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Evaluation of the P , T -odd Faraday effect in Xe and Hg atoms
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Accurate evaluation of the P, T -odd Faraday effect (rotation of the polarization plane for the light propagating
through a medium in presence of an external electric field) is presented. This effect can arise only due to the
P, T -odd (P—space parity, T —time reflection) interactions and is different from the ordinary Faraday effect,
i.e., the light polarization plane rotation in an external magnetic field. The rotation angle is evaluated for the
intracavity absorption spectroscopy- type experiments with Xe and Hg atoms. The results show that the Hg atom
may become a good candidate for a search for the P, T -odd effects in atomic physics.

DOI: 10.1103/PhysRevA.99.052515

I. INTRODUCTION

A search for the P, T -odd effects in low-energy physics
started with the paper [1] where the possibility to observe
the electric dipole moment (EDM) of the neutron was first
discussed. The existence of the EDM for any particle or closed
system of particles violates the space parity (P) and time
invariance (T ) conservation. Later, another P, T -odd effect
was described: P, T -odd interaction of electron and nucleus
in atomic systems [2,3]. Both effects can be observed in an
external electric field and cannot be distinguished from each
other in any particular experiment with any atom or molecule.
However, they can be distinguished in a series of experiments
with different species. References to the numerous papers on
the subject can be found in the book [4] and the review [5].

At the moment, the experimental limitations for the par-
ticles’ EDMs are most advanced for the electrons since the
electron EDM (eEDM) is greatly enhanced in heavy atoms
and especially in heavy diatomic molecules. This is true
also for the P, T -odd electron-nucleus interaction which is
convenient to express via the equivalent eEDM. An equivalent
eEDM in any atomic system can be defined as the eEDM that
leads to the same linear Stark shift in the same external electric
field as the given electron-nucleus P, T -odd interaction. The
most restrictive bounds for the eEDM were established in
the experiments with a Tl atom (de < 1.6 × 10−27 e cm) [6],
YbF molecule (de < 1.05 × 10−27 e cm) [7], ThO molecule
(de < 0.87 × 10−28 e cm [8], de < 1.1 × 10−29 e cm [9]), and
HfF+ molecular ion (de < 1.3 × 10−28 e cm) [10]. Here e
is the electron charge. For the extraction of de values from
the experimental data, the theoretical calculations of the en-
hancement coefficients are required. These calculations were
performed for Tl in Refs. [11–14], for YbF in Refs. [15–17],
for ThO in Refs. [18–21], and for HfF+ in Refs. [22–25].

The theoretical prediction of the eEDM value is rather
uncertain. Within the Standard Model (SM), none of these
predictions promises for the de magnitude the value larger
than 10−38 e cm [26] (i.e., nine orders of magnitude smaller
than the recent experimental bound). We do not discuss here

the possible consequences of “new physics.” The largest pre-
diction for effective deff

e originating from the P, T -odd two-
photon exchange between an electron and a nucleus in atomic
systems was estimated in Ref. [27] as 10−38 e cm. In the same
paper, an eEDM de was estimated to be much smaller than
the value for deff

e . Another model for the P, T -odd electron-
nucleus interaction in atomic systems via exchange by the
Higgs boson was discussed in Ref. [28]. The predictions for
the deff

e within this model are also rather uncertain.
In the modern experiments on the search for the P, T -odd

effects in atomic and molecular systems, either the shift of
the magnetic resonance in an electric field [6] or the electron
spin precession in an external electric field [7–10] had to be
observed. Due to the very large gap between the minimum
experimental bound and the maximum theoretical prediction
within the SM, the other possible methods of observation
of the P, T -odd effects in atomic and molecular systems
may be of interest. One such method is the rotation of the
polarization plane of the light propagating through a medium
in the presence of an external electric field. This method can
be called the P, T -odd Faraday effect. An existence of such
an effect was first mentioned in Ref. [29] and the possibility
to observe it was studied theoretically and experimentally (see
the short review on the subject in Ref. [30]). Recently, a possi-
ble observation of the P, T -odd Faraday effect by the meth-
ods of intracavity absorption spectroscopy (ICAS) [31–33]
was discussed in Ref. [34]. The ICAS experiments are most
suitable for the observation of the P, T -odd Faraday effect.
In particular, in Ref. [31], an experiment on the observation
of the P-odd optical rotation in Xe, Hg, and I atoms was
discussed. The techniques described in Ref. [31] are very
close to what is necessary for the observation of the P, T -odd
Faraday effect. In Ref. [14], an accurate evaluation of the
P, T -odd Faraday effect oriented to the application of the
techniques [31] was undertaken. Heavy atoms such as Cs, Tl,
Pb, and Ra were chosen for these calculations. Heavy metal
atoms such as Tl, Pb, Bi were considered as the most suitable
objects for the observation of the P-odd optical rotation in old
experiments [4]. In the present paper, we perform accurate
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calculations of the P, T -odd Faraday effect for Xe and Hg
atoms considered in Ref. [31] as the most suitable objects
for the optical cavity experiments. The iodine atom that was
also considered in Ref. [31] is not considered in the present
paper since all suitable for the P, T -odd Faraday effect
observation transitions lie in the short-wave ultraviolet region.
Unlike Ref. [14], where the hyperfine structure of the atomic
levels was ignored, in the present paper we evaluate the P, T -
odd Faraday effect for the separate hyperfine sublevels. This
corresponds to the experimental situation where the hyperfine
structure is usually resolved.

