formed [36,37,39–43], while for three-body repulsion [34,38]
a quantum anomaly in the form of logarithmic corrections is
found for three or more particles [34,41,42,44]. References
[41,42] focused on the anomaly within this context. Remark-
ably, this is completely equivalent to the anomaly found
with two-body interactions in two dimensions at low ener-
gies [18,19,45–48]. This can be understood by observing the
kinematic equivalence—identical Schrödinger equations—
between three particles in one dimension with three-body
contact interactions and two particles in two dimensions with
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two-body contact interactions. Such relations between sys-
tems across different dimensions also exist in other, related
contexts, such as the equivalence between five bosons with
four-body interactions in one dimension and three bosons with
two-body interactions in three dimensions [49], implying a
five-body Efimov effect in one dimension, or the kinematic
equivalence between two fermions in a spin-triplet state (odd-
wave channel) in one dimension and the s-wave two-body
problem in three dimensions [32]. Similar arguments were
used in Ref. [50], which described a generalized Efimov effect
in one dimension.

With all the above theoretical works and the great recent
interest in effective three-body interactions in one dimension,
it only remains to be seen whether the effects of such forces
can be observed experimentally. Since most experiments
feature weak harmonic confinement along the effective
dimension of the system, with the notable exception of
box-like traps [51], measuring the excitation frequency
shifts in the lowest compressional mode is arguably the
most suitable way of probing the effects of the three-body
interactions. Before that, however, it is necessary to see
whether these shifts may be sizable even in the weak-coupling
limit. This is the goal of the present work.

Here, we begin by reviewing the regularization and renor-
malization of the effective three-body interaction, both in the
position and momentum representations, which we use to
solve the trapped three-body problem analytically. With the
exact solution at hand, we find the excitation frequency of
the lowest compressional mode, which is shifted due to the
quantum anomaly, and compare the exact results with the
sum-rule approach of Ref. [35], simplified by the generalized
virial theorem, which we also derive. We then study the weak-
coupling limit of the trapped many-body problem, within the
mean-field [52] and local density approximations [53], and
extract the anomalous frequency shifts in this limit.

II. HAMILTONIAN OF THE SYSTEM

We consider one-dimensional non-relativistic identical
bosons with mass m interacting via pairwise potentials. The
system is trapped in a harmonic well with frequency ω. We
assume that the two-body scattering length a2 is negative and
much larger in absolute value than all other length scales in
the system. In this way, two particles at low energies become
effectively noninteracting, since the Lieb-Liniger interaction
strength g = −2h̄2/ma2, associated with a two-body effective
potential gδ(x1 − x2) [25], vanishes identically. Since two-
body interactions are in reality not pointlike, residual inter-
actions remain in the system at either higher energies or for
more than two particles. For identical bosons, the lowest-order
effects of the interaction when the boson-boson scattering
length diverges are due to an effective three-body force [34].
Its bare (unrenormalized) form is given by

V LO
3 (x1, x2, x3) = g3δ(x1 − x2)δ(x2 − x3). (1)

The total Hamiltonian with the above interaction is therefore
given by

H = H0 +
∑

i

Vtrap(xi ) +
∑

i< j<l

V LO
3 (xi, x j, xl ), (2)

where

H0 = − h̄2

2m

N∑
i=1

∂2
xi
, (3)

Vtrap(xi ) = 1

2
mω2x2

i . (4)

III. THREE-BODY PROBLEM

Here, we study the three-boson problem with effective
three-body forces given by Eq. (1). We begin by reviewing
the three-body problem in free space, whose solution via
regularization-renormalization can be worked out analytically
in both the momentum [34,39–42] and position [37,38] repre-
sentations, with an emphasis on the repulsive side of the three-
body interaction. We then solve the three-body problem in a
harmonic trap analytically, taking advantage of the kinematic
equivalence between three bosons in one dimension with
three-body interactions and two bosons in two dimensions
with two-body interactions [47], at low energies [41].

A. Renormalization of the bare interaction

The bare lowest-order interaction, V LO
3 , in Eq. (1) is

too singular in one dimension and requires regularization-
renormalization.

