
PHYSICAL REVIEW A 99, 053425 (2019)

Coherent driving versus decoherent dissipation in the double inner-shell ionization of neon atoms
by attosecond pulses

Jianpeng Liu, Yongqiang Li,* and Jianmin Yuan†

Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, China
and Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing 100193, China

(Received 2 January 2019; published 30 May 2019)

Exchange correlation plays an important role in double ionization of complex atoms by ultrashort laser
pulse. In this work we investigate two-photon double inner-shell electron ionization of neon induced by an
attosecond extreme ultraviolet pulse in the framework of the quantum master equation. Our simulations reveal a
distinct nonsequential effect via broadened double peaks, as a result of energy sharing between the two ionized
electrons. When dissipation is included to show the interplay of coherence and decoherence, the two-photon
double-ionization scaling law breaks down. We further study the total cross section of 2s2 double ionization as a
function of photon energy in both nonsequential and sequential regions.
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I. INTRODUCTION

The electron correlation of many-body problem is a ma-
jor challenge for chemistry and for atomic, molecular, and
condensed-matter physics [1]. Electron dynamics is com-
monly treated as a one-particle phenomenon because of the
complexity of electron correlation. In the past few decades,
new techniques, including x-ray free-electron lasers [2–6]
and high harmonic generations [7–14], have revolutionized
the field of ultrafast short-wavelength light-driven atomic
and molecular physics [15]. Some intricate time-dependent
laser-matter interactions can be investigated experimentally,
revealing the complex nonlinear response of atoms to an
external field. In a many-electron atom, dynamic electron
correlation may contribute to those effects because the atom
needs intrinsic time to respond to the field on an attosecond
scale. Accordingly, dynamic electron correlation induced by
attosecond pulses has drawn much interest [15], and it has
become key to detailed understanding of correlation in other
areas [16,17].

When a laser pulse interacts with an atom, double-electron
ionization induced by two photons occurs simultaneously or
sequentially if the total energy of the two photons exceeds
the ionization energy of two electrons. While two ionization
events happen sequentially for a longer pulse and can be
regarded as noncorrelated, double-electron ejection is imme-
diate for an ultrashort pulse, revealing energy sharing between
the two electrons [18,19]. In other words, the single-active-
electron approximation breaks down and a nonsequential
double ionization occurs on the ionization timescale, which
indicates electron correlations should be taken into account.
Double ionizations have become a benchmark for exploring
electron correlation in atoms [20].
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Much effort has been made to use cold-target recoil-
ion-momentum spectroscopy to measure two-photon dou-
ble ionization (TPDI) in helium, which is the simplest
three-body atomic system [20–25]. In recent decades, many
time-dependent theoretical methods have been developed to
study the three-body correlated system, including the energy
spectrum, cross section, and angular distributions [26–42].
The most powerful ab initio tool is the time-dependent
Schrödinger equation or its varieties, even though it is too
difficult to use to investigate dynamics beyond two-electron
systems. Other reliable theoretical methods, such as the R
matrix for neon and argon [43,44], time-dependent wave
packet for magnesium [45], and time-dependent density ma-
trix for neon [46], are used in double-photoionization dynam-
ics. However, most works have studied double ionization of
valence electrons and few have focused on time-dependent
inner-shell double ionization [47–49]. Nevertheless, research
should be devoted to inner-shell electron correlation on ultra-
short timescales.

Inner-shell TPDI occurs only if the double-photon en-
ergy exceeds the sum of the two inner-electron ionization
thresholds, i.e., 2ω > E1

th + E2
th. An observed phenomenon

is that a coherent extreme ultraviolet (XUV) laser creates
hole in the atom and dissipation occurs simultaneously. The
interplay of coherence and dissipation induces a major change
in final dynamic evolution, and the quantum master equation
is a standard tool for handling the dissipative laser-matter
system. In the past few years, we have successfully developed
the quantum master equation to incorporate laser-induced
ultrafast dynamics of complex atoms by including thousands
of atomic states [50]. In this work, we extend the quantum
master equation by including correlated ionization and ex-
plore the inner-shell TPDI of complex atoms triggered by an
XUV attosecond pulse. Under an adiabatic approximation of
photoionization [51,52], we include antisymmetric coupled
wave functions of two outgoing electrons in the density
matrix, where different angular momentum channels reveal
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correlation between ionized electrons. Interestingly, we ob-
serve a pronounced change in inner-shell TPDI in the presence
of dissipation.

This paper is organized as follows. In Sec. II we describe
how to use the quantum master equation to incorporate TPDI.
Section III covers our results and discusses inner-shell TPDI,
where we compare the cases with and without decoherence.
We summarize with a discussion in Sec. IV.

II. QUANTUM MASTER EQUATION IN TPDI

We briefly describe the quantum master equation, where
the system is assumed to couple with a reservoir. Normally,
there is an infinite number of variables in the reservoir and
it is difficult to take all degrees of freedom into account
explicitly. The quantum master equation can be used to handle
this problem by tracing out the environmental variables [53].
Under the Born-Markov approximation, the evolution of the
reduced density matrix of the system is governed by the
master equation

˙̂ρ = i[ρ̂, Ĥs] +
∑

i

γi

2
(2σ̂iρ̂σ̂

†
i − σ̂

†
i ρ̂σ̂i − ρ̂σ̂

†
i σ̂i ), (1)

where ρ̂ denotes the reduced density matrix operator of the
system by tracing out the reservoir degrees of freedom, Ĥs

is the total system Hamiltonian, γi represents the decay rate
of transition channel i, and σ̂i (σ̂ †

i ) denotes the annihilation
(creation) state operator for transition channel i.

