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Inclusion of Coulomb effects in laser-atom interactions
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We investigate the role of the Coulomb interaction in strong field processes. We find that the Coulomb field
of the ion makes its presence known even in highly intense laser fields, in contrast to the assumptions of the
strong field approximation. The dynamics of the electron after ionization is analyzed with four models for an
arbitrary laser polarization: the Hamiltonian model in the dipole approximation, the strong field approximation,
the Coulomb-corrected strong field approximation, and the guiding center. These models illustrate clearly the
Coulomb effects, in particular Coulomb focusing and Coulomb asymmetry. We show that the Coulomb-corrected
strong field approximation and the guiding center are complementary, in the sense that the Coulomb-corrected
strong field approximation describes well short timescale phenomena (shorter than a laser cycle) for which
the Coulomb interaction is significant on short timescales, such as in subcycle recollisions, while the guiding
center is well suited for describing long timescale phenomena (longer than a laser cycle) for which the Coulomb
interaction is significant on long timescales, such as in Coulomb-driven recollisions and Rydberg state creation.
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I. INTRODUCTION

After ionization in an intense laser field, an ionized elec-
tron travels in the continuum until it reaches the detector, or
it can come back to the ionic core and probe the target in
a process called recollision. Recollisions are key processes
in attosecond physics [1–6], since they are the origin of a
variety of highly nonlinear phenomena, such as high harmonic
generation (HHG), nonsequential double ionization (NSDI),
and above-threshold ionization (ATI). Such processes are
widely used in attosecond physics in order to obtain infor-
mation about the target atoms or molecules. For example, it is
possible to perform imaging of molecular orbitals [7–9] and
determine the electronic dynamics inside atoms or molecules
[10,11]. Historically, the first model of the recollision scenario
makes use of the so-called strong field approximation (SFA),
where the effects of the Coulomb interaction after tunnel
ionization are neglected [12]. The recollision scenario [1,13]
based on the SFA has three steps: (i) The electron tunnel
ionizes through the barrier induced by the laser field on the
ionic core potential [12,14], (ii) travels in the laser field alone,
and then upon return to the ionic core, and (iii) recombines
with the ion (and triggers HHG), or rescatters from the ionic
core, either elastically (ATI) or inelastically (NSDI).

In step (ii) of the recollision scenario, the electrons are
outside the ionic core region, in the continuum, and their
dynamics is mainly classical. The main advantage of the use
of the SFA in step (ii) is the analytic expressions of the
trajectories, which sheds some light on the recollision process.
In some cases, the SFA encounters success, for instance for
predicting the HHG cutoff [1,15] or frequency versus time
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profile of HHG radiation [16]. In other cases, the SFA is
inaccurate when it is confronted with experimental results
[17–19], especially when long timescale trajectories (of the
order of multiple laser periods) are involved in the experiment.
In linearly polarized (LP) fields, the SFA suggests that if
the electron does not return to the ionic core in less than
one laser cycle after ionization, it never comes back to the
core (or with very low probability). However, recollisions
involving multiple laser cycles have a significant effect in
NSDI. Including the Coulomb interaction increases the NSDI
probability (i.e., the recollision probability) by about one or-
der of magnitude [19–22]. Coulomb effects play a significant
role in ATI experiments as well [17,18,23].

Here we investigate the role of the Coulomb interaction in
the recollision and ionization processes by shuttling between
four models, namely: the Hamiltonian in the dipole approx-
imation (referred to as the reference Hamiltonian) which
combines both the laser and the Coulomb interaction, the SFA,
the Coulomb-corrected SFA [17] (CCSFA), and the guiding-
center (GC) model [24,25]. Here the SFA and the CCSFA are
referred to as their fully classical interpretation for step (ii)
of the recollision process. The classical version of SFA and
CCSFA is the backbone of more elaborated SFA and CCSFA
theories which take into account semiclassical and quantum
effects [15]. The SFA, which ignores the Coulomb interaction,
is used to point out the contributions of the Coulomb potential
in the reference model. The CCSFA and GC models decouple
the laser and Coulomb interactions through perturbation the-
ory and averaging, respectively, and they are used to analyze
the contributions of each interaction independently. We show
that the CCSFA and GC models are complementary, in the
sense that CCSFA describes well short timescale phenomena
(shorter than a laser cycle) for which the Coulomb interaction
is significant for short times, while the GC is well suited
for describing long timescale phenomena (longer than a laser
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cycle) for which the Coulomb interaction is significant for
long times, such as in multiple laser cycle recollisions, which
we refer to as Coulomb-driven recollisions.

In particular, in photoelectron momentum distributions
(PMDs), there is an asymmetry with respect to the minor
polarization axis, known as the Coulomb asymmetry [17],
and a decrease of the final electron energy, referred to as
Coulomb focusing [19,26]. In Ref. [24] we introduced the
GC model for the motion of ionized electrons, and we used
it to identify the mechanism behind the bifurcation in the
peak of the PMDs as a function of the ellipticity observed
in experiments [18,27]. This bifurcation was attributed as a
clear signature of the Coulomb effects. There we also showed
that the mechanism behind the bifurcation is closely related to
Rydberg state creation [28], a process that cannot be described
without the Coulomb interaction. In this article, on the one
hand, we show that the GC model can also be used to quantify
the amount of Rydberg state creation and to demonstrate their
close relation with the Coulomb-driven recollisions. On the
other hand, we show that the Coulomb interaction makes its
presence known for long timescale phenomena such as ATI,
in particular the Coulomb asymmetry, even at high intensity
when the assumptions of the SFA are met.

The article is organized as follows: In Sec. II we describe
step (i) coupled with step (ii) of the recollision scenario, using
the reference Hamiltonian and the three reduced models (SFA,
CCSFA, and GC models) we employ throughout the article.
In Sec. III we analyze the PMDs and the initial conditions
leading to the PMDs with the four models. In particular, we
identify the set of initial conditions leading to Rydberg state
creation and Coulomb-driven recollisions. We show that these
processes are only well described by the GC model. In Sec. IV
we use the GC model to describe the mechanisms behind
Rydberg state creation and Coulomb-driven recollisions. In
particular, the GC model allows us to define a domain of
initial conditions, which we refer to as the rescattering do-
main, leading to Rydberg state creation and Coulomb-driven
recollisions. Finally, in Sec. V we investigate the shape of
the rescattering domain using the GC model. We show how
the shape and location of the rescattering domain manifests
itself in experiments, in particular, in the bifurcation of the
PMDs [24].

II. THE MODELS

First, we describe the reference model: The atom is de-
scribed with a single active electron, the ionic core is set
at the origin and is assumed to be static. The position of
the electron is denoted r, and its conjugate momentum is p.
In the length gauge [9] and the dipole approximation, the
Hamiltonian governing the dynamics of an electron in an atom
driven by a laser field reads

H (r, p, t ) = |p|2
2

+ V (r) + r · E(t ), (1)

where atomic units (a.u.) are used unless stated otherwise.
We use the soft-Coulomb potential [29] to describe the ion-
electron interaction V (r) = −(|r|2 + 1)−1/2. The electric field

is elliptically polarized,

E(t ) = E0 f (t )√
ξ 2 + 1

[x̂ cos(ωt ) + ŷξ sin(ωt )].

The laser frequency we use is ω = 0.0584 a.u. (corresponding
to infrared light of wavelength 780 nm), the laser ellipticity is
ξ ∈ [0, 1], and the laser amplitude is E0 = 5.338 × 10−9

√
I

with I the intensity in W cm−2. The laser envelope f (t ) is
such that f (t ) = 1 for t ∈ [0, Tp], f (t ) = (Tf − t )/(Tf − Tp)
for t ∈ [Tp, Tf ], and f (t ) = 0 otherwise. Here Tp and Tf are
the duration of the plateau and the laser pulse, respectively.
Throughout the article we use a two laser cycle ramp down,
i.e., Tf = Tp + 2T , where T = 2π/ω is the laser period. The
duration of the plateau is Tp = 8T unless stated otherwise.
The major and minor polarization axes are x̂ and ŷ, respec-
tively.

A. Step (i): Ionization model

When the laser field starts to oscillate, it creates an effective
potential barrier through which the electron can tunnel ionize.
We use the Perelomov-Popov-Terent’ev (PPT) [30–32] theory
to define the ionization rate and the initial conditions after ion-
ization. The Keldysh parameter [12] γ = ω

√
2Ip/E0, where Ip

is the ionization potential, is used to estimate the dominant
ionization process. If γ � 1, the ionization process is the
adiabatic tunnel ionization [12,14], i.e., the potential barrier
is quasistatic during the tunneling. If γ � 1, the dominant
process is multiphoton absorption. For γ ∼ 1, the process
is in between tunnel ionization and multiphoton absorption.
During this so-called nonadiabatic tunnel ionization [30–32],
the wave packet absorbs photons during the tunneling [33].
Here we show a brief summary of the PPT theory [30–32]
used in this article for the ionization rate and the initial
conditions of the electron after ionization.

The initial conditions and the ionization rate of the electron
are parametrized by the ionization time t0 and its momentum
p0 at t0. The ionization rate W (t0, p0) is given in Eq. (A1)
while the initial conditions at t = t0 of the electron are

r0 = |E(t0)|
ω2

(1 − cosh τ0)n̂‖(t0), (2a)

p0 = p‖n̂‖(t0) + p⊥n̂⊥(t0) + pz,0ẑ, (2b)

with n̂‖(t0) = E(t0)/|E(t0)| and n̂⊥(t0) = −[n̂‖(t0) · ŷ]x̂ +
[n̂‖(t0) · x̂]ŷ. In other words, p‖ is the initial momentum of
the electron along the electric field direction, p⊥ is the initial
momentum transverse to the electric field direction, and pz,0 is
the initial momentum perpendicular to the polarization plane
(x̂, ŷ). The time τ0 = τ0(t0) is the solution of the transcenden-
tal equation

sinh2 τ0 − ξ 2

(
cosh τ0 − sinh τ0

τ0

)2

= γ0(t0)2, (3)

where γ0(t0) = ω
√

2Ip/|E(t0)|. We consider He (Ip = 0.9)
unless stated otherwise. According to the PPT ionization
rate, the most probable trajectory ionizes at times ωt0 = nπ

(see Appendix A), i.e., at the peak amplitude of the electric
field, where n ∈ N, with initial longitudinal, transverse and
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perpendicular momenta

P‖ = 0, (4a)

P⊥ = ξE0

ω
√

ξ 2 + 1

(
1 − sinh τ

τ

)
, (4b)

Pz,0 = 0, (4c)

respectively, with τ the solution of Eq. (3) for γ0(t0) =
γ
√

ξ 2 + 1. We refer to the trajectory with initial conditions
(t0 = T/2, p‖ = P‖, p⊥ = P⊥, pz,0 = Pz,0) as the T trajectory.
Hence, the T trajectory captures the dominant behavior of
the ionized electrons. Moreover, it corresponds to a local
maximum of the ionization rate for linearly and elliptically
polarized pulses.

B. Step (ii): Classical models

1. Reference Hamiltonian

The reference Hamiltonian is defined in Eq. (1) with initial
conditions (r0, p0, t0) given by Eq. (2). In order to derive the
reduced models, we use a new set of phase-space coordinates
(rg, pg) such that

rg = r − �(t )/ω2, (5a)

pg = p − A(t ), (5b)

where ω2A(t ) = ∂�(t )/∂t and the vector potential A(t ) is
such that E(t ) = −∂A(t )/∂t . Using integration by parts,
A(t ) = − f (t )E0[x̂ sin(ωt ) − ξ ŷ cos(ωt )]/ω

√
ξ 2 +1 + O(T/

Tf ), where the terms of order O(T/Tf ) are due to the envelope
variations. In the same way, �(t ) = E(t ) + O(T/Tf ). Here we
mainly focus on the analyses of the electronic dynamics dur-
ing the plateau, and we consider A(t ) ≈ − f (t )E0[x̂ sin(ωt ) −
ξ ŷ cos(ωt )]/ω

√
ξ 2 + 1 and �(t ) ≈ E(t ).

Under the canonical change of coordinates (5), Hamilto-
nian (1) becomes

Hg(rg, pg, t ) = |pg|2
2

+ V [rg + �(t )/ω2]. (6)

The initial conditions in the new coordinates at time t0,
denoted (rg,0, pg,0), are related to the old coordinates by the
transformation (5) and such that

rg,0 = r0 − �(t0)/ω2, (7a)

pg,0 = p0 − A(t0). (7b)

The dynamics described by Hamiltonians (1) and (6) are
equivalent. In order to emphasize the role of the Coulomb
interaction, we consider three reduced models in the new
system of coordinates: the SFA where the Coulomb potential
is neglected (V = 0), the CCSFA [17] where the Coulomb po-
tential is assumed to be a perturbation of the SFA prediction,
and the GC model [24,25] in which the electron trajectory is
averaged over one laser cycle.

2. SFA

For the SFA and the CCSFA, we assume that the contri-
bution of the Coulomb interaction on the electron dynamics
acts on short timescales. Under this assumption, we write the

Hamiltonian as

Hg(rg, pg, t ) = |pg|2
2

+ εV [rg + �(t )/ω2],

where we have introduced an ordering parameter ε for book-
keeping purposes. The equations of motion of the electron are

ṙg = pg, ṗg = −ε∇V [rg + �(t )/ω2].

We consider the correction due to the Coulomb interaction on
a short timescale, hence rg = rSFA

g + ε	rg + O(ε2) and pg =
pSFA

g + ε	pg + O(ε2). We substitute these equations in the
equations of motion and we identify each terms by order of ε.
The lowest order in ε provides the SFA electron phase-space
trajectory

rSFA
g (t ) = rg,0 + pg,0(t − t0), (8a)

pSFA
g (t ) = pg,0. (8b)

The electron trajectory, in this new set of coordinates, is that
of a free particle with constant energy and drift momentum
ESFA = |pSFA

g |2/2 and pSFA
g , respectively. At any time t , the

position and momentum of the electron are obtained by in-
verting the change of coordinates (5).

