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Symmetry breaking of quantum droplets in a dual-core trap
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We consider the dynamical model of a binary bosonic gas trapped in a symmetric dual-core cigar-shaped
potential. The setting is modeled by a system of linearly coupled one-dimensional Gross-Pitaevskii equations
with cubic self-repulsive terms and quadratic attractive ones, which represent the Lee-Huang-Yang corrections
[T. D. Lee, K. S. Huang, and C. N. Yang, Phys. Rev. 106, 1135 (1957).] to the mean-field theory in this geometry.
The main subject is spontaneous symmetry breaking (SSB) of quantum droplets (QDs), followed by restoration
of the symmetry, with respect to the identical parallel-coupled trapping cores, following the increase of the
QDs’ total norm. The SSB transition and inverse symmetry-restoring transition form a bifurcation loop, whose
shape is concave at small values of the intercore coupling constant κ and convex at larger κ . The loop does
not exist above a critical value of κ . At very large values of the norm, QDs do not break their symmetry,
featuring a flat-top shape. Some results are obtained in an analytical form, including an exact front solution
connecting asymptotically constant zero and finite values of the wave function. Collisions between moving QDs
are considered too, demonstrating a trend to merge into breathers.
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I. INTRODUCTION

Recently, a new type of self-bound quantum liquid state,
in the form of three-dimensional (3D) droplets, was created
experimentally in dipolar bosonic gases of dysprosium [1]
and erbium [2], as well as in mixtures of two atomic states
of 39K with contact interactions [3], following the theoretical
proposal elaborated in Refs. [4,5]. These quantum droplets
(QDs) are formed by the balance of attractive forces, which
drive the collapse of the quantum gases in the mean-field
approximation, and the repulsive force induced by quantum
fluctuations around the mean-field states, which is represented
by the quartic Lee-Huang-Yang (LHY) corrections [6] to
the respective Gross-Pitaevskii equations (GPEs) with the
usual cubic terms. In the dysprosium and erbium gases, the
attractive force is generated by the dipole-dipole interactions,
as was analyzed in detail in Refs, [7–15], while in the binary
mixture it is provided by the intercomponent attraction, which
can be made slightly stronger than the intracomponent repul-
sion by means of the Feshbach resonance (see further details
in Refs. [16–23]). Recently, the formation of QDs in Bose-
Fermi mixture, under the action of the spin-orbit coupling
(SOC) [24], and a possibility to create similarly built photonic
droplets [25] have also been predicted.

QDs are made of extremely dilute quantum fluids [26]. The
droplets may be considered as soliton-like objects, with the
unique property of stability in 2D and 3D geometries, where
usual nonlinear models give rise to solitons that are subject to
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strong instabilities [27,28] (an exception is provided by pairs
of GPEs with SOC terms, which predict absolutely stable 2D
solitons, i.e., the system’s ground states [29], and metastable
3D ones [30]). Accordingly, stable QDs offer potential use
in various applications, such as matter-wave interferometry
[31–33] and manipulations of quantum information [34].
Furthermore, it was recently predicted that 2D QDs (whose
effective nonlinearity is different from the abovementioned
quartic form, amounting to cubic terms multiplied by a log-
arithmic factor [5]) with embedded vorticity S = 1, 2, 3, ...

may be stable too, up to S = 5 [35]. A related result is the
stability of 2D QDs of the mixed-mode type (mixing vortical
and zero-vorticity constituents), formed by the SOC effect
[36]. Full 3D QDs with embedded vorticity S = 1 and 2 have
also been predicted to have stability domains in the respective
parameter spaces [37].

