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Interacting Langevin equation and a microscopic mechanism for kinks in trapped ions
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The transition between the linear phase and zigzag phase in an ion trap is widely used to study the mechanism
of the second-order continuous phase transition. For a linear ion chain, during the quenching across the critical
point, kinks are formed. The relation between the density of kinks and quenching rate can be described by the
Kibble-Zurek mechanism. In this work, we consider a one-dimensional trapped-ion chain with the motion on the
phase-transition plane. Using the interacting Langevin equation, we show that when one ion is kicked out from
the chain, the off-axis action caused by this ion will propagate to others one by one with a defined velocity. This
velocity will be the same as the sound velocity in some extreme cases but has obviously different meaning. In
the presence of finite temperature, which is modeled using a many-body stochastic Langevin equation to unveil a
microscopic mechanism for kink formations in this model, we find that the kink can be formed when the diffusion
radius is larger than the mean displacement of the ions along the radial direction. This criterion provides an
alternative mode for the formation of kinks in realistic experiments. The predictions based on this mechanism can
be qualitatively consistent with those from the Kibble-Zurek mechanism in homogeneous structures; however,
the microscopic details, such as kink formation and kink disappearance can be seen much clearer in our simplified
model.
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I. INTRODUCTION

Defects, such as kinks and vortices, can be formed
during quench dynamics, when their physical parameters
are quenched below the second-order critical points. The
formation of these defects can be generally described by the
Kibble-Zurek (KZ) mechanism, that is, the density of defects
is proportional to τ−α

Q , where τQ is the quenching rate, and α is
the corresponding exponent [1–5]. This scaling law is valid in
various systems from cosmology to condensed matter physics.
Recently, it has been carefully examined in a lot of physical
models, including Bose-Einstein condensates [6,7], trapped
ions [8,9], and liquid Helium [10,11]. Some authors have
even drawn a connection between the KZ mechanism and the
Landau-Zener transition in a transverse Ising model [12–15],
in which after some nonlocal transformation the many-body
system is reduced to a series of single-particle models labeled
by momentum. With the efforts of some researchers, the
mechanism that was originally used for the linear quenching
is generalized to the quenching regime with the nonlinear
power form, in which the defect density also exhibits similar
scaling laws [16–19]. In order to verify the universality of this
mechanism, the KZ mechanism was examined using a single
qubit with the aid of tomography, in which the magnetic
field serves as momentum degree of freedom and the wave
functions in each momentum are measured in experiments
to reconstruct the whole dynamics [20–22]. These researches

*pxchen@nudt.edu.cn

show that although the microscopic mechanisms of the
formation of these defects are totally different, there is still a
common theory that can be used to describe the variation of
these defects with the quenching rate.

Although the KZ mechanism within the Ginzberg-Landau
equation provides an important tool for us to understand
various physical phenomena [11,23,24], it is still hard for
us to derive some equations and relations used by the KZ
mechanism from a more fundamental theory. In the KZ
mechanism, the defect density is inversely proportional to the
correlation length ξ at freeze-out time t̂ [25,26]. This relation
yields scaling that agrees with the experimental observations
[4,11,20], but it is not enough for us basing on a more
fundamental theory to answer these questions that why the
freeze-out time is determined by the equation τ (t̂ ) = t̂ under
the linear quenching [4,22,25,27] and how to get the freeze-
out time under the nonlinear quenching in theory. This leads
to a problem that the KZ mechanism can only provide in
most cases the trend of defects varying with quenching rate,
but cannot provide the exact value of the density of defects.
Another problem is that KZ mechanism cannot explain the
anomalous exponents in quantum systems with edge states
[5,28–31]. Moreover, the KZ mechanism cannot support the
experimental results of the defects density in the nonlinear
quenching process with the nonpower function driving rate.
In this work, we focus on the defect formulations in trapped
ions carried out in several experiments [8,9], and try to find
out an interpretation for the KZ mechanism from the view
of a microscopic mechanism. To account for this mecha-
nism, we consider a one-dimensional trapped ion chain with

2469-9926/2019/99(5)/053409(9) 053409-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.053409&domain=pdf&date_stamp=2019-05-09
https://doi.org/10.1103/PhysRevA.99.053409


WEI WEN et al. PHYSICAL REVIEW A 99, 053409 (2019)

long-range Coulomb interaction [32–37]. The temperature
effect is modeled using a many-body stochastic Langevin
equation. We show that at extremely low temperature, the
off-axis action of the kicked ion propagates across the whole
chain with velocity slightly different from the sound velocity
that defined in previous work. This mechanism gives rise to
zigzag phase [38–40]. At relatively higher temperature, the
atoms move stochastically along the radial direction. When its
diffusion radius is larger than the mean displacement, kinks
are formed. We have also verified this picture by solving
the many-body stochastic equation. This picture provides
an alternative mechanism for the formation of kinks in this
system and will be helpful for us to investigate other systems.