3. Coulomb-corrected SFA

The first order in ε provides the correction due to the
Coulomb interaction on the SFA trajectory, which reads

	rg(t ) =
∫ t

t0

	pg(s) ds, (9a)

	pg(t ) = −
∫ t

t0

∇V
[
rSFA

g (s) + �(s)/ω2
]

ds. (9b)

The CCSFA is also used in a semiclassical framework
in Refs. [32,34–36] and in a classical framework in
Refs. [17,18,37–40]. As mentioned above, the CCSFA is
valid to determine the correction of the Coulomb interaction
for short times (e.g., t − t0 ∼ T ) regardless of the ellipticity.
Looking at Eq. (8a), if the initial drift momentum of the
electron pg,0 is sufficiently large, the Coulomb correction (9b)
is significant only for a short time after ionization. According
to the PPT theory, the initial drift momentum is of order
|pg,0| ∼ ξE0/ω, hence, we expect the CCSFA to be valid in
ATI only for large ellipticity.

The integrals in Eqs. (9) are computed numerically. If
the initial drift momentum of the T trajectory is large, the
integrand in Eq. (9b) is large for a very short time after ion-
ization, so we make the approximation E(t ) ≈ E(t0) + ω2(t −
t0)A(t0) − ω2(t − t0)2E(t0)/2. As a consequence, the SFA
trajectory (8a) is quadratic in time. Taking V (r) ≈ −1/|r| and
the initial conditions of the T trajectory to be such that P⊥(t −
t0) � |r0| + (t − t0)2|E(t0)|/2 (which becomes valid at high
intensity) the correction of the asymptotic drift momentum is
given by

	pg ≈ π n̂‖(t0)

(2|r0|)3/2
√|E(t0)| − P⊥ n̂⊥(t0)

2|r0|2|E(t0)| . (10)

In Ref. [17] a similar result is derived for P⊥ = 0.
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4. Guiding-center model

An alternative way to include the Coulomb interaction
is to consider the averaged motion of the electron [24,25].
In Refs. [24,25] we showed the electron trajectory can be
viewed as oscillating around a GC trajectory with constant
energy. Assuming that one laser cycle is short compared to
the characteristic time of the ionized electron trajectory, the
ordering parameter ε is such that the laser frequency is large,
i.e., ω 
→ ω/ε, and the Hamiltonian may be written

Hg(rg, pg, t ) = ε

[ |pg|2
2

+ V [rg + ε2�(t )/ω2]

]
. (11)

Averaging Hamiltonian (11) over the fast timescale [24,25], at
the second order in the ordering parameter ε, leads to

H̄g(r̄g, p̄g) = |p̄g|2
2

+ V (r̄g). (12)

The initial conditions of the GC trajectory are given by
Eqs. (7). The reconstructed electron trajectory is given by
inverting Eqs. (5), where [r̄g(t ), p̄g(t )] are the trajectories of
Hamiltonian (12). Therefore, the electron oscillates around its
GC motion described by Hamiltonian (12). The GC Hamil-
tonian is invariant under time translation, implying that the
energy of the GC, denoted E = H̄g(r̄g, p̄g), is conserved. In
addition, for a rotationally invariant potential as in the case
of atoms and in particular the soft Coulomb potential used
in this article, the angular momentum of the GC, denoted
L = r̄g × p̄g, is also conserved. Hence, there are as many
conserved quantities as degrees of freedom, and Hamiltonian
(12) is integrable.

If E > 0, the GC motion is unbounded and the electron
reaches the detector. If E < 0, the GC motion is bounded and
the electron is captured in a Rydberg state. We note that the
rescattering process which induces a jump in energy E (see
Ref. [25]), is not included in the GC model. Hence, the GC
model is well suited to describe the direct ionization and the
electron motion before and after rescattering, but not during.
By substituting τ ≈ sinh−1(γ

√
ξ 2 + 1) (which holds for all

ellipticities if γ � 5, see Ref. [41]) and considering |E(t0)| ∼
E0 in Eq. (2), the typical distance between the electron and
the ionic core after tunnel ionization is |r0| ∼ (E0/ω

2)(1 −√
1 + γ 2). The GC model is quantitatively accurate when

|r0| � E0/ω
2 [25], and as a consequence, we expect the GC

model to be quantitatively accurate for γ � 1.6.

III. PHOTOELECTRON MOMENTUM
DISTRIBUTIONS (PMDs)

The laser-atom interaction gives rise to complex phe-
nomena, involving multiple temporal and spatial scales. The
phenomena arising from short timescale and long timescale
processes manifest themselves in different aspects of the mea-
surements, for different values of the parameters, and also at
distinct times along the same trajectory. The multiple temporal
and spatial scales arise from the competition between the
strong laser and Coulomb forces. The rescattering of the elec-
tron or the subcycle recollisions occur close to the core over a
short time compared to the laser cycle, and as a consequence,

FIG. 1. Excursion time of the electron 	t per laser cycle T
as a function of the initial conditions (t0, p⊥, p‖ = pz,0 = 0) for
I = 8 × 1013 W cm−2 and ξ = 0.4 of the reference Hamiltonian (1),
the SFA [1], the CCSFA [17], and the GC [24] models. The time
	t is the smallest positive time such that |r(t0 + 	t )| = 5 a.u. The
gray regions are where the electron final energy is negative after
the end of the pulse (at t = 10T ). The white regions are where the
electron undergoes a direct ionization, i.e., an ionization without
returning to the core. The black dashed lines are contours of constant
ionization rate W (t0, p⊥n̂⊥(t0)) (see Appendix A) for W/ max(W ) =
10−1, 10−5, and 10−15, from bottom to top. The momentum p⊥ is
scaled by E0/ω.

these processes involve short temporal and spatial scales. In
contrast, Rydberg state creation and Coulomb-driven recolli-
sions involve a contribution of the Coulomb potential on long
temporal and spatial scales.

The coexistence of short vs long timescale processes is
illustrated in Fig. 1, which shows the excursion time per laser
cycle 	t/T of the electron before it returns to the core for the
reference Hamiltonian (1), the SFA, the CCSFA, and the GC
models. The excursion time 	t is the smallest positive time
such that |r(t0 + 	t )| = R, with R = 5 a.u. (we have checked
that the patterns observed in Fig. 1 are robust with respect
to the threshold R). For Hamiltonian (1), we observe four
main features of the electron dynamics: The electron ionizes
directly after ionization without return to the core (white re-
gion), the electron is trapped in a Rydberg state (gray regions),
the electron returns to the core on a subcycle timescale (light
purple region for which 	t/T � 1), and the electron returns
to the core after multiple laser cycles (colored layers in the
gray regions for which 	t/T > 1).
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We observe that the region with subcycle recollisions (for
which 	t/T � 1) is well described by the SFA and the
CCSFA. In these regions, hard recollisions [39] and soft
recollisions [37] coexist, depending on the initial conditions.
However, the long timescale processes are not captured by the
SFA and the CCSFA. On the other hand, the short timescale
processes, which occur close to the core, are not well captured
by the GC model. As we shall see in Sec. IV, what is well
captured by the GC model is long timescale processes such
as Rydberg state creation (gray regions) and Coulomb-driven
recollisions (for which 	t/T > 1). Figure 1 reflects the com-
plementarity of the CCSFA and the GC models on short vs
long timescale processes. For shorter plateau duration, the
number of layers attributed to the Coulomb-driven recolli-
sions is reduced (not shown here). The reason is investigated
in Sec. IV A. According to the PPT ionization rate, these long
timescale processes are the most probable as seen in Fig. 1,
and these processes are not well captured by the SFA and
CCSFA models.

In this section we analyze the influence of short vs long
timescale microscopic phenomena on macroscopic measure-
ments like the photoelectron momentum distributions in light
of the reduced models described in the previous section, in
particular the CCSFA and the GC models, and their comple-
mentarity.

A. Short timescale dynamics

First, we consider a circularly polarized (CP) field (ξ = 1),
used for attoclock measurements [42,43]. For ellipticity close
to 1, the initial drift momentum is large and the electron moves
away from the ionic core quickly. Therefore, the corrections
due to the Coulomb potential on the electron trajectories
occurs on a short timescale, and we expect the CCSFA to
be accurate. In attoclock measurements, the observable is the
offset angle 
. We assume that it corresponds to the scattering
angle of the T-trajectory


 = tan−1(Py/Px ),

where P = Pxx̂ + Pyŷ is the T-trajectory final momentum. In
order to see the Coulomb asymmetry in a PMD from a CP
field, a short laser pulse has to be used [42,43]. Otherwise,
the PMD would resemble a ring around the origin. Figure 2
shows the T-trajectory final momentum as a function of the
intensity I for ξ = 1. For Py (upper panel) we notice that the
dashed black curves (CCSFA), the solid black curves (GC
model), and the crosses [reference Hamiltonian (1)] overlap
for I ∈ [1012, 1016] W cm−2, and hence a good agreement
between these three models is observed. In addition, we notice
that the value of Py predicted by these three models is lower
compared to the SFA model. This is a microscopic (at the
level of the trajectory) signature of the Coulomb focusing.
Concerning the green (light gray) dashed curve [which is the
approximation of the CCSFA given by Eqs. (10)], we observe
that the approximation of the CCSFA [Eqs. (9)] becomes
good only at high intensity I � 1015 W cm−2, where the drift
momentum |pg,0| ∼ E0/ω is very large and where the electron
spends a very short time close to the ionic core. At a very high
intensity I ∼ 1016 W cm−2, all models converge to the same
value predicted by the SFA PSFA

y = (E0/ω)/
√

2.

FIG. 2. T-trajectory final momentum P = Px x̂ + Pyŷ as a func-
tion of the laser intensity I for ξ = 1. The crosses are the T-trajectory
final momentum of the reference Hamiltonian (1), where Px and
Py are in blue (lower panel) and red (upper panel), respectively.
The dotted, dashed, and solid black curves are the T-trajectory final
momentum of the SFA, the CCSFA, and the GC model, respectively.
The dashed and solid green (light gray) lines are the approximated
and the asymptotic T-trajectory final momentum using Eqs. (10) and
(13), respectively. The momenta are scaled by E0/ω and the intensity
is in W cm−2.

For Px (lower panel) we observe that the dashed black
curves (CCSFA) and the crosses [Hamiltonian (1)] overlap for
I ∈ [1012, 1016] W cm−2. The solid black curve (GC model)
agrees well with the crosses [reference Hamiltonian (1)] only
for intensities such that I � 8 × 1013 W cm−2. This intensity
range corresponds to a Keldysh parameter γ � 1.6 for which
the electron initial position is |r0| � E0/ω

2, i.e., for which
the GC model is quantitatively accurate. When the electron
ionizes close to the ionic core, there is a large contribution
of the Coulomb potential. Mapping the electron coordinates
to its GC coordinates [Eq. (5)], and evaluating the Coulomb
interaction on its GC only [Hamiltonian (12)] leads to a sig-
nificant underestimate of the Coulomb effect if the electron is
initially close to the ionic core. In the CCSFA, the evaluation
of the Coulomb potential is performed on the approximate
solution of the SFA. As a consequence, on a short timescale
after ionization, the evaluation of the Coulomb interaction is
performed on a position which is close to the real trajectory
[Hamiltonian (1)] and therefore close to the core.

We also observe that the dotted curve (SFA, PSFA
x = 0)

never agrees with the crosses [reference Hamiltonian (1)],
even at very high intensity. This is a microscopic signature
of the Coulomb asymmetry. In particular, we observe that
the Coulomb asymmetry persists even for high intensity. For
I � 1015 W cm−2, we observe that the dashed green (light
gray) curve [Eq. (10)] agrees well with the dashed black curve
(CCSFA) and the crosses [reference Hamiltonian (1)]. For
very high intensities, or equivalently for a very small Keldysh
parameter, the correction to the T-trajectory final momentum
using Eq. (10) becomes

lim
E0→∞

	pg

(E0/ω)
= − ωπ x̂

(2Ip)3/2
√

ξ 2 + 1
, (13)
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FIG. 3. Projection of the photoelectron momentum distributions
(PMDs) along pz for I = 8 × 1013 W cm−2 and ξ = 0.4 of the
reference Hamiltonian (1), the SFA [1,13], the CCSFA [17], and
the GC model. The CCSFA and the GC curves overlap. The shaded
region corresponds to |pz| < 0.05 a.u. The momentum pz is scaled
by E0/ω.

which is valid for high ellipticity. The offset angle measured
in an attoclock experiment is for high intensity

lim
E0→∞


 = π − tan−1 ξ (2Ip)3/2

ωπ
.

The larger the intensity, the closer to the core the electron
is initiated, and thus the T trajectory remains deflected by
the ionic core. In addition, in the reference Hamiltonian (1),
the larger the intensity, the larger the laser-atom interaction
r · E(t ) and the Coulomb potential contribution V (r) at the
tunnel exit. Therefore, the competition between the Coulomb
potential and laser interaction is always present even at high
intensity, as shown in Ref. [26]. Consequently, the Coulomb
asymmetry persists even at very high intensity. Notice that
these results do not depend on the shape of the laser pulse,
and are still true for ultrashort pulses.

In summary, as expected for large ellipticities (i.e., close
to CP), there is a very good agreement between the CCSFA
[Eqs. (9)] and the reference model [Hamiltonian (1)] for all
intensities. Indeed, for large ellipticities, the electron initial
drift momentum is also large, and the Coulomb potential acts
significantly on the electron trajectory for a short time after
ionization. The Coulomb interaction causes the deflection
of the T trajectory after ionization. For intensities I � 8 ×
1013 W cm−2, the GC model also captures this effect well.

B. Long timescale dynamics

For lower ellipticities, we show that important properties of
the system arising from long timescale processes, in particular
Coulomb-driven recollisions and Rydberg state creation, are
well described by the GC model. To illustrate this, we consider
an intensity I = 8 × 1013 W cm−2 (γ ∼ 1.6) and an ellipticity
ξ = 0.4.

