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Semiclassical limitations for photon emission in strong external fields
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The semiclassical heuristic radiation formula of Baier and Katkov [V. N. Baier and V. M. Katkov, Sov. Phys.
JETP 26, 854 (1968)] is well known to describe radiation of an ultrarelativistic electron in strong external
fields employing the electron classical trajectory. To find the limitations of the Baier-Katkov approach, we
investigate an electron radiation in a strong rotating electric field quantum mechanically using the Wentzel-
Kramers-Brillouin approximation. It is shown that an additional condition except for an ultrarelativistic velocity
is required in order to recover this widely used result. A violation of this condition gives rise to a qualitative
discrepancy in the harmonic spectra between the two approaches. Furthermore, the same classical trajectory
in the rotating electric field and in a plane-wave field is shown to produce substantially different spectra, in
contradiction to the semiclassical paradigm. In particular, the number of absorbed field photons, and thus the
amount of energy absorbed from the field during emission, are different in these cases.
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I. INTRODUCTION

In recent years, the achievable intensities of both optical
[1–3] and x-ray [4,5] lasers have been rapidly rising and a
plethora of unexplored physical phenomena are expected to
come within reach [6–14]. The fundamental theory describing
these phenomena is strong-field QED, which concerns the
dynamics of quantum relativistic particles in the presence of
strong electromagnetic (EM) fields. The strong-field regime
is characterized by a considerable nonlinearity parameter ξ �
1 [15], with ξ ≡ ea/m = 7.5

√
IL/(1020 W/cm2)/ω[(eV))],

where −e and m are the electron charge and mass, respec-
tively, a is the amplitude of the laser vector potential Aμ,
and IL, ω are the laser intensity and frequency, respectively.
Relativistic units h̄ = c = 1 are used throughout.

In the realm of the Furry picture, which is commonly
employed in strong-field QED, the strong EM field is con-
sidered as a classical field and is included in the free part
of the Lagrangian [16]. As a consequence, the free particles
in the standard QED perturbation theory are replaced with
particles experiencing the external field. Especially successful
is this formalism for field configurations which admit an exact
analytical solution for the electron wave function: plane-wave
field (PWF) [17], static electric field [18], static magnetic field
[19,20], and PWF combined with a static magnetic field [21].
The rates of the scattering processes of electrons, positrons,
and photons in the presence of a laser field calculated in this
framework [15,22–33] depend upon ξ , as well as on the quan-
tum parameter χ ≡ e

√
−(FμνPν )2/m3, where Pν = (E, P) is

the kinetic four-momentum and Fμν = ∂μAν − ∂νAμ the field
tensor. A bold letter designates a three vector. Of special
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interest are the lowest-order processes, namely, the nonlinear
Compton, e− + nγF → e− + γ , and nonlinear Breit-Wheeler
scatterings, γ + nγF → e− + e+ (where e+, e−, γ , γF repre-
sent a positron, an electron, a gamma photon, and a photon
associated with the external field, respectively). They differ
from the standard Compton and Breit-Wheeler processes by
the fact that they involve many incoming photons interacting
coherently with the fermions. These processes may lead to
an avalanchelike phenomenon (“QED cascade”), where an
electron emits a gamma photon, which interacts with the
laser field to produce an electron-positron pair, and so on,
resulting in the rapid formation of copious electron-positron
pairs plasma [34–38].

Laser plasma experiments are expected to involve complex
field configurations, as opposed to the simplified nature of
the analytical solutions mentioned above. A possible way to
overcome this obstacle is to rely on the semiclassical (SC)
method, introduced by Baier and Katkov [39,40]. It allows one
to calculate the emission rate, including photon recoil effects,
in a general field configuration, given that the particle mo-
tion is quasiclassical and ultrarelativistic. This method does
not require the particle wave function, but only its classical
trajectory in the given field configuration. In the ultrastrong-
field regime (ξ � 1), a simpler approach is being commonly
applied. It employs the local constant field approximation
(LCFA), formulated by Nikishov and Ritus [23] in the 1960s.
They argued that as long as