This article is organized in such a way that we will first
introduce a special model, the ion-kicking model, which is
a transition status of an ion system from the linear phase
to the zigzag phase. It can also be argued that the zigzag
structure is excited by this status. In this section, we will show
the ions’ motion in the ion-kicking model. According to the
movement of ions, we will derive the propagation velocity,
with which the off-axis action of some ions will propagate to
the entire ion chain. In the next section, we will introduce the
correlation function of the ion system that has been crossed
at the second-order critical point. This correlation function
shows us the relaxation time and correlation length, which are
different from those of the previous literature. Next we will
talk about the calculation of the diffusion radius in Brownian
motion. Finally, we will exhibit our important conclusion that
the kinks formation of ions is due to a competition between
the ordered propagation motion with finite propagation veloc-
ity and the disordered Brownian motion. We will present a
criterion that has been tested by many simulations in our work
for the formulation of kinks. It is shown that the assumption
about the freeze-out time is unnecessary and a more general
formula that is used to determine the defect density will be
given in the last part of this article. This work will provide us
with another way to further understand the KZ mechanism.

II. THE ION-KICKING MODEL AND ITS SOLUTION

A. Langevin equation and the ion-kicking model

We consider the physical model depicted in Fig. 1 for
a one-dimensional trapped ion chain. The distance between
neighboring ions of this homogeneous ion chain is typically
of the order of a ∼ 1−10 μm [9,36,41,42]. At finite temper-
ature, as used in experiments with T ∼ 10−3−10 K, the ions
have random subtle thermal motions, which can be modeled
as the Brownian motion in the ion trap. In experiments,
the secular motion frequency ωt along the plane of zigzag
configuration is set to be a less than that in its vertical direction
on the transverse plane. The difference between them is about
10%–30% of ωt depending on the demands of experiments.
That is enough to make the zigzag phase formed on a plane
along the r direction as shown in Fig. 1. Thus, by neglecting
the contribution from other unimportant directions, we have
the following model:

H =
∑

i

p2
i

2m
+ 1

2
mω2

t r2
i −

∑
j �=i

Q

|(i − j)aêz + ri j êr | , (1)

FIG. 1. (a) One-dimensional trapped ions considered in this
work. When one of the atoms at l = 0 is kicked out from the chain, its
influence will spread across the whole system, giving rise to zigzag
phase. (b) With variance much smaller than the mean displacement
and (c) with variance larger than the displacement showing the basic
picture for kink formation at relatively high temperature regime.

where ri = ri(t ) is the position in the one-dimensional chain
at time t , ri j = ri − r j , ωt = ω(t ), and Q = e2/(4πε0). The
three terms on the right are kinetic energy, trapping potential,
and Coulomb repulsive potential along the transverse direc-
tion respectively. This model is related to the experiments
about trapped ions in the sense that (1) the axial direction
and the radial direction with the minimum trapping frequency
determine the phase transition plane; and (2) the trapping
frequency of one of the directions ωt is set to be a little less
than critical frequency ωt,c, wherefore the displacement of
ion radial motions is much less than the distance between
neighboring ions, so that the motion along the axial direction
has no effect on kink formation. For these reasons, we only
restrict to the dynamics along the phase transition plane.

A simple picture of the dynamics is presented in Fig. 1.
In the short-time case, the atoms will oscillate periodically
around their equilibrium positions. When one atom is kicked
out from the one-dimensional chain, it will lead to a repulsive
interaction to the two neighboring sites. After the neighboring
sites are off axis, the new off-axis repulsive interactions
are produced and act on their next neighboring sites. The
influence of the kicked ion spreads throughout the ion chain
through this off-axis action. Next, we will aim to mathemati-
cally depict this kind of dynamics with the ion-kicking model.
In the regime |ri j | � a [see simulated data in Figs. 3(b), 4(a),
and 4(b)], then using perturbation theory to the leading term
by ignoring the constant term, one has

H =
∑

i

p2
i

2m
+ 1

2
mω2

t r2
i − Q

2a3

∑
j �=i

r2
i j

(i − j)2
. (2)

Next, we consider the dynamics of the above model at finite
temperature, in which the contribution of temperature is intro-
duced into the dynamics using a stochastic force εi(t ), as used
in the Langevin equation for Brownian motion [43,44],

〈εi(t )ε j (t )〉 = 2kbT mηδi, jδ(t1 − t2), (3)

where η is the damping coefficient caused by the environment.
δi, j and δ(t1 − t2) here are the Kronecker delta and Dirac delta
function, respectively. The stochastic force can be produced
by the trapped potential noise or cooling laser fluctuation. In
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this way, the Newtonian motion can be written as

mr̈i = −mηṙi + mω2
a

∑
j �=i

r j − ri

|i − j|3 − mω2
t ri + εi, (4)

where ωa is the character frequency of homogeneous linear
ion chain with the expression ω2

a = Q/a3 [45]. Due to the
presence of translational symmetry, one can solve the above
equation in momentum space using