One of fundamental aspects of the soliton phenomenol-
ogy is spontaneous symmetry breaking (SSB) of self-trapped
modes in symmetric two-component systems. In particular,
the SSB of optical solitons was considered in various settings
[38–45], including coupled lasers [46,47] and metamaterials
[48] (see also a collection of articles on this topic [49], and
a review in Ref. [50]). Applications of this effect, such as
the design of power-switch devices based on soliton light
propagation in fibers, were proposed [41,50]. In Bose-Einstein
condensates (BECs), SSB of matter-wave solitons has also
been considered in many configurations [50–57], but not,
as yet, for QDs. In this work, we address effectively one-
dimensional QDs in the binary bosonic gas loaded in a sym-
metric double-core cigar-shaped potential. Unlike the usual
SSB mechanism for matter-wave solitons, which is induced
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FIG. 1. The schematic of the system: quantum droplets (denoted
by the blue color), which are formed in the Bose gas, are trapped in
the symmetric dual-core quasi-one-dimensional potential (the orange
areas remain empty). The parallel cores are coupled by hopping with
rate κ .

by mean-field interactions, the SSB of QDs in this system is
driven by the interplay of the mean-field and LHY terms.

The rest of the paper is structured as follows. The model
is introduced in Sec. II, where some analytical results are pre-
sented too, such as an exact solution for a front interpolating
between zero and an asymptotically constant wave function.
Basic numerical results for the SSB of QDs are reported
in Sec. III, which, in addition, includes some approximate
analytical results related to the numerical ones. Collisions of
two-component QDs are addressed in Sec. IV. The paper is
concluded by Sec. V.

II. THE MODEL

The system under the consideration is sketched in Fig. 1:
QDs, which are formed in the binary bosonic gas, are trapped
in the nearly 1D symmetric double-core potential, assum-
ing, as usual, that the wave-function components of the two
species of the binary condensate are equal in each core. Then,
the system of linearly coupled GPEs, including the LHY
terms, are written in the scaled form as [5,18]

i∂t�1 = − 1
2∂xx�1 + g|�1|2�1 − |�1|�1 − κ�2,

i∂t�2 = − 1
2∂xx�2 + g|�2|2�2 − |�2|�2 − κ�1, (1)

where g ∼ (g+− + √
g++g−−)/

√
g++g−− > 0 is the effective

coefficient of the cubic repulsion [18] (g++,−−and g+,− are,
respectively, strengths of the self- and cross-interaction of
the two components) and κ > 0 is the hopping rate which
couples the parallel cores. By means of additional rescaling,
we fix g ≡ 1 in Eq. (1), making κ the single control parameter.
The competition of the self-repulsive cubic and attractive
quadratic terms in Eq. (1) determines the formation of QDs
in this setting [18]. Previously, a dual-core model with the
competition of cubic self-attraction and quintic repulsion in
each core was introduced in optics [44].

A realistic model applicable to the experiment should
include loss terms, the main source of which are three-body
collisions in the bosonic condensate. In fact, the losses were
analyzed in detail, in the present contexts, in Refs. [3,19]
(including supplemental materials of both publications). It
was demonstrated, theoretically and experimentally, that the
losses, although they may be conspicuous, allow one to work
with solitons for quite a long time, which is completely
sufficient for the creation and observation of the QDs.

The total norm of the wave function, which is a dynamical
invariant of the model, being proportional to the total number
of atoms in the dual-core system, is

N = N1 + N2 ≡
∫ +∞

−∞
dx

(|�1|2 + |�2|2
)
.

Also conserved are the system’s Hamiltonian and total
momentum:

H =
∫ +∞

−∞
dx

[ ∑
n=1,2

(
1

2
|∂x(�n)|2 + 1

2
|�n|4 − 2

3
|�n|3

)

− κ (�1�
∗
2 + c.c.)

