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Strong-field tunneling ionization in the relativistic regime

Xiaoyang Yu1 and Yunquan Liu1,2,3,4,*

1State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter,
School of Physics, Peking University, Beijing 100871, China

2Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

4Beijing Academy of Quantum Information Sciences, Haidian, Beijing 100193, China

(Received 30 October 2018; revised manuscript received 20 December 2018; published 6 May 2019)

We study the photoelectron energy and momentum distributions of strong-field tunneling ionization in the
relativistic regime. Using the relativistic strong-field approximation, we have derived the position of the tunnel
exit, the initial momentum distributions at the tunnel exit, and the instantaneous ionization rate when the electron
tunnels through the Coulomb barrier in the relativistic regime. Since the tunneling electron energy is of the order
of 1% of the rest of its mass, those nonadiabatic tunneling coordinates are quite different from the nonrelativistic
case. We further incorporate the nonadiabatic relativistic tunneling coordinates into the classical trajectory Monte
Carlo model and have calculated photoelectron energy and momentum distributions by accurately considering
the field distribution in the focus of relativistic femtosecond laser pulses. We show that the nonadiabatic tunneling
effect and the focal field distribution are very crucial to modeling strong-field ionization in the relativistic regime
because the quiver radius of electrons can be as large as the beam waist.
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I. INTRODUCTION

With the invention of chirp pulse amplification (CPA) [1],
the peak intensity of a femtosecond laser can now be higher
than 1022 W/cm2 [2]. With that, strong-field ionization of
highly charged ions in the relativistic regime becomes of great
interest [3–7]. The strong-field approximation (SFA) [8] has
been developed for strong-field ionization in the relativistic
regime [9,10]. The standard SFA neglects the influence of the
Coulomb field by using the Volkov wave function to describe
the electron dynamics in the continuum [11]. However, this
approximation is not valid for strong-field ionization of highly
charged ions in ultraintense laser fields. The total ioniza-
tion rate has been obtained by using the Wentzel-Kramers-
Brillouin (WKB) approximation [12–14]. The eikonal-Volkov
wave function has been proposed to take the place of the
Volkov wave function to correct SFA [15–18]. The nondipole
effect for strong-field ionization has also become of great
interest [19,20]. Recently, the Coulomb-corrected SFA in the
relativistic regime based on the Dirac equation was proposed
[21], in which the nonrelativistic effect has been consid-
ered [22]. On the other hand, high-order-harmonic generation
(HHG) [23] in the relativistic regime is also very interesting
for strong-field ionization because it could produce high-
energy photons [24,25] with attosecond or zeptosecond pulse
duration [26–39]. In theory, the cutoff energy of HHG in the
relativistic regime was studied recently [40].

What has remained elusive is to quantitatively describe
strong-field ionization and to calculate the photoelectron
momentum and energy distributions in the relativistic regime.
Particularly, as known, in the relativistic regime the electrons
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can quiver as large as the radius of focus. It is very necessary
to consider the focal field effect for ultraintense femtosecond
laser pulses. In this paper, we develop the quantitative theory
to study the photoelectron momentum and energy distribu-
tions for strong-field tunneling ionization of highly charged
ions in the relativistic regime. We derive the initial momentum
distributions at the tunnel exit by considering the nonadiabatic
tunneling effect. Incorporating the nonadiabatic tunneling co-
ordinates, we solved the relativistic dynamic equation with
consideration of the Coulomb potential. We have calculated
the photoelectron angular distributions and energy spectrum
for strong-field tunneling ionization by full consideration of
the temporal and spatial effect of the relativistic focused
femtosecond laser pulses in the relativistic regime.

II. METHOD

A. Relativistic SFA model

We start with the time-dependent Dirac equation to de-
scribe the process of the ionization of the highly charged
ions by a superstrong linearly polarized laser pulse in the
relativistic regime [21],(

iγ μ∂μ + 1

c
γ μAμ − γ 0 V (c)

c
− c

)
ψ = 0, (1)

where γ μ are the Dirac matrices and Aμ is the four-vector
of the laser field. V (c) = − Z

r is the Coulomb potential of the
atomic core, and the effective nuclear charge Z is determined
by the bound state energy via c2 − Ip = √

c4 − c2Z2, where
Ip is the ionization potential. In our simulation, we take the
highly charged ions with ionization potential Ip = 3000 a.u.