R(q, t ) =
N∑

l=1

rl (t )eiql , (5)

where qN = 2nπ + νπ , with ν determined by r(l, t ) =
(−1)νr(l + N, t ). N here is the total number of trapped ions.
The ignoring of the motion in the other direction can be
seen clearly now, that is, to the leading approximation, their
dynamics are generally decoupled. We can compute the dy-
namics in momentum space by showing that

mR̈(q, t ) = −mηṘ(q, t ) + mG(q)R(q, t ) + εq(t ), (6)

where G(q) = ω2
a[g(eiq ) − 7

2ζ3], ζ3 � 1.202 is the Euler-
Riemann zeta function, and the function g is defined as

g(q) = 2ζ3 −
∞∑

n=1

qn + q−n

n3
+ δ2

ω2
a

. (7)

δ here is the detuning between critical frequency and trapped
frequency, defined as δ2 = ω2

t,c − ω2
t . In this article, we focus

on the ions’ motion when ωt is a little less than ωt,c, thus
δ2 is a positive. Critical ωt,c here is the critical frequency of
the zigzag phase transition and ωt,c = (7ζ3/2)1/2ωa � 2.05ωa

[27,45]. The solution to the above inhomogeneous equation
can be written as

R(q, t ) = R0(eiq, t ) + R1(eiq, t ), (8)

where R0 accounts for the homogeneous solution and R1 for
the inhomogeneous solution by including the contribution
of the noise term. The homogeneous solution can be easily
calculated according to the homogeneous part of the second-
order ordinary differential equation in Eq. (6),

R0(q, t ) = e−(1/2)ηt [c1 sinh(1,qt ) + c2 cosh(1,qt )], (9)

where λ,q = [η2/4 + λG(q)]1/2. In the ion-kicking model,
one site of a linear ion chain has obviously much more axial
displacement than the others. The obvious axial displacement
of this site might be caused by the kicking effect of stochastic
force and therefore it is called an ion-kicking model. Without
losing generality, in this article, the kicked site is assumed
to be the central ion with axial displacement c0 when t = 0.
Based on this, we have the constant c1 = c0η/(21,q ), and
c2 = c0 from our solution in Eq. (9).

B. The inhomogeneous solution to Langevin equation

We see that the contribution of Eq. (6) is made up of
two terms: a regular term, which can be well described by
the Newtonian equation, and a stochastic term due to ran-
dom force εq(t ). The second term can only be understood
from the statistic sense. These two terms can also be found
in the single-particle Langevin equation, in which the first

FIG. 2. g(eiq ) is the quantity that is used to measure the Coulomb
repulsive force between ions of the homogeneous ion chain. The
left graph denotes the value of g(eiq ) varying with q when δ = 0.
q = π is the critical point of the phase transition between linear chain
and zigzag; q = 1.45 and q = 4.83, corresponding to g(eiq ) = 2ζ3,
are all the critical points of phase between the linear chain and
the ion-kicking model. The zigzag mode and ion-kicking mode are
shown on the right side. The ion-kicking mode with a lesser value
of g(eiq ), namely, with less Coulomb repulsive force, can excite the
zigzag mode. According to the left graph, g(eiq ) is always greater
than zero when δ2 � 0.

term contributes to the mean position and the second term,
after ensemble averaging, gives rise to the diffusion radius.
The formation of kinks depends strongly on the competition
between these two terms.

The inhomogeneous solution to Eq. (6) can be obtained
from a Green’s function,

mG̈(t, t0) = −mηĠ(t, t0) + mG(q)G(t, t0) + δ(t − t0). (10)

G(t, t0) is called the Green’s function of Eq. (6) and its
Fourier transform Gω = (2π )−1

∫ ∞
−∞ G(t, t0)e−iω(t−t0 )dt can

be obtained as

Gω = 1

(iω − ω+)(iω − ω−)
, (11)

where ω±(eiq ) = −η/2 ± 1,q. Via the reverse Fourier trans-
formation, we get the inhomogeneous solution R1(q) with
integral formula

R1(q, t ) =
∫ ∞

−∞
ε(q, t0)G(t, t0)dt

= 1

2π

∫ ∞

−∞
ε(q, t0)dt0

∫ ∞

−∞
Gωeiω(t−t0 )dω

= i
∫ t

−∞
Res(Gωeiω(t−t0 ),−iω−)ε(q, t0)dt0

− i
∫ ∞

t
Res(Gωeiω(t−t0 ),−iω+)ε(q, t0)dt0. (12)

Res denotes the residue here. These two residues above come
from the contour integrals on the complex plane. We should
notice ω+ > 0 and ω− < 0 when g(eiq ) is positive (seen in
Fig. 2). For this reason, the contour integral should adopt the
upper half-plane of the complex plane when t0 < t and the
lower half-plane when t0 > t to make eiω(t−t0 ) convergent at
the boundary of infinity. Subsequently, the final expression of
R1 is derived as the following with the Eq. (11) and Eq. (12),

R1(q, t ) =
∫ t

0
e−(1/2)ηt sinc(−i1,qs)εq(t − s)ds. (13)
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FIG. 3. (a) Properties of the function Dnl . (b) Formation of
perfect zigzag phase without disorder after one trapped ion is kicked
off from the chain. vp denotes the propagation velocity that agrees
well with the rate of sequentially varying ion motion (the white
dashed line). a here is the neighboring distance, 8.92 μm, and t0 =
0.25π μs.

