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Wave-packet continuum-discretization approach to proton collisions with helium
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We extend the two-center wave-packet convergent close-coupling method to proton collisions with helium.
The target is treated as a three-body system, where correlations between the electrons are taken into account.
We apply a frozen-core approximation, where one of the electrons is described by the He+ 1s orbital, and obtain
the helium singlet wave functions as well as the energy levels using a numerical approach. The wave-packet
approach is used to discretize the continuum of the target and the hydrogen atom formed after electron capture
by the projectile. Convergence of the results is studied in terms of the included projectile- and target-centered
states. We present electron-capture and single- and double-ionization cross sections for protons incident on He
in the ground state in the energy range from 15 keV to 1 MeV. We also provide partial cross sections for electron
capture and direct excitation into the n = 2 shell states of hydrogen and helium, respectively. Our results are in
good agreement with available experimental data and other calculations, where available.
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I. INTRODUCTION

The study of ion-atom collisions is one of the intensive
research areas in atomic physics. A thorough understanding of
ionization and charge-exchange phenomena in such collisions
is essential for applications in a wide range of sciences such
as astrophysics [1] and plasma physics [2]. Moreover, these
processes are relevant to hadron therapy [3]. Collisions of
protons with helium atoms have been investigated to a great
extent both theoretically [4–32] and experimentally [33–49].

Various theoretical approaches were applied to investigate
the four-body p-He system depending on the incident energy
of the projectile. Zajfman and Maor [22] and Schultz and
Lynn [15] used the classical trajectory Monte Carlo (CTMC)
method to calculate the total electron-capture and single-
ionization cross sections. Zajfman and Maor [22] achieved
limited success in comparison with other works, while Schultz
and Lynn [15] obtained reasonable agreement with available
experimental data for projectile incident energies from 25 keV
to 500 keV.

The first Born approximation (FBA) has also been used
in high-energy ion-atom collisions, where coupling between
channels can be neglected. Several versions of the FBA
approach are known in the literature. In particular, for the
proton-helium collision system, where the exact wave func-
tions describing the helium target are not available, there
exists the post-prior discrepancy of FBA. Mapleton [14] in-
vestigated prior and post forms of the Born approximation
to calculate electron-capture cross sections in the p-He col-
lisions. Belkić [6] developed the FBA with corrected bound-
ary conditions (B1B) and used it at intermediate and high
energies. The B1B approach to the p-He problem was based
on an independent-particle model. The target was described

using Roothaan-Hartree-Fock and hydrogenlike wave func-
tions. Good agreement with the experiment was obtained at
energies from 50 keV to 50 MeV when the Roothaan-Hartree-
Fock wave functions were employed.

Another perturbative approach to the problem is based on
the distorted-wave formalism. A number of distorted-wave
theories were discussed by Toshima et al. [19]. Mancev et al.
[13] and Jana et al. [11] used the four-body distorted-wave
Born approximation (DWBA) method, while the three-body
DWBA was employed in the recent work of Rahmanian
et al. [16]. However, due to their nature, all of the available
perturbative approaches become unreliable whenever the pro-
jectile speed is smaller than the classical speed of the orbiting
electron of the target.

A number of sophisticated nonperturbative approaches at-
tempted to address the latter energy regime. Zapukhlyak et al.
[23] developed a nonperturbative basis-generator method.
More recently, Baxter and Kirchner [5] developed a time-
dependent density-functional theory (TDDFT) to calculate to-
tal cross sections for electron-capture and ionization processes
in the proton-helium collisions. Correlation effects were taken
into account using two different models: the integral model of
Wilken and Bauer (WB) and an independent-electron model
(IEM). A better agreement with the measurements was ob-
tained using the WB model.

Another widely used high-order method for describing ion-
atom collisions is the semiclassical close-coupling approach.
In the close-coupling approach the choice of basis functions
and the completeness of the basis are very important. A
number of authors chose this method to investigate the p-He
system. Winter [20] used 50 Sturmian functions as a basis
to calculate electron-capture and ionization cross sections.
However, he neglected electron exchange in the final transfer
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channels. Somewhat similar 51-state calculations but with
different basis functions were presented by Slim et al. [18],
where electron exchange in the H-He+ channel was taken into
account. Both calculations failed to achieve a sufficient level
of convergence.

There are several other approaches to the problem that
need to be mentioned. The symmetric eikonal (SE) approx-
imation is applicable at intermediate and high energies and
was employed by Deco et al. [8]. In addition, there are the
convergent frozen-correlation approximation (CFCA) by Díaz
et al. [9], a unified atomic-orbital molecular-orbital matching
method by Kimura and Lin [12] suitable for low energies, and
the four-body boundary-corrected continuum-intermediate-
state approximation by Samanta and Purkait [17]. All these
calculations gave results that agree with the experiments quite
well. However, their validity is limited to a particular energy
region and/or a particular process involved in the collisions
(e.g., electron capture).

A wave-packet convergent close-coupling (WP-CCC) ap-
proach to the four-body problem of antiproton-helium scat-
tering was developed by Abdurakhmanov et al. [50]. The
proton-helium system is more complicated than antiproton-
helium due to the existence of the electron capture channel.
It requires accounting for computationally demanding rear-
rangement channels that lead to hydrogen formation. In most
of the works described above, the problem was reduced to a
three-body one using some approximations, as the four-body
problem is computationally very hard to solve.

In the present work we develop a four-body semiclassical
close-coupling approach based on the wave-packet discretiza-
tion, which was successfully applied to a single-center prob-
lem of antiproton-helium collisions [50]. To this end the full
four-body Schrödinger equation is solved by expanding the
total scattering wave function in a two-center basis of atomic
wave functions. This leads to a set of coupled differential
equations for the transition probability amplitudes, which are
used to calculate the cross sections for elastic scattering,
target excitation, and electron capture by the projectile and
ionization. The wave functions representing atomic hydrogen
are the true eigenfunctions for the negative-energy states
and orthonormal stationary wave packets for positive-energy
states. The wave packets representing the target continuum
are constructed using the helium continuum functions, which
were obtained by solving the Schrödinger equation describing
the helium target numerically. Convergence of the predicted
cross sections for various occurring processes is achieved by
increasing the number of included negative-energy eigenstates
and positive-energy pseudostates for the projectile-electron
and target-electron systems. We investigate electron capture,
direct excitation, and single and double ionization in the
energy range from 15 keV to 1 MeV. We perform con-
vergence studies in terms of the number of included basis
functions.

This paper is structured as follows. In Sec. II we give a
description of our two-center WP-CCC approach to the prob-
lem of proton-helium scattering. The details and the results of
our calculations are presented in Secs. III and IV. Finally, in
Sec. V we highlight the main findings and draw conclusions.
Unless specified otherwise, atomic units are used throughout
this manuscript.