II. THEORY

The rotation angle ψ for the polarization plane of the
light propagating through the optically active medium with

any type of birefringence (natural or P-odd optical activity,
ordinary, or P, T -odd Faraday effect) is defined by the
relation (see, for example, Ref. [4])

ψ = π
l

λ
Re(n+ − n−), (1)

where l is the optical path length, λ is the wavelength of
the light, and n+(−) are the refractive indices for the right
(left) circularly polarized light. The refractive index for any
resonant process in any atomic system is connected with the
dynamic polarizability of this system α(ω):

n(ω) ≈ 1 + 2πρα(ω). (2)

Here ρ is the atomic number density,

αγ JF (ω) = e2

3

1

2F + 1

∑
γ ′J ′F ′M ′

F MF

|〈γ JFMF |r|γ ′J ′F ′M ′
F 〉|2

Eγ ′J ′F ′ − Eγ JF − ω − i
2 (	γ JF + 	γ ′J ′F ′ )

(3)

is the polarizability of atomic state γ JF , J is the total electron angular momentum of an atom, F denotes the total angular
momentum of an atom including the nuclear spin (hyperfine structure level), and MF denotes the projection of the total angular
momentum. Summation in Eq. (3) is extended over the entire atomic spectra. In the resonance case, only one term corresponding
to the particular electron level γ ′J ′ and particular hyperfine sublevel F ′ is retained. In the energy denominator, Eγ JF are the
energies of the hyperfine sublevels of the electronic level J and 	γ JF are the corresponding widths. Polarization in Eq. (3) is
averaged over the projection MF of the total momentum F of an atom.

In an external electric field, the energy levels Eγ JF begin to depend on |MF | and with the P, T -odd effects taken into account
a sublevel with |MF | value is split in two levels with MF = ±|MF | having different energies, just like Zeeman structure. Eq. (3)
then takes the form (in what follows, we will consider only the resonant case, i.e., the transition γ JF → γ ′J ′F ′ between the
hyperfine sublevels)

α±
γ JF→γ ′J ′F ′ (ω) = e2

3

1

2F + 1

∑
M ′

F MF

|〈γ JFMF |r|γ ′J ′F ′M ′
F 〉|2(

ω
(±)
γ JFMF ,γ ′J ′F ′M ′

F
− ω

) − i
2

(
	γ JFMF + 	γ ′J ′F ′M ′

F

) , (4)

ω
(+)
γ JFMF ,γ ′J ′F ′M ′

F
= Eγ ′J ′F ′M ′

F
− Eγ JFMF , (5)

ω
(−)
γ JFMF ,γ ′J ′F ′M ′

F
= E

γ ′J ′F ′M ′
F

− Eγ JFMF
. (6)

Here MF = −MF and Eγ JFMF are the Stark split components
of hyperfine sublevel F of electronic level γ J . We are inter-
ested only in those components MF , M ′

F , which satisfy the
condition

MF − M ′
F = ±1. (7)

Only the transitions γ JFMF → γ ′J ′F ′M ′
F which satisfy

Eq. (7) correspond to the absorption of the right (left) circu-
larly polarized photons and therefore exhibit the P, T -odd
Faraday rotation.

The Stark component energies we present as

Eγ JFMF = E (0)
γ JF + deE〈γ JFMF |SEDM|γ JFMF 〉, (8)

where E (0)
γ JF is the energy of the certain hyperfine sublevel

in the absence of electric field, E is the magnitude of an
external electric field strength, and 〈γ JFMF |SEDM|γ JFMF 〉
is the shift of the linear Stark component caused by the
existence of the eEDM. Expressions for the matrix elements

〈γ JFMF |SEDM|γ JFMF 〉 are given in the Appendix. In fact,

〈γ JFMF |SEDM|γ JFMF 〉 ≡ Rd , (9)

where Rd is a dimensionless enhancement coefficient of the
electron EDM in an atom.