1. Analysis of the ionized electron momentum

Figure 3 shows the projection of the photoelectron momen-
tum distribution on the perpendicular momentum pz. For the
reference Hamiltonian (1), the distribution presents a cusplike
peak at zero perpendicular momentum. In Ref. [44] a similar
shape of the distribution along the perpendicular momentum
measured in experiments and with CTMC calculations has
been reported. In the SFA, the drift momentum is conserved,

and therefore the distribution does not change with time. As a
result, the asymptotic distribution is Gaussian, in contrast with
the results with the reference Hamiltonian (1) and in experi-
ments [44]. The distribution of the CCSFA and the GC models
overlap. In agreement with the observations of Ref. [44], this
cusp is due to the long-range Coulomb interaction between
the ionized electron and the core

Next, we focus on the part of the PMDs for which |pz| <

0.05 a.u. (shaded region in Fig. 3). Figure 4 shows the PMDs
computed with CTMC simulations of the reference Hamil-
tonian (1), the SFA [Eqs. (8)] [1,13], the CCSFA [Eqs. (9)]
[17], and the GC model [Hamiltonian (12)]. The T-trajectory
final momentum is shown with a black dot for each model.
The PMDs are mainly composed of two clouds centered
around the T-trajectory final momentum. The two clouds are
roughly symmetric with respect to the origin according to
the symmetry (r, p, t ) 
→ (−r,−p, t + T/2) of the reference
Hamiltonian (1) for a constant laser envelope ( f = 1) which
is also preserved by the initial conditions [see Eq. (2)] and the
reduced models.

For the reference Hamiltonian (1), the PMD in the left-
most panel of Fig. 4 exhibits three significant features: The
asymmetry with respect to the ŷ axis, the relatively high den-
sity of electrons with near-zero momentum—corresponding
to near-zero-energy photoelectrons [45]—and the tails for
high momentum (regions for |px| > 1). In order to interpret
these features, we compare this PMD with those of the three
reduced models. The CTMC approach we use does not take
into account any effects due to the absorption of photons or
interference after ionization, which lead for example to the
rings in ATI [46]. These would of course be included in a
time-dependent Schrödinger equation (TDSE) calculation, but
also in other kinds of semiclassical calculations.

In the PMD of the SFA [1,13] (second panel of Fig. 4 from
the left), the two clouds are symmetric with respect to the ŷ
axis, there is a lack of near-zero-energy photoelectrons, and
there are no tails for high momentum. Therefore, these effects
observed in the PMD of Hamiltonian (1) are a consequence
of the Coulomb potential, which is expected to be significant
here since the characteristic time of the ionized trajectories is
long compared to one laser cycle.

In the PMD of the CCSFA [17] (third panel of Fig. 4 from
the left), the two clouds are asymmetric with respect to the
ŷ axis. As discussed in the previous section, after ionizing,
the electron trajectories deviate because of the Coulomb in-
teraction: This asymmetry is the Coulomb asymmetry. With
the CCSFA, however, we observe that the distribution is
very low around the origin of momentum space, i.e., there
is still a lack of near-zero-energy photoelectrons. Indeed, the
drift momentum of the near-zero-energy photoelectrons is low
and the conditions on the validity of the CCSFA are not
met. We notice that the integrals we compute numerically
for determining the correction to the final momentum of the
electron [Eqs. (9)] do not always converge. Obviously the
integrals diverge if for instance pg,0 = 0. Also, for small drift
momentum, it is challenging to obtain numerically converged
integrals. Finally, we observe tails for |px| > 1 in the PMD of
the CCSFA like in the PMD of Hamiltonian (1).

In the PMD of the GC model (rightmost panel of Fig. 4),
the clouds are asymmetric with respect to the ŷ axis. After
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FIG. 4. Photoelectron momentum distributions (PMDs) for |pz| < 0.05 in logarithmic scale for I = 8 × 1013 W cm−2 and ξ = 0.4 of the
reference Hamiltonian (1), the SFA [1,13], the CCSFA [17], and the GC model. The upper (lower) black dot is the T-trajectory final momentum
for each model (its symmetric momentum with respect to the origin). The momenta are scaled by E0/ω.

ionizing, the electron trajectories are deflected by the
Coulomb force exerted on their GC [24]. One advantage of
this model is that the final momentum of the electron has
an explicit expression for V (r̄g) ≈ −1/|r̄g| (see Appendix B),
and as a consequence the computations of the CTMCs are as
fast as the computation of the CTMCs of the SFA. Moreover,
this model does not rely on computing integrals that may or
may not converge. In addition, we observe that the asymmetric
clouds are connected to the origin of the momentum space,
showing that the near-zero-energy photoelectrons which ion-
ize directly are well captured by this model. We distinguish
the near-zero-energy photoelectrons which ionize directly
from the near-zero-energy electrons induced by rescattering;
the latter are the cause of the low-energy structure (LES)
[39,47] in the photoelectron energy spectra. However, the ab-
sence of tails in the GC model suggests that the tails observed
in the reference model and the CCSFA are the contribution of
rescattered electrons [37,48].

Hence, the asymmetry observed in the PMD of the refer-
ence Hamiltonian (1) is also captured by the reduced models
of the CCSFA and the GC. This asymmetry is due to the
deviation of the electrons or their GC originating from the
Coulomb interaction. In addition, near-zero-energy photoelec-
trons are captured by the GC model. The tails in the PMDs
are due to the rescattering of electrons that have experienced a
recollision [37], in which the electron comes close to the ionic
core and is rescattered due to the competitive forces between
the laser and the Coulomb interaction. This short timescale
process is well known and well described by the CCSFA (see,
e.g., Refs. [37,39,40,48]).

2. Analysis of the initial conditions

We investigate the initial conditions of the electron after
tunnel ionization to interpret and understand the origin of
the near-zero-energy photoelectrons. Figure 5 shows the final
energy of the electron as a function of its initial conditions
after tunneling for I = 8 × 1013 W cm−2 and ξ = 0.4 for
the reference Hamiltonian (1), the SFA [Eqs. (8)] [1,13],
the CCSFA [Eqs. (9)] [17], and the GC model [Hamiltonian
(12)]. The space of initial conditions is restricted to p‖ =
pz,0 = 0, which is the most probable initial longitudinal and
perpendicular momentum.

For the reference Hamiltonian (1) (upper panel of Fig. 5),
we observe two gray regions of initial conditions where the

electron final energy is negative, i.e., in which the electron
is trapped in Rydberg states [28]. The color corresponds
to the final energy of photoelectrons which have reached

FIG. 5. Electron final energy as a function of the initial condi-
tions (t0, p⊥, p‖ = pz,0 = 0) for I = 8 × 1013 W cm−2 and ξ = 0.4
of the reference Hamiltonian (1), the SFA [1,13], the CCSFA [17],
and the GC model (12). In gray-colored regions, the electron final
energy is negative. The white dashed lines are contours of constant
ionization rate W (t0, p⊥n̂⊥(t0)) (see Appendix A) for W/ max(W ) =
10−1, 10−5, and 10−15, from bottom to top. The red dots correspond
to the initial conditions for which the electron final energy in the
SFA is zero, i.e., ESFA = 0 [see Eq. (14)]. The solid black lines
correspond to the initial conditions for which the GC energy is zero,
i.e., E = 0 [see Eq. (15)]. The black dashed line corresponds to the
initial conditions for which the GC angular momentum is zero and
the initial radial momentum is negative, i.e., L = 0 and pr (t0) < 0,
where L = r̄g × p̄g and pr = p̄g · r̄g/|r̄g|. The momentum and the
energy are scaled by E0/ω and Up = E 2

0 /4ω2, respectively.
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the detector. Enclosed by the gray regions, we observe that
there are ionized electrons whose energy depends extremely
sensitively on the initial conditions, as a signature of the
rescattering process (see also the uppermost panel of Fig. 1).
The boundaries of the gray regions are surrounded by regions
of near-zero-energy photoelectrons which ionize directly. The
part of the gray region with small p⊥ (lower part of the left
gray regions) is in a region where the ionization rate is high.
As a consequence, a significant number of electrons which
ionize directly reach the detector with near-zero energy, as
observed in the leftmost panel of Fig. 4.

For the SFA [1,13], the final momentum of the electron is
given by its initial drift momentum pg,0 since it is constant in
time. As a consequence, the electron final energy is

ESFA = |pg,0|2
2

. (14)

In the SFA (second panel from the top of Fig. 5), only
two initial conditions lead to near-zero-energy electrons,
located at p⊥ = −(E0/ω)ξ/

√
ξ 2 + 1 and ωt0 = π , and at

p⊥ = −(E0/ω)/
√

ξ 2 + 1 and ωt0 = 3π/2, represented by red
dots in Fig 5. These initial conditions are located where the
ionization rate is one or several orders of magnitude lower
than the maximum ionization rate. The consequence is a lack
of near-zero-energy photoelectrons in the PMD for the SFA
observed in Fig. 4.

For the CCSFA [17] (third panel from the top of Fig. 5),
we observe the same patterns as for the SFA. The initial con-
ditions of the near-zero-energy photoelectrons which ionize
directly for the CCSFA are located in the same region of low
ionization rate as for the SFA. Here again, the consequence
is the lack of near-zero-energy electrons for the CCSFA ob-
served in Fig. 4. However, we observe in the CCSFA a region
with an abrupt change of energy with initial conditions across
the dark colored path connecting the two red dots, absent in
the SFA. This path is also present in the reference Hamiltonian
(1). It is due to the rescattering process, i.e., the correction
of the momentum of the CCSFA due to a recollision in the
SFA (see second panel from the top of Fig. 1). Furthermore,
this path separates near-zero-energy photoelectrons induced
by rescattering—responsible for the LES in the photoelectron
energy spectra [39,47]—from high energy photoelectrons.
The CCSFA has been used to describe these short timescale
processes (see for instance Refs. [37,39,40,48]).

The final energy of the electron using the GC model is
given by

E = |pg,0|2
2

+ V (rg,0). (15)

The GC energy allows us to clearly distinguish two types
of trajectories: Trajectories with E > 0 and E < 0. The set
of initial conditions for which E < 0 is referred to as the
rescattering domain. Comparing the lowest panels of Figs. 1
and 5, this definition of the rescattering domain includes the
Rydberg state creations, the Coulomb-driven recollisions, and
the subcycle recollisions most weighted by the PPT ionization
rate. Notice that this definition misses a piece of the light
purple band between the two rescattering domains in Fig. 1,
which carries a lower weight according to the PPT ionization
rate for all ellipticities. In the top panel of Fig. 5 we observe

that the condition E < 0 determines well the gray region
of initial conditions in the reference Hamiltonian (1). The
initial conditions for which the electron final energy is zero
in the SFA are contained inside this region. The Coulomb
potential creates this region in which the GC motion is
bounded, which allows the electron to come back to the ionic
core and to rescatter after multiple laser cycles, or to be
trapped into Rydberg states, scenarios analyzed in Sec. IV.
The boundaries of this rescattering domain correspond to the
initial conditions for which the electron final energy is zero,
i.e., E = 0. We observe that the inclusion of the Coulomb
potential pushes down the near-zero-energy photoelectrons to
regions in momentum space for which the ionization rate is
higher. As a consequence, we observe a significant number
of near-zero-energy photoelectrons in the PMD of the GC
model. Moreover, we notice that E = ESFA + V (rg,0), and
since the Coulomb potential is strictly negative, it is evident
that electrons lose energy because of the Coulomb interaction,
i.e., that electrons are subjected to Coulomb focusing.

3. Types of trajectories

In order to understand the origin of the sensitivity to initial
conditions observed in the rescattering domain, we analyze
the different types of trajectories. Figure 6(a) shows the scat-
tering angle of the electron, whose trajectory is obtained from
the reference Hamiltonian (1), as a function of the initial con-
ditions (t0, p⊥) for ξ = 0.4. The scattering angle corresponds
to the angle between momentum of the ionized electron p at
infinity and the major polarization axis (x̂ axis). In Figs. 6(b)–
6(e) the dark blue (dark gray) curves are the trajectories of the
electron of Hamiltonian (1), with initial conditions indicated
by the corresponding markers in Fig. 6(a). The cyan (light
blue) curves are the GC trajectories of Hamiltonian (12). For
Figs. 6(c)–6(e) [as well for Figs. 7(d), 7(e) and 9(d)], the GC is
initialized far from the ionic core (for |r| � 2E0/ω

2), during
the plateau, in the domain of validity of the GC model (see
Sec. V B 4 for a study of the discrepancy between the GC and
the electron trajectory).

Figure 6(b) shows a subcycle recollision. The initial con-
dition of this trajectory is near the condition for which the
GC angular momentum is L = r̄g × p̄g ≈ 0 and the initial
GC radial momentum is negative, and corresponds to the
light purple region in the uppermost panel of Fig. 1. Right
after ionization, the GC trajectory is (mostly) straight, brings
the electron to the core, and the electron recollides. The
recollision occurs in a timescale shorter than one laser cycle,
referred to as a subcycle recollision. We notice that if the
electron tunnel ionizes further away from the ionic core,
the same conditions (near zero GC angular momentum and
negative initial radial momentum) could lead to a multiple
laser-cycle recollision. Looking at the third panel from the top
of Fig. 1, we observe that this type of recollisions, for which
rg,0 · pg,0 < 0 and rg,0 × pg,0 ≈ 0, are well predicted by the
CCSFA.