]
, (2)

P = i
∫ +∞

−∞
dx

∑
n=1,2

�n∂x(�∗
n ), (3)

where both ∗ and c.c. stand for the complex conjugation.
Stationary QDs with chemical potential μ are sought for as

a solution to Eq. (1) in the form of

{�1, �2} = {ψ1, ψ2}e−iμt , (4)

with real stationary wave functions ψ1 and ψ2 obeying equa-
tions (the prime stands for d/dx)

μψ1 = − 1
2ψ ′′

1 + ψ3
1 − ψ2

1 − κψ2,

μψ2 = − 1
2ψ ′′

2 + ψ3
2 − ψ2

2 − κψ1. (5)

Symmetric QD solutions of Eq. (5), with ψ1 = ψ2 and the
chemical potential taking values

−2/9 < μ + κ < 0, (6)

have the known form [18]

ψ1,2 = −3(μ + κ )

1 + √
1 + (9/2)(μ + κ ) cosh(

√−2(μ + κ )x)

≡ ψsymm(x). (7)

In the limit of (μ + κ ) → −0, they take the bell-shaped form

ψ1,2 ≈ −3(μ + κ )

2 cosh2(
√−(μ + κ )/2x)

. (8)

In the opposite limit of

μ + κ → −2/9 (9)

[see Eq. (6)], the soliton features an extended flat-top shape,
with a nearly constant intrinsic wave function,

ψ1,2 ≈ 2/3, (10)

of size

L ≈ (3/2) ln[(μ + κ + 9/2)−1]. (11)

This flat-top wave form is bounded by two fronts, which are
represented by exact solutions of Eq. (5), available precisely
at μ + κ = −2/9:

ψ1,2 = 2/3

1 + exp [±(2/3)(x − x0)]
(12)

(x0 is an arbitrary shift of the coordinate), each interpolating
between ψ1,2 = 0 and ψ1,2 = 2/3 [cf. Eq. (10)]. The energy
of the front pattern, calculated as per Eq. (2), is

Hfront = 8/81. (13)
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A similar exact front solution of the GPE with the cubic-
quintic nonlinearity is known too [58].

The SSB point is determined by the condition that the
linearization of Eq. (5) around the symmetric soliton produces
a critical antisymmetric eigenmode with the zero eigenvalue,
δψ1,2 = ±δψ0, which satisfies the linear equation [38,50]

(μ − κ )δψ0 =
[
−1

2

d2

dx2
+ 3ψ2

symm(x) − 2ψsymm(x)

]
δψ0.

(14)

In this work, we have obtained numerical asymmetric solu-
tions of Eq. (5) by means of the finite-difference method.
Equation (14) it is used to predict the SSB point in an
analytical approximation [see Eq. (20) below].

It is relevant to stress that all the modes which are anti-
symmetric or asymmetric with respect to the parallel-coupled
cores are spatial even ones, i.e., ψ1,2(−x) = ψ1,2(x). On the
other hand, it follows from Eq. (5) that Eq. (14) with κ = 0 has
an obvious exact solution, which, however, is spatially odd,

δψ0(x; κ = 0) = ∂

∂x
[ψsymm(x; κ = 0)]. (15)

This fact implies that solutions asymmetric with respect to the
two cores cannot branch off from the symmetric ones at κ =
0, keeping the spatial parity.

The linear-stability analysis for the stationary states was
performed by adding small perturbations to solution (4):

�1(x, t ) = [ψ1 + εw1eiGt + εv∗
1e−iG∗t ]e−iμt ,

�2(x, t ) = [ψ2 + εw2eiGt + εv∗
2e−iG∗t ]e−iμt , (16)

where ε is a real infinitesimal amplitude of the perturbation
with eigenfunctions w1, w2, v1, and v2. The substitution of
expression (16) in Eq. (1) and subsequent linearization leads
to the eigenvalue problem in the following matrix form:

⎛
⎜⎜⎜⎝

L̂1 −κ L̂3 0

−κ L̂2 0 L̂4

−L̂∗
3 0 −L̂1 κ

0 −L̂∗
4 κ −L̂2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

w1

w2

v1

v2

⎞
⎟⎟⎠ = −G

⎛
⎜⎜⎝

w1

w2

v1

v2

⎞
⎟⎟⎠, (17)

with operators

L̂1 = −1

2
∂xx − μ + 2|ψ1|2 − 3

2
|ψ1|,

L̂2 = −1

2
∂xx − μ + 2|ψ2|2 − 3

2
|ψ2|,

L̂3 = ψ2
1 − ψ2

1

2|ψ1| ,

L̂4 = ψ2
2 − ψ2

2

2|ψ2| . (18)

The linear eigenvalue problem based on Eq. (17) can be solved
by means of the finite-difference method. As usual, the exis-
tence of an imaginary part in a perturbation eigenfrequency,
G, implies an instability.

FIG. 2. Profiles of |ψ1(x)| and |ψ2(x)| components of the QDs
and the exact solution given by Eq. (7) are shown by solid black,
dotted red, and dashed gray curves, respectively, for different values
of the total norm, N = 0.3, 1, 1, 20, and 4, respectively, in panels
(a1)–(e1). These examples of self-trapped modes correspond to
points a, b, c, and e, which are marked in Figs. 3(a) and 3(c) [point
d is not marked, as the respective value of the norm, N = 20, is
located beyond the frame of Fig. 3(c)]. Perturbation eigenvalues for
the corresponding symmetric [in panels (a1), (b1), and (d1)] and
asymmetric [in panels (c1) and (e1)] QDs, and direct simulations
of the perturbed evolution of their �1 component, are displayed,
respectively, in panels (a2)–(e2) and panels (a3)–(e3). Parameters of
Eq. (1) are κ = 0.05 in panels (a3)–(d3) and κ = 0.03 in panel (e3);
the amplitude of small random perturbations in Eq. (16) is ε = 0.01.

III. SYMMETRIC AND ASYMMETRIC
QUANTUM DROPLETS

A. Generic numerical results

Solutions for QDs which are symmetric and asymmet-
ric with respect to the coupled symmetric cores were pro-
duced with the help of the imaginary-time-integration method
[59,60], applied to Eq. (1). Figure 2 displays typical examples
of stable and unstable QDs with different values of norm N .
Similar to the situation in the single-core model [see Eqs. (8)
and (11)], QDs in the present system feature spatial density
profiles of two different types: bell-shaped [see Figs. 2(a1)–
2(c1), 2(e1)] and flat-top ones [Fig. 2(d1)], for relatively small
and large values of N , respectively.

Examples of stable symmetric and asymmetric QDs can
be seen, respectively, in Figs. 2(a1), 2(b1), and 2(d1) and
Figs. 2(c1) and 2(e1). The asymmetry is characterized by
parameter

δ ≡
∣∣∣∣N1 − N2

N1 + N2

∣∣∣∣. (19)
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FIG. 3. A set of bifurcation diagrams for symmetric and asym-
metric QDs, in the plane of (N , δ), as found from numerical solution
of Eqs. (5) at different values of the linear-coupling parameter
κ: (a) κ = 0.03, (b) κ = 0.04, (c) κ = 0.05, and (d) κ = 0.059.
Red, dotted blue, and black curves represent symmetric-stable,
symmetric-unstable, and asymmetric-stable states, respectively.

Accordingly, the SSB is characterized by dependencies of δ

on N and κ .
First, in Fig. 3 we produce δ(N ) curves for different values

of κ . Due to the competition between the quadratic self-
attraction and the cubic repulsion, they take the form of bifur-
cation loops (somewhat similar to those in the cubic-quintic
model [44]), which exist at κ � κmax ≈ 0.0592. With the
increase of N , the δ(N ) curves first show the SSB bifurcation
of the supercritical (forward) type, driven by the quadratic
self-attraction, which is followed by a reverse symmetry-
restoring bifurcation, which occurs when the cubic repulsion
becomes a dominant nonlinear term. The latter bifurcation is
of the subcritical (backward) type, which lends the loop a
concave shape, at κ < κ0 ≈ 0.044 < κmax. In the interval of
κ0 < κ < κmax, the symmetry-restoring bifurcation is super-
critical, making the loop a convex figure, which shrinks at
κ → κmax and disappears at κ = κmax. It is relevant to mention
that the bifurcations of the subcritical and supercritical types
are tantamount to phase transitions of the the first and second
kinds, respectively (see, e.g., Ref. [45] and references therein),
thus predicting the possibilities of these phase transitions in
the QDs trapped in the dual-core potential.