In photoionization, ionized electrons fall into continuum
states, and the question is how to take the infinite number of
continuum states into account in the quantum master equation.
Here we use a derivation similar to that in Refs. [51,52] and
adiabatically eliminate the infinite continuum states (except
the ionization channel considered), where the interactions
with the infinite continuum states are described by the decay
rates and ac Stark shifts of the bound states. More details of
adiabatic elimination of continuum states can be found in the
Appendix of Ref. [52].

A. Antisymmetric coupled wave functions in the quantum
master equation

Inner-shell 2s2 TPDI is explored on the basis of the an-
tisymmetric coupled wave functions in the master equation.
For this, a three-level model for the 2s TPDI of neon is
shown in Fig. 1. Here εi denotes the kinetic energy of the ith
ionized electron. The state |1〉 represents the unionized atom,
|2ε1〉 the first ionization consisting of the ion and one free
electron, and |3ε1ε2〉 the second ionization consisting of the
ion and two free electrons. Coherent TPDI can be described by
|1〉 → |2ε1〉 → |3ε1ε2〉. Other transition channels, including
2p electron ionization and spontaneous decay, are treated as
dissipative processes and taken into the Lindblad term. The
physical reason is that the kinetic energy of an ionized 2p
electron is much higher than that of a 2s electron, inducing
the ionized 2p electron state disassociated correlation with
core states by the fact that 2p electron escapes from the atom
in shorter time. For convenience, we neglect the notation
of angular momentum coupling in the above labels. Final
states here are composed of the residual ion and two ionized
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2s12p6+

2p6+ +

2s12p5

2s22p5

2s12p5+e

2s22p5+e

2p5+e

FIG. 1. Sketch of TPDI for 2s electrons of neon. For conve-
nience, |2ε1〉 denotes the first ionized state with electron kinetic
energy ε1 and angular momentum j1, and |3ε1ε2〉 the second ion-
ized state with first and second ejected electron |ε1 j1〉 and |ε2 j2〉,
respectively. The red solid lines denote the TPDI transitions for
the 2s electrons and the green dashed lines denote the 2p electron
ionizations. The blue and red curved arrows denote spontaneous
decay transitions and laser-induced transitions, respectively.

electrons in the continuum states and obey wave-function
antisymmetry under electron exchange.

We first formally define the relevant states in TPDI,

{|1, JM〉; |2ε1, ( jc j1)JM〉;|3ε1ε2, ( jc j1 j2)JM〉; . . .}, (2)

where jc denotes the angular momentum of the residual ion,
and j1 and j2 are the angular momenta of the first and
second ejected 2s electrons, respectively. Quantities J and
M are the total angular momentum and its projection on the
system, respectively. Wave-function antisymmetry is included
in the final states |3ε1ε2, ( jc j1 j2)JM〉. According to angular
momentum coupling with exchanging coordinates i and k
of two ejected electrons, the explicit form of the final wave
function reads

|3ε1ε2, ( jc j1 j2)JM〉 = 1√
2

(∣∣3εi
1ε

k
2,

[(
jc jk

2

)
J ′, ji

1

]
JM

〉

− ∣∣3εi
2ε

k
1,

[(
jc ji

2

)
J ′, jk

1

]
JM

〉)
, (3)

where the angular momentum exchange is given by
∣∣3εi

2ε
k
1,

[(
jc ji

2)J ′, jk
1

]
JM

〉

=
∑

J ′′
(−1) j2+ j1+J ′+J ′′ × [J ′, J ′′]1/2

{
j2 jc J ′

j1 J J ′′

}

× ∣∣3εi
2ε

k
1,

[(
jc ji

1

)
J ′′, jk

2

]
JM

〉
. (4)

Here the 6- j coefficient describes the coupling of the three
angular momenta. For double 2s ionizations with jc = 0, for
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FIG. 2. Relevant ionization channels in the quantum master
equation. The dashed lines denote the normal transition channels,
while the solid lines are new channels, due to free-electron exchange.

example, Eq. (3) can be simplified as

|3ε1ε2, ( jc j1 j2)JM〉 = 1√
2

[∣∣3εi
1ε

k
2,

(
jk
2 ji

1

)
JM

〉

− (−1)s
∣∣3εi

2ε
k
1,

(
ji
1 jk

2

)
JM

〉]
, (5)

where the phase factor s = j1 + j2. After considering the
antisymmetry of the coupled wave functions, one observes
symmetry in the energy spectrum [26].

B. Quantum master equation for TPDI

In this section we extend the master equation to include
two-photon double 2s ionization. The ionization channels are
illustrated in Fig. 2. Here the intermediate states denoted by
|2εi〉 represent the virtual states in nonsequential processes
and the real states in sequential processes. Because of indis-
tinguishability, the second electron |ε2〉 can ionize first. In the
next ionization, the intermediate state |2ε2〉 couples with the
continuum state of the first electron |ε1〉 to form the final state
consisting of the residual ion and two ionized electrons. As
shown in Fig. 2, the final state |3ε1ε2〉 is the combination
of both ionized states, where the two ionization channels are
indistinguishable.