Figure 6(c) shows a direct ionization. The initial condition
of this trajectory is in a regular region, for which the GC
energy is positive E > 0. The GC trajectory is unbounded, and
leaves the ionic core region. The electron also leaves the ionic
core region, driven by its GC.
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FIG. 6. (a) Scattering angle of the electron as a function of the
initial conditions after tunneling (t0, p⊥, p‖ = pz,0 = 0) for I = 8 ×
1013 W cm−2 and ξ = 0.4. The white dashed lines are the contours
of constant ionization rate W (t0, p⊥n̂⊥(t0)) (see Appendix A) for
W/ max(W ) = 10−1, 10−5, and 10−15, from bottom to top. The red
dots correspond to the initial conditions for which ESFA = 0 [see
Eq. (14)]. The solid black line corresponds to the initial conditions
for which E = 0 [boundaries of the rescattering domain for the GC
model, see Eq. (15)]. The black dashed line corresponds to the
initial conditions for which the GC angular momentum is zero and
the initial radial momentum is negative, i.e., L = 0 and pr (t0) <

0, where L = r̄g × p̄g and pr = p̄g · r̄g/|r̄g|. Gray areas show the
conditions for which the electron is trapped into Rydberg states.
(b)–(e) Dark blue (dark gray) and cyan (light gray) curves are the
electron and its GC trajectory, respectively. The initial condition of
each trajectory is associated with a marker represented in (a). These
trajectories represent a typical: (b) subcycle recollision, (c) direct
ionization, (d) Coulomb-driven recollision, and (e) Rydberg state
creation. Panels (b) and (c) have positive GC energy, while (d) and
(e) have negative GC energy. Shaded panels indicate the cases with
recollisions. The momentum and position are scaled by E0/ω and
E0/ω

2, respectively.

Figure 6(d) shows a Coulomb-driven recollision. The ini-
tial condition of this trajectory is in one of the main chaotic
regions, for which the GC energy is negative E < 0, cor-
responding to the colored layers in the uppermost panel of
Fig. 1. The GC trajectory is bounded. As a consequence,
the electron returns to the ionic core, driven by its GC, and
recollides with the ionic core. After rescattering, the GC
energy jumps to another energy level [25], and the electron
could ionize.

Figure 6(e) shows a Rydberg state creation. The initial con-
dition of this trajectory is in the gray area, for which the GC

FIG. 7. (a) Electric field components and amplitude as a function
of ωt . The gray regions indicate the ionization time for which the
final scattering angle is computed in (b) and (c). (b) and (c) Final
scattering angle of the ionized electron as a function of the initial
conditions (ωt0, p⊥, p‖ = pz,0 = 0) for I = 8 × 1013 W cm−2 and
ξ = 0.4 for the reference Hamiltonian (1). The white dashed lines
are the contour plot of the ionization rate W (t0, p⊥n̂⊥(t0)) (see
Appendix A) for W/ max(W ) = 10−1, 10−5, and 10−15, from bottom
to top. The solid black line corresponds to the initial conditions
for which E = 0 [boundaries of the rescattering domain for the GC
model, see Eq. (15)]. The dark gray region corresponds to the initial
conditions for which the electron is trapped into a Rydberg state at
the end of the pulse. (d) and (e) Dark blue (dark gray) and cyan (light
gray) curves are the electron and its GC trajectory, respectively. The
initial conditions of the trajectories in (d) and (e) are indicated by
circles in (b) and (c), respectively. The trajectories in (d) and (e)
are initialized at the same laser phase, but (d) is a Coulomb-driven
recollision and (e) is a Rydberg state creation. The laser amplitude
is in a.u., the momentum and the position are scaled by E0/ω and
E0/ω

2, respectively.

energy is negative E < 0. The GC trajectory is bounded. How-
ever, contrary to the Coulomb-driven recollision [Fig. 6(d)],
the laser pulse ends before the occurrence of the recolli-
sion. The Rydberg state creation corresponds to a frustrated
Coulomb-driven recollision. The laser pulse duration plays
an important role in determining the ratio between Coulomb-
driven recollisions and Rydberg state trapping (see Sec. IV A).

We observe that, in the four types of trajectories, two
of them cannot be predicted by the SFA. While direct ion-
ization and one-laser-cycle rescattering [Figs. 6(c) and 6(b),
respectively] are, at least qualitatively, predictable by the
SFA, Coulomb-driven recollisions and Rydberg state creation
[Figs. 6(d) and 6(e), respectively] are predictable only when
the Coulomb potential is taken into account. In the next
section we analyze Coulomb-driven recollisions and Rydberg
state creation in more detail.
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IV. COULOMB-DRIVEN RECOLLISIONS
AND RYDBERG STATE CREATION

A. Ionization time dependence

Figures 7(b) and 7(c) show the final scattering angle of
the ionized electron as a function of its initial conditions
(ωt0, p⊥), for an ionization that takes place at the beginning
of the pulse and at the end of the pulse, respectively [see
Fig. 7(a)]. Figures 7(d) and 7(e) show two trajectories with
the same initial momentum and the same laser phase, but with
two distinct ionization times (separated by six laser cycles).
Since the phase is the same, the GC trajectories [cyan (light
gray) curves] in Figs. 7(d) and 7(e) are the same. Since the
GC energy of these trajectories is negative, the GC trajectory
is bounded.

In Fig. 7(d), for which the electron ionizes at the beginning
of the plateau, we observe that the electron oscillates around
the bounded GC trajectory, which drives the electron back to
the ionic core. After about four oscillations around the GC
trajectory, the electron comes back to the ionic core. At this
time, the GC energy jumps to another energy level due to
the combined Coulomb and laser interaction, and the electron
ionizes. This is a Coulomb-driven recollision.

In Fig. 7(e) we observe that the electron oscillates as well
around the bounded GC trajectory, which drives the electron
back towards the core. However, when the electron is still far
from the ionic core, the electric field is turned off, and the
electron is trapped into a Rydberg state. The Rydberg state
in which the electron is trapped corresponds almost to the
Rydberg state of its GC.

In other words, for both trajectories of Figs. 7(d) and 7(e),
the electron oscillates around the same GC trajectory. The
difference between these two trajectories is the remaining time
10T − t0 before the laser field is turned off. In Fig. 7(d) the
electron has enough time to undergo a close encounter with
the ionic core (|r| < E0/ω

2) before the electric field is turned
off, when in Fig. 7(e) the electric field turns off sooner, while
the electron is still far from the ionic core (|r| > E0/ω

2).
The close encounter with the ionic core distinguishes the
Coulomb-driven recollision from the Rydberg state creation.
The scenarios of Coulomb-driven recollision and Rydberg
state creation are closely related, since in both cases, the
electron oscillates around a negative-energy GC.

Looking at the excursion time per laser cycle 	t/T of the
GC model depicted in the lowest panel of Figs. 1 and 8(a),
we observe similar layered patterns as for the reference
Hamiltonian (1) [see uppermost panel of Figs. 1, 5(a), 6(a),
7(b), and 7(c)]. These layered patterns correspond to trajec-
tories which spend multiple laser cycles far from the origin
before returning to the ionic core, such as the one depicted in
Fig. 6(d) (Coulomb-driven recollision). Each layer is associ-
ated with a range of 	t/T around an integer number, where,
for decreasing ionization time for ωt0 < π , 	t/T associated
with each layer increases.

In order to picture roughly the conditions for which the
Coulomb-driven recollisions occur, we first approximate the
potential by a hard-Coulomb potential, i.e., V (r̄g) ≈ −1/|r̄g|,
reducing this GC model to a Kepler problem (see also
Appendix B). Then we consider the period of the orbit
per laser cycle Tg/T = ω/(2|E |)3/2 [using V (r̄g) ≈ −1/|r̄g|],

FIG. 8. Recollisions in the GC model for I = 8 × 1013 W cm−2

and ξ = 0.4. (a) 	t/T as a function of the initial conditions
(t0, p⊥, p‖ = pz,0 = 0) (zoom of the lowest panel of Fig. 1 on
the largest rescattering domain), where 	t is the smallest time
interval such that |r̄(t0 + 	t )| = 5 a.u., with t0 + 	t < Tf (laser
pulse duration Tf = 10T ) and r̄(t ) = r̄g(t ) + �(t )/ω2 (reconstructed
trajectory). The white and dark gray regions are where this condition
is never met, and where the GC energy is positive (white region)
and negative (gray region). (b) Tg/T = ω/(2|E |)3/2 (see text). The
dark gray region is where the GC perihelion [see Eq. (B2)] is greater
than the quiver radius E0/ω

2 ≈ 14 a.u., or where t0 + Tg � Tf . The
inset is a zoom. The crosses are the location of the GC circular
orbits (see Sec. IV B). (a) and (b) The red dots and the black
thick dashed curves are the same as in Fig. 5(a). The dark dashed
lines are contours of constant ionization rate W (t0, p⊥n̂⊥(t0)) (see
Appendix A) for W/ max(W ) = 10−1, 10−5, and 10−15, from bottom
to top. (c) The lines with markers are the GC trajectories |r̄g(t )|
with initial conditions plotted in (b) with the corresponding marker
and color, and the light gray lines are the reconstructed trajectories
|r̄(t )|. The light gray region is when the laser field is turned off.
The momenta and the positions are scaled by E0/ω and E0/ω

2,
respectively.

where Tg is referred to as the GC orbit period in what follows.
Figure 8(b) shows the period of the GC orbit per laser cycle
Tg/T = ω/(2|E |)3/2 as a function of the initial conditions in
the largest rescattering domain. The gray regions correspond
to the regions where the GC perihelion [see Eq. (B2)]—the
closest distance between the GC orbit and the ionic core—is
greater than E0/ω

2 or where t0 + Tg > Tf . Figure 8(c) shows
the GC distance from the ionic core |r̄g(t )| as a function of
time per laser cycle of a sample of initial conditions indicated
with the markers in Fig. 8(b), and the distance from the ionic
core |r̄(t )| of the corresponding reconstructed trajectories. We
see that the color code associated with the GC orbit period Tg

agrees well with the color code associated with the excursion

053405-10



INCLUSION OF COULOMB EFFECTS IN LASER-ATOM … PHYSICAL REVIEW A 99, 053405 (2019)

time 	t in Fig. 8(a). Indeed, in Fig. 8(c) we observe that the
larger the period of the GC orbit followed by the electron,
the larger its excursion time. As a consequence, the GC orbit
period Tg is a good observable to estimate the excursion time
of the electron 	t . In addition, the GC orbit period of the
trajectory associated with the leftmost marker in Fig. 8(b)
is such that t0 + Tg > Tf . The electron does not undergo
recollision and ends up trapped in a Rydberg state since it
comes back to the ionic core after the end of the laser pulse.
Therefore, electrons undergoing Coulomb-driven recollisions
are typically driven by GC orbits such that Tg < Tf − t0.

In summary, the electron is likely to undergo a Coulomb-
driven recollision if it oscillates around a GC with a neg-
ative energy E < 0, a positive initial GC radial momentum
pr (t0) = pg,0 · rg,0/|rg,0| > 0, a GC orbital period such that
Tg = 2π/(2|E |)3/2 < Tf − t0, and a GC perihelion smaller
than the quiver radius. Notice that the condition that the
perihelion of the GC orbit is smaller than the quiver radius is
similar to L ≈ 0. As a consequence, all recollisions are likely
driven by small absolute values of the GC angular momentum.
In contrast, the electron is likely to be trapped in a Rydberg
state if it oscillates around a GC with a negative energy
E < 0 and either an orbital period greater than the laser pulse
duration Tg > Tf − t0 or a perihelion greater than the quiver
radius, i.e., a large GC angular momentum. In the next section
we show that this latter process is robust due to the existence
of center-saddle periodic orbits which are weakly unstable.

B. Long plateau durations

In the lowest panel of Figs. 1 and 8(a) we notice some gray
regions in the upper and lower part of the rescattering domain
for which the GC orbit period is such that Tg < Tf − t0. How-
ever, in these regions, the electron does not recollide because
the GC perihelion is large (greater than E0/ω

2 ≈ 14 a.u.), as
it is shown in Fig. 9(a). As a consequence, there exists no
time 	t such that |r̄(t0 + 	t )| is small, i.e., it is unlikely the
electron recollides. This is also a scenario we observe in
the reference model (1), in which the electron spins around
the core for multiple laser cycles without recolliding.

For long plateau durations (Tp = 100T , Tf = Tp + 2T ) and
an ionization time at the beginning of the laser pulse (t0 �
Tp), we expect that electrons oscillating around a negative
near-zero-energy GC (for which the GC orbit period is such
that Tg > Tf − t0) and electrons with a large GC perihelion
[see Eq. (B2)] (GC perihelion greater than E0/ω

2 that pre-
vents the electron from rescattering) create Rydberg states.
In Fig. 9(b) we observe indeed a pink thin layer of electrons
creating Rydberg states, with a near-zero-energy GC such as
the dark blue (dark gray) trajectory depicted in Fig. 9(d). In
addition, we observe two regions of initial conditions with
smaller values of final energy for which the electrons are
trapped in Rydberg states after having remained in the vicinity
of the ionic core, for which the GC perihelion is larger than
the quiver radius, as shown for the dark blue (dark gray)
trajectory of the reference Hamiltonian in Fig. 9(e). However,
by comparing Figs. 9(a) and 9(b), we observe that not all the
electrons with a GC perihelion larger than the quiver radius
are captured into Rydberg states. Here we show how some
electrons remain trapped while others do not.

FIG. 9. The parameters are I = 8 × 1013 W cm−2, ξ = 0.4 and
plateau duration Tp = 100T . (a) GC perihelion [see Eq. (B2)] in
the rescattering domain depicted in the space of initial conditions
(t0, p⊥, p‖ = pz,0 = 0). (b) Final negative energies of the electron
trajectories of the reference Hamiltonian (1), where (c) is a zoom
around the trapping region. The white color in (a)–(c) denotes an
electron not trapped at the end of the laser pulse. (d) and (e) Trajec-
tories for the initial conditions indicated with a diamond in (c) and a
triangle in (b), respectively. The dark blue (dark gray) and cyan (light
gray) curves are the electron trajectory of the reference Hamiltonian
(1) and the GC trajectory, respectively. The thick dark blue (dark
gray) curve in (e) is a center-saddle periodic orbit very close to the
region depicted in (c). The cyan crosses in (a) and (b) are the initial
conditions of the clockwise (upper cross) and anticlockwise (lower
cross) circular GC orbits. The cyan (light gray) curve in (e) is the
GC clockwise circular orbit, whose initial conditions are very close
to the trapping region depicted in (c). The momenta and positions are
scaled by E0/ω and E0/ω

2, respectively.