This formula satisfies the causality relation, in which the
influence from t → −∞ to t → 0 exactly equals zero.

C. The position of the trapped ions in ion-kicking model

The position of the trapped ions can be obtained via the
inversion Fourier transformation for R(q, t ) shown in Eq. (5).
We first consider the mean value of rl (t ), which is determined
by the first term R0 under the consideration N → ∞,

〈rl (t )〉 = 1

2π

∫ 2π

0
R0(q, t )e−iql dq. (14)

One may treat the above integral over a closed circuit by
defining z = eiq, thus q = −i ln z. In this way, the above
integral can be written as

〈rl (t )〉 =
∮

c

R0(−i ln z, t )

2π izl+1
dz = Res

(
R̃0(z, t )

zl+1
, 0

)
. (15)

The contour of the above contour integral is the unit circle
|z| = 1. Although there are two singular points in this unit cir-
cle, only the residue at points z = 0 should be noted because
the other singular z = exp{iπ − δ/[ln(2)ωa]} has no contribu-
tion to this contour integral. In our model, the cosine functions
can be expanded with the series of spherical Bessel functions
using the identities cos(

√
b2 − 2bx)/b = ∑∞

n=0 xn/n! jn−1(b),
where jn is spherical Bessel functions [46], and b = ωc,ηt
and x = gω2

at/(ωc,η ) by setting ωc,η = (ω2
t,c − η2/4)1/2. This

expansion has very good properties for fast convergence,
which enables us to model the dynamics even in the long time
evolution. With the aid of this expansion, we find

〈rl (t )〉 = c0

∞∑
n=0

e−η/2[2dn(t ) + ηd ′
n(t )]Dn,l , (16)

where Dn,l = Res( gn

zl+1 , 0) and

dn(t ) = ω2n
a

2ωn−1
c,η

∫ t

0
sn+1 jn−1(s)ds. (17)

The numerical result of Dnl is presented in Fig. 3. Although
this expansion is complex, 〈rl (t )〉 still has a simple expression

when t � ω−1
t,c or t � ω−1

t,c . We find that when n > |l|/1.62,

Dnl � (−1)l es(l )

(
7ζ3,l

2

)n

, (18)

where ζ3,l � ζ3 + δ2/(7ω2
a ) and s(l ) � −1.2|δ|l/ωa when

l � 1. The term (−1)l will directly influence the properties
of the position from term 〈rl (t )〉,

〈rl (t )〉 = (−1)l c0χηe(t/τ )+s(l ) = (−1)lAηe(vpt−laτ )/ξ , (19)

where χη = δ2τ/2,π ∈ (1.0, 2.0) and Aη = c0χη. We there-
fore see that the sign of Dnl can influence the motion direction
of the atoms, after one of them is kicked off from the chain.
Without stochastic forces in the ion trap, the ion chain will
form a perfect zigzag structure through the ion-kinking model.
The τ and ξ in Eq. (19) with a new quantity vp are defined as

τ−1 = −η

2
+

√
η2

4
+ 2δ2, ξ = ωaa

1.2|δ| , vp = ξ

τ
. (20)

It is important to note that the τ here differs from that de-
scribed in Refs. [39,47]. In these references, τ ∝ δ2 under the
overdamping and τ ∝ δ under the underdamping (δ here is the
squared value of that in these two references). The τ here can
be seen as a unified form of expression in these two extreme
cases. The vp has the definite physical meaning if we notice
Eq. (19) can be written as |〈rl (t )〉| = |〈r0(t − zl/vp)〉|, that is,
the influence of the action “ion be kinked off” spreads to the
lth site in the time zl/vp, where vp we called is propagation
velocity.

The evidence of the speed of propagation can be found
in Figs. 3 and 4. These two figures evidence that under the
action of the kicked ion, which is the central ion here, other
ions move away from the axis equilibrium position one by
one. This can be seen as the action of kicked ions gradually
propagating to all parts of the ion chain like wave propagation,
no matter whether or not the damping force exists in the ion
trap. From simulation experiments, the off-axis velocity of the
ions is in good agreement with the propagation velocity we
define. The propagation velocity depends on the degree of the
system deviating from the critical point and the arrangement
structure of the ion chain. It can be used to measure the
response speed of the ion chain to the kicked ion.

It is worth noting that in previous literature, Adolfo del
Campo et al. defined similar velocities: the front velocity
vF and sound velocity (or characteristic velocity) vx [47,48].
However, these velocities are all different from the propa-
gation velocity we get in this article. If the difference in
the expressions of relaxation time and correlation length in
these works is not taken into account, the sound velocity vx

can be treated as a special case of propagation velocity at
the freeze-out time t̂ . As for the front velocity vF , which is
defined as the ratio between the characteristic length of the
control parameter and the characteristic timescale at which it
changes [47], it is even more different from the propagation
velocity vp.