Since the trap introduces no new singularities, it is suffi-
cient to renormalize the interacting theory in free space. We
solve the three-body scattering problem first in momentum
space by using the Lippmann-Schwinger equation for the
transition matrix (T matrix) T (z), which reads

T (z) = V LO
3 + V LO

3 G0(z)T (z), (5)

where G0(z) = (z − H0)−1 is the noninteracting Green’s func-
tion. Since the three-body interaction conserves total momen-
tum K = k1 + k2 + k3, and the system is Galilean relativistic,
we rid ourselves of the center of mass and set its momentum
K = 0. In this frame, the Lippmann-Schwinger equation (5)
becomes two dimensional, and we find

〈k′
1k′

2||T (z)||k1k2〉

= g3 +
∫

dq1dq2

(2π )2

g3〈q1q2||T (z)||k1k2〉
z − h̄2

m

(
q2

1 + q2
2 + q1q2

) , (6)

where we have defined the reduced T matrix via

〈k′
1k′

2k′
3|T (z)|k1k2k3〉 = 2πδ(K − K ′)〈k′

1k′
2||T (z)||k1k2〉, (7)

and where we have set K = k1 + k2 + k3 = 0. Obviously, we
have chosen plane-wave normalization as 〈k′|k〉 = 2πδ(k −
k′). Since the Fourier transform of the interaction (1) is a con-
stant, we find that 〈k′

1k′
2||T (z)||k1k2〉 ≡ t3(z) is a constant (i.e.,

independent of momentum states and only energy dependent),
and Eq. (6) is readily solved as

t3(z) = 1

g−1
3 − I (z)

, (8)

where we have defined

I (z) =
∫

dq1dq2

(2π )2

1

z − h̄2

m

(
q2

1 + q2
2 + q1q2

) . (9)
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Clearly, the integral I (z) in Eq. (9) is ultraviolet (UV)
divergent. We must therefore regularize it in the UV in
preparation for its renormalization. To do this, we first
change variables in Eq. (9) to Jacobi coordinates. We de-
fine qx = (q1 − q2)/

√
2 and qy = √

2/3[q3 − (q1 + q2)/2] =
−√

3/2(q1 + q2), where in the last equality we have used
q3 = −q1 − q2 (K = 0). We further transform the integral
to polar coordinates via qx = q cos φ and qy = q sin φ, and
set a hard cutoff � in the hyperradial momentum integral,
obtaining

I (z) = 1√
3

∫ �

0

dq

2π

q

z − h̄2

2m q2

= m

2π
√

3h̄2

[
ln

(
k2

�2

)
− iπ

]
, (10)

where we have used z = E + i0+ and where k2 = 2mE/h̄2 .
Using Eqs. (8) and (10), we find

t3(z) = 1

g−1
3 − m

2π
√

3h̄2

[
ln

(
k2

�2

) − iπ
] . (11)

Since we shall consider repulsive three-body interactions, we
set a UV momentum scale Q∗ such that the Landau pole of
the T matrix occurs at energy E = −h̄2Q2

∗/2m, which would
correspond to the trimer’s energy in the case of attractive
interactions [36]. We note that the effective theory is valid
at energies much lower than h̄2Q2

∗/2m, and therefore Q−1
∗

sets the length scale under which the theory ceases to be
physically correct. The T matrix has a pole at the bound-state
energy −h̄2Q2

∗/2m, i.e., the denominator in Eq. (11) vanishes
at that energy. This allows the bare coupling constant g3 to be
renormalized as

1

g3
= m

π
√

3h̄2
ln

(
Q∗
�

)
, (12)

which renormalizes the T matrix, rendering it finite and cutoff
independent. It takes the form

t3(z) = 2π
√

3 h̄2

m

ln
(Q2∗

k2

) + iπ
. (13)

As is clearly observed in Eq. (13) above, scale invariance
at the classical level is broken by quantum renormalization
effects, i.e., the T matrix exhibits a quantum anomaly [41].