F,G� χ2, F,G� 1, ξ � 1 (1)

are satisfied, a particle emits radiation as if it was immersed in
a constant crossed field. The quantities F ≡ e2FμνFμν/(4m4)
and G ≡ εαβμνe2FαβFμν/(4m4) are the field invariants and
the symbol εαβμν stands for the Levi-Civita tensor. Follow-
ing this assumption, the radiative processes are described
by analytical expressions regardless of the exact temporal
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and spatial shape of the EM field. This attitude underlies
the QED emission modules [41–43] integrated in particle-in-
cell plasma simulations (see, also, improved versions of the
LCFA expression [44–46]). Recently, an approximated wave
function describing an ultrarelativistic electron interacting
with a tightly focused laser beam was proposed [47] and
employed for calculating the rates of QED processes in such
fields [48–50]. Given the increasingly extreme and complex
scenarios being explored with further rising laser intensities
and frequencies, there is an urgent need to benchmark and in-
vestigate the limitations of the SC and LCFA approximations.

A relatively simple but not exactly solvable field con-
figuration is the rotating electric field (REF). Its physical
significance stems from the fact that it describes a particle in
a plasma wave (in a frame that moves with the wave group
velocity) or a particle in the antinode of a standing wave,
created by two counterpropagating laser beams. The latter is
one of the favorite configurations to examine QED cascades
[41–43]. In principle, the electron’s motion in a standing wave
is complex and is not limited to the antinodes. However, in
the anomalous radiative trapping regime (corresponding to ξ

values above several thousands), the electrons are expected to
be trapped in the antinodes [51]. The wave function associated
with this configuration has been excessively studied [52–57].
Recently, quantum calculations of the emitted radiation in
this configuration have been carried out [58,59], using various
approximations for the wave function.

In the present paper, the quantum radiation emitted by a
particle in a REF is calculated using the Wentzel-Kramers-
Brillouin (WKB) method, which is more accurate than the ap-
proaches employed so far for this scenario. The full quantum
calculation of the radiation spectra is used as a benchmark for
the SC approach. We demonstrate that a further condition is
required except for an ultrarelativistic motion: the γ factor of
the particle (γ = E/m � 1) should be much larger than the
nonlinearity parameter ξ . As a test case, a particle moving in
a circle in REF is studied. For this case, the condition γ � ξ

is violated and, therefore, the WKB and SC approaches yield
different emission spectra. According to both models, the
spectrum takes the form of discrete harmonics, but with quali-
tatively different harmonic structure (although, with the same
harmonic-averaged spectrum). As the circlelike electron’s
trajectory is also possible for a particle counterpropagating
a PWF laser with a certain initial momentum, we compare
our emission spectrum to the latter case as well. For the PWF
(at ξ � 1), a continuous spectrum, coinciding with the LCFA
result, is predicted, in contrast to the discrete spectrum in
REF. Moreover, for the REF case, a cutoff in the number
of absorbed photons is predicted, while the PWF does not
exhibit such a restriction. It implies that the depletion of the
field energy should be essentially different. Furthermore, the
observed discrepancy indicates that the emission spectrum
in the quantum recoil regime cannot be fully determined by
the electron’s classical trajectory. Namely, the particular EM
field driving the motion should be taken into consideration
as well. Additionally, the REF result demonstrates that the
exact spectrum may deviate from the LCFA result even though
the Ritus-Nikishov condition of Eq. (1) is satisfied. Rather,
the coincidence with the LCFA is achieved for the harmonic-
averaged spectrum only.

The paper is organized as follows. In Sec. II A, the emis-
sion expression is derived quantum mechanically using the
WKB wave function. Section II B summarizes the SC ap-
proach. The quantum and semiclassical results are compared
in Sec. III, and the applicability condition of the SC formula
is deduced. Section IV deals with a specific case—circular
motion—and contains the corresponding harmonics energy as
well as matrix element calculations according to both models.
In Sec. V, the numerical results are presented and the physical
consequences of our findings are discussed and concluded in
Sec VI.