Now we present the time-dependent differential density
matrix equations for TPDI. For convenience, we neglect the
reservoir damping terms of Eq. (1) in our deduction, which

would maintain the form of the final equation [51]. Therefore,
Eq. (1) takes the Liouville form

˙̂ρ = i[ρ̂(t ), Ĥ0 + ĤI (t )]. (6)

In the dipole and rotating-wave approximations, ĤI (t ) is given
by

ĤI (t ) = −
∑
i, j

�i j (t )

2
(D̂i j + H.c.). (7)

Here �i j (t ) = E (t )〈i||d̂|| j〉 represents the Rabi frequency
leading to coherence induced by the laser field. Normally,
the XUV pulse shape Ξ (t ) can be assumed to be a Gaussian
profile

E (t ) = Ξ (t )cos(ωt ) = E0exp

[
− (2 ln2)t2

τ 2

]
cos(ωt ), (8)

where τ is the full width at half maximum pulse length. Using
the Wigner-Eckart theorem, D̂i j is given by

D̂i j = (−1)Ji−Mi

(
Ji 1 Jj

−Mi σ Mj

)
|JiMi〉〈JjMj |, (9)

where σ denotes the laser polarization. In degenerate condi-
tions, D̂i j = |JiMi〉〈JjMj |. A detailed derivation for the five
states can be found in Appendix A.

Furthermore, the reduced Rabi coupling between the final
antisymmetric coupled states and intermediate states reads

M2εn,3ε1ε2 (t ) = 1√
2

[
M2εn,3εi

1ε
k
2
(t )δn1δ

(
εn − εi

1

)

− (−1)sM2εn,3εi
2ε

k
1
(t )δn2δ

(
εn − εi

2

)]
, (10)

where M2εn,3εi
1ε

j
2
(t ) ≡ Ξ (t )〈2εn||d̂||3εi

1ε
j
2〉. Here the δ func-

tions guarantee the orthonormalization of continuum states
and we eliminate the fast-oscillation function cos(ωt ) by
substituting ρi j = σi jeinωt , where n = 0,±1,±2 and ω is the
laser frequency.

In the adiabatic approximation, integrations in the time-
evolution equations can be absorbed by decay factors and ac
Stark shifts. The latter are neglected because their contribu-
tions are tiny [51]. Plugging Eq. (10) and the ionization rates
into the evolution equation yields the following differential
equations:

σ̇1,1 = −γ12(t )σ1,1, (11)

σ̇1,2ε1 = i

[(
�E21 + ε1 − ω + i

γ12(t ) + γ23(t )

2

)
σ1,2ε1 + M1,2ε1σ1,1

]
, (12)

σ̇1,3εi
1ε

k
2
= i

[(
�E31 + ε1 + ε2 − 2ω + i

γ12(t )

2

)
σ1,3εi

1ε
k
2
+ 1√

2

[
σ1,2ε1 M2ε1,3εi

1ε
k
2
− (−1)sσ1,2ε2 M2ε2,3εi

2ε
k
1

]]
, (13)

σ̇2ε1,2ε1 = i(σ2ε1,1M1,2ε1 − M2ε1,1σ1,2ε1 ) − γ23(t )σ2ε1,2ε1 , (14)

σ̇2ε1,3εi
1ε

k
2
= i

[(
�E32 + ε2 − ω + i

γ23(t )

2

)
σ2ε1,3εi

1ε
k
2
− M2ε1,1σ1,3εi

1ε
k
2
+ 1√

2

[
σ2ε1,2ε1 M2ε1,3εi

1ε
k
2
− (−1)sσ2ε1,2ε2 M2ε2,3εi

2ε
k
1

]]
, (15)

σ̇3εi
1ε

k
2,3εi

1ε
k
2
= i

1√
2

[
σ3εi

1ε
k
2,2ε1

M2ε1,3εi
1ε

k
2
− (−1)sσ3εi

1ε
k
2,2ε2

M2ε2,3εi
2ε

k
1
− σ2ε1,3εi

1ε
k
2
M3εi

1ε
k
2,2ε1

+ (−1)sσ2ε2,3εi
1ε

k
2
M3εi

2ε
k
1,2ε2

]
, (16)
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σ̇2ε1,2ε2 = i
{
[ε2 − ε1 + iγ23(t )]σ2ε1,2ε2 + σ2ε1,1M1,2ε2 − M2ε1,1σ1,2ε2

}
, (17)

σ̇2ε1,3εi
2ε

k
1
= i

[(
�E32 + ε2 − ω + i

γ23(t )

2

)
σ2ε1,3εi

2ε
k
1
− M2ε1,1σ1,3εi

2ε
k
1
+ 1√

2

[
σ2ε1,2ε2 M2ε2,3εi

2ε
k
1
− (−1)sσ2ε1,2ε1 M2ε1,3εi

2ε
k
1

]]
. (18)

Here the ionization rates γi j (t ) = 2π
∫

dε|Mi j (ε, t )|2, leading
to population depletion and decoherence in the time evolution.
The equations include off-diagonal elements from the new
channels because of the free-election exchange, as can be seen
in Eq. (16).

In this work, atomic structure parameters like transition
energies and dipole moments are calculated in flexible atomic
code (FAC) with relativistic effects and configuration inter-
action [54]. Only the electric dipole allowed (E1) transition
channels are included in our calculations, as they are the major
contributors to transitions. To illustrate the applicability of
FAC results, dipole moments are presented in Appendix B,
compared with experimental data and other calculation re-
sults. We choose the XUV photon energy to be ω = 90 eV
in the sequential ionization regime ω > max(E1

th, E2
th) [34].