In the case when the linear Stark shift is caused by the
P, T -odd pseudoscalar-scalar electron-nucleus interaction de

in Eq. (8) should be replaced by deqv
e . A standard way of

presenting such Stark component energies is as follows:

Eγ JFMF = E (0)
γ JF + CSE〈γ JFMF |SSP|γ JFMF 〉, (10)

where

〈γ JFMF |SSP|γ JFMF 〉 = RS. (11)

Here the constant RS interprets the EDM of an atom in
terms of the dimensionless time-reversal-symmetry-violating
electron-nucleon coupling parameter CS . RS = deqv

e for CS =
1. For the P, T -odd pseudoscalar-scalar electron-nucleus
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FIG. 1. Behavior of the functions g(u, v), f (u, v), and h(u, v) with v � 1 in the vicinity of the resonance. Figure 1(a) represents the optical
rotation angle (natural or P-odd), Fig. 1(b) represents the inverse absorption length, Fig. 1(c) represents the rotation angle for the Faraday effect
(ordinary or P, T -odd).

interaction the corresponding effective operator V SP can be
expressed in the following way [2,3,35]:

CSERS = E〈γ JFMF |V SP|γ JFMF 〉, (12)

V SP = QP,T CSi
GF√

2
γ0γ5ρ(r), (13)

where GF is the Fermi-coupling constant and QP,T is the
“P, T -odd charge of the nucleus,” in both models of the P, T -
odd electron-nucleus interaction [27,28] QP,T = A, where A
is the atomic number and ρ(r) is the normalized nuclear
density.

The second term on the right-hand side of Eq. (8) is
extremely small compared to the first term, so we can expand
Eq. (8), Eqs. (5) and (6), Eq. (4), and Eq. (2) in powers
of small parameter deE , retaining only the first term of the
expansion and inserting it into Eq. (1). It is more convenient
to do this after replacing the Lorentz profile in Eqs. (2)–(4) by
the Voigt profile, i.e., taking into account the Doppler broad-
ening, the chaotic motion of atoms in a vapor (Maxwell dis-
tribution of velocities), and the collisional broadening. Under
conditions most suitable for performing P-odd or P, T -odd
atomic experiments (atomic vapor density and temperature)
the natural line width is smaller than the Doppler width but
dominates over the collisional width. The real (dispersive)
part of the refractive index n(ω), which in our case defines
the P, T -odd Faraday rotation angle, can be parametrized as
(see, for example, Ref. [4])

Re n(u) ∼ Im F (u, v) ≡ g(u, v). (14)

The absorptive part is proportional to

Im n(u) ∼ Re F (u, v) ≡ f (u, v). (15)

The function F (u, v) is defined as

F (u, v) = √
πe−(u+iv)2

[1 − Erf(−i(u + iv))], (16)

where Erf(z) is the error function and the variables u, v are
defined as

u = 
ω

	D
(17)

and

v = 	

2	D
, (18)

respectively. Here 
ω is the frequency detuning, 	D is the
Doppler width, and 	 is the natural width. The Doppler width
is equal to

	D = ω0

√
2kBT

Mc2
, (19)

where kB is the Boltzmann constant, T is the temperature in
Kelvin, M is the mass of an atom, and c is the speed of light.

The function g(u, v) describes the behavior of the optical
rotation angle in case of optical activity (natural or P-odd)
in the vicinity of the resonance, this behavior is depicted in
Fig. 1(a). The function f (u, v) describes the absorption line
profile in the vicinity of the resonance, this line profile is
presented in Fig. 1(b). In Fig. 1(c), the function h(u, v) = dg

du
is presented. Figures 1(a)–1(c) correspond to the case v � 1.
The function h(u, v) describes the rotation angle caused by
the P, T -odd Faraday effect close to the resonance frequency.
As can be seen from Fig. 1(c), this function has two maxima
(by absolute value): one maximum corresponding to the point
of the resonance coinciding with maximum of absorption
and another maximum off the resonance where absorption
is small. This second maximum should allow us to work
off resonance when observing the ordinary Faraday effect or
searching for the P, T -odd Faraday effect with the large
optical path length.

Replacing now the Lorentz profile in Eq. (4) by the Voigt
profile, using Eqs. (1) and (2), and expanding the result in
terms of small parameter deE we find

ψγ JFMF ,γ ′J ′F ′M ′
F
(ω) = 2π2

3

l

λ
ρe2 1

2F + 1

∑
MF M ′

F

|〈γ JFMF |r|γ ′J ′F ′M ′
F 〉|2 h(u, v)

h̄	D

× 2deE
〈γ ′J ′F ′M ′

F |SEDM|γ ′J ′F ′M ′
F 〉 − 〈γ JFMF |SEDM|γ JFMF 〉
	D

. (20)
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The dependence of all matrix elements in Eq. (20) on the
quantum numbers F , MF is given in the Appendix.