II. THEORY

A. Coupled differential equations

Below we describe the extension of the single-center semi-
classical convergent close-coupling (CCC) method [50] to
the two-center problem of proton collisions with helium to
include the electron-capture channels. We apply the frozen-
core approximation, where one of the electrons of the helium
atom remains in the 1s state of He+ throughout the collision.
For simplicity, we refer throughout this work to the channels
of the active electron as helium channels, e.g., α channel of
helium means that the active electron of helium is in the α

channel. The total scattering wave function � satisfies the
exact time-independent Schrödinger equation

(H − E )� = 0, (1)

where H is the full four-body Hamiltonian and E is the total
energy

E = E0 + k2
α

2μ1
+ εα = E0 + k2

1β

2μ2
+ ε1β = E0 + k2

2β

2μ2
+ ε2β,

(2)

with E0 being the binding energy of the frozen target electron.
The index α denotes the full set of quantum numbers repre-
senting a state in the direct p-He channel. The index β denotes
the same but in the rearrangement channel H-He+, formed
after the projectile captures the active electron of the target.
Furthermore, kα is the momentum of the projectile relative to
the helium atom in the α channel, μ1 is the reduced mass of
this system, and εα is the eigenenergy of the bound state α,
k1β (and k2β) is the momentum of the formed hydrogen atom
relative to the residual helium ion in the 1β (2β) channel, μ2 is
the reduced mass, and ε1β (ε2β) is the eigenenergy of hydrogen
in the 1β (2β) channel. Channel 1β is the same as channel
2β but with the electron of the residual target and that of the
hydrogen atom exchanged.

The total Hamiltonian H of the scattering system can
be represented as sums of the kinetic-energy operators and
Coulomb interaction potentials:

H = Kσ + HT1 + HT2 + VP + V12, (3)

H = Kρ1 + HP1 + HT2 + V1 + V12, (4)

H = Kρ2 + HP2 + HT1 + V2 + V12, (5)

where

Kσ = − ∇2
σ

2μ1
, Kρi = − ∇2

ρi

2μ2
, i = 1, 2 (6)

and

VP = 2

R
− 1

x1
− 1

x2
, (7)

V1 = 2

R
− 2

r2
− 1

x1
, (8)

V2 = 2

R
− 2

r1
− 1

x2
, (9)

V12 = 1

|r1 − r2| . (10)
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FIG. 1. Jacobi coordinates for the proton-helium system.

Here R, r1, and r2 are the position vectors of the incident
proton and the two electrons relative to the helium nucleus,
x1 and x2 are the position vectors of the electrons relative
to the incident proton, σ is the position vector of the proton
relative to center of mass of the helium atom, and ρ1 (ρ2) is the
position of the proton and the first (second) electron system
relative to the helium ion (see Fig. 1). The Hamiltonians of
the hydrogen atom and the He+ ion formed by each of the
target electrons are written as

HPi = −∇2
xi

2
− 1

xi
, i = 1, 2, (11)

HTi = −∇2
ri

2
− 2

ri
, i = 1, 2, (12)

respectively. With these definitions the Hamiltonian of the
helium atom is written as

HT = HT1 + HT2 + V12. (13)

In our model the target nucleus is located at the origin, and
we assume that the projectile is moving along a classical tra-
jectory R ≡ R(t ) = b + vt , where b is the impact parameter
and v is the initial velocity of the projectile relative to the
target. The vector b is perpendicular to the direction of the
moving proton, i.e., b · v = 0.

We assume that the total electronic spin of helium is
conserved in the collision process. Then the total scattering
wave function is expanded in terms of N target-centered and
M projectile-centered pseudostates as

� =
N∑

α=1

aα (t, b)ψHe
α (r1, r2)eikασ + 1√

2

M∑
β=1

bβ (t, b)

× [
ψH

β (x1)ψHe+
1s (r2)eik1βρ1 + ψH

β (x2)ψHe+
1s (r1)eik2βρ2

]
,

(14)

where ψHe
α and ψH

β are the wave functions for helium and

hydrogen, respectively, and ψHe+
1s is the ground-state wave

function for He+. Their detailed definitions will be given
below. The expansion coefficients aα (t, b) and bα (t, b) at t →
+∞ represent the transition amplitudes into the various target
and projectile states.

We substitute the expansion (14) into Eq. (1) and take into
account the relationships

∇σeikασ = ikαeikασ, ∇2
σeikασ = −k2

αeikασ, (15)

∇ρ1
eik1βρ1 = ik1βeik1βρ1 , ∇2

ρ1
eik1βρ1 = −k2

βeik1βρ1 , (16)

∇ρ2
eik2βρ2 = ik2βeik2βρ2 , ∇2

ρ2
eik2βρ2 = −k2

βeik2βρ2 , (17)

and

kα

μ1
∇σ = ∂

∂t
,

k1β

μ2
∇ρ1

= ∂

∂t
,

k2β

μ2
∇ρ2

= ∂

∂t
. (18)

Since the coefficients aα and bβ vary slowly with t , the
terms ∇2

σaα , ∇2
ρ1

bβ , and ∇2
ρ2

bβ are very small and can be
neglected. Then we successively multiply all terms of the
resulting equation by ψHe∗

α′ (r1, r2)e−ikα′σ for α′ = 1, . . . , N
and ψH∗

β ′ (x1)ψHe+
1s (r2)e−ik1β′ρ1 + ψH∗

β ′ (x2)ψHe+
1s (r1)e−ik2β′ ρ2 for

β ′ = 1, . . . , M. After integrating over all variables except
for σ, ρ1, and ρ2, we obtain a set of coupled first-order
differential equations for the time-dependent coefficients:

iȧα′ + i
M∑

β=1

ḃβKT
α′β =

N∑
α=1

aαDT
α′α +

M∑
β=1

bβQT
α′β,

i
N∑

α=1

ȧαKP
β ′α + i

M∑
β=1

ḃβLP
β ′β =

N∑
α=1

aαQP
β ′α +

M∑
β=1

bβDP
β ′β,

α′ = 1, 2, . . . , N, β ′ = 1, 2, . . . , M. (19)

Here the direct matrix elements have the forms

LP
β ′β = 1

2

∑
i, j=1,2

〈
kiβ ′ , ψH

β ′ , ψ
He+
1s

∣∣ψH
β , ψHe+

1s , k jβ
〉
, (20)

DT
α′α = 〈

kα′ , ψHe
α′

∣∣HT − EHe
α + VP|ψHe

α , kα

〉
, (21)

DP
β ′β = 1

2

∑
i, j=1,2

〈
kiβ ′ , ψH

β ′ , ψ
He+
1s

∣∣HPi − εH
β

∣∣ψH
β , ψHe+

1s , k jβ
〉

+ 1

2

∑
i, j=1,2

〈
kiβ ′ , ψH

β ′ , ψ
He+
1s

∣∣Vi

∣∣ψH
β , ψHe+

1s , k jβ
〉
. (22)

For the rearrangement matrix elements we have

KP
β ′α = 1√

2

∑
i=1,2

〈
kiβ ′ , ψH

β ′ , ψ
He+
1s

∣∣ψHe
α , kα

〉
, (23)

KT
α′β = 1√

2

∑
i=1,2

〈
kα′ , ψHe

α′
∣∣ψH

β , ψHe+
1s , kiβ

〉
, (24)

QP
β ′α = 1√

2

∑
i=1,2

〈
kiβ ′ , ψH

β ′ , ψ
He+
1s

∣∣HT − EHe
α + VP

∣∣ψHe
α , kα

〉
,

(25)

QT
α′β = 1√

2

∑
i=1,2

〈
kα′ , ψHe

α′
∣∣HPi − εH

β + Vi

∣∣ψH
β , ψHe+

1s , kiβ
〉
.