The ionization thresholds are 48.03 and 73.32 eV for the
two 2s electrons; hence their kinetic energies after ionization
are 41.97 and 16.68 eV, respectively. In our simulations, we
assume that Coulomb correlations of the ionized electrons are
negligible in the continuum states as the standard processing
of second-order time-dependent perturbation theory [55,56].
In addition, the intermediate state is dominated by the 2s1 2p6

state of the residual ion by neglecting other states in the
basis set. The validity of this assumption has been verified by
detailed comparisons of transition amplitudes in Appendix B.
Further, relative contributions of different single ionized states
based on R-matrix method support our simplification [57].
Note that atomic units are used in the whole paper unless
stated otherwise.

III. RESULTS AND DISCUSSION

A. Energy spectrum in inner-shell TPDI

In this section we investigate TPDI of complex atoms
triggered by XUV laser beams, using the quantum master
equation. We take neon as an example, for which Table I
shows ten dominant states for the TPDI of 2s electrons
(spontaneous and other ionization decays are not shown).
Therefore, the possible final states are those with total angular
momentum J = 0 or 2 because of momentum conservation
for 2s electrons. As shown in Table I, there are only five
final atomic states composed of the residual ion and ionized
electrons, where all the channels are included in ultrafast
TPDI of complex atoms [58].

We present our numerical results for different pulse du-
rations τ in Fig. 3, which shows the angle-integrated pho-
toelectron ionization energy spectrum for both 2s electrons.
We clearly observe energy sharing between the two ionized
2s electrons of neon with broadened peaks localized symmet-
rically in the E1-E2 panels. Energy sharing in nonsequential
TPDI can be affected by intermediate states. In an attosecond
pulse, the intermediate state can thus be transiently occupied

TABLE I. Configuration, angular momentum, and energy of
states in the three-level model for TPDI of 2s electrons of neon. Here
“Core” denotes the core state, Jc and Ec are the angular momentum
and energy of the residual ion, respectively, J1 and J2 are the angular
momenta of the first and second ionized electrons, respectively, and
J is the total angular momentum of the system composed of the
residual ion and ionized electrons.

No. Core Jc J1 J2 J Ec (eV)

1 [Ne] 0 0 0
2 2s1 1/2 1/2 1 48.03
3 2s1 1/2 3/2 1 48.03
4 2s1 1/2 1/2 1 48.03
5 2s1 1/2 3/2 1 48.03
6 2s0 0 1/2 1/2 0 121.35
7 2s0 0 1/2 3/2 2 121.35
8 2s0 0 3/2 1/2 2 121.35
9 2s0 0 3/2 3/2 0 121.35
10 2s0 0 3/2 3/2 2 121.35

off shell, manifesting in the kinetic energies of two continuum
electrons becoming equal [36]. This phenomenon is even
more pronounced for shorter pulses, as shown in Fig. 3(a),
because the short pulse duration yields a broader photon
spectrum, according to the uncertainty principle �E�t ∼ h̄.
However, TPDI can be regarded as independent sequential
ionization events in the long-pulse-duration limit τ → +∞,
showing two well-defined discrete peaks.

We should point out that the Coulomb interaction 1/r12

between the two ionized electrons in the continuum states
influences the energy spectra. This effect strongly depends
on the relative ejected angles and kinetic energies between
the two electrons. As shown in Ref. [34], the back-to-back
emission mode dominates angular momentum distributions
for a shorter pulse duration, resulting in a tiny influence of
electron-electron repulsion on final energy spectra. However,
for a longer pulse duration, the joint angular distribution
approaches the independent pattern for the two ionized elec-
trons [34]. In our case of 2s electron ionizations, the first
electron with an energy of E1 ≈ 41.97 eV moves faster than
the second one in the same direction with E2 ≈ 16.68 eV.
This diminishes long-range Coulomb repulsion, which retards
the second ionized electron and accelerates the first ionized
electron [34]. Actually, this effect only contributes to the
peak shifts separately in the energy spectrum, but cannot
disturb the interplay of the coherent ionization and dissipation
discussed in this paper. Therefore, our simulations neglect the
Coulomb interaction between the two ionized electrons in the
continuum states.

Next we discuss contributions of partial waves on en-
ergy sharing. Here one-dimensional energy distributions
[Figs. 3(b), 3(d), and 3(f)] are shown along the resonant line
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FIG. 3. Energy spectrum of TPDI for 2s ionizations with a laser intensity of 1014 W/cm2 for a pulse duration of (a) and (b) 100 as, (c) and
(d) 200 as, and (e) and (f) for 500 as. (a), (c), and (e) Two-dimensional energy spectra without decoherence, where E1 and E2 are the first
and second electron kinetic energies (in eV), respectively. (b), (d), and (f) One-dimensional energy distributions under the energy conservation
condition E1 + E2 = 2ωc − E 1

th − E 2
th, where E 1

th and E 2
th are the ionization thresholds for the 2s electrons and ωc represents the central photon

energy. The symbol (J1, J2 )J denotes the partial state in Table I and “sum” denotes the total yield. For comparison, the corresponding dotted
lines denote the results in the presence of decoherence.

with E1 + E2 = 2ωc − E1
th − E2

th, where the photon energy
ωc = 90 eV. One can notice that the completely symmetric
peaks appear with respect to 50% energy sharing, derived
from the antisymmetry of the two continuum electrons. We
find that the energy sharing mainly consists of three par-
tial waves with the angular momenta (J1, J2)J = (1/2, 1/2)0,
(3/2, 3/2)0, and (3/2, 3/2)2, whereas the other two D-wave
terms with (1/2, 3/2)2 and (3/2, 1/2)2 have tiny contribu-
tions, as shown in Fig. 3(b). These phenomena can be ex-
plained by the Pauli exclusion principle. In the dipole ap-
proximation, the two ionized 2s electrons have orbital angular
momentum l = 1 and spin angular momentum s = 1/2. For
the processes triggered by the linearly polarized laser, the
states (1/2, 3/2)2 and (3/2, 1/2)2 are identical and vanish at
ε1 = ε2, where ε represents kinetic energy. With the increase
of the pulse duration τ , the population splits into two parts and
shifts to the resonant points, as shown in Figs. 3(d) and 3(f).
This shows that the second ionization mainly occurs after
the residual core relaxation, leading to energy conservation
in each partial wave.