Let us define the Faraday rotation signal R(ω)—the prod-
uct of the Faraday rotation angle ψ (ω) and the light transmis-
sion function T (ω):

Rγ JFMF ,γ ′J ′F ′M ′
F
(ω) = ψγ JFMF ,γ ′J ′F ′M ′

F
(ω)Tγ JF,γ ′J ′F ′ (ω).

(21)

Transmission function does not depend on MF , M ′
F . Introduc-

ing again the Voigt profile, the transmission function T (ω) can
be presented as

Tγ JF,γ ′J ′F ′ = e−ρlσγ JF,γ ′J′F ′ f (u,v), (22)

where σγ JF,γ ′J ′F ′ is the absorption cross section at the point of
resonance:

σγ JF,γ ′J ′F ′ = 4π

3h̄c

ω0

	D

e2

2F + 1

∑
MF M ′

F

|〈γ JFMF |r|γ ′J ′F ′M ′
F 〉|2.

(23)

The dependence of all matrix elements in Eqs. (20)–(23) on
the hyperfine quantum numbers F , MF can be separated out
(see the Appendix).

III. DETAILS OF ELECTRONIC STRUCTURE
CALCULATIONS

Direct use of Eq. (A9) corresponds to the so-called sum-
over-states method. Formally, the summation in the equation
should include all the excited states. In practice, only several
contributions to this sum can be taken into account. How-
ever, it is possible to reformulate the problem: instead of
explicit summation of the second order perturbation theory,
one can calculate expression Eq. (A9) as the mixed derivative
of the energy with respect to the external electric field and
de [36,37]. Note that in Ref. [37], the “strategy I” approach
where one adds the interaction with the external electric field
already at the self-consistent field stage of calculation was
formulated.

To calculate Stark shifts in the ground and excited elec-
tronic states of Xe and Hg, we used the relativistic Fock-Space
coupled cluster with single and double cluster amplitudes
method [38] to treat electron correlation effects. In these
calculations, all electrons were included in the correlation cal-
culation and the Dirac-Coulomb Hamiltonian was employed.
The uncontracted Dyall’s AETZ [39–41] basis sets were used
in the calculations augmented by several diffuse functions of
s, p, and d types.

E1 transition matrix elements were calculated using the
multireference linear response coupled cluster with single and
double amplitudes (CCSD) method [42–44] for Xe and single
reference linear response CCSD for Hg. For these calcula-
tions, the Dyall’s AEDZ basis sets [39–41] with additional
diffuse functions were used. 1s..3d electrons were excluded
from the correlation treatment of Xe and 1s..4 f 5s electrons
were excluded from the correlation treatment of Hg in the case
of E1 transition matrix elements.

Electronic calculations were performed within the
DIRAC12 [45] and MRCC [46] codes. Matrix elements of

FIG. 2. The scheme of the hyperfine and the linear Stark splitting
for the E1 transition in Xe atom.

operators of E1 transitions and P, T -odd interactions were
calculated using code developed in Refs. [20,37,47].

Uncertainty of the enhancement factors can be estimated
by 15%.

IV. RESULTS OF CALCULATIONS FOR
XE AND HG ATOMS

A. Xe atom

In the case of the Xe atom, we consider the E1 tran-
sition from the metastable (2P0

3/2)6s[3/2]0
2 state to the ex-

cited (2P0
3/2)6p[1/2]1 state. We choose the isotope 129Xe

with the nuclear spin I = 1/2. Transition wavelength is λ =
980 nm (the experimental transition energy is 
E = 1/λ =
10202 cm−1 [48]). Our calculated transition energy 
E =
10224 cm−1 is in a very good agreement with the experiment.
The calculation of the squared value of the reduced E1 ma-
trix element yields |〈(2P0

3/2)6s[3/2]0
2||r||(2P0

3/2)6p[1/2]1〉|2 =
42.85 a.u.2. A scheme of the hyperfine and the linear Stark
splitting of the levels for this transition is given in Fig. 2. The
population of the lower metastable level can be obtained with
the laser pumping [31]. The evaluation of (ω(+) − ω(−) ) for
the eEDM effect according to Eqs. (5), (6), and (8) results in

(ω(+) − ω(−) )

= 2
(
Rd

((
2P0

3/2

)
6p[1/2]1, F =1/2, MF =1/2

)
− Rd

((
2P0

3/2

)
6s[3/2]0

2, F =3/2, MF =−1/2
))

deE
= 2(−32 − (−34))deE = 4 × deE . (24)