We now investigate the problem in the position repre-
sentation, which is necessary for the exact solution of the
trapped three-body problem. Here, instead of regularizing the
problem first, we may use the noninteracting Hamiltonian
(3) supplemented with a short-range boundary condition. The
simplest way to study this is to investigate the Landau pole
or the trimer. First, we perform a change of variables to
Jacobi coordinates. We eliminate the center-of-mass coordi-
nate X = (x1 + x2 + x3)/3, and set the total momentum to
zero. Then we define, as in the momentum representation,
x = (x1 − x2)/

√
2 and y = √

2/3[x3 − (x1 + x2)/2], and go
to polar coordinates via x = r cos θ and y = r sin θ . For neg-
ative energies, the Schrödinger equation for the hyperradial

wave function R(r) reads

R′′(r) + 1

r
R′(r) − 2m|E |

h̄2 R(r) = 0. (14)

The unnormalized singular solution at negative energies is
simply given by

R(r) = K0(2m|E |r/h̄2), (15)

where K0 is the zeroth-order modified Bessel function of the
second kind [54]. We set now the location of the Landau pole
to E = −h̄2Q2

∗/2m, and using the short distance expansion of
K0, we obtain the desired boundary condition

R(r) = − ln

(
Q∗eγ r

2

)
+ O(ln(Q∗r)(Q∗r)2), (16)

where γ is Euler’s gamma constant. We also link the value of
the UV scale to the three-body scattering length a3 via [34,52]

(Q∗a3)2 = 8e−2γ , (17)

since we will use the latter, instead of Q∗, in the many-body
problem.

B. Exact solution of the three-body problem in a harmonic trap

We now present the solution to the three-body problem
in the presence of harmonic confinement. This is equivalent
[55] to the problem of a single particle of mass m in two
dimensions in a harmonic trap with frequency ω with a contact
interaction, whose short-range boundary condition is given
by Eq. (16), as we shall see shortly. In Jacobi coordinates
(X, x, y), the noninteracting Hamiltonian reads

H0 = Hc.m. + Hr, (18)

with

Hc.m. = − h̄2

6m
∂2

X + 3

2
mω2X 2, (19)

Hr = − h̄2

2m

(
∂2

x + ∂2
y

) + 1

2
mω2(x2 + y2). (20)

For the sake of completeness, the bare three-body interaction
is transformed as

V LO
3 = g3δ(

√
2x)δ(

√
3/2y) = g3√

3
δ(x)δ(y). (21)

The center-of-mass motion is governed by Hamiltonian (19),
which corresponds to a particle of mass 3m with frequency ω,
and is readily solved. For the relative motion, together with
the boundary condition (16), we go to polar coordinates and
define

R(r) = exp

(
− r2

2a2
‖

)
F (r), (22)

where a‖ = √
h̄/mω is the harmonic length. Defining s =

(r/a‖)2 and F (r) = u(s), the Schrödinger equation for angular
momentum mz = 0 reads

su′′(s) + (1 − s)u′(s) + E − 1

2
u(s) = 0, (23)

where E = E/h̄ω is the dimensionless form of the (relative)
energy eigenvalues. The singular solution that leaves R(r),
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Eq. (22), normalizable is given by the following confluent
hypergeometric function U [54]:

u(s) = U

(
1 − E

2
, 1, s

)
. (24)

At short distances (s 	 1), the confluent hypergeometric
function behaves as

U (a, 1, s) ∝ − ln s − ψ (a) − 2γ + O(s ln s), (25)

where ψ is the digamma function. Comparing the boundary
condition (16) with the short-range form of u(s), Eqs. (24)
and (25), we obtain the eigenvalue equation

ψ

(
1 − E

2

)
= ln

[(
Q∗a‖

2

)2
]
. (26)

IV. TAN’S CONTACT AND THE VIRIAL THEOREM

We here derive the virial theorem for our system, which
will be useful in the next section. This involves the so-
called Tan’s contact C3 [41,42,52,56–58], relating the large-
momentum tail of the momentum distribution, or the short-
distance correlation functions, to a number of physical quan-
tities. In our case, the virial theorem reads

E = 2〈Vtrap〉 − h̄2

4πm

∫
dxC3(x), (27)

where E is the energy and C3(x) is the local three-body
contact, given by

C3(x) = 1

3
√

3

(
mg3

h̄2

)2

〈[φ†(x)]3[φ(x)]3〉. (28)

Above, φ† and φ are bosonic creation and annihilation op-
erators in the position representation, while g3 is the bare
coupling constant given by Eq. (12).