(atomic units are used throughout the paper unless specified)
at the intensity of I = 1 × 1019 W/cm2 at the wavelength of
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800 nm. The phase of the laser pulse no longer only depends
on the t , and therefore one should replace t with η = t − z

c .
The electromagnetic field of a plane wave can be written as
E(η) = −E0 cos(ωη)ex, B(η) = −E0

c cos(ωη)ey, and A(η) =
E0
ω

sin(ωη)ex, where ω is the field frequency and E0 is the
laser field amplitude. The electric field is polarized along the x
axis, and the magnetic field is polarized along the y axis. The
propagation direction of the laser pulse is along the z axis.
Within SFA in the relativistic regime, the transition ampli-
tude can be written as M(p) ∝ −i

∫ ∞
−∞ dη < p|Hint|ϕ0(η) >

exp[−iS(η)], where p is the canonical momentum, Hint =
γ 0γ μAμ is the interaction Hamiltonian between laser field
and atoms, and ϕ0 is the wave function of the ground state
of the highly charged hydrogenlike ions. The relativistic
kinetic energy is ε(η) = ε0 + [p+A(η)/2]·A(η)

	
, where 	 is the

constant of motion 	 = ε0−pzc
c2 and ε0 =

√
c4 + c2p2. The

action in the tunneling ionization process is expressed as

S(η) = ∫ ∞
η

dη′{ε0 − c2 + I p + [p+A(η′ )/2]·A(η′ )
	

}. For a certain
canonical momentum p, we can obtain the saddle points per
cycle of the laser field as

ωη1 = arcsin

[
− px

E0/ω
+ i

√
2	(ε − c2 + Ip) − p2

x

(E0/ω)2

]
,

ωη2 = π − arcsin

[
− px

E0/ω
− i

√
2	(ε − c2 + Ip) − p2

x

(E0/ω)2

]
.

(2)

For each saddle point, the ηs = ηr + ηi can be divided into
the real and imaginary parts. Then, within imaginary time
theory the tunneling ionization rate of the highly charged
hydrogenlike ions is related with the imaginary part and is
given by

W ∝ exp[2ImS] = exp

[
2

(
c2 − ε − Ip − E2

0

4	ω2

)
ηi + E2

0 sinh(2ωηi) cos(2ωηr )

4	ω3
− 2E0 px sinh(ωηi ) sin(ωηr )

	ω2

]
. (3)

The initial momentum distributions at the tunnel exit is
calculated via back propagation, which is similar with the
nonrelativistic case [41]. The momentum P(ηr ) at the tunnel
exit related to the canonical momentum p is given by P(η) =

p + A(η) + [p+A(η)/2]·A(η)
c	 z. The part along the propagation

direction [p+A(η)/2]·A(η)
c	 z results from the magnetic dipole ef-

fect and the mass shift effect. The tunnel exit position can
be calculated from the trajectory in the sub-Coulomb-barrier

FIG. 1. Photoelectron momentum distributions at the virtual detector calculated by the relativistic SFA in the x-z-plane (a), y-x-plane
(b), and y-z-plane (c), respectively. The white curve shows the maximum of the momentum distribution. (d) The energy spectrum of the
photoelectron at the detector calculated by the relativistic SFA.
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FIG. 2. Photoelectron momentum distribution at the tunnel exit calculated by the relativistic SFA in the x-z-plane (a), y-x-plane (b), and
y-z-plane (c), respectively. (d) The position distribution of the photoelectron at the tunneling exit. The white curve shows the position of the
tunnel exit predicted by the relativistic PPT theory [13].

using the equation of Re[r(ηr )] = Re[r0 + ∫ ηr

ηs
dη′P(η′)/	],

where r0 = 0 corresponds to the initial position of the bound
electrons. The tunnel exit can also be predicted by the rel-
ativistic Perelomov-Popov-Terent’ev (PPT) theory [13], as
given by

x = ip⊥
eEg

(arcsin τ0 − arcsin τ ), y = 0,

z = M

eEg

(√
1 − τ 2 −

√
1 − τ 2

0

)
, (4)

where p⊥ is the transverse momentum of the ionization elec-
tron. Here τ = ieEgt/M and M =

√
m2 + p2

⊥ . Eg is associated
with the bound state energy and τ0 is related to the imaginary
time of the bound state.