(26)

We will return to the explicit calculations of the matrix
elements in Sec. II C after defining the wave functions for the
helium and hydrogen pseudostates.
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The above system of equations is solved subject to the
initial boundary condition

aα (−∞, b) = δα,1s, α = 1, . . . , N,

bβ (−∞, b) = 0, β = 1, . . . , M,
(27)

which assume that the active target electron is initially in the
1s orbital.

B. Structure of the hydrogen and helium atoms

1. Hydrogenic wave functions

As mentioned earlier, the projectile-centered states are
described as products of wave functions of hydrogen and the
ground-state wave function of He+. The latter is described
analytically as

ψHe+
1s (r) =

√
2

π
r e−2r . (28)

To investigate double ionization of helium, we also need to
define the entire set of wave functions for the helium ion.
Below we describe the wave functions of a hydrogenlike atom
of arbitrary charge Z .

Each state β is described by three quantum numbers
{n, l, m}: the principal, orbital, and magnetic quantum num-
bers, respectively. For negative-energy states, the wave func-
tions are separated into radial and angular parts as

ψ
(Z )
β (r) = φ

(Z )
nl (r)Ylm(r̂) (29)

and for positive-energy states as

ψ
(Z )
β (r) =

√
2

π

∑
lm

il exp(−iηl )R
(Z )
κl (r)Y ∗

lm(κ̂)Ylm(r̂), (30)

where Ylm are spherical harmonics, κ = √
2ε is the momen-

tum of the continuum state, with ε being the energy of the
state and ηl the Coulomb phase shift.

The corresponding orthonormal radial wave functions are
written analytically as

φ
(Z )
nl (r) =

√
Z

(n − l − 1)!

(n + l )!
e−Zr/n (2Zr)l+1

n2+l
L2l+1

n−l−1

(
2Zr

n

)
,

(31)

where L2l+1
n−l−1 denotes an associated Laguerre polynomial. For

positive energies the corresponding continuum radial wave
functions are given as

R(Z )
κl (r) = 1√

2π
(2κr)l+1 exp

(
Zπ

2κ

) |�(l + 1 − iZ/κ )|
(2l + 1)!

× e−iκr
1F1

(
iZ

κ
+ l + 1, 2l + 2, 2irk

)
, (32)

where 1F1 is a confluent hypergeometric function. These
functions are not square integrable, and therefore not suitable
for the close-coupling approach. To overcome this problem we

use a wave-packet method [51]. In our work the wave packets
are constructed as

φ
(Z )
il (r) = 1√

wi

∫ κi

κi−1

dκ R(Z )
κl (r), (33)

where

wi = κi − κi−1, (34)

with κi = √
2Ei. Nonoverlapping intervals [Ei−1, Ei]

Nc
i=1 divide

the interval [0, Emax] into Nc subintervals, where Emax is
the maximum allowed energy of the ejected electron. The
intervals [Ei−1, Ei]

Nc
i=1 are called discretization bins, with Nc

as the number of bins.
The wave packets constructed in this way are orthonor-

mal and, together with the eigenstates, they form a basis to
describe the hydrogenlike atom of charge Z . For the wave
functions of hydrogen (i.e., when Z = 1) we use the notation
ψH instead of ψ (1).

2. Helium wave functions

The target description is more complicated in this case,
since we have a two-electron system and electron-electron
correlation as well as electron exchange effects must be incor-
porated. The Schrödinger equation for this system cannot be
solved analytically. Therefore, a numerical approach needs to
be developed to find the solutions. Various existing theoretical
works revealed that a careful choice of the helium wave func-
tions is important in dealing with collisions of ions with the
helium atom. Especially in the close-coupling approach they
should be defined very accurately to obtain good convergence.
In the present work we use the wave-packet-based description
of the helium atom in the frozen-core approximation devel-
oped in [50]. Assuming that the total electronic spin of He,
S = 0, is conserved during the collision, we write the wave
function in the symmetric form

ψHe
α (r1, r2) = ψα (r1)ψ (Z )

1s (r2) + ψα (r2)ψ (Z )
1s (r1), (35)

where ψ
(Z )
1s is the 1s orbital of the hydrogenlike atom of

nuclear charge Z given in (31). This is a generalization of the
wave function used by Abdurakhmanov et al. [50], where we
set Z = 2 to correspond to the ground-state wave functions of
He+.

To obtain the functions ψα for each state α, we numerically
solve the Schrödinger equation for helium

HT ψHe
α (r1, r2) = EαψHe

α (r1, r2), (36)

where Eα is the total energy of the state α. Solutions of this
equation depend on the parameter Z . We choose Z in a way
that the total ground-state energy of the helium atom is equal
to the experimental value of −2.904 a.u. [52]. Substituting
the expansion (35) of the helium wave functions into Eq. (36),
then projecting the result onto ψ

(Z )
1s , and taking into account

〈ψ (Z )
1s |ψ (Z )

1s 〉 = 1, we obtain the following integro-differential
equation for ψα:

[∇2
r1

− 2V1(r1) + 2εα + 2(2 − z)V2
]
ψα (r1) +

(
2εα + 2(2 − z)

r1

)〈
ψ

(Z )
1s

∣∣ψα

〉
ψ

(Z )
1s (r1)

+ 〈
ψ

(Z )
1s

∣∣∇2
r2

+ 4

r2
|ψα〉r1ψ

(Z )
1s (r1) − 2

〈
ψ

(Z )
1s

∣∣ 1

|r1 − r2| |ψα〉r1ψ
(Z )
1s (r1) = 0, (37)
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where

V1(r1) = −2/r1 + 〈
ψ

(Z )
1s

∣∣ 1

|r1 − r2|
∣∣ψ (Z )

1s

〉
r1

(38)

is the Hartree potential for an electron in a hydrogenlike ion of charge Z , and

V2 = 〈
ψ

(Z )
1s

∣∣ 1

r2

∣∣ψ (Z )
1s

〉 =
∫ ∞

0
ψ

(Z )
1s (r2)

1

r2
ψ

(Z )
1s (r2)dr2. (39)