Note that with the claimed uncertainty, the difference Eq. (24)
can be close to zero; however, present estimations are correct
by an order of magnitude for other hyperfine transitions. See
Table I for the enhancement coefficients Rd for the electron
EDM effect and the factors RS for the P, T -odd electron-
nucleus interaction effect. In what follows, the estimates of
the P, T -odd signal R are made for the electron EDM
effect assuming CS = 0 and de = 1.1 × 10−29 e cm (the bound
established in the experiment with the ThO molecule [9]).
The similar estimates also can be made for the P, T -odd
electron-nucleus interaction effect assuming de = 0 and CS =
7.3 × 10−10 (the bound established in the experiment with
the ThO molecule [9]). For an external electric field, we set
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TABLE I. Enhancement dimensionless coefficients Rd for the
electron EDM effect and factors RS [RS = deqv

e (CS = 1)] for the
P, T -odd electron-nucleus interaction effect for Xe and Hg certain
hyperfine sublevels of the electronic states under consideration.

RS × 1018,
Atom Configuration Term Rd e cm

Xe (2P0
3/2)6s 2[3/2]0

2, F = 3
2 , MF = − 1

2 −34 −0.209

(2P0
3/2)6p 2[1/2]1, F = 1

2 , MF = 1
2 −32 −0.221

Hg 6s6p 3P1, F = 1
2 , MF = − 1

2 285 3.31

6s7s 3S1, F = 1
2 , MF = 1

2 595 6.87

6s2 1S0, F = 1
2 , MF = 1

2 0 0

E = 105 V/cm [6]. Assuming the room temperature T ∼
300 K and employing the transition frequency value ω0 =
2 × 1015 s−1, according to Eq. (19) we obtain the characteris-
tic value for the Doppler width 	D = 6.5 × 10−7ω0 ≈ 1.3 ×
109 s−1. The natural line width for the chosen transition is 	 =
2.6 × 107 s−1. Using the optical path l = 100 km [31], our
calculation according to Eqs. (20)–(23) gives the dependence
R(u, ρ) depicted in Fig. 3. Then it follows from Fig. 3 that
the optimal number density of Xe atom vapors for the above
conditions is ρopt = 3 × 107 cm−3 and uopt ≈ 5 which gives
the maximum value of the effect. Then

Rmax(l = 100 km) ≈ 4.0 × 10−17 rad (25)

for the observation of the electron EDM of the order de ∼
10−29 e cm. The P, T -odd Faraday effect is proportional to
the difference between the enhancement coefficients for the
states [which satisfy the condition Eq. (7)] between which the
transition is considered (R ∼ |
Rd |). Such a small value of
the effect is mainly caused by this relation (in case of Xe atom
R ∼ |
Rd | = 2). A real observable quantity in the experiment
is the rotation angle of the light polarization plane but its value
is limited by absorption. Analyzing Eq. (25) and using a more

FIG. 3. Dependence of the P, T -odd Faraday signal R (in rad)
on dimensionless detuning u and on vapor density ρ (in cm−3) for
the E1 transition (2P0

3/2)6s[3/2]0
2 → (2P0

3/2)6p[1/2]1 in Xe atom. The
optical path length l is assumed to be equal to 100 km.

FIG. 4. The scheme of the hyperfine and the linear Stark splitting
for the 6s6p(3P1) → 6s7s(3S1) E1 transition in 199Hg atom.

familiar for experimentalists quantity ρl = 3 × 1014 cm−2

(which is referred to as the column density) for Xe, one can
evaluate the maximum rotation angle ψmax ∼ 2 × 10−16 rad.
This result shows that the best possible estimate for the
eEDM with ICAS maximum modern sensitivity achievement
(∼ 10−13 rad [33]) would still be three orders of magnitude
above the value quoted in Ref. [9].

B. Hg atom

In the case of the Hg atom, we consider two E1 transitions
for the isotope 199Hg with the nuclear spin I = 1/2. The first
one is from the metastable 6s6p(3P1) state to the excited
6s7s(3S1) state. The wavelength for this transition is λ =
436 nm (the experimental transition energy is 
E = 1/λ =
22938 cm−1 [49]). Our calculated transition energy 
E =
21028 cm−1 is in very good agreement with the experiment.
The calculation of the squared value of the reduced E1 ma-
trix element yields |〈6s6p(3P1)||r||6s7s(3S1)〉|2 = 9.83 a.u.2.
A scheme of the hyperfine and linear Stark splitting is given
in Fig. 4. The population of the lower metastable level can
be obtained with the laser pumping [31]. The evaluation of
(ω(+) − ω(−) ) for the eEDM effect for this case according to
the formulas Eqs. (5), (6), and (8) results in