One might think that 〈rl (t )〉 shown in Eq. (19) is an approx-
imate expression. However, it is one of the exact solutions to
Eq. (4). In fact, when we plug the expression of 〈rl (t )〉 into
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FIG. 4. Formation of kinks. t0 here is 0.25π μs, and a =
8.92 μm. (a) Zigzag phase with weak dispersion and detuning. Se-
quentially varying ion motion presents a steady propagation velocity
that agrees well with the vp defined in Eq. (20). (b) Formation of
kinks at high temperature (T = 0.2 K). The positive and negative
signs correspond to the position of kinks. The obvious movement of
one kink is observed in our work. (c) A snapshot of the configuration
of the trapped ions at three typical times (t/t0 = 16, 26, 36), which
indicates the evolution and motion of kinks. (d) The variance σ and
mean displacement 〈r〉 as a function of temperature T ∈ (0, 0.2) K.
These two quantities keep a good linear relation when T > 0.4 K.

Eq. (4), the second term on the right of it will become

mω2
a

∑
m �=l

〈rm〉 − 〈rl〉
|m − l|3

= mω2
aAηet/τ

∑
m �=l

(−1)l e−l (1.2δ/ωa ) − (−1)me−m(1.2δ/ωa )

|l − m|3

= mω2
a〈rl〉[2ζ3 − P3(−e1.2δ/ωa ) − P3(−e−1.2δ/ωa )]

= mω2
a〈rl〉

[
7

2
ζ3 + ln(2)1.22 δ2

ω2
a

+ O

(
δ4

ω4
a

)]

≈ mω2
a〈rl〉

(
7

2
ζ3 + δ2

ω2
a

)
. (21)

Hence, Eq. (4) can be simplified into

m〈r̈l〉 = −mη〈ṙl〉 + mω2
a〈rl〉

(
7

2
ζ3 + δ2

ω2
a

)
− mω2

t 〈rl〉

= −mη〈ṙl〉 + 7

2
mω2

a〈rl〉 − mω2
t 〈rl〉 + mδ2〈rl〉

= −mη〈ṙl〉 + 2mδ2〈rl〉. (22)

We used δ2 = ω2
t,c − ω2

t here. A solution to this unary
second-order ordinary differential equation is 〈rl (t )〉 =

(−1)lAηe(vpt−laτ )/ξ . Therefore, Eq. (19) is a rational solution
to the ion-kicking model.

〈rl (t )〉 is the average value of an ion’s radial displacement.
This displacement is caused by the kicked ion, acting as
the crystal nucleus. Under the effect of the kicked ion, the
structure of zigzag will be formed gradually.

D. The propagation length under quenching

What we discuss above is the variation of the average
off-axis position of the ion over time under the condition
when the trapping frequency is constant. Next, we will discuss
the variation of the average radial displacement of ions over
time under general quenching conditions (including linear
quenching and nonlinear quenching).

For general quenching conditions, we find the general
formula of 〈rl (t )〉 can be expressed as the following if tδ(t )′ ∼
�δ � η:

〈rl (t )〉 = (−1)lAηeβ(t )eγ (t ) exp

(
1

ξ
[xl − xp(t )]

)
, (23)

where

β(t ) =
∫ t

0

ξ (s)′

ξ (s)2
ds

∫ s

0
v(σ )dσ ; (24)

γ (t ) =
∫ t

0

ds

τ (s)
− t

τ
; (25)

xp(t ) =
∫ t

0
vp(s)ds. (26)

The functions β(t ) and γ (t ) are called the correlation-length-
deformation exponent and the relaxation-time exponent, re-
spectively. They are caused by the changing of ξ and τ under
quenching and lead to the change in the amplitude of motion.
xp is called the propagation length, which represents the
distance that the off-axis action of the kicked ion propagates
in the interval time t .

III. THE CORRELATION FUNCTION AND CORRELATION
LENGTH, RELAXATION TIME

To understand how the kicked ion affects the far-distance
ion, let us define the correlation,

Fc(l, t ) = 〈r0(0)rl (t )〉T − 〈r0(0)〉T 〈rl (t )〉T

〈r0(t )2〉T
. (27)

The subscript is used for thermal average. This correla-
tion function has an obvious physical meaning. The term
〈r0(0)rl (t )〉T − 〈r0(0)〉T 〈rl (t )〉T describes the dependence of
the lth ion motion at t on the “initial kicking.” 〈r0(t )2〉T here
is used to eliminate the divergence of motion.

Using the property of Eq. (19), and 〈r0(0)〉T 〈rl (t )〉T = 0,
we can find

〈r0(0)rl (t )〉T = 〈Aη(−1)lAηet/τ ezl /ξ 〉T ;

= (−1)l et/τ ezl /ξ
〈
A2

η

〉
T ; (28)
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〈r0(0)〉T 〈rl (t )〉T = 〈Aη〉T 〈(−1)lAηet/τ ezl /ξ 〉T

= 0; (29)

〈r0(t )r0(t )〉T = e2t/τ e2zl /ξ
〈
A2

η

〉
T . (30)

Based on these three equations, we obtain the final expression
of the correlation function:

Fc(l, t ) = (−1)l e−(zl /ξ )−(t/τ ). (31)

Therefore, ξ and τ here have the definite physical meaning,
that is, they are correlation length and relaxation time respec-
tively. This result also naturally yields the density of kinks,
Nk ∝ 1/ξ ∝ |δ|−1, as used in Refs. [4,5,49]. The above result
is consistent with the solution in Refs. [47,48] from several
different aspects. This correlation gives rise to the zigzag
structure spontaneously in experiments with weak transverse
confinement or strong longitudinal trap.