Separating the radial and angular parts of the wave functions for both negative- and positive-energy states, we obtain from
Eq. (37) the following equation for the radial function Rα (r):

d2Rα (r)

dr2
−

[
l (l + 1)

r2
− 4

r
+ 2W0

[
ψ

(Z )
1s , ψ

(Z )
1s

] − 2εα − 2(2 − z)V2

]
Rα (r)

=
[

2

2l + 1
Wl

[
ψ

(Z )
1s , Rα

] − 2
∫ ∞

0
ψ

(Z )
1s (t )W0[ψ (Z )

1s , ψ
(Z )
1s ]Rα (t )dt −

(
2εα + 2(2 − z)

r

) ∫ ∞

0
ψ

(Z )
1s (t )Rα (t )dt

]
ψ

(Z )
1s (r), (40)

where

Wl [ f , g] = 1

rl+1

∫ r

0
f (t )g(t )t ldt + rl

∫ ∞

r

f (t )g(t )

t l+1
dt . (41)

We use an iterative approach to solve Eq. (40), where the
Numerov method is applied in each iteration to find solutions
of the linear inhomogeneous second-order differential equa-
tion for R(i)

α (r). R(0)
α (r) is found by replacing the right-hand

side of Eq. (40) with zero. To ensure sufficient accuracy of
the solution, the number of iterations Nit was set to be large
enough so that for all values of r there is at least four digit
agreement between R(Nit+1)

α (r) and R(Nit )
α (r).

Equation (40) was solved several times by slowly varying
the parameter Z until the corresponding ground-state total
energy of helium is equal to the experimental value. The
specific value of Z was found to be 1.99. Table I presents the
total energies of the helium atom, where one electron is frozen
in the 1s orbital while the other one is active. The calculated
total energies of various states of helium are compared with
the theoretical results of Abdurakhmanov et al. [50] and Slim
et al. [18], and also with the measured values of Bashkin and
Stoner [52]. Except for the ground state, all energies agree up
to three digits in all of the aforementioned works.

For negative energies this system has a discrete set of
solutions. For positive energies the equation has a continuous
solution with a non-normalizable radial wave function. There-
fore, as in the case of hydrogen, we construct wave packets

TABLE I. Total binding energy (in a.u.) of the helium atom in
a specific state. Only the active orbital in the (1snl ) singlet states is
listed in the first column.

State Present Ref. [50] Ref. [18] Expt. [52]

1s −2.9040 −2.8725 −2.8655 −2.9036
2s −2.1432 −2.1434 −2.1430 −2.1459
3s −2.0605 −2.0606 −2.0604 −2.0613
4s −2.0332 −2.0333 −2.0309 −2.0336
2p −2.1223 −2.1224 −2.1224 −2.1239
3p −2.0546 −2.0547 −2.0547 −2.0552
4p −2.0308 −2.0309 −2.0307 −2.0311
3d −2.0555 −2.0556 −2.0555 −2.0556

using the helium continuum-state wave functions. We define

φil (r) = νil

∫ κi

κi−1

dκ Rκl (r), (42)

where νil is the normalization coefficient. Discretization
points κi, i = 1, . . . , Nc and Emax are defined in a similar
way as for hydrogen. Then the wave packets based on the
two-electron helium wave functions are written as

ψHe
α (r1, r2) = ψ

(Z )
1s (r2)φnα lα (r1)Ylαmα

(r̂1)

+ ψ
(Z )
1s (r1)φnα lα (r2)Ylαmα

(r̂2), (43)

where the normalization coefficients are given as

νnα lα = [
2
(〈
φnα lα

∣∣φnα lα

〉 + δlα0δmα0
〈
φnα lα

∣∣φ(Z )
1s

〉)]−1/2
(44)

and φ
(Z )
1s is the radial part of the function ψ

(Z )
1s .

Both the hydrogen and helium wave packets are referred
to as bin states. Together with the eigenstates, they form the
bases for the hydrogen and helium atoms. We note that the
basis parameters Emax and Nc must be sufficiently large to
obtain accurate cross sections. Their choice will be discussed
later.

C. Matrix elements

In this section we reduce the matrix elements used in
Eq. (19) into forms that are suitable for numerical evaluation
by taking into account the definitions of the wave functions.
When the direct matrix elements (20)–(22) are written in
the integral form, we have exponential factors which can be
reduced as follows:

(kα − kα′ )σ = q⊥b + (εα′ − εα )t, (45)

(k1β − k1β ′ )ρ1 = q⊥b + (εβ ′ − εβ )t, (46)

(k2β − k2β ′ )ρ1 = q⊥b + (εβ ′ − εβ )t, (47)

k1βρ1 − k2β ′ρ2 = q⊥b + (εβ ′ − εβ )t, (48)

k2βρ1 − k1β ′ρ2 = q⊥b + (εβ ′ − εβ )t . (49)
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The exponential terms in the rearrangement matrix elements
(23)–(26) can be written as

kασ − k1β ′ρ1 = kασ − k2β ′ρ2 = q⊥b + q(1)
‖ vt − vr1, (50)

k1βρ1 − kα′σ = k2βρ1 − kα′σ = q⊥b + q(2)
‖ vt + vr1, (51)

where q⊥ is the perpendicular component of the momentum
transfer, which is the same in all transitions. The parallel
components q(1)

‖ and q(2)
‖ depend on the transition states and

are given as

q(1)
‖ = v

2
+ εβ ′ − εα

v
, q(2)

‖ = −v

2
+ εα′ − εβ

v
. (52)

As eq⊥b is the same in all matrix elements, it can be
factored out and cancels when the matrix elements are inserted
into Eq. (19). Therefore, we omit them but keep the original
notations. Using these results and summing similar terms, the
matrix elements (20)–(26) can be written in the forms

KP
β ′α =

√
2 ei(εβ′ −εα )t eiv2t/2K̃B

β ′α, (53)

KT
α′β =

√
2 ei(εα′ −εβ )t e−iv2t/2K̃A

α′β, (54)

LP
β ′β = δβ ′,β + ei(εβ′ −εβ )t L̃P

β ′β, (55)

DT
α′α = 2 ei(εα′ −εα )t D̃T

α′α, (56)

QP
β ′α =

√
2 ei(εβ′ −εα )t eiv2t/2Q̃P

β ′α, (57)

QT
α′β =

√
2 ei(εα′ −εβ )t e−iv2t/2Q̃T

α′β, (58)

DP
β ′β = ei(εβ′ −εβ )t D̃P

β ′β, (59)

with

K̃P
β ′α =

∫
dr1dr2ψ

H∗
β ′ (r1 − R)ψHe+

1s (r2)e−ivr1ψHe
α (r1, r2),

(60)

K̃T
α′β =

∫
dr1dr2ψ

He∗
α′ (r1, r2)eivr1ψH

β (r1 − R)ψHe+
1s (r2),

(61)