As observed in Fig. 9(c), the filled region of initial con-
ditions leading to electrons trapped in Rydberg states with
a large GC perihelion is roughly regular. Figure 9(e) shows
in dark blue (dark gray) a typical trajectory of Hamiltonian
(1) initiated inside this regular region. We observe that this
trajectory turns around the core multiple times without being
rescattered by the ionic core. As a consequence, the GC
energy of this electron remains negative and roughly constant
throughout the laser pulse duration [25]. When the laser field
is turned off, its GC energy is still negative and the electron
is trapped in a Rydberg state. Near the initial conditions of
this trajectory, there is a center-saddle periodic orbit of the
reference model (1) which exhibits the same pattern as this
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trajectory. This center-saddle periodic orbit is depicted in
thick dark blue (dark gray) in Fig. 9(e). In its neighborhood,
the periodic orbit is center in one plane and saddle in a trans-
verse plane defined by the eigenvectors of the monodromy
matrix associated with the complex and real eigenvalues,
respectively. Hence, there are two-dimensional invariant tori
surrounding the periodic orbit in the center direction. The
saddle direction is weakly unstable (its eigenvalue is ∼1.4)
and the orbit period is large (period of 30T ), which implies
that the unstable direction pushes slowly the electron away
from each invariant torus. Consequently, trajectories in the
vicinity of this periodic orbit remain close to it for relatively
long times, even for long laser pulses.

In Fig. 9(a) we observe that when the GC perihelion is
large (greater than E0/ω

2), the recollisions are unlikely to
happen as mentioned earlier. In these two regions of large GC
perihelion, there are two cyan crosses indicating the initial
conditions for which the GC orbit is circular. The initial
conditions of these circular orbits are p⊥ = A(t0) · n̂⊥(t0) ±
ω2/|E(t0)| cosh τ0(t0) with ωt0 = nπ and n ∈ N. They are
close to the regular region in Figs. 9(b) and 9(c). The circular
orbit of the GC is depicted in cyan (light gray) in Fig. 9(e).
We observe that the cyan (light gray) curve provides the lead-
ing behavior of the averaged trajectory of the center-saddle
periodic orbit in thick dark blue (dark gray). The energy of
the GC circular orbits (clockwise and anticlockwise) is given
by E = −ω2

√
ξ 2 + 1/(2E0 cosh τ ) and their perihelion by

1/(2|E |).
In summary, there is a region of initial conditions for which

the GC perihelion is larger than the quiver radius E0/ω
2,

preventing the electron to recollide with the core. Instead, the
electron is trapped in a Rydberg state. We showed that this
process is robust because in the neighborhood of these initial
conditions, there are center-saddle periodic orbits with weakly
unstable directions that keep the electron in the vicinity of the
core.

C. Rate of Rydberg state creation

Next, we investigate the rate of Rydberg state creation as
a function of the laser ellipticity. A Rydberg state is created
if the electron energy is negative at the end of the laser
pulse. In the SFA, the condition of Rydberg state creation
ESFA = 0 [see Eq. (14)] is a one-dimensional curve (t0, p�

0(t0))
in a four-dimensional space (t0, p0), with p�

0(t0) = A(t0). As
a consequence, the probability of Rydberg state creation is in
fact zero. In Refs. [28,49], the yield of Rydberg state creation
is given by YSFA = ∫ Tf

0 dt0 W (t0, p�
0(t0)).

Figure 10 shows the Rydberg state creation probability as
a function of the laser ellipticity from CTMC simulations of
the reference Hamiltonian (1) (thin solid curves with markers)
and the SFA prediction (dotted curves) YSFA/N with N =∫ Tf

0 dt0
∫ ∞
−∞ d3p0 W (t0, p0) the yield of ionized electrons. In

Ref. [49] The SFA prediction is normalized such that it
agrees at ξ = 0 with the CTMC simulations of the reference
Hamiltonian (1) for Tp = T (thin lines with star markers).
Notice that only the prediction of the SFA is artificially nor-
malized. For the SFA prediction (dotted curves), we observe a
good agreement with the reference model at high ellipticity
for all intensities and at low ellipticity for high intensity.

FIG. 10. Rydberg state creation (RSC) probability as a func-
tion of the laser ellipticity ξ for I = 8 × 1013, 3 × 1014, and 8 ×
1014 W cm−2. The RSC probability is defined as the ratio of the RSC
yield Y to the ionized electron yield N = ∫ Tf

0 dt0

∫ ∞
−∞ d3p0 W (t0, p0).

The thick solid and dotted curves are our prediction with the GC
model YGC/N [Eq. (18)], and the SFA YSFA/N , respectively. The
thin curves with stars and crosses are the CTMC simulations of the
reference Hamiltonian (1) using Tp = T and Tp = 8T , respectively.
The filled areas show the estimate of the Coulomb-driven recollision
probability for Tp = 8T . Red circles show the probability of RSC at
the critical ellipticity ξc given by Eq. (22).

However, there is a large discrepancy at low ellipticity for low
and intermediate intensities, i.e., for I � 5 × 1014 W cm−2.
For such intensities, the rescattering domain where Rydberg
states arise is wide compared to the gradient of the ionization
rate as observed in the top panel of Figs. 5 and 6(a). As a
consequence, the SFA prediction that Rydberg states arise
from the center of the rescattering domain is not accurate.

On the contrary, in Fig. 5 we see that the GC model is a
good approximation for evaluating the size of the rescattering
domain where the Rydberg states are created. In the GC
model, a Rydberg state can be created only if the GC energy is
negative E < 0. As an approximation, we neglect the cases for
which the electron undergoes a Coulomb-driven recollision
according to the GC model. The GC prediction of the yield of
Rydberg state creation is then given by

YGC =
∫

�R

W (t0, p0) dt0d3p0, (16)

where �R = {t0 ∈ [0, Tf ], p0 ∈ R3 | E < 0} is the set of ini-
tial conditions such that the GC energy E is negative [see
Eq. (15)].

According to Sec. IV A, an electron populating the rescat-
tering domain either undergoes a Coulomb-driven recolli-
sion or is trapped in a Rydberg state. In order to minimize
Coulomb-driven recollisions, we compare the GC prediction
with CTMC simulations of the reference model for Tp = T .
Figure 10 shows the GC prediction of Rydberg state cre-
ation probability (solid curves) YGC/N . We observe an excel-
lent agreement between the results of the simulation of the
reference model (1) for Tp = T and the GC prediction for all
ellipticities and intensities plotted here. For increasing in-
tensity, the volume of the rescattering domain decreases,
as shown in the next section. Hence, at high intensity, the
ionization rate varies on large scales compared to the size
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of the rescattering domain, and the ionization rate is almost
constant in the rescattering domain. Therefore, for high in-
tensity, YSFA ∝ YGC as we observe in Fig. 10 for I = 8 ×
1014 W cm−2.

V. THE SHAPE OF THE RESCATTERING DOMAIN
AND ITS EXPERIMENTAL IMPLICATIONS

A. Analysis of the shape of the rescattering domain

After ionization, the GC energy of the electron is given by
Eq. (15). Substituting A(t0) = [A(t0) · n̂‖(t0)]n̂‖(t0) + [A(t0) ·
n̂⊥(t0)]n̂⊥(t0) in Eq. (15), the rescattering domain defined by

E < 0 is the ensemble of initial conditions (t0, p0) such that

[p‖ − p�
‖(t0)]2 + [p⊥ − p�

⊥(t0)]2 + p2
z,0 < 	p(t0)2, (17)

where 	p(t0) = √
2|V (r̄g(t0))|, p�

0(t0) = p�
‖(t0)n̂‖(t0) +

p�
⊥(t0)n̂⊥(t0), hence p�

‖(t0) = A(t0) · n̂‖(t0) and p�
⊥(t0) =

A(t0) · n̂⊥(t0). Here r̄g(t0) = −E(t0) cosh τ0(t0)/ω2 [see
Eq. (7a)]. For a given ionization time t0, the rescattering
domain is a sphere centered at p�

0(t0) and of radius 	p(t0) in
momentum space. The yield of Rydberg state creation in the
GC model [see Eq. (16)] becomes

YGC =
∫ Tf

0
dt0 	p(t0)3

∫ 1

0
dρ ρ2

∫ 2π

0
dφ

∫ π

0
dθ W (t0, p�

0(t0) + ρ	p(t0)n̂(t0, φ, θ )) sin θ, (18)

where n̂(t0, φ, θ ) = n̂‖(t0) cos φ sin θ + n̂⊥(t0) sin φ sin θ +
ẑ cos θ . Equation (18) is used to compute the yield of Rydberg
state creation of Fig. 10, and the integrals are performed
numerically.

Figures 11(a) and 11(b) show the boundaries of the rescat-
tering domain in the space (t0, p‖, p⊥, pz,0 = 0) for ξ = 0.2
and ξ = 0.7. To see how the shape of the rescattering do-
main evolves as a function of the parameters, we focus on
the conditions p‖ = pz,0 = 0 for which the ionization rate is
maximum. For low ellipticity, the surface p‖ = pz,0 = 0 and
the rescattering domain intersect in approximately ellipsoidal
subdomains, while for high ellipticity, they intersect in a band.

1. Close to LP

First, we consider the second order Taylor expansion of the
shape of the rescattering domain for p‖ = pz,0 = 0 as a func-
tion of the ellipticity in the plane (t0, p⊥) close to LP (ξ � 1).
For low ellipticity, the rescattering domain is approximately
a set of ellipses, with two subsets: ellipses at the peak laser
amplitude (around ωt0 = nπ , with n ∈ N), and ellipses at the
lowest laser amplitude [around ωt0 = (n + 1/2)π ].

For p‖ = pz,0 = 0, the local minima of the final electron
energy [see Eq. (15)] are located at ωt�

0 = nπ/2 and p�
⊥ =

p�
⊥(t�

0 ) for n ∈ N. The local minima of the GC energy are the
red dots depicted in Fig. 11(c). In Eq. (17) we fix p‖ = pz,0 =
0 and we Taylor expand with respect to t0 − t�

0 . We obtain that
the rescattering domain for p‖ = pz,0 = 0 can be written in
the form

(p⊥ − p�
⊥)2

	p2
⊥

+ (t0 − t�
0 )2

	t2
0

< 1, (19)

where terms of order (t0 − t�
0 )4 and higher are neglected.

Consequently, the subsets of rescattering domain in the plane
(t0, p⊥) defined by p‖ = pz,0 = 0 are approximately ellipses
and are centered around the local minima of the GC energy
(t�

0 , p�
⊥). The expressions for p�

⊥, 	p⊥, and 	t0 depend on
whether the ellipse is at the peak laser amplitude or at the
lowest laser amplitude.

a. Rescattering domains at the lowest laser amplitude.
After Taylor expanding Eq. (17) with respect to t0 and
ξ around the local minima ωt�

0 = (n + 1/2)π and ξ = 0,

respectively, one gets (at the third order in the Taylor expan-
sion) p�

⊥ ≈ (E0/ω)(1 − ξ 2/2),

	p⊥ ≈ (E0/ω)ξccγ

(
1 − ξ 2

4γ 2

)
, ω	t0 ≈ ξ ξccγ ,

FIG. 11. Shape of the rescattering domain for I =
8 × 1013 W cm−2 and ξ = 0.2 [close to LP, (a) and (c)], and ξ = 0.7
[close to CP, (b) and (d)]. (a) and (b) Boundary of the rescattering
domain as a function of the initial conditions (t0, p‖, p⊥, pz,0 = 0).
The color is the logarithm of the PPT ionization rate normalized by
its maximum. The black lines are the boundaries of the rescattering
domain for p‖ = pz,0 = 0. (c) and (d) Slice of the initial conditions
p‖ = pz,0 = 0 [shaded planes in (a) and (b)]. Only the dominant
orders in ξ are depicted. The momenta are scaled by E0/ω.
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where cγ = √
γ (1 + γ 2)1/4/ sinh−1 γ , ξc is defined in

Eq. (22), and we have used τ ≈ sinh−1 γ . Hence, at low
ellipticities, the area of these ellipses is proportional to ξ and
consequently very small. For LP, the area of these ellipses
is zero. In addition, at low ellipticities, these ellipses have a
low weight given by the ionization rate, so their influence is
negligible.

b. Rescattering domains at the peak laser amplitude. After
Taylor expanding Eq. (17) with respect to t0 and ξ around the
local minima ωt�

0 = nπ and ξ = 0, respectively, one gets (at
the third order in the Taylor expansion) p�

⊥ ≈ ξ (E0/ω)(1 −
ξ 2/2),

	p⊥ ≈ (E0/ω)ξcCγ

[
1 + ξ 2

4(1 + γ 2)

]
, (20a)

ω	t0 ≈ ξcCγ

[
1 + ξ 2 7 + 6γ 2

4(1 + γ 2)

]
, (20b)

where Cγ = γ / sinh−1 γ and we have used τ ≈ sinh−1 γ .
Here the area of the ellipses is nonzero for LP, and because
these ellipses are highly weighted by the ionization rate,
they have a strong influence in the phenomena related to the
rescattering domain such as, for instance, Rydberg state cre-
ation. We observe that for increasing intensity, these elliptical
domains shrink towards their centers for which the GC energy
is minimal (red dots in Fig. 11), which correspond also to the
SFA conditions for which the electron final energy is zero [see
Eq. (14)].

2. Close to CP

Next, we consider the second order Taylor expansion of
the shape of the rescattering domain for p‖ = pz,0 = 0 as a
function of the ellipticity in the plane (t0, p⊥) close to CP (1 −
|ξ | � 1). For ellipticity close to 1, the rescattering domain is
approximately a band between two lines. We write Eq. (17) in
the form

p−
⊥(t0) < p⊥ < p+

⊥(t0),

with p±
⊥(t0) = p�

⊥(t0) ± [p�
‖(t0)2 + 	p(t0)2]1/2. By Taylor ex-

panding this expression to the first order (the second and
third order expansions are too lengthy and do not provide
additional relevant information to the discussion) with respect
to 1 − |ξ | around ξ = 1, one gets that the lines surrounding
the rescattering domain are

p±
⊥(t0) ≈ E0√

2ω

[
cos(2ωt0)

ξ − 1

2
+ 1 ± ξ1

]
, (21)

where ξ1 = (ω2/E3/2
0 )(γ 2 + 1/2)−1/4 and we have used τ ≈

sinh−1
√

2γ . Hence, Coulomb-driven recollisions and Ryd-
berg state creation after tunneling are likely when the lowest
boundary line of the rescattering domain (see Fig. 11) ap-
proaches the regions of initial conditions with high ionization
rate, i.e., p−

⊥(t0) � P⊥. Fixing ξ = 1 and using Eq. (21), one
gets

E3/2
0 � ω2 sinh−1 γ

γ (γ 2 + 1/2)1/4
.