II. PHOTON EMISSION EXPRESSION

A. WKB approach

In the following, the radiation emitted by an electron in
a REF is calculated using the WKB approximation for the
wave function. For the sake of simplicity, the spin effect is
neglected, which is justified as long as χ � 1 [15]. Thus the
electron wave function in a strong electromagnetic field is
described by the Klein-Gordon equation:

[−h̄2∂2 − 2ieh̄(A · ∂ ) + e2A2 − m2]� = 0, (2)

where the reduced Planck constant h̄ is explicitly written, as
it plays a key role in the WKB approximation. The vector
potential corresponding to REF is given by

Aμ = aμ
1 cos(k · x) + aμ

2 sin(k · x), (3)

where aμ
1 = a(0, 1, 0, 0), aμ

2 = a(0, 0, 1, 0) are the polariza-
tion vectors, k = (ω, 0, 0, 0) is the wave vector in the labora-
tory frame, and ω is the field frequency. The vector potential
(and therefore the electric field as well) is assumed to vanish
for asymptotic times (t → ±∞) and to be turned on adiabat-
ically, so that its time and space derivatives can be neglected.
Notice that k2 �= 0, in contrast to the PWF case. Hence, Eq. (2)
cannot be reduced to a first-order equation. In the following,
the leading-order WKB approximation is employed [60,61].
Namely, we seek for a solution of the form

� = exp

[(
S0

h̄
+ S1

)]
. (4)

By substituting Eq. (4) into Eq. (2), neglecting the second-
order terms in h̄, and equating the coefficients of each h̄ power
to zero, one finds

S0 = i

(∫ t

−∞
dt ′E(t ′) − p · x

)
, S1 = −1

2
lnE(t ), (5)

where pμ is the initial momentum (i.e., the momentum prior
to the field switching on) and S0 is the classical action, as
expected. The kinetic momentum and energy are given by

E(t ) =
√

m2 + P2(t ), P(t ) = p − eA(t ). (6)

For the sake of simplicity, the explicit time dependence of
E, P will be discarded from now on. Accordingly, the approx-
imated wave function reads

�p = 1√
2VE

exp

[
i

(∫ t

−∞
dt ′E− p · x

)]
, (7)

where V is the normalization volume and the h̄ will be omitted
henceforth. Notice that for a general EM field configuration,
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FIG. 1. The Feynmann diagram representing the emission pro-
cess. The bold lines represent the “dressed” electron in the Furry
picture.

the classical action and trajectory cannot be found analytically
and therefore the WKB is not beneficial. In our case, however,
the classical motion admits an analytical solution.

The transition amplitude for the leading-order nonlinear
photon emission, depicted as a Feynman diagram in Fig. 1,
is given [58] by

iT = eεμ

∫
dx4 e−ik′ ·x

√
2ω′

× [�∗
p′ (∂μ + eAμ)�p − �p′ (∂μ − eAμ)�∗

p], (8)

where the ∗ symbol stands for a complex conjugate, ε is
the emitted photon polarization vector, and p, p′, k′ are the
momenta associated with the incoming electron, outgoing
electron, and emitted photon, respectively. Substituting the
wave function given by Eq. (4) leads to

iT = (2π )3eεμ

∫ ∞

−∞
dt

[
Pμ + P′

μ√
8ω′EE′

]
eiψδ3(p − p′ − k′), (9)

where the argument reads

ψ = ω′t +
∫ t

∞
dt ′E′ −

∫ t

−∞
dt ′E. (10)

It follows from the δ function in Eq. (9) that the initial
momenta of the incoming and outgoing particles are related
through p′ = p − k′. Together with Eq. (6), it leads to

E′ =
√

m2 + P′2, P′ = P − k′. (11)

Using the expression of Eq. (11) for P′, and since the temporal
component of εμ vanishes, we have

ε · [P + P′] = −ε · [2P − k′] = 2ε · P, (12)

where the orthogonality relation ε · k′ = 0 was used. Finally,
one obtains

iT = (2π )3

√
2

eTi f δ
3(p − p′ − k′), (13)

where

Ti f ≡
∫ t f

ti

dt ′ [ε · P]√
ω′EE′ e

iψ. (14)