L̃P
β ′β =

∫
dr1dr2ψ

H∗
β ′ (r2 − R)ψHe+

1s (r1)

× e−ivr2ψH
β (r1 − R)ψHe+

1s (r2)eivr1 , (62)

D̃T
α′α =

∫
dr1dr2ψ

He∗
α′ (r1, r2)VPψHe

α (r1, r2), (63)

Q̃P
β ′α =

∫
dr1dr2ψ

H∗
β ′ (r1 − R)ψHe+

1s (r2)e−ivr1

× [
HT − EHe

α + VP
]
ψHe

α (r1, r2), (64)

Q̃T
α′β =

∫
dr1dr2ψ

He∗
α′ (r1, r2)e−ivr1

× [
HP1 − εH

β + V1
]
ψH

β (r1 − R)ψHe+
1s (r2), (65)

D̃P
β ′β =

∫
dr1dr2ψ

H∗
β ′ (r1−R)ψHe+

1s (r2)V1ψ
H
β (r1−R)ψHe+

1s (r2)

+
∫

dr1dr2ψ
H∗
β ′ (r2 − R)ψHe+

1s (r1)e−ivr2

× [
HP1 − εH

β + V1
]
eivr1ψH

β (r1 − R)ψHe+
1s (r2), (66)

where the vectors x1 and x2 were replaced with equivalent
forms of (r1 − R) and (r2 − R), respectively.

In the direct matrix element D̃T and the first term of D̃P the
terms with (HT − EHe

α ) and (HP − εH
β ) vanish, since for both

eigenstates and bin states we have〈
ψHe

α′
∣∣HT − EHe

α

∣∣ψHe
α

〉 = 0, α′, α = 1, . . . , N, (67)〈
ψH

β ′
∣∣HP − εH

β

∣∣ψH
β

〉 = 0, β ′, β = 1, . . . , M. (68)

However, in the rearrangement matrix elements Q̃P, Q̃T and in
the second term of D̃P, the terms containing [HT − EHe

α ]ψHe
α

and [HP − εH
β ]ψH

β remain, because the wave packets repre-
senting the continuum are not eigenstates. For a function

f (r) = 1√
w

∫ κ2

κ1

dκ gκ (r), (69)

where gκ is an eigenfunction of an operator h, i.e.,

hgκ (r) = εκgκ (r) = κ2

2
gκ (r), (70)

we have

[h − ε] f (r) = 1√
w

∫ κi

κi−1

dκ

(
κ2

2
− ε

)
gκ (r). (71)

Applying this to the positive-energy states of hydrogen and
helium, we introduce

χH
β (r) = [

HP − εH
β

]
ψH

β (r) = χH
β (r)Ylβmβ

(r̂), (72)

with

χH
β (r) = 1√

wnβ

∫ κnβ

κnβ −1

dκ

(
κ2

2
− εH

β

)
φH

κlβ (r), (73)

where εH
β is the energy of the β state of hydrogen. Similarly,

we introduce

χHe
α (r) = χHe

α (r)Ylαmα
(r̂), (74)

with

χHe
α (r) = 1√

wnα

∫ κnα

κnα−1

dκ

(
κ2

2
− εHe

α

)
φHe

κlα (r), (75)

where εHe
α is the energy of the active helium electron in

channel α. Consequently, we have[
HT − EHe

α

]
ψHe

α (r1, r2)

= [
HT − EHe

α

][
ψα (r1)ψ (Z )

1s (r2) + ψα (r2)ψ (Z )
1s (r1)

]
= χHe

α (r1)ψ (Z )
1s (r2) + χHe

α (r2)ψ (Z )
1s (r1). (76)

For eigenfunctions ψH
β and ψHe

α , we have χH
β = 0 and

χHe
α = 0.

Using the expansion of the helium wave function, the
matrix elements can be written in forms that are convenient

052706-6



WAVE-PACKET CONTINUUM-DISCRETIZATION APPROACH … PHYSICAL REVIEW A 99, 052706 (2019)

for the calculations. The matrix elements K̃P
β ′α, K̃T

α′β , and L̃P
β ′β

[Eqs. (60), (61), and (62), respectively] can be written as

K̃P
β ′α = 〈

ψHe+
1s

∣∣ψ (Z )
1s

〉
A
[
ψH

β ′ , ψα

] + 〈
ψHe+

1s

∣∣ψα

〉
A
[
ψH

β ′ , ψ
(Z )
1s

]
,

(77)

K̃T
α′β = (

K̃P
β,α′

)∗
, (78)

L̃P
β ′β = δβ,β ′ + A

[
ψH

β ′ , ψ
He+
1s

](
A
[
ψH

β , ψHe+
1s

])∗
, (79)

where

A[ f , g] =
∫

dr f ∗(r − R)e−ivrg(r). (80)

The rearrangement matrix elements (63)–(66) have more
complex forms. These are written as

Q̃P
β ′α = K̃P

β ′α

R
− 〈

ψHe+
1s

∣∣ψ (Z )
1s

〉
A
[
ψ̃H

β ′ , ψα

] − 〈
ψHe+

1s

∣∣ψα

〉
A
[
ψ̃H

β ′ , ψ
(Z )
1s

] − D
[
ψHe+

1s , ψ
(Z )
1s

]
A
[
ψH

β ′ , ψα

] − D
[
ψHe+

1s , ψα

]
A
[
ψH

β ′ , ψ
(Z )
1s

]
+ 〈

ψHe+
1s

∣∣ψ (Z )
1s

〉
A
[
ψH

β ′ , χ
He
α

] + 〈
ψHe+

1s

∣∣χHe
α

〉
A
[
ψH

β ′ , ψ
(Z )
1s

]
, (81)

Q̃T
α′β = K̃T

α′β

R
− (〈

ψHe+
1s |ψ (Z )

1s

〉
A
[
ψH

β , ψ̃α′
] + 〈

ψHe+
1s

∣∣ψα′
〉
A
[
ψH

β , ψ̃ (Z )
] + D

[
ψHe+

1s , ψ
(Z )
1s

]
A
[
ψH

β , ψα′
] + D

[
ψHe+

1s , ψα′
]
A
[
ψH

β , ψ
(Z )
1s

]
− A

[
ψH

β , ψα′D
[
ψHe+

1s , ψ
(Z )
1s

]] − A
[
ψH

β , ψ
(Z )
1s D

[
ψHe+

1s , ψα′
]] − 〈

ψHe+
1s |ψ (Z )

1s

〉
A
[
χH

β , ψα′
] − 〈

ψHe+
1s

∣∣ψα′
〉
A
[
χH

β , ψ
(Z )
1s

]])∗
,

(82)

where

D[ f , g] =
∫

dr f ∗(r)