The term on the right-hand side of the inequality decreases
for increasing γ . For γ � 1, the inequality becomes I �

FIG. 12. Photoelectron momentum distribution along the minor
polarization axis ŷ as a function of the ellipticity for I = 1.2 ×
1014 W cm−2, Ar (Ip = 0.58 a.u.), and γ ∼ 1. The color scale is the
experimental data of Ref. [27]. The dotted and dashed black lines
are the T trajectory of the SFA and the CCSFA, respectively. The
cross markers and red solid lines are the T trajectory of the reference
Hamiltonian (1) and the GC model (12), respectively. Momenta are
scaled by E0/ω.

2 × 1013 W cm−2. However, the condition γ � 1 implies
that Ip � 0.1 a.u. in order for the electron to undergo a
Coulomb-driven recollisions or be trapped in a Rydberg state
at this frequency. We observe it is unlikely that the electron
undergoes a Coulomb-driven recollision or is trapped in a
Rydberg state for nearly CP pulses, if the ionization takes
place during the plateau.

B. Implication of the shape of the rescattering domain

In this section we investigate the physical phenomena re-
lated to the shape of the rescattering domain, and we compare
the results with experimental data. For instance, when the
laser ellipiticity ξ varies, the rescattering domain moves in
phase space and as a consequence the PMDs change shape.
In Fig. 12 we show the experimental measurements from
Ref. [27], of the final momentum distribution of the electron
along the minor polarization axis ŷ as a function of the
ellipticity ξ for I = 1.2 × 1014 W cm−2, Ar (Ip = 0.58 a.u.),
and γ ∼ 1. The experimental measurements of the final mo-
mentum along the minor polarization axis (color scale) show
a distribution peaked around zero for small ellipticity. As the
ellipticity increases, we observe a bifurcation of the peak of
the distribution at a critical ellipticity ξc ≈ 0.25, for which the
distribution is no longer peaked around zero. After the bifur-
cation (for ξ > ξc), the peaks of the distribution move further
apart for increasing ellipticity. In Ref. [27] a semiclassical
theory is developed and is in agreement with the experimental
measurements. It is also shown that the initial conditions of
the most probable trajectory of the theory in Ref. [27] are
relatively close to the initial conditions of the most probable
trajectory in PPT. Here we show that this bifurcation can be
reproduced and understood by the analysis of the T trajectory
only.

In Fig. 12 we also show the ŷ component of the T-trajectory
final momentum Py computed using the SFA PSFA =
ŷξ (E0/ω) sinh τ/(τ

√
ξ 2 + 1) (dotted lines), the CCSFA from

Eq. (9) (dashed lines), the reference Hamiltonian (1) (crosses),

053405-14



INCLUSION OF COULOMB EFFECTS IN LASER-ATOM … PHYSICAL REVIEW A 99, 053405 (2019)

and the GC prediction [see Eq. (23)] (solid lines). The
prediction of the reference Hamiltonian (1) is depicted only
if the ionization is direct, i.e., if it has not undergone any rec-
ollisions and has not been trapped in Rydberg states. The GC
prediction is depicted only when the GC energy is positive.
Otherwise, the GC energy is negative and the electron does
not reach the detector according to the GC model. We observe
an excellent agreement between the experimental results from
Ref. [27], the reference Hamiltonian [Hamiltonian (1)], and
the GC prediction.

In a nutshell, for ξ < ξc, the T trajectory is inside the
rescattering domain. The GC motion is most often bounded,
and as a consequence the electron undergoes recollisions or
is trapped in a Rydberg state. When the ellipticity increases,
the rescattering domain and the initial conditions of the T
trajectory change. At the critical ellipticity ξc, the T trajectory
is on the boundary of the rescattering domain, i.e., its GC
energy is zero. For ξ > ξc, the GC motion is unbounded,
and the electron ionizes without recollision. Therefore, the
bunches in the PMDs after the bifurcation (as observed in
Fig. 4) are mainly composed of direct ionizations. Right
after the bifurcation, a ridge structure can be seen for a
certain range of laser parameters and atoms [48,48]. The ridge
structure is composed of near-zero-energy electrons induced
by rescattering, and the bifurcation with ellipticity can be used
to isolate these electrons from the electrons ionized directly
[48,50].

1. Critical ionization time

In LP fields, for p⊥ = pz,0 = 0 which reduces to a one-
dimensional (1D) model, the SFA predicts that if an electron
ionizes after a peak laser amplitude, i.e., at t0 > t�

0 (ωt�
0 = nπ

where n ∈ N), it undergoes a recollision [1], while if it ionizes
before this peak, i.e., at t0 < t�

0 , it ionizes directly. In the top
panel of Fig. 5 and in Figs. 6(a), 7(a), and 7(b), we observe
that this critical time ωt0 = nπ predicted by the SFA is lower
if the Coulomb potential is taken into account, and according
to the discussion in Sec. IV A, the electron potentially comes
back to the ionic core even if it ionizes before the peak of the
laser field.

According to the GC model, using Eqs. (19) and (20) for
p⊥ = pz,0 = 0, the left boundaries of the rescattering domain
are given by ωtc = nπ − ξcCγ . If the electron ionizes at t0 <

tc, the electron ionizes directly. If the electron ionizes at
t0 > tc, the electron is in the rescattering domain. According
to the discussion in Sec. IV, the electron either populates
Rydberg states or undergoes a recollision. In particular, if
an electron ionizes before the peak of the laser field and
recollides, it is mainly because of the Coulomb interaction and
the bounded motion of its GC that brings the electron back to
the core. If the electron ionizes after the peak of the laser field,
its GC initial radial momentum is negative (and its angular
momentum is zero in 1D), and as a consequence the electron
recollides.

The same arguments are extended to estimate tc for low
ellipticity and ξ � ξc. We fix the initial momentum at its most
probable value given by (p‖ = P‖, p⊥ = P⊥, pz,0 = Pz,0) and
we let the ionization time t0 free. At low ellipticity P‖ = Pz,0 =
0 and P⊥ ≈ 0, and if ωt0 = ωt�

0 the trajectory is approximately

at the center of the rescattering domain [see Fig. 11(c)]. As
a consequence, there exist intervals of ionization time t0 for
which the initial conditions are inside the rescattering domain,
but also because of the shape of the rescattering domain [see
Fig. 11(c)], there are intervals of ionization times t0 for which
the initial conditions are outside the rescattering domain. The
critical time tc is the ionization time for which (tc, P‖, P⊥, Pz,0)
is on the left boundary of the rescattering domain. In Eq. (19)
we transform the inequality into an equality and we fix p⊥ =
P⊥ ≈ ξ (E0/ω)(1 − γ / sinh−1 γ ) [see Eq. (4b)]. Then, using
Eqs. (20) up to the second order in ξ , the critical time tc is
given by

ωtc ≈ ωt�
0 − Cγ

√
ξ 2

c − ξ 2,

with Cγ = γ / sinh−1 γ and ξc defined Eq. (22). Also, we have
seen in Sec. IV that if the ionization takes place after the
peak of the laser field, the GC radial momentum is negative
and the electron tends to recollide with the ionic core. Hence,
the ionization time t0 for direct ionization is ωt0 ∈ [ωtc, ωtc −
π/2]. This is in agreement with the CTMC simulations of
Ref. [51].

2. Critical ellipticity

Next, we consider the bifurcation with respect to the laser
parameters. We consider the T trajectory given by the initial
conditions (4) and ωt0 = π . For LP (ξ = 0), the T trajectory
is inside the rescattering domain. As a consequence, the GC
energy of the T trajectory is negative, and the electron is
either trapped in a Rydberg state, or undergoes a recollision.
For increasing ellipticity, p�

⊥(t0) increases and P⊥ decreases.
At ellipticity ξ = ξc, the initial condition of the T trajectory
(ωt0 = π, p‖ = P‖, p⊥ = P⊥, pz,0 = Pz,0) crosses the bound-
ary of the rescattering domain. In Eq. (19) we substitute the
initial conditions of the T trajectory ωt0 = π and p⊥ = P⊥ ≈
ξ (E0/ω)γ / sinh−1 γ [see Eq. (4b)] and we use Eq. (20) up
to the first order in ξ . Replacing ξ by ξc and assuming that
ξ 2

c � 1, the critical ellipticity is

ξc ≈
√

2ω2

E3/2
0

sinh−1 γ

γ (1 + γ 2)1/4
, (22)

(see Supplemental Material of Ref. [24] for a detailed deriva-
tion). For ξ > ξc, the GC energy of the T trajectory is positive
and its motion is unbounded. The T trajectory ionizes directly,
i.e., it does not experience rescattering. This corresponds to a
direct ionization. Indeed, in Fig. 10 we observe that for ξ >

ξc, the probability of Rydberg state creation and Coulomb-
driven recollisions decreases significantly for increasing el-
lipticity.

Hence, for ξ > ξc, the GC motion is unbounded and the
electron is driven to the detector. The initial condition of the
GC of the T trajectory is determined by combining Eqs. (7)
and (4), and reads

Rg,0 = x̂
E0

ω2
√

ξ 2 + 1
cosh τ,

Pg,0 = ŷ
ξE0

ω
√

ξ 2 + 1

sinh τ

τ
.
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Since Hamiltonian (12) is time independent and rotationally
invariant, the GC energy ET and angular momentum �T = ẑ ·
Rg,0 × Pg,0 of the T trajectory are conserved and given by

ET = ξ 2E2
0

2ω2(ξ 2 + 1)

sinh2 τ

τ 2
− ω2

√
ξ 2 + 1

E0 cosh τ
,

�T = ξE2
0

ω3(ξ 2 + 1)

sinh 2τ

2τ
,

with V (Rg,0) ≈ −1/|Rg,0|. When the electric field is turned
off, we assume that the final momentum of the T trajectory
and the final momentum of its GC are equal, with Px =√

2ET cos 
 and Py = √
2ET sin 
, where its scattering angle

is given by [see Eq. (B3)]


 = π/2 + sin−1
(
2ET �2

T + 1
)−1/2

.

As a consequence,

Px = −
√

2ET

(
2ET �2

T + 1

)−1/2

, (23a)

Py =
√

2ET
[
1 − (

2ET �2
T + 1

)−1]1/2
. (23b)

Equations (23) are used to compute Px and Py of the GC.
In the PMDs we recall that the bifurcation in Px signals
the appearance of Coulomb asymmetry as a function of the
ellipticity, while the bifurcation in Py shows the breakdown
of Coulomb focusing as a function of the ellipticity. We
observe that Coulomb asymmetry appears at the same time as
Coulomb focusing begins to recede. Close to the bifurcation,
for ξ ≈ ξc and using τ ≈ sinh−1 γ , one has

ET ≈ (ξ − ξc)4Upξc(γ / sinh−1 γ )2, (24a)

Px ≈ −(ξ − ξc)1/2
√

2ξc(E0/ω)(γ / sinh−1 γ ), (24b)

Py ≈ (ξ − ξc)2
√

2(E0/ω)(γ / sinh−1 γ ), (24c)

where Up = E2
0 /4ω2 is the ponderomotive energy (see

Ref. [24] for more details). As a consequence, the critical
exponents of the bifurcation predicted by the GC model for
Px and Py are 0.5 and 1, respectively, i.e., Px ∼ (ξ − ξc)1/2 and
Py ∼ (ξ − ξc). We observe that close to the bifurcation and
for increasing ellipticity, the Coulomb asymmetry measured
by the bifurcation in Px increases faster than the breakdown of
Coulomb focusing measured by the bifurcation in Py.

3. Comparison with experiments

In Fig. 13 we show the final momentum of the T-trajectory
P as a function of the ellipticity ξ computed using the
SFA (dotted lines), the CCSFA from Eq. (9) (dashed lines),
the reference Hamiltonian (1) (crosses), and the GC from
Eqs. (23) (solid lines). The T-trajectory final momentum of
the reference Hamiltonian (1) is not depicted if it is trapped
in a Rydberg state or undergoes rescattering. In the lower-
left panel, the hexagrams are the experimental data of P
reproduced from Ref. [18].

For I = 8 × 1013 W cm−2, He (Ip = 0.9 a.u.), and γ ∼ 0.6
(top panels of Fig. 13), the T trajectory of the reference
Hamiltonian (1) corresponds to a direct ionization at the
critical ellipticity ξc ≈ 0.25, and reaches the detector without
undergoing rescattering for ξ > ξc. The critical ellipticity is
in agreement with the prediction ξc ≈ 0.26 of Eq. (22). On

FIG. 13. Final momentum of the T-trajectory P = Px x̂ + Pyŷ as
a function of the ellipticity ξ . Top panels: I = 8 × 1013 W cm−2,
He (Ip = 0.9 a.u.), and γ ∼ 1.6. Middle panels: I = 1.2 ×
1014 W cm−2, Ar (Ip = 0.58 a.u.), and γ ∼ 1. Bottom panels: I =
8 × 1014 W cm−2, He (Ip = 0.9 a.u.), and γ ∼ 0.6. The hexagrams
are the experimental data reproduced from Ref. [18]. In all panels:
the dotted and dashed black lines are the T trajectory of the SFA and
the CCSFA, respectively. The thin (with crosses) and solid curves are
the T trajectory of the reference Hamiltonian (1) and the GC model
(12), respectively. The components of the final momentum of the
T-trajectory Px and Py are depicted in blue (lower line) and red (upper
line), respectively. The critical ellipticity ξc is at the intersection
between the gray and white regions and corresponds to the largest
ellipticity for which the T trajectory of the reference Hamiltonian
(1) is negative. The right panels are zooms of the left panels in the
neighborhood of the critical ellipticity. We indicate the scaling of P
of the reference model (1) in the neighborhood of the bifurcation.
The momenta are scaled by E0/ω.

the left panel, we observe a good agreement between the
T-trajectory final momentum P of the reference Hamiltonian
(1) (thin curves with crosses) and that of the GC model (thick
solid curves) for the entire range of ellipticities ξ > ξc.