The bifurcation loops are chiefly built of the QDs of the
bell-shaped (sech) type, corresponding to relatively small and
moderate values of the norm, while the flat-top modes are
found for large values of N , at which the SSB is, in most cases,
suppressed by the strong self-repulsive nonlinearity.

Results pertaining to the bifurcation loops are collected in
Fig. 4 . Namely, Fig. 4(a) displays values ND and NR of the
total norm at the direct- and reverse-bifurcation points, which
merge at κ = κmax, and Fig. 4(b) shows the largest value of
asymmetry (19), δmax(κ ), as a function of the coupling con-
stant. Figure 4(a) also includes a plot (the blue line) showing
the largest value Nmax of N attained in the concave loops, in
the case of κ < κ0. Obviously, Nmax ≡ NR at κ0 < κ < κmax.

FIG. 4. (a) Values of the norm of the symmetric solution at which
the direct and reverse bifurcations occur (ND and NR, respectively).
The two curves merge and terminate at κ = κmax ≈ 0.0592. The
blue line shows the largest value of the norm, Nmax, attained by
asymmetric solitons, at which the stable and unstable branches meet
in the concave bifurcation loop [see Figs. 3(a) and 3(b)]. Nmax merges
with NR at κ = κ0 ≈ 0.044, the loops being convex at κ > κ0. The
dotted black line, short-dashed red line, and dashed-dotted blue line
show analytical approximations (20), (25), and (24) for ND, NR, and
Nmax, respectively (coefficient 0.48 in the analytical expression for
NR is a fitting constant). (b) The maximum values of the asymmetry
parameter δ, of the solutions generated by the bifurcation [see
Eq. (19)], versus the linear-coupling parameter κ .

B. Analytical results for the weakly coupled system

Approximate analytical results can be obtained in the limit
of small κ and, accordingly, small ND. In this case, Eq. (14)
with approximation (8) adopted for ψsymm can be solved ex-
actly, using the well-known result from quantum mechanics,
similar to how this was done, in another context (dual-core
optical fibers), in Refs. [38,50]:

μ ≈ −(13/5)κ, ND ≈ 192(κ/5)3/2. (20)

In Fig. 4(a), the approximate dependence given by the second
equality in Eq. (20) is plotted by the dotted black line, show-
ing that it fits well to the numerically found dependence at
κ � 0.04.

Further, both Nmax and NR diverge in the limit of κ → 0,
when one component in the asymmetric state (e.g., ψ2) is van-
ishing, its amplitude in the flat-top states (which correspond to
large N) being

ψ2 ≈ 3κ, (21)

as it follows from Eqs. (5), (9), and (10), while a correction
to the amplitude of the larger component is determined by the
conservation of the total norm:

ψ1 ≈ 2/3 − (27/4)κ2. (22)

At κ → 0, the value of Nmax can be estimated, taking
into regard that the energy of the flat-top symmetric soliton
is larger than that of its single-component counterpart, with
the same total norm, by the amount equal to the front’s
energy (13), as the single-component state includes only two
fronts, unlike four ones in the two-component state, and
the energy (13) actually pertains to the double front in the
two-component symmetric state. Effectively, this is an energy
barrier which maintains the existence of the asymmetric soli-
ton. On the other hand, the weak linear coupling between
the components in the flat-top symmetric state of length L
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corresponds to the negative energy, which is