(ω(+) − ω(−) ) = 2(Rd (6s7s(3S1), F =1/2, MF =1/2)

− Rd (6s6p(3P1), F =1/2, MF =−1/2))deE
= 2(595 − 285)deE = 620 × deE . (26)

(Also see Table I for the enhancement coefficients Rd for the
electron EDM effect and the factors RS for the P, T -odd
electron-nucleus interaction effect.) For an external electric
field, we again set E = 105 V/cm [6]. The natural line width
for the chosen transition is 	 = 1.0 × 108 s−1. Assuming the
room temperature T ∼ 300 K and employing the transition
frequency value ω0 = 4 × 1015 s−1, according to Eq. (19)
we obtain the characteristic value for the Doppler width
	D = 5.2 × 10−7ω0 ≈ 2 × 109 s−1. Using the optical path
l = 100 km [31], our calculation according to Eqs. (20)–(23)
gives the dependence R(u, ρ) depicted in Fig. 5. Then it
follows from Fig. 5 that the optimal number density of Hg
atom vapors for the above conditions is ρopt = 4 × 107 cm−3

and uopt ≈ 5, which gives the maximum value of the effect.
R(u, ρopt ) and R(uopt, ρ) projections of Fig. 5 are presented in
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FIG. 5. Dependence of the P, T -odd Faraday signal R (in rad)
on dimensionless detuning u and on vapor density ρ (in cm−3) for the
6s6p(3P1) → 6s7s(3S1) E1 transition in Hg atom. The optical path
length l is assumed to be equal to 100 km

Figs. 6(a) and 6(b), respectively. Then

Rmax(l = 100 km) ≈ 2.4 × 10−15 rad (27)

for the observation of the electron EDM of the order de ∼
10−29 e cm. Analyzing Eq. (27) and using the column density
value of ρl = 4 × 1014 cm−2 for this transition in Hg one can
evaluate the maximum rotation angle ψmax ∼ 10−14 rad.

The second E1 transition is from the ground 6s2(1S0)
to the metastable 6s6p(3P1) state with the wavelength λ =
254 nm (the experimental transition energy is 
E = 1/λ =
39412 cm−1 [49]). Our calculated transition energy 
E =
39806 cm−1 is in a very good agreement with the experiment.
The calculation of the squared value of the reduced E1 ma-
trix element yields |〈6s6p(3P1)||r||6s2(1S0)〉|2 = 0.42 a.u.2. A
scheme of the hyperfine and linear Stark splitting is given in
Fig. 7. The evaluation of (ω(+) − ω(−) ) for the eEDM effect
for this case according to the formulas Eqs. (5), (6), and (8)
results in

(ω(+) − ω(−) ) = 2(Rd (6s6p(3P1), F =1/2, MF =1/2)

− Rd (6s2(1S0), F =1/2, MF =−1/2))deE
= 2(−285)deE = −570 × deE . (28)

Employing the transition frequency value ω0 = 7.4 ×
1015 s−1, according to Eq. (19) we obtain the characteristic

FIG. 6. (a) Behavior of the R(u, ρopt ) projection of Fig. 5 (in rad),
assuming fixed number density ρopt = 4 × 107 cm−3, and (b) behav-
ior of the R(uopt, ρ ) projection of Fig. 5 (in rad), assuming fixed
dimensionless detuning uopt = 5 (ρ in cm−3).

FIG. 7. The scheme of the hyperfine and the linear Stark splitting
for the 6s2(1S0 ) → 6s6p(3P1) E1 transition in 199Hg atom.

value for the Doppler width 	D = 5.2 × 10−7ω0 ≈
3.7 × 109 s−1. The natural line width for the chosen transition
is 	 = 2.0 × 107 s−1. Using the optical path l = 100 km [31]
our calculation according to Eqs (20)–(23) gives the
dependence R(u, ρ) depicted in Fig. 8. Then it follows
from Fig. 8 that the optimal number density of Hg atom
vapors for the above conditions is ρopt = 4 × 109 cm−3 and
uopt ≈ 5, which gives the maximum value of the effect. Then

Rmax(l = 100 km) ≈ 1.0 × 10−14 rad (29)

for the observation of the electron EDM of the order
de ∼ 10−29 e cm. The uncertainty of predicted value for the
P, T -odd Faraday signal is defined by the uncertainty of the
electronic structure calculations made in Sec. III and is about
15%. Analyzing Eq. (29) for this transition in Hg one can
evaluate the maximum rotation angle ψmax ∼ 10−13 rad.