For I = 1.2 × 1014 W cm−2, Ar (Ip = 0.58), and γ ∼ 1
(middle panels of Fig. 13), the T trajectory of the reference
Hamiltonian (1) becomes a direct ionization at ξc ≈ 0.19
while the GC prediction [see Eq. (22)] is ξc ≈ 0.24. There
is a small disagreement between the critical ellipticity of the
reference model and the prediction of Eq. (22). However,
there is a good agreement of the GC critical ellipticity with
the experimental measurements of Ref. [27] of ξc ≈ 0.24 as
observed in Fig. 12. Furthermore, there is a good agreement
between the T-trajectory final momentum P of the reference
Hamiltonian (1) (thin curves with crosses) and that of the GC
model (thick solid curves) for ξ � 0.3. However, we observe a
small disagreement between Px of the reference Hamiltonian
(1) (thin curves with crosses) and the GC prediction for all
ellipticities. This discrepancy is related to the observations
made in Fig. 2 and whose origin is discussed below.

For I = 8 × 1014 W cm−2, He (Ip = 0.9), and γ ∼ 0.6
(lower panels of Fig. 13), the T trajectory of the reference
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Hamiltonian (1) becomes a direct electron at ξc ≈ 0.05. The
critical ellipticity is in agreement with the prediction ξc ≈
0.07 of Eq. (22). In addition, these values agree well with
the critical ellipticity ξc ≈ 0.08 of the experiments [18] (hex-
agrams). There is again a good agreement between the T-
trajectory final momentum P of the reference Hamiltonian (1)
(thin curves with crosses) and that of the GC model (thick
solid curves) for ξ � 0.1. However, we observe a disagree-
ment between Px of the reference Hamiltonian (1) (thin curves
with crosses) and the GC prediction in the entire ellipticity
range. We notice that for decreasing Keldysh parameters, the
disagreement between Px of the reference Hamiltonian (1) and
the GC model increases, as observed in the lower panel of
Fig. 2.

On the right panels of Fig. 13 we observe a good agreement
between the exponents of Px of the reference Hamiltonian (1)
at the bifurcation and the prediction 0.5 of Eq. (24). However,
the exponent of Py at the bifurcation is much smaller than the
exponent 1 predicted by Eq. (24).

In the left panels of Fig. 13 we observe excellent agreement
between the T-trajectory final momentum of the reference
Hamiltonian (1) (thin curves with crosses) and that of the
CCSFA (dashed curves) after the bifurcation when the elec-
tron final energy is large.

4. T-trajectory analysis

Here we show that the origin of the disagreements between
the T trajectory of the reference Hamiltonian (1) and the
GC T trajectory—the disagreement of Px for small Keldysh
parameters, or the disagreement with the critical exponents of
Py in the neighborhood of the bifurcation—are related to an
underestimate of the Coulomb interaction by the GC model
for a short time after ionization. In contrast, we show that
the CCSFA agrees well with the solution of the reference
Hamiltonian (1) for ξ � ξc while it cannot capture correctly
the phenomena related to the bifurcation.

In Fig. 14 the red dash-dotted, cyan (light gray) solid,
and black dashed curves are the T trajectory of Hamiltonian
(6), the GC model (12), and the CCSFA given by Eqs. (9),
respectively. The thick dark blue (dark gray) curves are the
T trajectory of the reference Hamiltonian (1). Associated
with each trajectory, we also show the GC energy, for each
model, as a function of time per laser cycle t/T . The GC
energy for each model consists in substituting the solution
(rg(t ), pg(t )) for each model in the GC Hamiltonian (12), i.e.,
H̄ (rg(t ), pg(t )). Where the GC energy of the reference model
is conserved, the GC model (whose GC energy is conserved)
is valid [25].

For γ ∼ 1.6 [see Figs. 14(a)–14(d)], the electron ionizes
far from the ionic core (|r0| ∼ E0/ω

2). For ξ = 0.25 and
ξ = 0.7, respectively, we see the variations of the GC energy
of the T trajectory of Hamiltonian (6) (dash-dotted curve) are
small, a signature of the validity of the GC model and an
absence of rescattering. When the GC energy of Hamiltonian
(6) becomes constant, it is only about 0.02 a.u. above the
GC model prediction. As a consequence, we observe a good
agreement between the trajectories of Hamiltonian (6) and the
GC model trajectories in Figs. 14(a) and 14(b). In particular,
at ξ = 0.25, we observe the T trajectory of Hamiltonian (6)

FIG. 14. (a), (b), (e), (f), (i), and (j) T trajectory in the po-
larization plane (x, y). The thick dark blue (dark gray) curves are
the T trajectory of the reference Hamiltonian (1). The red dash-
dotted, cyan (light gray) solid, and dashed black curves are the T
trajectory of Hamiltonian (6), the GC model (12), and the CCSFA
(9), respectively. (c), (d), (g), (h), (k), and (l) Energy (12) as a
function of (t − t0 )/T , with t0 = T/2, associated with each model.
Right panels: ξ = 0.7. (a) and (c), (e) and (g), and (i) and (k)
(the gray background panels are those for ξ < ξc) ξ = 0.25, ξ =
0.15, and ξ = 0.05, respectively. (a)–(d) I = 8 × 1013 W cm−2, He
(Ip = 0.9 a.u.), and γ ∼ 1.6 (same parameters as the top panels of
Fig. 13). (e)–(h) I = 1.2 × 1014 W cm−2, Ar (Ip = 0.58 a.u.), and
γ ∼ 1 (same parameters as the middle panels of Fig. 13). (i)–(l) I =
8 × 1014 W cm−2, He (Ip = 0.9 a.u.), and γ ∼ 0.6 (same parameters
as the lower panels of Fig. 13). The dots indicate the origin, and the
circles |r| = E0/ω

2. The distances are scaled by E0/ω
2, the energy is

in a.u.

is trapped in a Rydberg state, a feature which is reproduced
by the GC model [cyan (light gray) solid curve], but not well
reproduced by the CCSFA (dashed black curve). Indeed, the
Coulomb interaction remains significant for a long time after
ionization during Rydberg state creation, and the conditions
for the validity of the CCSFA are not met.

For γ ∼ 1 [see Figs. 14(e)–14(h)], the electron ionizes
closer to the ionic core (|r0| ∼ 0.4E0/ω

2). For ξ = 0.15, the
electron T trajectory of Hamiltonian (6) (dash-dotted curve)
and the GC model are trapped in Rydberg states. However,
there is a large discrepancy between the trajectories. Indeed,
in Fig. 14(g) we observe that the dash-dotted red curve varies
after ionization, indicating that the electron rescatters for
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a short time after ionization [25]. For ξ = 0.7, the same
happens in terms of energy [see Fig. 14(h)], and we see that
the GC trajectory does not agree well with the T trajectory
of Hamiltonian (6) [see Fig. 14(f)]. When the energy of
Hamiltonian (6) becomes constant at t ≈ T/2, it is larger than
the GC energy prediction of 0.15 a.u. In Fig. 14(e) or 14(f)
we observe that after ionization, the initial electron distance
from the core is |r0| ∼ 0.4E0/ω

2, while the GC initially at a
distance |rg,0| ∼ 1.4E0/ω

2 from core. Since in the GC model,
the Coulomb interaction is evaluated at the GC position only,
when the electron is closer to the core than predicted by the
GC model, as is the case after ionization for γ � 1.6, the
Coulomb interaction is underestimated in the GC model:
the closer the electron to the ionic core, the more underesti-
mated the Coulomb interaction.

For γ ∼ 0.6 [see Figs. 14(i)–14(l)], the electron ionizes
even closer to the ionic core (|r0| ∼ 0.15E0/ω

2). For ξ = 0.05
and ξ = 0.07, there are also discrepancies between the cyan
(light gray) and red curves. We observe that the energy of
the T trajectory of Hamiltonian (6) [red dash-dotted curve
in Figs. 14(k) and 14(l)] varies a lot for a short time after
ionization (about 0.2T ). Here again, the electron rescatters
after ionization. In Fig. 14(l), when the red dash-dotted curve
becomes constant, the energy is above the GC prediction only
by 0.02 a.u. However, this agreement is only coincidental
since the T trajectories of Hamiltonian (6) and of the GC
disagree significantly due to the increase in energy of the
rescattering. We observe that this increase in energy after
ionization is well captured by the CCSFA.

In each panel we observe an excellent agreement between
the CCSFA and the T trajectory of Hamiltonian (6) for a
short time after ionization, i.e., 0 < t − t0 � T , when the
hypotheses of the CCSFA are met. This method is effective
for short timescale dynamics or phenomena [37,38,48]. This
agreement persists for longer times if the electron leaves
quickly the ionic core region like in Ref. [17] or for large
ellipticity (see Sec. III A), i.e., if its drift momentum is initially
large.

VI. CONCLUSIONS

In this article we have investigated the role of the Coulomb
potential in atoms subjected to strong laser fields. To do so,
we have considered three reduced models of the reference
Hamiltonian (1), namely the SFA [Eqs. (8)], the CCSFA
[Eqs. (9)], and the GC model [Eqs. (12)]. The analysis of
these three reduced models allowed us to shed light on the
manifestations of the Coulomb potential in various ionization
processes. In the SFA, there are two types of trajectories:
subcycle recollisions and direct ionizations. However, even
when the intensity is very large, i.e., when the conditions
of the SFA are met, the Coulomb interaction still makes its
presence known for long timescale phenomena. In particular,
even at very high intensities, the Coulomb asymmetry persists
as seen in Fig. 2 and discussed in Sec. III A. The Coulomb
interaction brings with it a variety of additional types of
trajectories, such as Coulomb-driven recollisions and Rydberg
states. We have shown in Sec. IV that these two processes are
intimately related, and can be interpreted and predicted by the
GC model.

During step (ii) of the recollision scenario, we have shown
that the electron oscillates around the GC trajectory. In phase
space, the GC trajectory lies on a curve of constant energy
E = H̄ (r̄g, p̄g). If E > 0, the GC motion is unbounded. In
this case, it is likely the electron recollides if its GC angular
momentum is near zero and its initial radial momentum is
negative [like in Fig. 6(b)]. Otherwise, the electron ionizes
directly without recollision [like in Fig. 6(c)]. If E < 0, the
GC motion is bounded. In this case, there exists at least one
time at which the electron turns back towards the ionic core.
Then, the electron passes by the ionic core before the laser
field is turned off and may or may not recollide. If the electron
does recollide [like in Figs. 6(d) and 7(d)], the GC energy
jumps to a new energy level, as described in Ref. [25]. If
the laser field is turned off before the electron recollides [as
in Figs. 6(e) and 7(e)], the electron ends up in a Rydberg
state.

The GC model does not capture the rescattering effects
close to the ionic core but the CCSFA can since it is a
rather short timescale phenomenon [37,39,40,48]. As ob-
served in Fig. 14, the variations of energy of the reference
model (1) can be well described by the CCSFA for short
timescales. After rescattering, the electron potentially ionizes
if its GC energy becomes positive [such as in Fig. 6(d)].
Therefore, the CCSFA and the GC models are clearly com-
plementary. The CCSFA is adapted for describing short
timescale processes such as rescattering while the GC model
is more suited for describing long timescale processes such
as Coulomb-driven recollisions and the creation of Rydberg
states.
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APPENDIX A: IONIZATION RATE

Throughout this article we use the nonadiabatic ionization
rate given by the Perelomov-Popov-Terent’ev [31] formu-
las, rewritten in a different form in Ref. [41]. We denote
γ0(t0) = ω

√
2Ip/|E(t0)|. The initial position of the electron

is parametrized by the ionization time t0 and its initial mo-
mentum is written as p0 = p‖n̂‖(t0) + p⊥n̂⊥(t0) + pz,0ẑ for a
polarization plane (x̂, ŷ). The PPT ionization rate [31] reads

W (t0, p0)

∝ h(γ0(t0), ξ )

|E(t0)| exp

[
−2Ip

ω
g(γ0(t0), ξ )

]

× exp

{
− 1

ω

[
c‖ p2

‖ + c⊥
(
p⊥ − pmax

⊥,0

)2 + cz p2
z,0

]}
,

(A1)
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where the functions g and h are

g(γ0, ξ ) =
(

1+1+ ξ 2

2γ 2
0

)
τ0 − (1 − ξ 2)

sinh 2τ0

4γ 2
0

− ξ 2 sinh2 τ0

γ 2
0 τ0

,

h(γ0, ξ ) = 2σγ0

sinh 2τ0
,

with the notation

σ =
(

1 − ξ 2 + ξ 2 tanh τ0

τ0

)−1

.

The coefficients c‖, c⊥, and cz, which are inversely propor-
tional to the square of the standard deviation of the distribution
along the longitudinal and transverse momentum, are given by

c‖ = τ0 − σ tanh τ0,

c⊥ = τ0 + σξ 2 (τ0 − tanh τ0)2

τ 2
0 tanh τ0

,

cz = τ0.

The coefficients satisfy c‖ > c⊥, implying that the distribu-
tions are more spread out along the transverse direction than
along the longitudinal direction. The most probable initial
transverse momentum pmax

⊥,0 is

pmax
⊥,0 = ξE0

ω
√

ξ 2 + 1

(
1 − sinh τ0

τ0

)
,

for a transverse unitary vector defined as n̂⊥(t0) = −[n̂‖(t0) ·
ŷ]x̂ + [n̂‖(t0) · x̂]ŷ.