Due to the periodicity of the field, one may decompose the
phase into

ψ = ψp + ψnpωt, ψnp ≡ 1

T

∫ T

0
ψ (t ′)dt ′, (15)

where ψp and ψnp are the periodic and nonperiodic parts,
correspondingly, and T = 2π/ω is the EM field period. Con-
sequently, Eq. (14) may be written as a series of δ functions,

Ti f = 2π
∑

s

Msδ(�s), �s ≡ ω(s − ψnp). (16)

The matrix element corresponding to a s-photon process is
given by

Ms ≡ 1

T

∫ T

0
dt

[
ε · P√
ω′EE′

]
eiψp−sωt . (17)

Since according to the momentum conservation appearing in
Eq. (13), p′ is determined by k′, it follows that �s can be
written as a function of k′. Hence, the requirement �s = 0,
corresponding to the energy conservation, imposes a restric-
tion on the wave vector of the emitted photon. Writing ψnp

explicitly, one arrives at

�s = sω + Eav − ω′ − E′
av = 0, (18)

where Eav and E′
av are the cycle-averaged value of E and E′,

respectively.
The emission probability P is obtained by integrating the

squared transition amplitude over the phase space of the
outgoing particle [62],

P =
∫

V d3p′

(2π )3

V d3k′

(2π )3
|iT |2. (19)

The squared transition amplitude given by Eq. (13) takes the
form

|iT |2 = (2π )3e2

2
δ3(p − p′ − k′)V |Ti f |2. (20)

One may see that the volume V is canceled with the normal-
ization factor of the wave functions included in Ti f . Conse-
quently, it will be omitted from now on. Plugging Eq. (20)
into Eq. (19) and taking advantage of the spatial δ function,
one arrives at

P = α

(2π )2

∫
d3k′|Ti f |2, (21)

where α = e2/(4π ) ≈ 1/137 is the fine-structure constant.
Squaring Ti f yields

|Ti f |2 = 2π
∑
s,ε

|Ms|2δ(�s)τ, (22)

where τ is the interaction time which goes to infinity since we
assume that the pulse is very long. Substituting Eq. (22) into
Eq. (21), we obtain, for the rate (the probability per unit time
R ≡ limτ→∞ 1

τ
P),

R =
∑

s

Rs, Rs = α

2π

∫
d3k′ ∑

ε

|Ms|2δ(�s). (23)
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Writing d3k′ explicitly in spherical coordinates and recalling
the relation dI = ω′dR, we obtain, for the emitted intensity,

Is = α

2π

∫
dω′d (cos θ )dϕω′3 ∑

ε

|Ms|2δ(�s), (24)

where θ, ϕ are the polar and azimuthal emission angles,
respectively.

B. SC approach

The SC operator technique, developed by Baier and Katkov
[39,40], is a powerful method capable of calculating the
emission radiated by a particle taking into account the recoil
effect (corresponding to non-negligible χ ). Its main virtue is
that it applies for a general EM field and requires a solution
of the classical rather than the quantum equation of motion.
Its only limitations concern the nature of the particle dynam-
ics. Namely, it should be ultrarelativistic and quasiclassical.
For a free particle, the latter simply means that the particle
oscillation frequency, induced by the EM field, is much lower
as compared to the particle energy (ω � E). For a particle in
a potential well, the quasiclassical regime is determined by
the quantum index n associated with the bound levels. It was
recently shown that for n � 1, the full quantum calculation
for the emission coincides with the SC prediction [63,64].