Hcoupling ≈ −(8/9)κL, (23)

according to Eq. (2). The asymmetric state ceases to exist, by a
jump [like in Fig. 3(a)] under condition Hfront + Hcoupling < 0,
i.e., at L > Lmax ≈ (9κ )−1. Eventually, the respective predic-
tion for the largest norm, up to which the asymmetric states
exist at κ → 0, is

Nmax ≈ 2(2/3)2Lmax = 8/(81κ ). (24)

Further, in the same limit of κ → 0, value NR at the
reverse-bifurcation point also diverges, because, as shown
above [see Eq. (15)], the SSB cannot take place in the form
of an asymmetric branch stemming from a symmetric one at
κ = 0 and some finite value of N . A rough estimate for the
divergence can be derived by noting that large size L of the
symmetric QD is associated with a shift of the eigenvalue in
Eq. (14), κ ∼ L−2; hence the respective norm is estimated as

NR ≈ 2(3/2)2L ∼ κ−1/2 (25)

[cf. Eq. (24)].
The dotted black line, the dash-dotted blue line, and the

short-dashed red line show the analytical approximations
given by Eqs. (20), (24), and (25) for ND, Nmax, and NR,
respectively (the curve representing NR is drawn with a fitting
parameter). It is seen that the analytically predicted values ND

and NR agree well with their numerical counterparts. The pre-
diction given by Eq. (24) is less accurate, in comparison with
the numerical findings, but, still, it is qualitatively correct.

IV. COLLISIONS OF TWO-COMPONENT DROPLETS

Once stable solitons are available in the Galilean-invariant
system (1), it is relevant to explore collisions between them.
In the framework of the usual dual-core system with the
cubic self-attractive nonlinearity, collisions were studied in
Ref. [61], demonstrating, chiefly, a merger of the colliding
solitons into strongly oscillating breathers, unless the solitons
would pass through each other if the collision velocity was
very large.

We simulated the collisions, solving Eq. (1) with the initial
conditions

�1,2(x, t = 0) = ψ1,2(x + D)eikx + ψ1,2(x − D)e−ikx+ϕ,

(26)
where ψ1,2 represent the stationary shape of two-component
QDs; ±k is a kick, which sets two initial droplets, separated
by distance 2D, in motion with velocities also equal to ±k;
and ϕ is the initial phase difference between them.

The simulations demonstrate a trend to inelastic outcomes
of the collisions between the solitons in the in-phase con-
figuration, i.e., with ϕ = 0 in Eq. (26). QDs of the bell
(sech)-shaped type merge at relatively small values of k and
collide quasielastically (passing through each other) at large
k. A boundary value, kc, which separates the inelastic and
elastic collisions is displayed in Fig. 5(a), as a function of N ,
for κ = 0.05. In particular, it demonstrates that kc is smaller
for symmetric bell-shaped QDs than for asymmetric ones
of the same type. This difference is explained by the fact
that the nonlinear interaction between larger components in

FIG. 5. (a) The value of the kick, kc, which is a boundary
between the merger and passage of colliding QDs, launched as per
Eq. (26) with D = 64, versus the total norm, N . Typical examples
of the density plots of the colliding droplets: (b1) N = 0.3, k =
0.03; (b2) N = 0.3, k = 0.065; (c1) N = 1, k = 0.09; (c2) N = 1,
k = 0.2; (d1) N = 15, k = 0.03; and (d2) N = 15, k = 0.15. In this
figure, κ = 0.05 is fixed. The colliding QDs are symmetric in panels
(b1) and (b2) and asymmetric in panels (c1) and (c2).

the asymmetric state is stronger than that in the symmetric
one; hence larger kinetic energy is necessary to overcome the
interaction and let the colliding QDs pass through each other.