To further reveal the underlying physics of energy sharing,
we discuss coherence for the relevant channels, which are
naturally included in the off-diagonal elements in the master
equation. Figure 4 shows those induced coherence of the
second ionization as a function of energy E2, where absolute
values |σi j | are shown for the end of the pulse duration. One
can notice that two coherence functions, of normal (solid
lines) and antisymmetric (dashed or dotted lines) channels

with one specific final state, are symmetric to each other. For
the shorter pulse [Fig. 4(a)], coherence functions regarding
three partial waves (1/2, 1/2)0, (3/2, 3/2)0, and (3/2, 3/2)2

have superposition around the central point E = ω − (E1
th +

E2
th)/2 = 29.3 eV, which dominates the populations and con-

tributes significantly to energy sharing between the ionized
electrons. For the longer pulse [Fig. 4(b)], those peaks shift
to E1 = 16.68 or 41.97 eV, the superposition shrinks with
decreased broadening, and energy sharing effects vanish.
Therefore, we can conclude that energy sharing derives from
the superposition of coherence functions in the antisymmetric
density matrix framework.

A major issue is significant dissipation in the presence
of decoherence channels in coherent attosecond evolution of
inner-shell electrons. As shown in Fig. 1, both spontaneous
decay and 2p ionization are decoherence channels. The rel-
evant transition parameters are listed in Table II, where all
time-dependent rates are given for a laser intensity of 1014

W/cm2. Decoherence effects can be observed in Figs. 3(b),
3(d), and 3(f), where depopulations are pronounced for all
partial waves. This shows that decoherence in inner-shell
TPDI dissipates the population in coherent evolution and
damps Rabi oscillation, suppressing correlation between the
two ionized electrons. The effect is even more pronounced
in Fig. 3(f) with τ = 500. The physical explanation is that
population depletion is enhanced for a longer pulse duration
because time-dependent ionization for the 2p electrons dom-
inates decoherence. This dissipation-induced phenomenon is
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FIG. 4. Induced coherence of the second ionization channel |σi j |
as a function of electron kinetic energy with an intensity of 1014

W/cm2 for durations (a) τ = 100 as and (b) τ = 500 as. The
parameters are the same as in Figs. 3(b), 3(d), and 3(f). The label
i → j denotes the result for ionization channels from the state i to
j listed in Table I. The solid (dashed) lines denote the coherence of
normal (antisymmetric) channels and the dotted lines are the results
in the presence of decoherence in the corresponding cases.

also verified in Sec. III C, where scaling laws break down for
inner-shell ionization.

TABLE II. Transition rates B, 2p ionization rates Bi, j , and 2p-to-
2s spontaneous decay rates Aj of the three-level states, induced by a
laser pulse with an intensity of 1014 W/cm2 in a.u. The indices i and
j correspond to the lower and upper states, respectively, as shown in
Table I. Values in square brackets represent multiplication by powers
of 10.

i → j B (a.u.) Bi (a.u.) Bj (a.u.) Aj (a.u.)

1 → 2 9.01[−4] 2.13[−2] 1.76[−7]
1 → 3 1.80[−3] 1.76[−7]
2 → 6 5.08[−4] 3.95[−2] 3.27[−2] 7.42[−7]
2 → 7 2.53[−3] 2.18[−2] 7.42[−7]
3 → 8 1.27[−3] 3.81[−2] 2.18[−2] 7.42[−7]
3 → 9 5.06[−4] 3.27[−2] 1.11[−6]
3 → 10 1.27[−3] 2.18[−2] 7.42[−7]
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FIG. 5. Total cross section (cm4 s) of TPDI for the 2s electrons
of neon induced by XUV with intensity I0 = 1014 W/cm2. The green
dashed, red square, and blue diamond lines denote τ = 0.1, 0.5,
and 0.7 fs, respectively. All results are calculated in the absence of
decoherence.

B. Total cross section of 2s2 TPDI of neon

In this section we investigate the total cross section (TCS)
of 2s2 TPDI of neon under an attosecond pulse. The results are
shown in Fig. 5 for an intensity of I0 = 1014 W/cm2 for three
pulse durations. The TCS is investigated in both nonsequen-
tial and sequential regions. Conventionally, the generalized
TCS in TPDI is defined for the infinitely long pulse, which
reads [36]

σ =
(

ω

I0

)2 PDI

Teff
. (19)

Here PDI denotes the total final yield in double ionization and
Teff represents the effective time of the XUV laser, with Teff =∫ +∞
−∞ [I (t )/I0]2dt . For a Gaussian pulse, Teff = τ

√
π/(8 ln2).

The TCSs are initially almost identical for different τ values
in the nonsequential region with ω < 73 eV, then rise signifi-
cantly to the maximum, and then drop gradually for larger τ .
The physical reason is that nonsequential and sequential
double ionization yield PDI

non ∝ τ and PDI
seq ∝ τ 2, respectively

[28]. Actually, the nonsequential channel can be explained by
virtual sequential ionization, so there is no evident distinction
between sequential and nonsequential [58]. This argument
is verified by the apparent and continuous increase of the
TCS around the vicinity of the second ionization threshold
ω = 73 eV. Our results have patterns similar to those of
helium obtained by the analytical model or time-dependent
Schrödinger equation [35,36,56,58]. The results in Fig. 5
show that our model can simulate TPDI, which motivates our
exploring the breakdown of the scaling law from decoherence.