〈Aη〉T does not appear in the final expression of Fc(l, t )
because 〈Aη〉T is roughly reduced in Eq. (27), however, its
concrete value is still very important for us in estimating the
density of kinks in the following. So, we will spend some time
to figure out how to get its value.

For an ion in plane motion, its average kinetic energy in
thermodynamic motion is kbT , where kb is the Boltzmann
constant. One kicked ion will reach the maximum radial
displacement c0 under the action of the random force when
its kinetic energy of the kicked ion is totally converted into
the confinement potential energy Ue and the work We that
is used to overcome the damping forces. Hence, the thermal
averages of initial radial displacement are the same as for
c0. The confinement potential energy Ue is determined by
the Coulomb repulsive forces among the ions and the secular
motion frequency ωt :

Ue ≈ − Q2

8πε0a3

∑
n

〈[r0(t ) − rn(t )]2〉T

n3

+ 3Q2

64πε0a5

∑
n

〈[r0(t ) − rn(t )]4〉T

n5
+ 1

2
ω2

t

〈
r2

0

〉
T
.

(32)

Moreover, the thermal disturbances of different ions are in-
dependent of each other. Therefore, we have the following
relations:

〈rl〉T = 0; 〈rl (0)rm(0)〉T = 〈
c2

0

〉
T δl,m. (33)

Based on Eq. (33), Ue leads to

Ue = −2ζ3mω2
a

〈
c2

0

〉
T + 3m

a2
ω2

aζ5
〈
c2

0

〉2
T + 7

4
mω2

a

〈
c2

0

〉
T

= −1

4
mω2

a

〈
c2

0

〉
T + 3mω2

aζ5
〈
c2

0

〉2
T a−2. (34)

We made the approximations 〈r3
l 〉T = 〈rl〉T 〈r2

l 〉T and 〈r4
l 〉T =

〈r2
l 〉2

T here to get the above equation. In addition, we adopt the
relation ωt ≈ ωt,c = √

7/2ωa because in this article, only the
process of phase transition near the critical point is considered
here.

When the maximum radial displacement is reached, the
kinetic energy of the ion is zero. A part of the kinetic energy

is converted into the work We to overcome the damping
force. We can also regard this process in such a way that
the impulse of the damping force consumes a portion of the
momentum of the ion, thereby reducing the kinetic energy
of the ion. Therefore, in this case, the reduced kinetic energy
should correspond to the momentum that is consumed by the
damping force, namely,

We = �Ek ≈ 〈�p2〉T

2m
= (〈mηc0)2〉T

2m
. (35)

Finally, according to the relation kbT = Ue + We, we can
solve c2

0 as

〈
c2

0

〉
T = −λ2

0 +
√

λ4
0

(
T

T0
+ 1

)
, (36)

where

λ0 = a

√
2η2 − ζ3ω2

a

24ζ5ω2
a

, T0 = 3mλ4
0ω

2
aζ5

kBa2
. (37)

Therefore, using the relations Aη = c0χη and χη = δ2τ/2,π ,
we get

〈
A2

η

〉
T = δ4τ 2

2
2,π

[
−λ2

0 +
√

λ4
0

(
T

T0
+ 1

)]
. (38)

IV. THE VARIANCE AND THE DIFFUSION RADIUS

From the above analysis we have known the motion of ions
in the ion-kicking model. Without the participation of stochas-
tic forces εi(t ), the ions in the linear ion chain will exponen-
tially accelerate away from the axis of the equilibrium position
one by one with time, forming an ordered zigzag structure.
The above expression of correlation function shows that the
ion system still has a descriptive correlation length and relax-
ation time although it has crossed the critical point of phase
transition. The stochastic forces make the role of correlation
length in controlling the length of crystal domain appear. This
effect will make the ion chains form crystallization regions
with the different ion motion orientations, and therefore lead
to the formation of kinks on the crystal interfaces.

From our research, although the correlation length is an
important physical variable to determine the length of the
crystallization region, the two lengths are not exactly equal
even from a statistical point of view. To understand the origin
of kinks, one needs to calculate the mean value 〈rl (t )2〉T ,
denoted as r2

T , under temperature as well as the corresponding
variance 〈σ 2

l (t )〉T = 〈〈rl (t )2〉 − 〈rl (t )〉2〉T , denoted as σ 2
T . σT

here is the thermal average value of the diffusion radius of ions
under Brownian movement. To some extent, it also represents
the degree of disorder in the movement of ions. The larger the
value is, the greater the influence of random force on the ion
motion will be, and subsequently, it is more likely for the ion
to break the ordered phase transition.