The quasiclassical condition is required for the WKB ap-
proximation as well. Nevertheless, there are two reasons why
the quantum calculation employing the WKB wave functions
is superior to the Baier-Katkov SC model, thus making the
benchmark significant. First, the SC approach relies on further
assumptions beside the quasiclassical dynamics, such as the
above-mentioned requirement γ � 1. Second, regarding the
semiclassical assumption itself, in the Baier-Katkov deriva-
tion, it takes the form of neglecting certain commutation
relations associated with the quantum operators. As these
commutation relations can be calculated only for special
cases (i.e., magnetic field), the justification for this neglect
is questionable. Moreover, their formalism does not allow us
to quantitatively evaluate its accuracy by considering high-
order corrections. On the contrary, the WKB wave function
is derived as an asymptotic series, taking the limit h̄ → 0. As
a result, a clear applicability criterion exists, deduced from
the estimation of the neglected higher orders. In addition, one
may, in principle, take further terms into account and thus
evaluate the higher-orders correction to the wave function.

The emission probability for a scalar particle correspond-
ing to this approach is given, analogously to Eq. (21),

P = α

(2π )2

∫
d3k′|T̃i f |2, (25)

where the tilde symbol designates the SC approximation, and
the following quantity is introduced [39,40]:

T̃i f ≡
∫ t f

ti

dt ′
[

ε · P√
E(E− ω′)ω′

]
eiψ̃ . (26)

The phase is given by

ψ̃ ≡
(
E

E− ω′

)
[k′ · x(t )], (27)

where xμ = [t, x(t )] is the classical trajectory associated with
the particle motion prior to the emission. The above ex-
pression for the emission probability contains a nontrivial
statement. Namely, it argues that the classical trajectory solely
determines the radiation, regardless of the driving EM field
properties. This paradigm is challenged by the results appear-
ing in Sec. V of this paper. The emission rate is given by
Eq. (23), where �s,Ms are replaced,

M̃s = 1

T

∫ T

0
dt

[
ε · P√

E(E− ω′)ω′

]
eiψ̃p−sωt , (28)

and

�̃s ≡ ω(s − ψ̃np), (29)

respectively. The periodic and nonperiodic parts of the phase
(ψ̃p, ψ̃np) are determined by averaging Eq. (27) on a single
cycle, analogous to Eq. (15) with the modification ψ → ψ̃ .

III. COMPARISON BETWEEN SC AND WKB

The aim of this section is to benchmark the SC result with
the quantum calculation. In particular, we seek a validity cri-
terion for the SC approach. Comparing Eqs. (14) and (26), it
is clearly seen that the main discrepancy lies in the difference
between ψ and ψ̃ . Since E′ appears in Eq. (10) but not in
Eq. (27), let us express it in terms of E, ω′. Rewriting Eq. (11)
in a more convenient way, we have

E′ =
√

(E− ω′)2 − 2k′ · P. (30)

As SC generally requires E′ ≈ E− ω′, one of the two key
approximations required in order to recover SC is

�1 ≡ k′ · P

(E− ω′)2 � 1. (31)

As a result, one may Taylor expand E′(t ). Substituting it in
Eq. (10) for ψ , three terms cancel out and one obtains

ψ ≈
∫ t

−∞
dt

(
E

E− ω′

)
[k′ · v(t )], (32)

where the four-momentum and energy are related by the
four-velocity vμ, Pμ = Evμ. In the Baier-Katkov approach,
the factor E/(E− ω′) is regarded as a constant in the time
integration appearing in Eq. (32). The latter requires a further
assumption that E should be approximately constant. Since,
generally speaking, the energy E is oscillating in time, we
formulate this condition as

�2 ≡ |E− Eav|
Eav

� 1, (33)

where |E− Eav| is the deviation of E from the cycle average
value Eav . Hence, for �1, �2 � 1, the WKB and SC expres-
sions coincide.