To derive Eq. (27), we use a method analogous to Ref. [59],
although this can be derived using Tan’s original method
particularized to two dimensions [60,61]. We begin by call-
ing �(x1, . . . , xN ) the normalized N-boson ground state of
Hamiltonian (2) with energy E . We rescale the coordinates
of the particles as xi → λxi (i = 1, . . . , N) in �, and evaluate
how the expectation value of the energy, E (λ), in the rescaled
state �λ, changes due to this transformation. The rescaled
state must be multiplied by a constant in order to remain
normalized, as

�λ(x1, . . . , xN ) = λN/2�(λx1, . . . , λxN ). (29)

The rescaled wave function �λ does not satisfy the same
short-distance boundary condition, Eq. (16), as the eigenstate
� = �1. In order to fix this, we must rescale the UV momen-
tum scale Q∗ as Q−1

∗ → λQ−1
∗ . The expectation value of the

energy in this state reads

E (λ) = λ2〈H0〉1 + λ−2〈Vtrap〉1 + λ2
〈
V LO

3

〉
λ
, (30)

where 〈·〉λ stands for expectation value in state �λ. Using the
fact that E (λ) is minimized for λ = 1, corresponding to the
true ground state of the system, we now differentiate E (λ) in
Eq. (30) with respect to λ and obtain

2〈H0〉 − 2〈Vtrap〉 + 2
〈
V LO

3

〉
+ ∂λg3(λ�) |λ=1

3!

∫
dx〈[φ†(x)]3[φ(x)]3〉 = 0, (31)

where we have set once more 〈·〉 = 〈·〉1, and where we have
used the relation between first- and second-quantized opera-
tors

∑
i< j<l

〈δ(xi − x j )δ(xi − xl )〉 = 1

3!

∫
dx〈[φ†(x)]3[φ(x)]3〉.

(32)
Substituting Eq. (12) into (31) and then setting λ = 1 in
Eq. (30) [note that E (1) = E ], we finally obtain the virial
theorem, Eq. (27).

Since we shall also need the adiabatic relation, which was
derived in Ref. [52], we simply quote it here, particularized to
the trapped case

− ∂E

∂ ln Q∗
= h̄2

2πm

∫
dxC3(x). (33)

V. EXCITATIONS IN THE FEW-BODY LIMIT

With the exhaustive analysis of the three-body problem
performed above, we are ready to calculate the excitation
frequencies in the three-body sector. This will give us the
order of magnitude of the shifts in frequencies due to the
three-body interaction in the few-body limit, where the local
density approximation (LDA) is not valid. This regime is
experimentally relevant, because quasi-one-dimensional ge-
ometries consisting of arrays of tubes with few (N ∼ 8–11)
particles have been routinely prepared for at least a decade
now [26].

In order to observe the effects of emergent three-particle
interactions in one dimension discussed above, one of the best
established methods is to measure excitation frequencies in
a harmonic (or near-harmonic) trap [26]. For three particles,
the lowest mode, in the noninteracting picture, that is affected
by interactions corresponds to E = 3h̄ω, corresponding to an
excitation of the relative motion. This is called the lowest
compressional mode [35], with a noninteracting excitation
frequency ω

(0)
C = 2ω. The dipole mode [35] is not affected

by the interactions since it corresponds to an excitation of the
center-of-mass motion, which is decoupled from the relative
motion in a harmonic trap, and has energy E = 2h̄ω. Here,
we shall explore the shifts in the ratio R = ω2

C/ω2
D between

the square frequency of the lowest compressional and the
dipole modes due to the effective three-body interactions. The

shift is defined as 
 = R − ( ω
(0)
C

ωD
)
2

= R − 4.
Before discussing the exact solution to Eq. (26), we study

its weak-coupling limit. To this end, we use the Laurent
expansion of the digamma function ψ (a) near its poles a = 0
and a = −1 [54]. These read

ψ (a) = −1

a
− γ + π2

6
a + O(a2), a → 0, (34)

ψ (a) = − 1

a + 1
+ 1 − γ +

(
1 + π2

6

)
(a + 1)