C. Breakdown of scaling laws in inner-shell TPDI

In this section we explore the scaling law of the final
yields of inner-shell TPDI in the framework of the master
equation. The results are summarized in Fig. 6, where total
free-electron yields in TPDI are obtained by accounting for
all populations of ionized 2s electrons in the two-dimensional
spectrum (Fig. 3). Our results show a quadratic scaling in the
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FIG. 6. A log-log plot of scaling laws of the yield of ionized 2s electrons in TPDI as a function of pulse duration τ (as) or laser intensity
I (W/cm2). (a) Total free-electron yield as a function of τ at an intensity of 1014 W/cm2. (b) Yields for different free-electron energies along
the resonant line [Figs. 3(a), 3(c), and 3(e)] as a function of τ at an intensity of 1014 W/cm2. (c) Total free-electron yield as a function of I for
a pulse duration of 100 as.

long-pulse limit and a deviation from quadratic scaling in the
short-pulse limit, similar to results for helium in Refs. [26,28].
This phenomenon can be explained by the TPDI scaling
law. The total TPDI yields in the approximation of long
pulse duration and low laser intensity [28] with ρ11 ≈ 1 are
given by

PDI =
∫ +∞

−∞

∫ +∞

t
σ1σ2I (t ′)I (t )dt ′dt ∝ τ 2I2

0 . (20)

This relation reveals that two independent ionization events
dominate the TPDI in the long-pulse limit and break down in
the short-pulse limit because the delay between the first and
second events exceeds the correlation time in the long-pulse
limit. In Fig. 6(b) we plot a log-log graph of the free-electron
yield for different kinetic energies along the resonant line
[Figs. 3(a), 3(c), and 3(e)] as a function of τ and observe
a dominant quadratic scaling in the long-pulse limit. How-
ever, the scaling law shifts from quadratic to biquadratic as
the kinetic energy approaches the resonance condition with
ε = 16.7 eV. The physical explanation can be found in the
derivations in Appendix C. The region of the energy peaks
also shrinks with quadratic scaling when τ increases, making
the total yields of ionized 2s electrons coincide with Eq. (20),
for which the detailed derivation is given in Appendix C.

Comparisons are presented to investigate the influence of
decoherence on the scaling law. The scaling law clearly breaks
down for yields of ionized 2s electrons in TPDI, as shown in
Figs. 6(a) and 6(b), especially for longer pulse duration. We
also plot the total TPDI yield as a function of laser intensity
I0 and observe a pronounced deviation in the presence of
decoherence even for the short pulse τ = 100 as, as shown in
Fig. 6(c). The adiabatic elimination in the ground-state evo-
lution represented in Eq. (11) assumes σ1,1 ≈ 1. This shows
that our model holds for relatively low intensity and correctly
simulates dynamics with an XUV intensity of up to 1016

W/cm2, as shown in Fig. 6(c), where a small percentage of
the electrons are ionized. As for higher intensity, we observe
the total yield of inner-shell TPDI, considering decoherence
deviates from the scaling law. The physical reason is that
nonlinear dissipative effects, 2p-shell ionizations, induce the

depletion of the ground-state population [59]. Our results
confirm that induced decoherence from other ionization chan-
nels are modulated by XUV pulse parameters, manifesting
time-dependent properties. A distinct breakdown of scaling
laws reveals the importance of decoherence in inner-shell 2s2

TPDI.

IV. SUMMARY

To reveal the physics of the interplay between coherent
drive and dissipative processes in TPDI, we have explored
double inner-shell ionization on the attosecond timescale,
using a generalized quantum master equation. In our model,
the infinite degree of continuum states was adiabatically
eliminated and the antisymmetry of these coupled states was
included in the density matrix. We took neon as an example
and studied its 2s ionization induced by an XUV laser beam,
where dissipation, including 2p ionizations and spontaneous
decays, were taken into account in the time evolution. The
energy spectrum for two ejected inner-shell electrons showed
that their correlations are indistinct for short pulse duration
and characterized by energy sharing between them. In the
presence of decoherence, depopulation and broadening occur
around the energy peaks and TPDI scaling laws break down.
We also evaluated TCSs of 2s2 TPDI in our model. Our
simulations showed the critical role of decoherence even on
the attosecond scale. Due to the kinetic energy distribution
and domination of intermediate states by 2s1 2p6, we believe
it is possible to observe 2s2 TPDI events in the coincidence
measurement technique [60]. Details are given in Appendix B.
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APPENDIX A: TIME-DEPENDENT EVOLUTION EQUATIONS IN THE CASCADING THREE-LEVEL MODEL

Inserting the projection operator into the Liouville equation (6), we obtain the time-dependent evolution equations of the five
states:

ρ̇1,1 = i

(∫
ρ1,2ε1�2ε1,1dε1 −

∫
�1,2ε1ρ2ε1,1dε1

)
, (A1)

ρ̇1,2ε1 = i

(
(�E21 + ε1)ρ1,2ε1 + �1,2ε1ρ1,1 −

∫
�1,2ε′

1
ρ2ε′

1,1dε′
1 +

∫∫
ρ1,3ε′

1ε
′
2
�3ε′

1ε
′
2,2ε1 dε′

1dε′
2

)
, (A2)