Having obtained the mathematical requirements for the
equivalence between the two approaches, let us discuss the
physical conditions for which they are satisfied. First, notice
that in the classical limit (ω′ � E), Eqs. (31) and (33) are both
satisfied and the classical emission formula is recovered. From
now on, the quantum case is considered, namely, ω′ is smaller
than E but of the same order of magnitude. Second, let us
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take a close look at the numerator of Eq. (31), taking the form
k′ · P = ω′E(1 − cos θe), where θe is the angle between k′ and
v. Since ω′E and the denominator are of the same order of
magnitude, it is clear that �1 � 1 is obtained only at θe �
1, when k′ · P(t ) ≈ 1

2ω′Eθ2
e . Therefore, in intuitive terms,

Eq. (31) requires that the angle between the emitted photon
wave vector k′ and the time-dependent velocity associated
with the particle classical motion should be much smaller than
1 for all times. In fact, even in the case when emission takes
place at a certain time t (when the radiation formation length
is short with respect to the characteristic size of the electron
trajectory), the phase of emission [see Eq. (32)] is determined
by a time integral up to the emission time t .

We can reformulate Eqs. (31) and (33) in terms of the
laser and electron parameters. It may be accomplished as fol-
lows. We start by evaluating the transverse oscillations of the
particle velocity around its average direction, determined by
the initial momentum p. According to Eq. (6), the amplitude
of the momentum oscillations, induced by the electric field,
is mξ , so that P⊥ � mξ . In addition, the average longitudi-
nal momentum is P‖ ∼ mγ . Consequently, one may obtain
a crude estimation for the maximal value of the angle θe.
Namely, the particle’s trajectory lies within a cone with angle
∼P⊥/P‖ ∼ ξ/γ . Since, as established above, the emission
angle is ∼1/γ , the wave vector of the emitted photon k′ is
restricted by a cone whose angle is (1 + ξ )/γ . Therefore, θe �
(1 + ξ )/γ and one may deduce that �1 ≈ O([1 + ξ ]/γ )2.
On the other hand, the relative deviation of the energy is
�2 ≈ O(|E− Eav|/Eav ) ≈ O(ξ/γ ). As a result, the required
conditions given by Eqs. (31) and (33) are reduced to

γ � 1 + ξ . (34)

This revised applicability criterion for the semiclassical
method is manifestly more restrictive as compared to the
original one (γ � 1) claimed by Baier and Katkov in [39,40].

This discrepancy calls for an explanation. Reviewing the
Baier-Katkov derivation suggests that the approximations
given by Eqs. (31) and (33) were utilized by them as well
(see Eqs. (2.23– 2.25) in [40]). Hence, the arising question
is: How could they obtain a relaxed validity condition? Their
argument may be presented as follows. For ultrarelativistic
particles, the main contribution to the emission originates
from the part of the trajectory where θe < 1/γ . Hence, an
approximation for the transition amplitude that holds only
in the vicinity of the formation length is sufficient. By def-
inition, on the radiation formation region θe < 1/γ so that
�1 � 1 is satisfied. If, in addition, one may assume that the
formation length is short enough so that E may be regarded
as constant, then both Eqs. (31) and (33) are fulfilled on the
region where the radiation is formed. We argue, however,
that even though the main contribution originates from this
part of the trajectory, Eqs. (31) and (33) should hold on the
entire cycle. In order to see why, let us take a close look
at Eq. (14), describing the transition amplitude. Suppose the
formation time for a certain emitted photon is centered in
the vicinity of t∗. Due to the periodicity, the integrand of
(14) in t∗ + T would be identical except for an additional
phase eiψnpT . Hence, the transition amplitude contains a series
of sequential and equal contributions which interfere with
each other generating the harmonic structure. In order to

reproduce the correct phase between these contributions, the
approximation should be valid through the entire cycle and
not only on the emission regions since ψ at the emission time
t contains integration over time up to the emission moment.
Alternatively, one may instantly infer it from the fact that
the energy conservation given by Eq. (18), determining the
harmonic structure, involves the mean value of the incoming
and outgoing particles energies Eav, E ′

av , averaged on the
entire cycle. To conclude the discussion, if the interference of
radiation from consecutive cycles of the field, which generates
the harmonic structure of the spectrum, is neglected, then
the Baier-Katkov approach is valid for the ultrarelativistic
condition γ � 1. However, the applicability condition for the
accurate description of the harmonic structure of the emission
spectrum is given by Eq. (34) derived above.