B. Relativistic CTMC model

The SFA itself does not fully include the real movement
of photoelectrons in the combined relativistic laser field and
the Coulomb field. The real trajectories of the electrons in the
relativistic laser field would be more complicated since they
are the integration of the velocity over time t . Because of the
relativistic effect, the electrons do not simply follow the vector
of the laser field, as described in the standard SFA. Therefore,
there is no analytic expression of the momentum and posi-
tion of the photoelectrons on the detector in the relativistic

laser field. To do this, we have developed the nonadiabatic
relativistic classical trajectory Monte Carlo (CTMC) model.
We first sample the initial nonadiabatic coordinates of all of
the tunneling electrons at the tunnel exit. The velocity of the
relativistic electron associated with the momentum is given
by v = cp√

p2+c2
. After the tunneling, the electron motion in

the combined laser and Coulomb fields is governed by the
relativistic Newtonian equation,

d

dt

⎡
⎣ v(

1 − v2

c2

)1/2

⎤
⎦ = −E − v × B

c
− Zr

|r|3 . (5)

III. RESULTS AND DISCUSSION

Firstly, we have calculated the photoelectron momentum
distribution using the relativistic SFA. As seen in Figs. 1(a)
and 1(c), it reveals a shift of the global maximum of the
asymptotic momentum distribution along the laser propaga-
tion direction, and, especially, it reveals a parabolic wings
structure in the x-z plane. From Eq. (3), one can determine the
maximum of the momentum distribution, which is located at
a parabolic line along pz = Ip/3c + p2

x/2c(1 + Ip/3c2) while
py = 0 [the white curve in Fig. 1(a)]. In the nonrelativis-
tic limit, the shift will disappear due to the order of 1/c
[41]. As shown in Fig. 1(b), the final photoelectron momen-
tum distribution calculated by the relativistic SFA reveals a
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FIG. 3. Photoelectron momentum distribution in the x-z-plane (a),(c), and y-x-plane (b),(d), calculated with the CTMC model in a plane
laser field, respectively. In (a),(b), we use the nonadiabatic tunneling coordinates. In (c),(d), we use the adiabatic tunneling coordinates given
by ADK theory.

centrosymmetric image in the polarization plane. The energy
spectrum of the photoelectron is shown in Fig. 1(d). The
photoelectrons with energy 100 a.u. have the maximum prob-
ability. The cutoff energy of the photoelectron is around 3500
a.u., which is much lower than 2Up = 4.3828 × 104 a.u. as
predicted by SFA in the nonrelativistic regime [42].

As shown in Figs. 2(a) and 2(c), the initial momentum
distributions at the tunnel exit have an evident shift in the
propagation direction. Comparing Fig. 1(a) with Fig. 2(a), we
can understand that the shift of the maximum momentum dis-
tribution is directly connected with the sub-Coulomb-barrier
tunneling. The initial momentum distributions at the tunnel
exit reveal a Gaussian distribution in the polarization plane, as
shown in Fig 2(b). The tunnel exit position can be calculated
from the sub-Coulomb-barrier trajectory with the equation
of Re[r(ηr )] = Re[r0 + ∫ ηr

ηs
dη′P(η′)/	], where r0 = 0 cor-

responds to the initial position of the bound electrons, as
showed in Fig. 2(d). The x > 0 and x < 0 parts derive from
the different half period per cycle of the laser field. For the
high ionization potential, the tunneling exit is very far away
from the parent ion in the polarized direction in the relativistic
regime. The nonadiabatic relativistic results agree well with
the PPT model [13].

Experimentally, in order to obtain extremely high intensity,
the beam of the femtosecond laser pulses is always focused
tightly. In the relativistic regime, the photoelectron can be
accelerated to the same order speed of light within one cycle

of the laser pulse and the photoelectron will move far away
from the parent ion. Thus, the temporal and spatial distri-
butions of the tightly focused ultraintense femtosecond laser
pulses have a non-negligible influence on the photoelectron
movement. We show the calculated photoelectron momentum
distributions using the nonadiabatic tunneling coordinates in
a plane wave in Figs. 3(a) and 3(b). In the simulation, we take
the pulse duration with a trapezoidal envelope comprising a
five-cycle flat top and a one-cycle turning on and turning off
at 800 nm at the intensity of 1 × 1019 W/cm2. In Fig. 3(a)
the momentum distribution reveals a wing structure in the
x-z plane because the photoelectron is oscillating in the x-z
plane by the un-neglectable Lorentz force. The momentum
distribution of the photoelectron reveals the dumbbell shape
in the y-x plane, as shown in Fig. 3(b). The momentum has
a wider distribution in the electric-field direction compared
with the result of relativistic SFA in Fig. 1. We show the
calculated momentum distribution using the adiabatic model
in Figs. 3(c) and 3(d). The initial coordinate is given by rel-
ativistic Ammosov-Delone-Krainov (ADK) theory [43] and
the tunnel exit is derived from the Laudau effective potential
theory [44]. There is no initial momentum shift in the propa-
gation direction at the tunnel exit. If comparing the adiabatic
results with the nonadiabatic results, one can find that the
final momentum distribution using the adiabatic approach is
largely extended in the propagation and is shrunken in the
electric-field direction.
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FIG. 4. Photoelectron momentum distribution in the x-z-plane (a), y-x-plane (b), and y-z-plane (c), with the CTMC model in a tightly
focused Gaussian beam, respectively. (d) The photoelectron energy spectra calculated by the relativistic SFA (black line), the nonadiabatic
CTMC with a plane wave (dotted red line), and with the tightly focused Gaussian beam (dashed blue line).