(
1

R
− 1

|R − r|
)

g(r) (83)

and ψ̃ (r) = ψ (r)/r.
For the direct matrix elements we have

D̃T
α′α = D[ψα′ , ψα] + 〈

ψ
(Z )
1s

∣∣ψα

〉
D

[
ψα′ , ψ

(Z )
1s

] + 〈
ψα′

∣∣ψ (Z )
1s

〉
D

[
ψ

(Z )
1s , ψα

] + 〈
ψα

∣∣ψα′
〉
D

[
ψ

(Z )
1s , ψ

(Z )
1s

]
, (84)

D̃P
β ′β = δβ,β ′D

[
ψHe+

1s , ψHe+
1s

] + (−1)lβ+lβ′ D[ψβ ′ , ψβ ] + B
[
ψH∗

β ′ ψH
β , D

[
ψHe+

1s , ψHe+
1s

]] + 2

R
A
[
ψH

β ′ , ψ
He+
1s

]
(A

[
ψH

β , ψHe+
1s

]
)∗

− A
[
ψ̃H

β ′ , ψ
He+
1s

]
(A

[
ψH

β , ψHe+
1s

]
)∗ − A

[
ψH

β ′ , ψ
He+
1s

](
A
[
ψH

β , ψ̃He+
1s

])∗ + Cβ ′,β + A
[
χH

β ′ , ψ
He+
1s

](
A
[
ψH

β , ψHe+
1s

])∗
, (85)

where

B( f , g) =
∫

dr f (r − R)g(r), (86)

Cβ ′,β =
∫

dr1dr2ψ
H∗
β ′ (r1 − R)e−ivr1ψHe+

1s (r1)ψH
β (r2 − R)eivr2ψHe+

1s (r2)
1

|r1 − r2| . (87)

In our calculations of the matrix elements, the integral D was evaluated in spherical coordinates and all other integrals in
spheroidal coordinates. Below we describe in some detail how to further simplify the most computationally demanding term,
Cβ ′,β . This term is a part of the matrix element that corresponds to the electron exchange process between the two possible final
transfer channels β ′ and β containing the hydrogen atom and the He+ ion. The term |r1 − r2|−1 is expanded as

1

|r1 − r2| = 4π
∑
λμ

1

2λ + 1
Uλ(r1, r2)Yλμ(r̂1)Y ∗

λμ(r̂2), (88)

where

Uλ(r1, r2) =
{

rλ
1 /rλ+1

2 for r2 � r1,

rλ
2 /rλ+1

1 for r2 < r1.
(89)

Then we have

Cβ ′,β =
∑
λμ

4π

2λ + 1

[∫
dr1dr2ψ

H∗
β ′ (r1 − R)e−ivr1ψHe+

1s (r1)ψH
β (r2 − R)eivr2ψHe+

1s (r2)Uλ(r1, r2)Y ∗
λμ(r̂1)Yλμ(r̂2)

]

=
∑
λμ

1

2λ + 1

[ ∫
dr1ψ

H∗
β ′ (r1 − R)e−ivr1φ0(r1)Yλμ(r̂1)

∫
dr2ψ

H
β (r2 − R)eivr2φ0(r2)Y ∗

λμ(r̂2)Uλ(r1, r2)

]
, (90)
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where φ0 is the radial part of ψHe+
1s . In our calculations we

use spheroidal coordinates, where the integral is reduced
to a four-dimensional entity. Generally, this integral can be
evaluated for all channels, but the calculations are extremely
time consuming. Also, including them in the calculations does
not change the results considerably provided the collision
energy is not too small. Therefore, we include only the C1s,1s

term and neglect all others. This approximation imposes a
lower limit to the incident energy below which the results
may deteriorate. No further approximations were used in the
numerical evaluations of all other direct and rearrangement
matrix elements.

III. DETAILS OF THE CALCULATIONS

A. Cross sections

Once the matrix elements have been calculated, the sys-
tem of differential equations (19) can be solved to obtain
the transition amplitudes aα (+∞, b) and bβ (+∞, b) for the
required range of impact parameters b. The probability to
find the system in the direct-scattering channel α and the
rearrangement channel β after the collision is found as

Pα (b) = |aα (+∞, b)|2, Pβ (b) = |bβ (+∞, b)|2. (91)

The partial cross sections for the transition to states α and β

are calculated as

σα = 2π

∫ bmax

0
db b Pα (b), σβ = 2π

∫ bmax

0
db b Pβ (b),

(92)

where bmax, the upper limit for the impact parameter, is
chosen to be sufficiently high, as will be detailed below. The
total electron-capture cross section is the sum of the cross
sections for transitions into the negative-energy eigenstates of
hydrogen:

σ
capt
tot =

∑
β,εβ<0

σβ. (93)

The total single-ionization cross section is the sum of the
partial cross sections for excitation of the positive-energy
pseudostates of the target and electron transfer into the con-
tinuum of hydrogen:

σ ion
tot =

∑
α,εα>0

σα +
∑

β,εβ>0

σβ. (94)

In order to estimate double ionization of helium we use an
independent-event model. In the IEM, the process is modeled
as a combination of two independent processes: single ioniza-
tion of helium and subsequent ionization of the helium ion.
Accordingly, the double-ionization probability is the product
of the two individual ionization probabilities. The total prob-
abilities for single ionization of helium and ionization of the
helium ion are found as

PHe
ion (b) =

∑
α,εα>0

Pα (b) +
∑

β,εβ>0

Pβ (b), (95)

PHe+
ion (b) =

∑
γ ,εγ >0

Pγ (b) +
∑

ξ,εξ >0

Pξ (b), (96)

where Pγ and Pξ are the probabilities for direct ionization
of the helium ion and electron capture into the continuum
of hydrogen, respectively, in p + He+ collisions. Finally, the
double-ionization cross section is calculated as

σ = 2π

∫ bmax

0
db b PHe

ion (b)PHe+
ion (b). (97)

We present the total electron capture as well as the single-
and double-ionization cross sections for energies within the
range from 15 keV to 1 MeV. In order to test our computer
code, we first calculated the electron-capture cross section us-
ing the first Born approximation. We obtained good agreement
with the results of Belkić [6]. The agreement was within 5%
for all energies considered here.

B. Convergence studies

Our predictions depend on several factors, such as the
accuracy of the helium wave functions and corresponding
energy levels, as well as the accuracy of the matrix elements.
We investigate the dependence of the resulting cross sections
on the number of bins Nc, the maximum energy of the ejected
electron Emax, and the maximum angular-momentum quantum
number lmax of the states included. A number of calculations
were performed to test the convergence of the predicted cross
sections in terms of the number of both target-centered and
projectile-centered states. For simplicity we used the same
number of basis functions for the target and projectile. We
systematically increased the number of states to obtain con-
vergent results while thoroughly checking the accuracy of
the employed wave functions for the projectile- and target-
centered states.

For given Nc and lmax, the total number of states is found as

N =
lmax∑
l=0

(nmax + Nc − l )(2l + 1), (98)

where nmax is the maximum principal quantum number of
eigenstates. Our calculations show that nmax = 5 is sufficient.
As mentioned above, the resulting cross sections also depend
on the choice of bmax, the upper limit for the impact parameter.
In our calculations we set bmax = 10. Increasing this parame-
ter further had no significant effect on the final results.