+ O((a + 1)2), a → 1. (35)
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Using a = (1 − E )/2 in the above relations, together with the
eigenvalue equation (26), we find for the ground and second
(first for bosons) excited states

E0 = 1 + gω − γ

2
g2

ω + O
(
g3

ω

)
, (36)

E2 = 3 + gω + 1 − γ

2
g2

ω + O
(
g3

ω

)
. (37)

Above, we have defined the dimensionless coupling constant
gω as

gω = 1

ln
(Q∗a‖

2

) . (38)

We now see that, to lowest order in the interaction coupling
constant (38), the excitation frequency of the lowest compres-
sional mode is given by

ωC

ω
= E2 − E0 ≈ 2 + 1

2
g2

ω. (39)

As for the dipole mode, which is not affected by interactions,
we simply have ωD = ω. Therefore, the weak-coupling limit
of the shift 
 in the ratio R, with respect to the noninteracting
case, is given by


 = 2g2
ω + O

(
g3

ω

)
. (40)

We also use another route to obtain Eq. (40) by combining
sum rules with the theory of Tan’s contact (see Sec. IV). An
upper bound to the ratio R is obtained via the expression (see
Ref. [35])

ω2
C = −2

〈x2〉
d〈x2〉
dω2

. (41)

Using the Hellmann-Feynman theorem, we can relate the
expectation value of x2 in the ground state with the derivative
of the ground-state energy E0 (with respect to the center-of-
mass zero-point energy) with respect to ω2, as

dE0

dω2
= 3

2
m〈x2〉. (42)

The virial theorem, Eq. (27), combined with the adiabatic
relation [52], Eq. (33), gives us another relation between the
energy and 〈x2〉, as

〈x2〉 = 1

3mω2

[
E0 − 1

2

dE0

d (ln Q∗)

]
. (43)

Simple algebraic manipulations yield

R = 4
E0(gω ) + 1

2 g2
ωE ′

0(gω )

E0 − 1
2 g3

ωE ′
0(gω ) − 1

4 g4
ωE ′′

0 (gω )
. (44)

Using it to lowest order in gω, we find that


 ≈ 2
g2

ω

E0

dE0

dgω

∣∣∣∣
gω=0

. (45)

Inserting Eq. (36) into Eq. (45), we find


 = 2g2
ω + O

(
g3

ω

)
, (46)

in perfect agreement with the result obtained using the excita-
tion energy directly, Eq. (40).

In Fig. 1, we show the value of the ratio R = (ωC/ω)2 as
a function of the coupling constant gω, Eq. (38), calculated

0 0.05 0.1 0.15 0.2 0.25
4

4.05

4.1

R

gω

FIG. 1. Ratio R = (ωC/ωD )2 between the frequencies of the
lowest compressional mode and the dipole mode in the three-body
problem. Black solid, red dashed, and blue dotted lines correspond,
respectively, to R calculated via the excitation spectrum, Eq. (26), the
sum-rule approach, Eq. (44), and the weak-coupling limit, Eq. (40).

using the exact excitation spectrum from the solutions of
Eq. (26), the sum-rule approach, Eq. (44), and the weak-
coupling limit, Eqs. (40) and (45). We see that in the very
weak coupling regime, the shift 
 = R − 4 is approximately
quadratic in the coupling constant. Moreover, the agreement
between the results using the excitation spectrum and the sum
rules is excellent. We clearly see that the frequency ωC is
shifted upward with respect to its noninteracting value ω

(0)
C =

2ω. This is to be contrasted with the frequency shift due to
repulsive Lieb-Liniger interactions which, for the few-body
problem at weak coupling, is downward [55]. Therefore, the
observation of a positive energy shift in this limit would be a
clear signature of the role of effective three-body forces in 1D
Bose systems.