However, since the electrons can quiver as large as the
beam waist, it is necessary to consider the focusing effect
of ultraintense femtosecond laser pulses [45]. Since the
spatial envelope is ignored if using a plane wave, we then
calculated the photoelectron momentum in a tightly focused
femtosecond laser pulse in Fig. 4. It is very necessary to
include an accurate treatment of E and B field components
in the z direction. Here, we assume the radius of the beam
waist is 1 μm and the other laser parameters are the same as
in Fig. 3. The photoelectron momentum in a tightly focused
pulse has wider distribution in the propagation direction than
that in a plane wave, as shown in Fig. 4(a). Correspondingly,
the photoelectron momentum in a tightly focused pulse along
the electric-field direction is much narrower than that in
a plane wave, as shown in Fig. 4(b). Because of the tight
focusing effect, the high-order electric-field component
along the propagation direction will accelerate the electrons
forward and the high-order magnetic-field component along
the propagation direction will modify the electron motion
along the polarization plane. In the y direction, the Coulomb
force is more effective. However, the distance between
the photoelectron and the parent ion is much larger in the
relativistic regime. The velocity of the photoelectron along the
y direction changes a little, but the momentum along the y di-
rection has considerable change due to the mass shift. Because
the mass shift and Coulomb effect are more isotropic, the final
momentum distribution reveals a symmetrical structure along

the y direction, as seen in Fig. 4(c). In the other two directions,
there is no full symmetrical pattern. We also calculated the
photoelectron energy spectra using the nonadiabatic model
in Fig. 4(d); the cutoff energy using the plane wave (dotted
red line) is around 6 × 104 a.u. ∼ (2.7Up) and the cutoff
energy using the Gaussian beam (dashed blue line) is around
5.5 × 104 a.u. ∼ (2.5Up), which are much lower than 10Up as
that in the nonrelativistic regime [46]. The results calculated
by the relativistic SFA are also shown in Fig. 4(d) as the black
line.

Comparing with the results of the nonadiabatic CTMC
model with the relativistic SFA, one can find that the cutoff
energy of the photoelectron is much higher and the photo-
electron momentum distribution is also extended. This will
certainly have a crucial effect on HHG because the Lorentz
force due to the laser magnetic field can significantly reduce
the returning probability. We use the model to calculate the
limit of the cutoff energy of recollision. We define the recolli-
sion if the tunnel-ionized photoelectron can move as close to
the tunnel exit as expected by the relativistic model, |r(tre)| =
|r(t0)|, where tre is the recollision time of the photoelectron
and t0 is the ionization time of the photoelectron. In Fig. 5(a),
we show the probability and energy of returning electrons
with respect to the ionization instant. One can see that some
of the photoelectrons released after the peak of the laser field
can revisit the parent ions. The time window for returning
using the nonadiabatic coordinates ranges from 4.9° to 19°,
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FIG. 5. (a) The returning photoelectron energy with respect to the ionization time calculated with the adiabatic (dashed blue line) and
nonadiabatic (dotted red line) model. The green curve shows the laser field. (b) The returning probability with respect to the electron energy
within one laser cycle calculated with the adiabatic (dashed blue line) and nonadiabatic (dotted red line) model.

which is much narrower than the nonrelativistic case [39].
The time window using the adiabatic tunneling coordinates
ranges from 0° to 20°, which is broader than that in the
nonadiabatic case. In Fig. 5(b), the maximum energy of return
adiabatic electrons (dashed blue line) is about 4 × 104 a.u.,
∼(1.82Up); they are released at the phase of 10.4° and 190.4°.