The results for Hg show that with the best sensitivity
achievements of the modern ICAS (∼ 10−13 rad [33]) the
P, T -odd Faraday experiment with Hg atoms could give
the same upper bound for eEDM as already quoted value
in Ref. [9]. Note that the results for the P, T -odd Faraday
rotation signal given in Ref. [14] were overestimated for E1

FIG. 8. Dependence of the P, T -odd Faraday signal R (in rad)
on dimensionless detuning u and on vapor density ρ (in cm−3) for
the 6s2(1S0 ) → 6s6p(3P1) E1 transition in Hg atom. The optical path
length l is assumed to be equal to 100 km.
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transitions and should be at the same level as the results given
here for Hg atom.

V. CONCLUSIONS

The main result of our studies reported in this paper is
that the Hg atom is as favorable for the observation of the
P, T -odd Faraday effect in ICAS experiments as the Cs, Tl,
Pb, and Ra atoms studied earlier in Ref. [14] but unlike the
latter ones is more suitable for the ICAS experiments of the
type discussed in Refs. [31,50] for observation of the P-odd
optical activity. To give the same upper bound for eEDM
as is already reached in experiments with the electron spin
precession in electric field [9], it would be necessary to use the
maximum modern results in ICAS sensitivity 10−13 rad [33].
Recently, several suggestions were made how to improve
further the accuracy achieved in the observation of eEDM.
The main problem in ACME experiments is the relatively
short coherence time (few ms), i.e., the time of interaction for
the molecule in the molecular beam with an external electric
field. For the molecular ions which can be trapped in magnetic
storage rings, the coherence time becomes as large as ∼1 s.
The best experiment with molecular ion HfF+ was reported in
Ref. [10]. However, the charged particles (molecular ions) are
less robust with respect to systematic errors. Also, there was a
suggestion to trap neutral molecules using laser cooling [51].
The polyatomic molecules (for example, YbOH) were con-
sidered as the most suitable candidates for this cooling. What
concerns the P, T -odd Faraday experiment, the coherence

time is limited only by the optical path length. The main
disadvantage of the proposed P, T -odd Faraday experiments
with atoms is the necessity to use very high electric field
(105 V/cm) for obtaining acceptable rotation angle. Such a
field can be easily produced within a small volume of the size
1 cm. To obtain such a field within the cavity of 1 m long
is a serious technical problem which we do not discuss in
the present paper. One possible way to avoid this difficulty
is to perform the ICAS P, T -odd Faraday experiment with
diatomic molecules. For heavy diatomic molecules, the elec-
tric field necessary to reach the same P, T -odd Faraday effect
as in heavy atoms may be much weaker [8,9,52]. The work on
the investigation of ICAS P, T -odd Faraday effect in heavy
diatomic molecules is underway and is planned to be our next
communication.
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APPENDIX : SEPARATION OF THE DEPENDENCE ON THE HYPERFINE QUANTUM NUMBERS F, MF

IN THE MATRIX ELEMENTS

We start with the matrix element 〈γ JFMF |r|γ ′J ′F ′M ′
F 〉 in Eq. (20). These matrix elements enter in Eq. (20) in the form of a

scalar product of two irreducible tensor operators,

1

2F + 1

∑
MF M ′

F

∑
q=0,±1

(−1)q〈γ JFMF |r1
q |γ ′J ′F ′M ′

F 〉〈γ ′J ′F ′M ′
F |r1

q |γ JFMF 〉, (A1)

where Pa
α denotes the component α of the irreducible tensor of the rank a. Thus, we have to evaluate the matrix element of the

irreducible tensor operator depending on the variables of one subsystem (electron) with the wave functions depending on the
variables of two subsystems (electron + nucleus). The application of the Wigner-Eckart theorem in this case results in [53]

〈
γ ′

1 j′1γ
′
2 j′2 j′m′|Pa

α |γ1 j1γ2 j2 jm〉 = δγ2γ
′
2
δ j2 j′2 (−1) j+ j′1+ j2−a
 jC

j′m′
jmaα ×

{
j1 j2 j

j′ a j′1

}
〈γ ′

1 j′1||Pa||γ1 j1〉. (A2)

Here j1, j2 are the angular momenta for two subsystems, and j, m are the total angular momentum and its projection. The
notations from Ref. [53] for the Clebsh-Gordan coefficients, 6 j-symbols, and reduced matrix elements are employed:


ab...c =
√

(2a + 1)(2b + 1) . . . (2c + 1). (A3)

In our case, jm = FMF , j′m′ = F ′M ′
F , j1 = J , j′1 = J ′, j2 = j′2 = I , a = 1, α = q for one matrix element and jm = F ′M ′

F ,
j′m′ = FMF , j1 = J ′, j′1 = J , j2 = j′2 = I , a = 1, α = q = −q for another matrix element where I is the nuclear spin. Then
Eq. (A1) looks like

1

2F + 1

∑
MF M ′

F q

(−1)q+F+F ′+J+J ′+2I−2
√

(2F + 1)(2F ′ + 1) × CF ′M ′
F

FMF 1qCFMF

F ′M ′
F 1q ×

{
J I F
F ′ 1 J ′

}{
J ′ I F ′
F 1 J

}
|〈γ J||r1||γ ′J ′〉|2.