APPENDIX B: FINAL MOMENTUM OF
THE ELECTRON IN THE GC MODEL

In the GC model given in Eq. (12), the energy and the
angular momentum are conserved for rotationally invariant
potentials. The model is accurate far from the core, and as
a consequence we assume that V (r̄g) = −Z/|r̄g| with Z an
effective charge. The Hamiltonian reads

H̄g(r̄g, p̄g) = |p̄g|2
2

− Z

|r̄g| .

In this model the guiding-center motion is planar due to
the conservation of the angular momentum. We perform
the polar-nodal canonical transformation [52] (r̄g, p̄g) 
→
(r, θ, ν, pr, pθ , pν ),

r̄g = rQx̂, p̄g = Q(x̂pr + ŷpθ /r),

where the total rotation matrix is Q = RνRiRθ , with

Rθ =
⎡
⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦,

Rν =
⎡
⎣cos ν − sin ν 0

sin ν cos ν 0
0 0 1

⎤
⎦,

Ri =
⎡
⎣1 0 0

0 cos i − sin i
0 sin i cos i

⎤
⎦,

where cos i = pν/pθ , sin i = [1 − (pν/pθ )2]1/2. The GC
Hamiltonian for the hard Coulomb potential becomes

H̄g(r, θ, ν, pr, pθ , pν ) = p2
r

2
+ p2

θ

2r2
− Z

r
. (B1)

In order to compute the asymptotic configuration of the
guiding center with Hamiltonian (B1), one needs to deter-
mine the initial conditions in the polar-nodal coordinates as a
function of the initial conditions in the Cartesian coordinates.
The momenta are given by pr = p̄g · r̄g/|r̄g|, pθ = |L|, and
pν = L · ẑ, with L = r̄g × p̄g. The distance from the origin is
r = |r̄g|. Concerning the angles, we first introduce the unitary
vectors

n̂1 =
{

x̂ if ẑ × L = 0,

ẑ × L/|ẑ × L| otherwise,

and n̂2 = L/|L| × n̂1. The angles θ and ν as a function of the
Cartesian coordinates are given by

cos θ = n̂1 · r̄g/|r̄g|, sin θ = n̂2 · r̄g/|r̄g|,
and

cos ν = n̂1 · x̂, sin ν = n̂1 · ŷ.

If ẑ × L = 0, sin i = 0, and as a consequence the angle of
rotation is θ + ν. By fixing n̂1 = x̂ in this case, we choose
arbitrary ν = 0 in order to be consistent with the definition of
θ and ν.

The energy E = H̄g(r, θ, ν, pr, pθ , pν ), the angular mo-
mentum pθ , ν, and pν are clearly constants of the motion. If
E < 0, the electron motion is bounded. The two turning points
at which the electron radial momentum changes sign are the
perihelion r− (closest distance of the orbit from the core) and
the aphelion r+ (largest distance of the orbit from the core)
such that

r± = Z

2|E |
(

1 ±
√

1 − 2p2
θ |E |/Z2

)
. (B2)

If E > 0, the GC trajectory is unbounded and the electron
reaches the detector. The asymptotic configuration (when r
goes to infinity) is given by pr = √

2E . Concerning the final
scattering angle θ , if pθ = 0, θ = θ0 (if pr,0 > 0) and θ0 + π

(if pr,0 < 0). If pθ �= 0, the final scattering angle is given by

θ =
⎧⎨
⎩

θ0 + sin−1 u0 + sin−1 β if pr,0 > 0,

θ0 + π/2 + sin−1 β if pr,0 = 0,

θ0 + π − sin−1 u0 + sin−1 β if pr,0 < 0,

(B3)

with u0 = β[p2
θ /(Zr0) − 1], β = (2E p2

θ /Z2 + 1)−1/2, and
r0 = |r̄g,0|. Finally, the final momentum of the GC in the
Cartesian coordinates is given by

p̄g = prQx̂.

We notice that in the two-dimensional case where the dy-
namics is in the polarization plane (x̂, ŷ), we have L × ẑ = 0.
Therefore, |pθ | = |pν |, sin i = 0, and Rν is the identity ma-
trix. Therefore, in this case, the final momentum reads p̄g =
pr (x̂ cos θ + ŷ sin θ cos i), where cos i = +1 (−1) for pν > 0
(<0).
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[50] J. Daněk, M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel,
B. Willenberg, J. Maurer, B. W. Mayer, C. R. Phillips, L.
Gallmann, and U. Keller, J. Phys. B: At. Mol. Opt. Phys. 51,
114001 (2018).

[51] M. Li, Y. Liu, H. Liu, Q. Ning, L. Fu, J. Liu, Y. Deng, C. Wu,
L.-Y. Peng, and Q. Gong, Phys. Rev. Lett. 111, 023006 (2013).

[52] D. P. Gurfil and P. K. Seidelmann, Celestial Mechanics and
Astrodynamics: Theory and Practice (Springer Nature, Berlin,
2016), pp. 310–311.

053405-20

https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1038/nphys620
https://doi.org/10.1038/nphys620
https://doi.org/10.1038/nphys620
https://doi.org/10.1038/nphys620
https://doi.org/10.1080/00107510802221630
https://doi.org/10.1080/00107510802221630
https://doi.org/10.1080/00107510802221630
https://doi.org/10.1080/00107510802221630
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.84.1011
https://doi.org/10.1103/RevModPhys.84.1011
https://doi.org/10.1103/RevModPhys.84.1011
https://doi.org/10.1103/RevModPhys.84.1011
https://doi.org/10.1126/science.1157980
https://doi.org/10.1126/science.1157980
https://doi.org/10.1126/science.1157980
https://doi.org/10.1126/science.1157980
https://doi.org/10.1126/science.1135923
https://doi.org/10.1126/science.1135923
https://doi.org/10.1126/science.1135923
https://doi.org/10.1126/science.1135923
https://doi.org/10.1016/j.physrep.2015.02.002
https://doi.org/10.1016/j.physrep.2015.02.002
https://doi.org/10.1016/j.physrep.2015.02.002
https://doi.org/10.1016/j.physrep.2015.02.002
https://doi.org/10.1038/nature10820
https://doi.org/10.1038/nature10820
https://doi.org/10.1038/nature10820
https://doi.org/10.1038/nature10820
https://doi.org/10.1038/nature09212
https://doi.org/10.1038/nature09212
https://doi.org/10.1038/nature09212
https://doi.org/10.1038/nature09212
http://www.jetp.ac.ru/cgi-bin/e/index/e/20/5/p1307?a=list
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevLett.70.1599
https://doi.org/10.1103/PhysRevLett.70.1599
http://www.jetp.ac.ru/cgi-bin/e/index/e/64/6/p1191?a=list
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1103/PhysRevLett.98.013901
https://doi.org/10.1103/PhysRevLett.98.013901
https://doi.org/10.1103/PhysRevLett.98.013901
https://doi.org/10.1103/PhysRevLett.98.013901
https://doi.org/10.1103/PhysRevLett.93.233002
https://doi.org/10.1103/PhysRevLett.93.233002
https://doi.org/10.1103/PhysRevLett.93.233002
https://doi.org/10.1103/PhysRevLett.93.233002
https://doi.org/10.1103/PhysRevLett.111.263001
https://doi.org/10.1103/PhysRevLett.111.263001
https://doi.org/10.1103/PhysRevLett.111.263001
https://doi.org/10.1103/PhysRevLett.111.263001
https://doi.org/10.1103/PhysRevA.54.R2551
https://doi.org/10.1103/PhysRevA.54.R2551
https://doi.org/10.1103/PhysRevA.54.R2551
https://doi.org/10.1103/PhysRevA.54.R2551
https://doi.org/10.1103/PhysRevLett.86.3522
https://doi.org/10.1103/PhysRevLett.86.3522
https://doi.org/10.1103/PhysRevLett.86.3522
https://doi.org/10.1103/PhysRevLett.86.3522
https://doi.org/10.1103/PhysRevA.63.033404
https://doi.org/10.1103/PhysRevA.63.033404
https://doi.org/10.1103/PhysRevA.63.033404
https://doi.org/10.1103/PhysRevA.63.033404
https://doi.org/10.1103/PhysRevA.63.043416
https://doi.org/10.1103/PhysRevA.63.043416
https://doi.org/10.1103/PhysRevA.63.043416
https://doi.org/10.1103/PhysRevA.63.043416
https://doi.org/10.1088/0953-4075/38/12/008
https://doi.org/10.1088/0953-4075/38/12/008
https://doi.org/10.1088/0953-4075/38/12/008
https://doi.org/10.1088/0953-4075/38/12/008
https://doi.org/10.1103/PhysRevLett.121.113202
https://doi.org/10.1103/PhysRevLett.121.113202
https://doi.org/10.1103/PhysRevLett.121.113202
https://doi.org/10.1103/PhysRevLett.121.113202
https://doi.org/10.1103/PhysRevE.98.052219
https://doi.org/10.1103/PhysRevE.98.052219
https://doi.org/10.1103/PhysRevE.98.052219
https://doi.org/10.1103/PhysRevE.98.052219
https://doi.org/10.1103/PhysRevA.92.023422
https://doi.org/10.1103/PhysRevA.92.023422
https://doi.org/10.1103/PhysRevA.92.023422
https://doi.org/10.1103/PhysRevA.92.023422
https://doi.org/10.1103/PhysRevA.95.053425
https://doi.org/10.1103/PhysRevA.95.053425
https://doi.org/10.1103/PhysRevA.95.053425
https://doi.org/10.1103/PhysRevA.95.053425
https://doi.org/10.1103/PhysRevLett.101.233001
https://doi.org/10.1103/PhysRevLett.101.233001
https://doi.org/10.1103/PhysRevLett.101.233001
https://doi.org/10.1103/PhysRevLett.101.233001
https://doi.org/10.1103/PhysRevA.38.3430
https://doi.org/10.1103/PhysRevA.38.3430
https://doi.org/10.1103/PhysRevA.38.3430
https://doi.org/10.1103/PhysRevA.38.3430
http://www.jetp.ac.ru/cgi-bin/e/index/e/23/5/p924?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/24/1/p207?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/25/2/p336?a=list
https://doi.org/10.1103/PhysRevLett.114.083001
https://doi.org/10.1103/PhysRevLett.114.083001
https://doi.org/10.1103/PhysRevLett.114.083001
https://doi.org/10.1103/PhysRevLett.114.083001
https://doi.org/10.1080/09500340802161881
https://doi.org/10.1080/09500340802161881
https://doi.org/10.1080/09500340802161881
https://doi.org/10.1080/09500340802161881
https://doi.org/10.1103/PhysRevA.77.053409
https://doi.org/10.1103/PhysRevA.77.053409
https://doi.org/10.1103/PhysRevA.77.053409
https://doi.org/10.1103/PhysRevA.77.053409
https://doi.org/10.1103/PhysRevLett.101.193003
https://doi.org/10.1103/PhysRevLett.101.193003
https://doi.org/10.1103/PhysRevLett.101.193003
https://doi.org/10.1103/PhysRevLett.101.193003
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1103/PhysRevLett.108.033201
https://doi.org/10.1103/PhysRevLett.112.133003
https://doi.org/10.1103/PhysRevLett.112.133003
https://doi.org/10.1103/PhysRevLett.112.133003
https://doi.org/10.1103/PhysRevLett.112.133003
https://doi.org/10.1103/PhysRevA.93.033411
https://doi.org/10.1103/PhysRevA.93.033411
https://doi.org/10.1103/PhysRevA.93.033411
https://doi.org/10.1103/PhysRevA.93.033411
https://doi.org/10.1103/PhysRevA.96.023427
https://doi.org/10.1103/PhysRevA.96.023427
https://doi.org/10.1103/PhysRevA.96.023427
https://doi.org/10.1103/PhysRevA.96.023427
https://doi.org/10.1134/1.1378169
https://doi.org/10.1134/1.1378169
https://doi.org/10.1134/1.1378169
https://doi.org/10.1134/1.1378169
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys3340
https://doi.org/10.1038/nphys3340
https://doi.org/10.1088/1361-6455/aa575b
https://doi.org/10.1088/1361-6455/aa575b
https://doi.org/10.1088/1361-6455/aa575b
https://doi.org/10.1088/1361-6455/aa575b
https://doi.org/10.1088/0953-4075/38/11/L01
https://doi.org/10.1088/0953-4075/38/11/L01
https://doi.org/10.1088/0953-4075/38/11/L01
https://doi.org/10.1088/0953-4075/38/11/L01
https://doi.org/10.1038/srep11473
https://doi.org/10.1038/srep11473
https://doi.org/10.1038/srep11473
https://doi.org/10.1038/srep11473
https://doi.org/10.1103/PhysRevA.93.023425
https://doi.org/10.1103/PhysRevA.93.023425
https://doi.org/10.1103/PhysRevA.93.023425
https://doi.org/10.1103/PhysRevA.93.023425
https://doi.org/10.1038/nphys1228
https://doi.org/10.1038/nphys1228
https://doi.org/10.1038/nphys1228
https://doi.org/10.1038/nphys1228
https://doi.org/10.1103/PhysRevA.97.013404
https://doi.org/10.1103/PhysRevA.97.013404
https://doi.org/10.1103/PhysRevA.97.013404
https://doi.org/10.1103/PhysRevA.97.013404
https://doi.org/10.1088/1367-2630/15/1/013001
https://doi.org/10.1088/1367-2630/15/1/013001
https://doi.org/10.1088/1367-2630/15/1/013001
https://doi.org/10.1088/1367-2630/15/1/013001
https://doi.org/10.1088/1361-6455/aaba42
https://doi.org/10.1088/1361-6455/aaba42
https://doi.org/10.1088/1361-6455/aaba42
https://doi.org/10.1088/1361-6455/aaba42
https://doi.org/10.1103/PhysRevLett.111.023006
https://doi.org/10.1103/PhysRevLett.111.023006
https://doi.org/10.1103/PhysRevLett.111.023006
https://doi.org/10.1103/PhysRevLett.111.023006