The maximum energy of return nonadiabatic electrons (dotted
red line) is about 3.7 × 104 a.u., ∼(1.8Up); they are released
at the phase of 18.4° and 198.4°. The electrons with the
return energy 1.8 × 104 a.u. have the maximum returning
probability, which are released at the phase of 10° because of
the nonadiabatic effect. The return energy of the photoelectron

FIG. 6. The calculated photoelectron momentum distribution of Ar in the x-z plane (a), and x-y plane (b), in the tightly focused laser
pulse with linear polarization. Photoelectron momentum distribution of Ar in the x-y plane (c) in the tightly focused laser pulse with circular
polarization. (d). The energy spectrum of the photoelectron in linear polarization (dashed blue line) and circular polarization (dotted red line).
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FIG. 7. (a) The photoelectron energy spectrum of Ar atoms cal-
culated by the nonadiabatic CTMC with linear polarization (yellow
line) and circular polarization (dotted red line). The measurement
of the photoelectron energy spectrum of Ar atoms in Ref. [3], with
linear polarization (blue circles) and circular polarization (green
squares). (b) The angular distributions in the polarization plane are
measured in Ref. [3] with the energy of 400 keV (green triangles) and
770 keV (blue squares). Calculated results for the energy of 400 keV
(dotted red line) and 770 keV (black line).

significantly decreases and it cannot reach the 3.17Up cutoff
limit in the nonrelativistic regime [42].

IV. COMPARISON WITH THE EXPERIMENT

To further verify the nonadiabatic model, we have com-
pared the theoretical calculation with the experimental results
for the realistic atoms in the relativistic regime [3]. Using
similar laser parameters as in the experiments, we have cal-
culated the momentum distribution and energy spectrum of
the photoelectron at the detector in a tightly focused fem-
tosecond laser pulse with a trapezoidal envelope comprising
of a five-cycle flat top and a one-cycle turning on and turning
off at 800 nm at the intensity of 1 × 1019 W/cm2. We have
calculated the results of Ar16+ using linear polarization and
circular polarization.

We show the momentum angular distribution of the pho-
toelectron with ultraintense linear polarization in Figs. 6(a)
and 6(b). The momentum distribution is still oscillating in
the x-z plane and the momentum distribution is spatially
anisotropic in the polarization plane with electrons more
likely to distribute along the electric-field direction as the
energy is increased. The model can be extended to strong-
field tunneling ionization in the relativistic regime for cir-
cular polarization. Similarly, we can derive the nonadia-
batic momentum and position distributions at the tunnel exit

based on the relativistic SFA, and the electrons are driven
by the circular polarization laser field with the relativistic
Newtown equation. The calculated final momentum distribu-
tion in the polarization plane is shown in Fig. 6(c). As seen
in Fig. 6(d), the cutoff of the photoelectron energy is around
1.24 MeV for the linear polarization. The maximum energy
of the photoelectron is around 0.92 MeV for the circular
polarization.

The most direct way is to compare the results with the
measurement [3]. The experimental and calculated photo-
electron energy spectrum are shown in Fig. 7(a). For the
linear polarization laser field, the theoretical result agrees well
with the experimental results when the energy is lower than
0.8 MeV. The theoretical result has a lager cutoff energy,
∼1.24 MeV, than that of the experiment, ∼0.8 MeV. For the
circular polarization laser field, the theoretical result shows
that many more electrons are distributed in the low-energy
part. The difference results from the fact that we only obtain
the tunneling ionization for the hydrogenlike ion in the theo-
retic calculation and the photoelectrons from different shells
have been measured in the experiment. The theoretic result
has a lower cutoff energy, ∼0.94 MeV, than the experiment,
∼1.2 MeV. We also compare the angular distribution in the
polarization plane between the experimental measurement
and theoretical calculation in Fig. 7(b). Generally, the theoret-
ical calculation shows good agreement with the experimental
measurement.

V. CONCLUSION

In conclusion, we have presented a model to describe
strong-field ionization in the relativistic regime. Consider-
ing the nonadiabatic effect, we have derived the ionization
probability, the position distribution of the tunnel exit, and
the initial momentum distributions of photoelectrons at the
tunnel exit using the relativistic SFA with the saddle-point
approximation. We have further considered the temporal and
spatial field distribution of the focused ultraintense femtosec-
ond pulses, and have calculated the photoelectron energy and
photoelectron momentum distribution on the basis of the rel-
ativistic dynamic movement equation. The precise relativistic
model describes a distinct picture of strong-field ionization in
the relativistic regime. We show the nonadiabatic tunneling
effects, and the focal field distribution are very crucial for the
final photoelectron momentum distribution and energy spec-
trum. The results show that the photoelectron cutoff energy
is around 2 − 3Up and is much less than 10Up because of
significant reducing of the rescattering probability. We have
also discussed the rescattering limit in the relativistic regime.
The atomic orbital could also be considered in this relativistic
model [47] in the future. Since it is hard to calculate the
exact solution of time-dependent Dirac equation nowadays,
our approach has provided a way to quantitatively model
strong-field ionization in the relativistic regime.
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