ρ̇1,3εi
1ε

k
2
= i

(
(�E31 + ε1 + ε2)ρ1,3εi

1ε
k
2
+

∫
ρ1,2ε′

1
�2ε′

1,3εi
1ε

k
2
dε′

1 −
∫

�1,2ε′
1
ρ2ε′

1,3εi
1ε

k
2
dε′

1

)
, (A3)

ρ̇2ε1,2ε1 = i

(
ρ2ε1,1�1,2ε1 − �2ε1,1ρ1,2ε1 +

∫∫
ρ2ε1,3ε′

1ε
′
2
�3ε′

1ε
′
2,2ε1 dε′

1dε′
2 −

∫∫
�2ε1,3ε′

1ε
′
2
ρ3ε′

1ε
′
2,2ε1 dε′

1dε′
2

)
, (A4)

ρ̇2ε1,3εi
1ε

k
2
= i

(
(�E32 + ε2)ρ2ε1,3εi

1ε
k
2
− �2ε1,1ρ1,3εi

1ε
k
2
+

∫
ρ2ε1,2ε′

1
�2ε′

1,3εi
1ε

k
2
dε′

1 −
∫∫

�2ε1,3ε′
1ε

′
2
ρ3ε′

1ε
′
2,3εi

1ε
k
2
dε′

1dε′
2

)
, (A5)

ρ̇3εi
1ε

k
2,3εi

1ε
k
2
= i

(∫
ρ3εi

1ε
k
2,2ε′

1
�2ε′
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2
dε′
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∫
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2
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′
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′
2,3εi

1ε
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2
dε′

1dε′
2 −

∫∫
�3εi

1ε
k
2,3ε′

1ε
′
2
ρ3ε′

1ε
′
2,3εi

1ε
k
2
dε′

1dε′
2

)
, (A6)

ρ̇2ε1,2ε2 = i

(
(ε2 − ε1)ρ2ε1,2ε2 + ρ2ε1,1�1,2ε2 − �2ε1,1ρ1,2ε2

+
∫∫

ρ2ε1,3ε′
1ε

′
2
�3ε′

1ε
′
2,2ε1 dε′

1dε′
2 −
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)
, (A7)

ρ̇2ε1,3εi
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(
(�E32 + ε2)ρ2ε1,3εi
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+

∫
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1dε′
2

)
, (A8)

ρ̇1,2ε2 = · · · , ρ̇1,3εi
2ε

k
1
= · · · , ρ2ε2,2ε2 = · · · , ρ2ε2,3εi

2ε
k
1
= · · · , ρ3εi

2ε
k
1,3εi

2ε
k
1
= · · · , ρ̇2ε2,3εi

1ε
k
2
= · · · . (A9)

Here we only present half of the off-diagonal elements ρi j (i < j), because ρ∗
i j = ρ ji (i = j). Terms with ε2 have the same form

as those with ε1, so we do not present them in Eq. (A9).

APPENDIX B: RELEVANT FAC RESULTS
AND DISCUSSION

To illustrate applicability of FAC results, comparisons
with the available experimental partial cross section for
2s2 2p6 1S0–2s1 2p6 2S1/2 ionization and other calculation re-
sults are shown in Fig. 7. One can see that FAC results are
close to relativistic random-phase approximation and more
accurate than Hartree-Fock method. Notice that the trend
follows the experimental data with some underestimations.
Actually, discrepancies in transition energies or dipole matrix
elements do not have a significant impact on the dynamical
evolution.

In this work we deal with 2s2 TPDI processes of neon
and select dominant states for these processes in the time
evolution. The intermediate states in our method do not in-
clude 2p-shell ionization channels, since we have regarded
them as dominant decoherent effects. Our selection can also
be justified by cross sections of different channels, as shown
in Table III. Double excitations of Ne have negligible contri-
butions on intermediate states. In addition, specific channels
are presented with cross sections larger than 0.01 Mb. One
can see that double ionizations of 2s-shell electrons dominate
ionization events, which are at least 6 times larger than the
other excited states. Hence, we argue that the intermediate
state is dominated by 2s1 2p6 of the residual ion by neglecting
the others.

ω (eV)

0.7

σ 
(M

b)

0.6

0.5

0.4

0.3

0.2

0.1
80 100 120 140 160 180 200

FAC
HF
RRPA
RPA
Expt.

FIG. 7. Partial photoionization cross section σ (Mb) of the
2s2 2p6 1S0–2s1 2p6 2S1/2 transition on neon as a function of photon
energy ω (eV). The Hartree-Fock (HF) method and random-phase
approximation (RPA) are from Ref. [61], the relativistic random-
phase approximation (RRPA) is from Ref. [62], and the experiment
is from Ref. [63].

To clarify the possibility of observing 2s2 TPDI exper-
imentally, we make a detailed analysis of diverse double
ionizations in Table IV, neglecting other minor channels.
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TABLE III. Transition energy �E (eV) and cross section σ (Mb)
for different ionization channels. Values in square brackets represent
multiplication by powers of 10.

Step Former Latter �E (eV) σ (Mb)

I 2s2 2p6 2s1 2p6 48.03 2.479[−1]
I 2s2 2p6 2s2 2p43s1 50.31 4.550[−2]
I 2s2 2p6 2s2 2p43d1 54.20 1.314[−2]
II 2s1 2p6 2p6 73.75 2.198[−1]
II 2s2 2p43s1 2p6 71.50 2.364[−2]

One can see that contributions from single-photon double-
ionization channels are quite small, without obvious overlaps
for concerned 2s2 TPDI in two-dimensional energy spectra.
Peaks regarding 2p-shell ionizations can still be distinguished
in shorter pulses due to the larger energy deviation. As for
channels with different intermediate states, the contribution
of the intermediate state 2s2 2p43s1 is approximately 2%,
compared with that of 2s1 2p6. Therefore, we believe it is
possible to observe 2s2 TPDI in the coincidence measurement
experiment.