(A4)
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Summation over MF , M ′
F , q in Eq. (A4) can be reduced to the factor

1

2F + 1

∑
MF M ′

F q

(−1)qCF ′M ′
F

FMF 1qCFMF

F ′M ′
F 1q = (−1)F+F ′+s

√
2F ′ + 1

2F + 1
, (A5)

where s = 2F ′ (mod 2). Then the expression Eq. (A1) takes the form

(−1)J+J ′+2I+s(2F ′ + 1)

{
J I F
F ′ 1 J ′

}{
J ′ I F ′
F 1 J

}
|〈γ J||r1||γ ′J ′〉|2. (A6)

Next we consider the matrix element 〈γ JFMF |SEDM|γ JFMF 〉 in Eq. (8). This matrix element looks like [14,34]

deE〈γ JFMF |SEDM|γ JFMF 〉 = −de〈γ JFMF |(γ0 − 1)E�|γ JFMF 〉

+ deeE
∑

γ ′J ′F ′M ′
F

{ 〈γ JFMF |r|γ ′J ′F ′M ′
F 〉〈γ ′J ′F ′M ′

F |(γ0 − 1)Ec�|γ JFMF 〉
Eγ ′J ′F ′ − Eγ JF

+ 〈γ JFMF |(γ0 − 1)Ec�|γ ′J ′F ′M ′
F 〉〈γ ′J ′F ′M ′

F |r|γ JFMF 〉
Eγ ′J ′F ′ − Eγ JF

}
. (A7)

Here Ec is the strength of the Coulomb field of the nucleus and other electrons, e is the electron charge (by modulus), r is the
electron radius-vector, r = |r|; γ0,� are the Dirac matrices. Equation (A7) is written for an atom with one valence electron. In
case of several valence electrons, the one-electron operators in the matrix elements in Eq. (A7) should be replaced by the sums of
one-electron operators for all the electrons. In the latter case, the wave functions in the matrix elements in Eq. (A7) should be the
many-electron ones and the quantum numbers γ J should belong to the whole atom. In this way, the electron correlation within
any approximation can be taken into account. Note also that, according to Ref. [54], within the Dirac-Coulomb Hamiltonian one
can use an alternative expression for the eEDM interaction in Eq. (A7),

V eEDM = de
2i

eh̄
cγ 0γ 5 p2, (A8)

where p is the electron momentum operator. The advantage of such form of the interaction is that it is written in the one-electron
form.

The first term on the right-hand side of Eq. (A7) usually gives a negligible contribution, so we will consider only the second
and the third terms. To demonstrate the separation of the hyperfine quantum numbers FMF in the matrix element Eq. (A7) we
consider an atom with one valence electron in the one-electron approximation.

We present the matrix element deE〈γ JFMF |SEDM|γ JFMF 〉 in the form

deE〈γ JFMF |SEDM|γ JFMF 〉 = de〈γ JFMF |E�EDM|γ JFMF 〉, (A9)

where E is an external electric field and vector �EDM is defined by Eq. (A7). Let the field E be oriented along z axis then
Ex = Ey = 0, Ez = E , and

deE〈γ JFMF |SEDM|γ JFMF 〉 = deE〈γ JFMF |�EDM,1
0 |γ JFMF 〉, (A10)

where �EDM,1
0 is a zero component of the irreducible tensor �EDM,1

q of the rank 1 corresponding to the vector �EDM. Now we

can apply again the general formula Eq. (A2) since the tensor �EDM,1
0 depends only on the variables of the electron subsystem

in the total atomic system (electrons + nucleus),

deE〈γ JFMF |�EDM,1
0 |γ JFMF 〉 = (−1)F+J+I−1

√
2F + 1CFMF

FMF 10 ×
{

J I F

F 1 J

}
deE〈γ J||�EDM,1

0 ||γ J〉, (A11)

where the reduced matrix element 〈γ J||�EDM,1
0 ||γ J〉 is the linear Stark matrix element calculated neglecting the hyperfine

structure. The dependence on MF is contained in the Clebsh-Gordan coefficient CFMF
FMF 10. This coefficient equals [53]

CFMF
FMF 10 = MF

[F (F + 1)]1/2
. (A12)
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