The variance σl (t ) is defined as the deviation between the
true value and the average value of the position of the ion in
motion. σl (t ) also represents the diffusion radius of the lth ion
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under Brownian motion:

σ 2
l = 〈[rl (t ) − 〈rl (t )〉]2〉

=
〈(∫ 2π

0
R1(q, t )e−iql dq

)2
〉

= kBT η

m

∫ t

0
Res

(
cosh(21,q(z)s) − 1

eηszl+12
1,q(z)

, 0

)
ds. (39)

Here, we used the relation

〈εq1 (t1)εq2 (t2)〉 = 4πkbT mηδ(q1 − q2)δ(t1 − t2). (40)

For a thermodynamic process, in an ion chain with homoge-
neous structure, the kicking site mentioned above may occur
at any site rather than just at the central ion site. Therefore the
thermal average of σ satisfies

σ 2
T = 1

N

N/2∑
m=−N/2

〈
σ 2

l−m

〉
T . (41)

Similarly, the thermal average of rl (t ) is

r2
T = 1

N

N/2∑
m=−N/2

〈rl−m(t )2〉T . (42)

The σT and r2
T of different ions are proved to be the same

and therefore we omit the subscript l in these two terms. In
the following, for simplification, we will make no distinction
below, using them to represent both the thermal average of the
ion chain and the thermal average of an individual ion.

V. THE CRITERION OF THE FORMATION OF KINKS

In this section, we aim to provide the following criterion
for the formation of kinks. As mentioned above, the diffusion
radius σT and ion average motion radius rT are important
factors to understand the formation of kinks. The former is
a measure of disordered motion caused by random forces,
while the latter is that of ordered motion under the influence
of one crystal nucleus which is caused by some kicked ion.
If the ordered motion of one ion dominates, this ion will
participate in the formation of the ordered zigzag structure
under the influence of the crystal nucleus. On the contrary, if
the disordered motion of it dominates, it will leave the ordered
motion sequence, choosing its own direction of motion, and
thus forming a new crystal nucleus.

Based on a large number of experimental and simulated
data about the occurrence of kinks in ionic chains, we suggest
that the boundary between the region dominated by disordered
motion and that by ordered motion be determined by this
relation:

σT ∼ rT . (43)

This relation is the criterion of the formation of kinks. It
determines a transition time τc between the ordered motion of
ions and the disordered motion. The transition time τc in fact is
the freeze-off time t̂ defined in the KZ mechanism because in
an ion trap, the ordered motion caused by the crystal nucleus
can be regarded as an adiabatic evolution process, and the
disordered motion caused by the random force can be seen

as an impulse evolution process. The physical picture for
this criteria is rather clear. The kinks are formed because
the random fluctuation is comparable with the mean value,
causing two neighboring sites to move in the same direction
simultaneously; in the case when σT � rT , the zigzag struc-
ture may be deformed, but will never be altered. One may try
to understand this picture from Fig. 1, in which when σT � rT ,
it will have small chance that the two neighboring sites have
the same motion.

Using the solution to Brownian motion, Eq. (39), and the
expression of σT in Eq. (41), we can find the thermal average
of the diffusion radius σT to be

σ 2
T = 1

N

∞∑
m=−∞

σ 2
l−m = 2kBT ηt3

3mN
+ O(t4), (44)

and the average motion radius rT is

r2
T = 1

N

∞∑
l=−∞

〈
A2

η

〉
T

ω4
a

l6δ2
t2 sin(δt )2 + O(t6)

= 2
δ4τ 2

N2
2,π

ω4
a

δ2
t2 sin(δt )2ζ6 + O(t6). (45)

This result is obtained by using Eqs. (16) and (17). Only the
first few terms after the spherical Bessel function expanding
for the numerator are left for making approximation when t is
small.

From the analysis above, we think that ions are generally
involved in both disordered and ordered motion. However,
when the diffusion radius σT is larger than average motion
radius rT , ions will enter the disordered motion-dominated
region irresistibly. This moment can be used to determine
the boundary between the stable time and unstable time. The
transition time τc is this boundary time.

According to the expression of r2
T , because

1 � δ2τ

2,π

� 2; 2,π =
√

η2

4
+ 2δ2 � η

2
. (46)

Therefore, r2
T � 8τ

η
〈c2

0〉T ω4
at2ζ6. If we want σ 2

T > r2
T to be

always tenable, then

2kBT ηt3

3m
� 8τ

η

〈
c2

0

〉
T ω4

at2ζ6. (47)

The transition time τc is determined by the equal sign, namely,

2kBT ητ 3
c

3m
= 8τ

η

〈
c2

0

〉
T ω4

aτ
2
c ζ6. (48)

The required time τc to reach this point is roughly

τc = 12ζ6mω4
a

〈
c2

0

〉
kBT η2

τ. (49)

Using the expression of 〈c2
0〉 = −λ2

0 +
√

λ4
0(T/T0 + 1), we

find that in the low-temperature limit, 〈c2
0〉T � λ2

0T/(2T0), and
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in the high-temperature limit, 〈c2
0〉T � λ2

0

√
T/T0. λ0 and T0

are shown in Eq. (37). With a rough estimation, λ0 ∼ 0.5a
and T0 ∼ 0.5 K when η ∼ ωt,c = 4.6 MHz and a = 8.9 μm.