Figures 5(b1) and 5(c1) and Figs. 5(b2) and 5(c2) show
typical collision pictures for k < kc and k > kc, respectively.
The examples displayed in Figs. 5(b1) and 5(b2) and in
Figs. 5(c1) and 5(c2) correspond, respectively, to the red
dot and black triangle marks in Fig. 5(a). These pictures
demonstrate that, when the bell-shaped QDs pass through
each other at k > kc, the collisions essentially perturb them.
In particular, symmetric QDs emerge from the collision with
excited intrinsic oscillations and velocities different from the
original ones. In addition, colliding asymmetric bell-shaped
QDs generate an extra oscillating localized pulse (breather)
with zero velocity.

We have also considered cross-symmetric collisions be-
tween two asymmetric QDs, i.e., with opposite placements
of the larger and smaller components with respect to the two
cores, as shown in Figs. 6(a) and 6(b). In this case, strongly
inelastic, quasielastic, and completely elastic outcomes are
observed too.

As the bell-shaped QDs carry over into flat-top ones with
the increase of N , the newly generated quiescent breather
grows larger and eventually absorbs almost all the norm of
the colliding QDs, see an example in Fig. 5(d2) (a similar
outcome of collisions of single-component QDs was reported
in Ref. [18]). Actually, this is a different mechanism of the
merger of colliding QDs [cf. Figs. 5(d1) and 5(d2), which
correspond to the blue rhombic marks in Fig. 5(a)]. We find
that about 91% of the total norm is absorbed by the quiescent
breather in Fig. 5(d2).

Lastly, also similar to the results reported in Ref. [18] for
the single-component model, completely elastic collisions (re-
bounds) occur between the two-component QDs with opposite
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FIG. 6. Typical examples of density plots, in component �1,
for collisions between two asymmetric QDs with opposite place-
ment of the larger and smaller components with respect to the two
cores. Panels (a) and (b) display, respectively, strongly inelastic and
quasielastic collisions between in-phase solitons with norms N = 1,
the respective kicks being ka = 0.05 and kb = 0.20. Panels (c) and
(d) show completely elastic collisions between out-of-phase QDs,
i.e., ones with ϕ = π in Eq. (26), for N = 1, k = 0.05 and N = 15,
k = 0.03, respectively. In this figure, κ = 0.05 is fixed.

signs, i.e., ϕ = π in Eq. (26), as is shown in Figs. 6(c) and 6(d)
and is observed in other cases too.

V. CONCLUSION

The objective of this work is to study the SSB (spon-
taneous symmetry breaking) of effectively one-dimensional
QDs (quantum droplets) created in the binary bosonic gas

loaded in the dual-core trapping potential. The matter-wave
dynamics in this system is governed by the linearly coupled
GPEs (Gross-Pitaevskii equations) with the cubic repulsive
and quadratic attractive nonlinear terms, the latter ones being
represented by the Lee-Huang-Yang correction to the mean-
field approximation. QDs in this system feature bell (sech)-
shaped density profiles for smaller values of total norm N and
flat-top profiles for larger N . The SSB bifurcation takes place
with the increase of N , while the QDs keep the sech shape.
Further increase of N leads to the restoration of the symmetry
via the reverse bifurcation; hence the flat-top QDs, which
realize large values of N , are symmetric, in most cases. The
resulting bifurcation loops are concave and convex in the cases
of small and larger values of the intercore coupling constant
and vanish when it exceeds a critical value. Some results have
been obtained in the analytical form—in particular, the exact
solution was produced for a front separating zero and finite
constant values of the wave function, in the flat-top states.

Collisions between two-component QDs have been consid-
ered too. Unless the colliding in-phase QDs move very fast,
they tend to demonstrate inelastic interactions, leading to their
merger into breathers.

An interesting extension of the present analysis is to
perform it for a two-dimensional dual-core system, where
the effective nonlinear terms in the GPE are different,
∼|�|2� ln (|�|2) [5,35,36] . In that case, it will be possible to
study the SSB not only in fundamental two-component QDs
but also in ones with embedded vorticity (cf. Refs. [53,62]).
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