The convergence of the cross sections in terms of the
number of bin states is shown in Fig. 2, where the number
of bins were increased up to Nc = 20, at energies 50 keV,
100 keV, 500 keV, and 1 MeV, respectively. Calculations were
performed with fixed values nmax = 5 and lmax = 3. Both the
electron-capture (upper panel) and ionization (lower panel)
results appear sufficiently converged. Both for electron cap-
ture and ionization, the difference between the cross sections
calculated with Nc = 16 and Nc = 20 is less than 0.5% for all
energies. Including positive-energy pseudostates is not only
important to obtain an accurate ionization cross section but
also improves the electron-capture cross section. This can
be seen in the upper panel of Fig. 2. Similar conclusions
were drawn by Slim et al. [18]. The ionization cross sections
are particularly sensitive to the number of positive-energy
pseudostates and the density of the continuum discretization.
To get accurate results and better convergence in terms of
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FIG. 2. Convergence of the present results with respect to the
number of bin states Nc for the predicted total cross sections for
electron capture (upper panel) and single ionization (lower panel)
in p-He collisions. The four lines (connecting the points to guide the
eye) represent the cross sections at the incident proton energies of
50 keV, 100 keV, 500 keV, and 1 MeV, respectively. Note that Nc = 0
yields no ionization cross section due to the lack of positive-energy
states.

positive-energy pseudostates, the maximum energy of the
included bin states, Emax, needs to be large enough. In our cal-
culations depending on the projectile energy, kmax(= √

2Emax)
ranged from 3.5 for the lower energies to 7.5 for the higher
energies. The parameter was checked for each energy individ-
ually.

Next, we investigate the convergence of the electron-
capture and ionization cross sections in terms of the maximum
allowed orbital quantum number lmax. The results are pre-
sented in Fig. 3 for lmax ranging from zero to 4 at energies of
50 keV, 100 keV, 500 keV, and 1 MeV. Both electron-capture
(upper panel) and ionization (lower panel) cross sections
appear converged in terms of lmax too. In general, convergence
was achieved with lmax = 3 for all energies considered.

IV. RESULTS

As discussed above, setting nmax = 5, lmax = 3, and Nc =
20 was required to obtain sufficiently accurate results. The
basis with these parameters consists of the 366 target- and
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FIG. 3. Convergence of the present results as a function of lmax

for the predicted total cross sections for electron capture (upper
panel) and single ionization (lower panel) in p-He collisions. The
four lines (connecting the points to guide the eye) represent the cross
sections at the incident proton energies of 50 keV, 100 keV, 500 keV,
and 1 MeV, respectively. The number of bins was set to Nc = 20.

projectile-centered functions. Below we present our main
results for the integrated cross sections.

A. Electron capture and excitation

Our results for the total electron-capture cross section
as a function of incident energy are presented in Fig. 4 in
comparison with the experimental data and the results of other
theoretical works. As mentioned before, the total electron-
capture cross section is the sum of the cross sections for the
transitions into all negative-energy states of hydrogen. Cap-
ture into the 1s state provides the dominant contribution. The
total electron-capture cross section reaches its peak around
25 keV. As seen from the figure, we obtained good agreement
with the experimental data of Shah and Gilbody [36] and Shah
et al. [37], except for the energy range of 30–100 keV, where
our calculated cross sections exceed their data by about 15%.
In this energy range only the results of Baxter and Kirchner
[5] agree with the measurements of Shah et al. [37], while the
results of all other calculations are slightly higher, most likely
due to the frozen-core approximation used to treat the target
structure. It is also interesting to compare our results with
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FIG. 4. Total cross section for electron capture in p + He(1s2)
collisions as a function of the incident proton energy (top and bottom
panels linear and log scales, respectively). The present CCC results
are represented by the black solid line. The experimental data are
due to Shah and Gilbody [36], Shah et al. [37], Rudd et al. [38],
Allison [33], Stier and Barnett [39]. The other theoretical results are
from Baxter and Kirchner [5], Kimura and Lin [12], Slim et al. [18],
Winter [20], Samanta and Purkait [17], Belkić [6].

the close-coupling calculations of Winter [20] and Slim et al.
[18]. Winter neglected electron exchange in the final transfer
channel and the calculations included only 50 Sturmian basis
functions. The result of Winter [20] exceeds ours by 30% at
50 keV but agrees at 200 keV. Slim et al. [18] succeeded to
include electron exchange in the transfer channel, even though
they used only 51 basis functions. Their electron-capture
results exceed the CCC predictions by about 15% at 25 keV
and 30 keV, but agree for the higher energies. Measurements
by Stier and Barnett [39], Allison [33], and Rudd et al. [38]
are also shown; however, these include the transfer ionization
cross section in addition to electron capture with the second
electron staying bound.

In the lower panel of Fig. 4, the same results are given on
a logarithmic y scale to highlight the higher-energy region.
In the energy range from 100 keV to 1 MeV, our calcula-
tions agree well with the experimental results of Shah and
Gilbody [36]. The theoretical results of Baxter and Kirchner
[5] are also in good agreement with the experimental data
up to 400 keV, whereas they deviate from the data and other
calculations at the higher energies. In this energy range the
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FIG. 5. Cross sections for electron capture into the 2s (upper
panel) and 2p (lower panel) states of hydrogen in p + He(1s2)
collisions. The CCC results are represented by the black solid line.
The experimental data are due to Andreev et al. [43], Hughes et al.
[44], Hippler et al. [46], Ryding et al. [47]. The other theoretical
results are from Kimura and Lin [12], Slim et al. [24], Jain et al.
[25].

B1B calculations of Belkić [6], using the Roothaan-Hartree-
Fock wave functions, also yield excellent agreement with the
experimental data.

Electron capture into the 1s state of hydrogen dominates
the charge-transfer process, but captures into other channels
are also worth investigating. In Fig. 5 we present the partial
cross sections for electron capture into the n = 2 shell of hy-
drogen. At the lower and higher energies the CCC results for
electron capture into the 2s state agree with the experimental
data. However, a clear discrepancy between the experimental
and theoretical results is seen in the intermediate energy
range, where the CCC results are in good agreement with
the calculations of Slim et al. [24] and Jain et al. [25], but
exceed the experimental data. For electron capture into the 2p
state we observe fairly good agreement with the cross sections
obtained experimentally, except for the results of Hippler and
Schartner [45], which exceed other results at the intermediate
energy range.