APPENDIX C: PROOF OF POWER LAW OF PEAK POINTS

In this Appendix we obtain the analytic formula using
first-order perturbation theory as well as the independent-
ionization approximation. These two assumptions are valid
only for very low XUV intensity, i.e., the population loss in
the ground state is negligible.

First, we can separate the three levels into two independent
transition channels, with final TPDI yields that are multiples
of two upper-state populations in each ionization [Eq. (20)].
Therefore, we only need to prove the quadratic relation for
the excitation population of the two-level model as a function
of τ .

The time-dependent Schrödinger equation has the form
iψ̇ (t ) = HI (t )ψ (t ) in the interaction picture, where HI (t ) =

1
2�(t )(σ †e−iψ + σeiψ ) is shown by the perturbation inter-
action in the rotating framework. The coupled differential
equations of the coefficients c1(t ) of the ground state and c2(t )
of the excited state ψ = 0 are

ċ1(t ) = −i
�(t )

2
c2(t ),

(C1)

ċ2(t ) = −i
�(t )

2
c1(t ).

We choose the initial occupations

c1(0) = 1, c2(0) = 0. (C2)

In the zeroth-order approximation, perturbation is neglected.
The results are

c(0)
1 (t ) = 1, c(0)

2 (t ) = 0. (C3)

Substituting the zeroth-order results into Eq. (C1), the first-
order results can be obtained:

ċ(1)
1 (t ) = 0,

ċ(1)
2 (t ) = −i

�(t )

2
.

(C4)

The Rabi frequency is modulated by the time-dependent XUV
envelope according to Eq. (8). Therefore, the coefficient c2(t )
of the excited state is given by

c(1)
2 (t ) = −i

d

2

∫ +∞

−∞
e−2 ln2t2/τ 2

dt ∝ τ. (C5)

Therefore, the population of the excited state is proportional
to the square of the duration: ρ22 ∝ τ 2. In conclusion, the
population of the peak center is biquadratic with the duration:
Pc ∝ τ 4. We should mention that this relation strongly relies
on the pulse characters.

In Fig. 6(b), the biquadratic behavior of the total TPDI
yield PDI for ε = 16.7 eV deviates from the quadratic scaling
for the other energies. However, this can be confirmed by
taking the total population of all points in the broadened peak

TABLE IV. Cross section σ (Mb) and electron kinetic energy Ei (eV) for different channels regarding double ionizations, i.e., two-photon
(TPDI) or single-photon (SPDI) processes. Here i = 1 and i = 2 represent the first and second ionizations, respectively. Note that Ei and σ are
presented at peak point.

Transition Process E1 (eV) E2 (eV) E1 + E2 (eV) σ (Mb)

2s2 2p6 1S–2s2 2p5 2Po–2s2 2p4 3P TPDI 68.4a 49.1a 117.5a 3.7(2)b, 1.646
2s2 2p6 1S–2s2 2p5 2Po–2s2 2p4 1D TPDI 68.4a 45.9a 114.3a 3.7(2)b, 1.051
2s2 2p6 1S–2s2 2p5 2Po–2s2 2p4 1S TPDI 68.4a 42.2a 110.6a 3.7(2)b, 0.230
2s2 2p6 1S–2s1 2p6 2S–2s1 2p5 3Po TPDI 41.5a 50.6a 92.1a 0.248, 0.911
2s2 2p6 1S–2s1 2p6 2S–2s1 2p5 1Po TPDI 41.5a 40.1a 81.6a 0.248, 0.477
2s2 2p6 1S–2s2 2p5 2Po–2s1 2p5 3Po TPDI 68.4a 23.7a 92.1a 3.7(2)b, 0.623
2s2 2p6 1S–2s2 2p5 2Po–2s1 2p5 1Po TPDI 68.4a 13.2a 81.6a 3.7(2)b, 0.297
2s2 2p6 1S–2s1 2p6 2S–2p6 1S TPDI 41.5a 16.6a 58.1a 0.248, 0.220
2s2 2p6 1S–2s2 2p43s1 2S–2p6 1S TPDI 34.1a 24.0a 58.1a 0.046, 0.024
2s2 2p6 1S–2s2 2p4 3P SPDI 26.3a 0.078(7)c

2s2 2p6 1S–2s2 2p4 1D SPDI 23.2a 0.089(8)c

2s2 2p6 1S–2s2 2p4 1S SPDI 19.5a 0.025(3)c

2s2 2p6 1S–2s2 2p4 3P SPDI 1.2a 0.011(2)c

aNIST Atomic Spectra Database [64].
bExperimental data in Ref. [63].
cExperimental data in Ref. [60].
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area of the energy spectrum

Pc
sum =

∫∫
PcI (ε1)I (ε2)dε1dε2

∝
∫∫

τ 4e(ε′2
1 +ε′2

2 )/�2
dε′

1dε′
2 ∝ τ 2, (C6)

where � denotes the full width at half maximum with respect
to photon energy. Hence, the relation with pulse duration is
�τ ∼ h̄. Equation (C6) shows that even though Pc ∝ τ 4, the
energy peak region contracts with quadratic scaling, which
coincides with the TPDI scaling law.
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