VI. MANY-BODY PROBLEM

We now study the many-particle limit. Since the effective
three-body repulsive interactions appear to be weak in all the
physical settings studied so far [34,38], we can safely assume
that mean-field theory will be at least qualitatively valid. In
Ref. [52], one of us derived the mean-field, Bogoliubov, and
beyond mean-field corrections to the ground-state energy of
the Bose gas with repulsive three-body interactions in the
thermodynamic limit. The ground-state energy per particle
E/N takes the form

E

N
= − π h̄2n2

2
√

3m ln(na3)

[
1 − 4 × 31/4

√−π ln(na3)

+
ln[− ln(na3 )]

2 − CE

ln(na3)

]
+ O(n2 ln−2(na3)), (47)

where n = N/L is the density of the system, and CE is a
numerical constant whose value [52] is inconsequential for
our purposes. Below, we employ the local density approxi-
mation (LDA) to study the large-N limit, in the mean-field
approximation of Eq. (47), when the system is placed in
a harmonic trap, and calculate the frequency of the lowest
compressional mode to this order.
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A. Local density approximation

Here we deal with the trapped many-body problem within
the LDA. We present a fully analytical treatment in the weak-
coupling limit, which introduces the quantum anomaly self-
consistently. To lowest order in the interaction, the energy per
particle E/N of the homogeneous many-body problem at zero
temperature is given by [see Eq. (47)]

E

N
= − π h̄2

2
√

3m
n2

[
1

ln(na3)
+ O(ln−3/2(na3))

]
. (48)

The LDA consists of setting the chemical potential μ = μ� +
Vtrap [53], where μ� is the local chemical potential, obtained
by making the density explicitly dependent on position, i.e.,
by replacing n → n(x). We have, to lowest order

μ = −
√

3π h̄2

2m

[n(x)]2

ln[n(x)a3]
+ 1

2
mω2x2. (49)

In the weak-coupling limit, the logarithmic term above varies
slowly. We can therefore rewrite the exact density n(x) as a
mean-field part plus a classical fluctuation

n(x) = n0 + ∂xφ(x)

π
, (50)

with n0 the average density of the system and φ the fluctuating
field, well known from bosonization [62], and insert it into the
dimensionless coupling constant − ln−1[n(x)a3] to obtain

− 1

ln[n(x)a3]
≈ − 1

ln(n0a3)

[
1 − ∂xφ

πn0 ln(n0a3)

]
. (51)

The second term in the right-hand side of Eq. (51) is of higher
order than Eq. (49) and can be dropped in this approxima-
tion. Therefore, to lowest order in the three-body interaction,
Eq. (49) is simplified to

μ = −
√

3π h̄2

2m

[n(x)]2

ln(n0a3)
+ 1

2
mω2x2, (52)

with the average density n0 to be obtained self-consistently
via

n0 = 〈n(x)〉. (53)

For further convenience, we define the interaction coupling
constant G(ω) as

G(ω) = −
√

3π

2

1

ln(n0a3)
, (54)

where its dependence on the trap’s frequency ω has been
made explicit because it is relevant for the calculation of
the frequency of the lowest compressional mode. As usual,
the chemical potential can be eliminated from Eq. (52) by
setting the density to zero beyond a certain distance � (the
Thomas-Fermi radius) and we have μ = mω2�2/2. Finally,
from Eq. (52) we have the density profile

n(x) = 1√
2G(ω)

�

a2
‖

√
1 −

(
x

�

)2

. (55)

Above, we see that the density profile coincides with that
of a scale invariant system, such as the free Fermi gas or
the Tonks-Girardeau gas. However, the important difference

is the dependence of the coupling constant G = G(ω) on the
frequency of the trap via the self-consistency condition (53).
This fact will introduce an anomalous deviation of the excita-
tion frequency with respect to the scale invariant case (which
has R = 4). We use now the particle number normalization
condition

N =
∫ �

−�

dx n(x), (56)

to eliminate the Thomas-Fermi radius � (or, equivalently, the
chemical potential μ) in favor of N . We have

�2 = 2
√

2G(ω)

π
a2

‖N. (57)

With this, it is simple to extract the squared-mean radius of
the system

〈x2〉 = 1

N

∫ �

−�

dx x2 n(x) =
√

G(ω)N√
2π

a2
‖. (58)

and the mean density n0 from Eq. (53),

n0 = 213/4

3π3/2

N1/2

[G(ω)]1/4
a−1

‖ . (59)