In Fig. 6 we provide the cross sections for direct excita-
tion of helium into the 2p state and the sum of the cross
sections for excitation into the 2s and 2p states of helium.
We obtained agreement with the experimental data of Park
and Schowengerdt [48] for both of these calculations in the
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FIG. 6. Sum of cross sections for target excitation into the 2s and
2p states (upper panel) and cross section for excitation into the 2p
state (lower panel) of helium in p + He(1s2) collisions. The CCC
results are represented as a black solid line. The experimental data
are due to Hippler and Schartner [45], Park and Schowengerdt [48].
The other theoretical results are from Begum et al. [27], Joachain and
Vanderpoorten [29], van den Bos [30].

lower and intermediate energy regions. The CCC results for
excitation of helium into the 2p state lie slightly below the
experimental data and other theoretical results above 150 keV,
the difference with experiment being within 10%. The sum
of the calculated cross sections for excitation into the 2s and
2p states is in good agreement with the results of Begum
et al. [27] in the intermediate energy range. At the higher
energies our results are below all the other theories, includ-
ing the calculations by van den Bos [30] and Joachain and
Vanderpoorten [29].

B. Ionization

In Fig. 7 the total single-ionization cross section is com-
pared with the experimental data [36,37] and other calcu-
lations [5,9,18,20]. It can be seen that the ionization cross
section reaches a maximum around 100 keV and decreases
almost linearly with increasing energy of the projectile. On
the other hand, as we have observed in the previous section,
the electron-capture cross section falls off exponentially after
reaching its maximum near 25 keV. The CCC results for
single ionization exceed the experimental data of Shah and
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FIG. 7. Cross section for single ionization in p + He(1s2) col-
lisions as a function of incident energy. The CCC results are rep-
resented by the black solid line. The experimental data are due to
Shah and Gilbody [36], Shah et al. [37], Rudd et al. [38]. The other
theoretical results are from Baxter and Kirchner [5], Díaz et al. [9],
Slim et al. [18], Winter [20].

Gilbody [36] and Shah et al. [37] by about 10% below 200
keV. The calculations of Baxter and Kirchner [5] based on the
time-dependent density-functional theory, where the Wilken
and Bauer model is applied, agree with the experiments except
for the lower energies. Below 60 keV their results lie slightly
below the data. Experimental data of Rudd et al. [38] that
include double ionization in addition to single ionization
are also shown. As we will see later, the double ionization
cross section is very small and cannot explain the difference
between the data of Shah and Gilbody [36], Shah et al. [37],
and Rudd et al. [38].

Our results are in fair agreement with the close-coupling
calculations by Winter [20]. The results of Slim et al. [18],
which take into account electron exchange in the final states,
exceed the experimental data as well as the CCC calculations
at 100 keV. Above 200 keV all theoretical predictions, includ-
ing ours, and the experimental data agree very well with each
other, with the exception of the results of Díaz et al. [9], which
are moderately higher. Note that employing a more accurate
multicore description of the helium target will likely result in
a reduction of the theoretical cross sections [21].

In Fig. 8 we present our results for double ionization, as
obtained with the IEM model. Below 40 keV we observe
good agreement with experiment, but for the higher energies
our cross sections significantly exceed the measured data.
Significantly larger double-ionization cross sections were also
obtained in IEM calculations by Baxter and Kirchner [5],
Kumar and Roy [32], and Ford and Reading [31]. The present
results and those of all displayed IEM calculations are over-
all in reasonable agreement with each other. The observed
large discrepancy with experiment suggests that there exists
a strong correlation between one- and two-electron processes
as far as double ionization of helium is concerned. In other
words, the representation of double ionization using the IEM
does not seem appropriate.
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FIG. 8. Cross section for double ionization of helium in p +
He(1s2) collisions as a function of incident energy. The CCC results
are represented by the black solid line. The experimental data are due
to Shah and Gilbody [36], Shah et al. [37], Puckett and Martin [49].
The other theoretical results are from Ford and Reading [31], Kumar
and Roy [32], Baxter and Kirchner [5].

V. SUMMARY AND CONCLUSIONS

To summarize, we investigated the four-body problem of
proton collisions with helium using the semiclassical conver-
gent close-coupling method. The wave-packet approach was
applied to discretize the continuum both for the target and
the projectile. The target was treated as a three-body system,
where the electron-correlation effects were fully taken into
account. We assumed that one of the helium electrons is
frozen in the 1s orbital of He+ throughout the collision. The
target states were described by parameter-dependent wave
functions, with the parameter fixed in such a way that the
calculated ground-state energy of the active electron matches
the measured value. With this modification, all calculated
energy levels of the active electron of helium are in excellent
agreement with the corresponding experimental values. The
predicted cross sections were found to be sensitive to the
target description, and using more accurate energy levels
considerably improved the results of our calculations.

We studied the convergence of the results in terms of the
number of basis functions and the maximum allowed orbital
angular momentum of the included states at several energies
of the projectile. Having obtained very satisfactory conver-
gence, the total electron-capture and single-ionization cross
sections were calculated in the energy range from 15 keV to
1 MeV.

There are many experiments and theoretical results avail-
able for these processes for comparison. We note that some
discrepancies exist among them below 150 keV. In this energy

range the agreement between our calculations and the experi-
mental data of Shah and Gilbody [36] and Shah et al. [37] is
within 15% for both electron capture and single ionization.
Above 150 keV our results and all experiments agree very
well. It is worth mentioning that among the close-coupling
calculations for electron capture, the CCC results are in better
agreement with experiment. This is likely due to the more
accurate target description and the size of the basis applied.

Apart from the total cross sections, we investigated transfer
cross sections into the 2s and 2p states of hydrogen, and
excitation into the 2s and 2p states of helium. Fair agreement
with other works was obtained in these particular cases as
well. Furthermore, we used the independent-event model to
study double ionization of the target, where double ionization
is formulated as a combination of two independent processes:
single ionization of helium and sequential ionization of the
resulting helium ion by proton impact. Except for the lower
energies, however, we failed to get agreement with the experi-
mental data. The same idea can be used to describe other two-
electron processes such as double capture, simultaneous trans-
fer and ionization and double excitation. However, the validity
of the independent-event model is not always guaranteed. On
the other hand, the WP-CCC method can be used to develop
a more sophisticated approach to the two-electron processes;
however, this is beyond the scope of the present paper.

In this work we discretized the continuum using the wave-
packet method. An advantage of this method is that it allows
us to study electrons ejected with arbitrary energies easily.
This is done by changing the number of bins and the max-
imum allowed energy of the ejected electrons. Therefore,
this approach can be applied to study differential ionization.
Specifically, the partial cross sections for transfer into all
positive-energy channels that we calculated can be used to
obtain differential cross sections for ionization of helium.
Calculations of the fully and doubly differential cross sections
for single ionization of the helium atom by proton and C6+
impact are currently underway. The previous study of C6+
impact single ionization of He using the one-center fully
quantum-mechanical CCC approach [53] revealed a signif-
icant disagreement with the measurements of Schulz et al.
[54] for the fully differential cross section in the perpendicular
plane. We are now in a position to revisit this problem using a
more accurate two-center approach.
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