The transition time τc is the criterion that is used to distin-
guish the stable area and unstable area. An ion in the stable
area will become a part of zigzag that is led by one kicked
ion when the off-axis action caused by this kicked ion arrives.
Hence, statistically speaking, the ions in the region that the
off-axis action can propagate to in the interval time τc will all
become the parts of the zigzag structure led by this kicked ion,
and other ions out of this region will produce new kicked ions
and might lead to a new structure with opposite orientation.
The boundaries among the zigzag structures with different
orientations form defects. The number of defects therefore can
be determined by the reciprocal of the propagation length ξc

in the interval time τc,

Nd = L

ξc
= L

(∫ τc

0
vpdt

)−1

. (50)

L is the length of the ion chain. In this way, the density of
kinks ρd can be defined as the linear density of the number of
kinks

ρd = Nd

L
= 1

ξc
=

(∫ τc

0
vpdt

)−1

. (51)

This equation holds not only under linear quenching but
also under nonlinear quenching in the homogeneous ion
chain. For the linear quenching or the nonlinear quenching
with power exponent driving rate,

vp = ξ

τ
=

⎧⎨
⎩

ωaaδ
0.6η

∝ tα if η � δ
√

2ωaa
1.2 ∝ t0 if η � δ

⇒ ρd ∝ ξ (τc)−1. (52)

It is the definition that was used in the KZ mechanism
[2,11,23,47,48], in which the defect density is defined as the
quantity that is inversely proportional to the healing length
ξ (t̂ ). This also explains why a system can exhibit the scaling
law described by the KZ mechanism under the nonlinear
quenching with power exponent driving rate, but not under
other nonlinear quenching conditions.

For the inhomogeneous structure, the definition of ρd

should be revised as

ρd = 1

ξ̄
, (53)

where

ξ̄ = 1

Nd

Nd∑
i=1

ξci = 1

Nd

Nd∑
i=1

∫ τci

0
vpi (x(t ), t )dt . (54)

vpi denotes the velocity of the ith domain. In the inhomoge-
neous structure, the velocity is no longer constant with the
change of ion site, and moreover, the critical frequency of
the different region is also no longer the same. These make
it difficult for us to determine the transition time τci and
propagation region ξci . We may need to use partial differential
equations to compute these two values.

At last, to ensure the validity of the criteria in Eq. (43),
we numerically determine the ratio between σl and 〈rl〉 for
the formation of kinks as shown in Fig 4(d). Each point in
this figure is obtained through 15 000 phase transition cycles,
and the final values σl , 〈rl〉 are the average of these cycles in
which the kink appears on the lth site [the l in Fig. 4(d) is 6].
Using linear quench, we find that the ratio between them is
1.38, nearing

√
2, which is consistent with the criteria shown

in Eq. (43).

VI. CONCLUSION

To conclude, in this work, we present a microscopic model
to understand the density of defects in the trapped ions af-
ter quenching. We find that without stochastic force, after
one atom is kicked out from the one-dimensional chain, its
influence will propagate away from this atom, affecting the
other ions one by one, gradually forming a perfect zigzag
chain. This kicked-off ion, which is formed by the competition
between these ions with thermal motion, acts as a “nucleation”
that triggers the structure phase. Stochastic force plays an
important role that forms the nucleation but at the same time
is also a chief culprit that brings the defects in. The motion
of one ion will become unpredictable if its diffusion radius
〈σl〉T is far more than its absolute transverse displacement
|〈rl (t )〉T |, causing the disorder kink stochastically. The tran-
sition time τc deduced by the relation between 〈σl〉T and 〈rl〉T

is an important quantity to understand the dynamics of the
quenching ion chain. After crossing the critical point, ions can
keep stable around the axis line in the time interval τc and
then are far away from the axis line with exponential growing
velocity.

In this article, we get the correlation length and relaxation
time using a correlation function from our model and show
an important criteria to determine the transition time. This
criteria is tested to be effective through simulations in this
work. The propagation velocity which is different from sound
velocity is found in this work. Based on these, we find the
method to calculate the density of defects in ion trap. This
definition agrees well with the formula that is used in Kibble-
Zurek mechanism for homogeneous structures, but is more
selective when facing different kinds of structures. This work
provides a mechanism for the formation of defects under the
zigzag transformation in trapped ions, and explains qualita-
tively the role of stochastic force, friction, and temperatures
on the formation of kinks. It is worth noting that, although the
system we discussed in this article is the trapped-ion chain,
the main results from our work can be expected to be extended
to other condensed matter systems because they are based on
the interaction Langevin equation. This work will provide an
inspiration and direction for us to generalize the Kibble-Zurek
mechanism.
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