Inserting Eq. (54) into Eq. (59) above, and multiplying both
resulting sides by a3, gives us the following equation for the
dimensionless parameter n0a3

n0a3 = B

(
a3

a‖

)
[− ln(n0a3)]1/4, (60)

with

B = 27/2N1/2

39/8π7/4
. (61)

Equation (60) is solved by

(n0a3)4 = B4

4

(
a3

a‖

)4

W

(
4a4

‖
B4a4

3

)
, (62)

where W is Lambert’s function [63]. Inserting Eq. (62) into
Eq. (54), we obtain the following for the coupling constant:

G(ω) = 2π
√

3

W
( 4a4

‖
B4a4

3

) . (63)

The ratio R = (ωC/ωD)2 is readily obtained using Eq. (41),
and we have

R = 4

[
1 − G(ω)

2π
√

3 + G(ω)

]−1

, (64)

which, to lowest order in G(ω), takes the form

R = 4 + 2

π
√

3
G(ω) + O(G(ω)2). (65)

The above relation shows that for repulsive three-body
interactions, the role of the anomaly is to shift the frequency
of the lowest compressional mode upward not only in the
few-body limit, but also in the mean-field, many-body limit.
Moreover, the shift 
 = R − 4 is, in this case, of linear order
in the coupling constant. This is to be contrasted with the few-
body limit, where we showed that the shift, though positive as
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gω

FIG. 2. Ratio R = (ωC/ωD )2 between the frequencies of the
lowest compressional mode and the dipole mode in the mean-field
approximation, as a function of the few-body coupling constant gω.
Black solid, red dotted, blue dashed, and green dashed-dotted lines
correspond, respectively, to particle numbers N = 250, 500, 1000,
and 2000. The magenta dashed-double dotted line is the extreme
weak-coupling result R ≈ 4 + gω.

well, is quadratic in the few-body coupling constant gω. In the
very weak coupling limit, Eq. (65) becomes independent of
the particle number and reads simply R ≈ 4 + gω. In Fig. 2,
we plot the ratio R as a function of the few-body coupling
constant, Eq. (38), for different particle numbers. As seen
there, for very small values of gω, all curves collapse and they
exhibit their N dependence as the coupling becomes stronger.
From Fig. 2, it is also clear that larger particle numbers en-
hance the anomalous frequency shift. For instance, comparing
Fig. 1 with Fig. 2, we observe that in order to achieve a
shift 
 ≈ 0.1 in the three-body problem, we need gω ≈ 0.25,
while with 250–2000 particles gω ≈ 0.075 is sufficient. With
the experimental values reported for the trapping frequencies
in Ref. [26], together with the theoretical value of a3 in the

example of Ref. [34], we may expect a shift of around 3–4% in
the value of R from the scale invariant limit R = 4. Therefore,
if the experimental uncertainties for R are reduced in the
weak-coupling limit and, especially, if the atom numbers can
be increased from the few-body limit with N ∼ 10 [26], the
anomalous shifts should be clearly observable.

VII. CONCLUSIONS

We have considered one-dimensional bosons with very
large two-body scattering lengths trapped in a harmonic well.
We have studied the few-body limit by solving the three-body
problem exactly, and obtained the shifts, which are always
positive, in the frequency of the lowest compressional mode
due to the emergent three-body forces among the bosons.
We have shown that the sum-rule approach to obtaining the
excitation frequencies is in excellent agreement with the exact
results. We have also studied the weak-coupling regime of
the many-body problem in a harmonic trap, and included the
effect of the anomaly via a self-consistent version of the local
density approximation. We have shown that the frequency
shifts are also upward and largely enhanced by higher particle
numbers.

The observation of the effects discussed here is within
experimental reach, and has been for at least a decade now.
Since for infinite scattering length, however, it was assumed
that the system was simply noninteracting, before the devel-
opment of and interest in the theory of emergent three-body
forces in one dimension [34,36–43], the focus of experimental
research has never been around this limit [26,27] where the
three-body force is dominant. An experiment focusing around
the limit of infinite scattering length in one dimension should
be able to observe the effects of the three-body anomaly:
any statistically significant upward frequency shift around the
limit of infinite scattering length will be due to the anomaly.
These effects could be observed either with single-component
bosons [34] or with two-component bosons [38] as three-
dimer interactions.
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