IV. CIRCULAR MOTION

Let us calculate the intensity emitted by an electron in a
REF with vanishing initial momentum (p = 0) corresponding
to a circular classical trajectory. This initial condition is
chosen for the following reasons. First, the simple classical
motion allows for analytical expressions. Second, in this case
γ = ξ � 1, so that the original Baier-Katkov condition is
fulfilled, but our new restrictive one discussed above, i.e.,
Eq. (34), is not. In this way, our argument could be put to
a test. Third, a circular trajectory corresponds as well to an
electron interacting with PWF in the case of a certain initial
momentum choice (see the Appendix). As a consequence,
we may compare the emission predicted by full quantum
calculations for two different EM configurations sharing the
same classical trajectory.

In the following, we further elaborate the results obtained
in Sec. II, i.e., Eqs. (17), (18), and (23), assuming p = 0.
First, one may notice that owing to the azimuthal symmetry,
the transition amplitude does not depend on the angle ϕ so it
can be integrated out. Accordingly, from now on, the photon
is assumed to be emitted in the x-z plane, without loss of
generality. Moreover, one may see that due to the δ function
in Eq. (24), Is depends on a single degree of freedom. Hence,
it may be represented as a function of either θ or ω′. In the
first case, the solution of the integral in Eq. (24) yields

dIs

d (cos θ )
= αω′3

s

∣∣∣∣d�s

dω′

∣∣∣∣−1

ω′=ω′
s

∑
ε

|Ms|2, (35)

where ω′
s are the solution of Eq. (18) for a given θ . In the latter

case, the only modification to Eq. (35) is the replacement of
the derivative d�s/dω′ with d�s/d (cos θ ), namely,

dIs

dω′ = αω′3
∣∣∣∣ d�s

d (cos θ )

∣∣∣∣−1

θ=θs

∑
ε

|Ms|2, (36)

where θs are the solutions of Eq. (18) for a given ω′. In
principle, the final expressions given by Eqs. (35) and (36)
apply for the SC case as well, with the corresponding modifi-
cation �s,Ms → �̃s, M̃s. In the following sections, the quan-
tities are explicitly calculated. It is explicitly demonstrated,
however, that for a circular motion, the SC model yields an
angle-independent �̃s. As a result, the corresponding function
dI/dω′ takes the form of a series of δ functions, and Eq. (36)
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is meaningless. For this reason, we will focus on the angular
distribution given in Eq. (35). The only use of Eq. (36) will
be in calculating the spectral width of the WKB harmonics, as
presented in Sec. V.

A. Harmonics energies

1. SC approach

The first step to be taken in the framework of the SC
approach is to obtain the classical trajectory of the incoming
particle. For the REF, the classical equation of motion admits
an analytical solution, i.e., Eq. (6). The corresponding trajec-
tory xμ = ∫

vμdt may be cast in terms of elliptical integrals.
For a vanishing incoming momentum, Eq. (6) is reduced to

Pμ = m[
√

1 + ξ 2, ξ cos(ωt ), ξ sin(ωt ), 0]. (37)

Consequently, the trajectory takes the simple form

x(t ) = ξ

ω
√

1 + ξ 2
[sin(ωt )x̂ − cos(ωt )ŷ]. (38)

Plugging Eq. (38) into Eq. (27) and keeping in mind that the
emitted photon wave vector lies in the x-z plane, one may find
the phase ψ̃ ,

ψ̃ =
(

ω′E
E− ω′

)[
t − ξ

ω
√

1 + ξ 2
sin(ωt ) sin θ

]
. (39)

Since E = m
√

1 + ξ 2 is constant, the nonperiodic part simply
reads

ψ̃np = ω′E
ω(E− ω′)

. (40)

Substituting it into the definition given by Eq. (29) of �̃s, one
finds

�̃s = sω − ω′E
E− ω′ . (41)

Equating �̃s to zero, the relation between the number of
absorbed photons and the emitted photon energy is achieved:

ω̃′
s = sωE

sω + E . (42)

Several insights can be inferred from Eq. (42). Let us con-
sider the low- and high-energy limits. One may see that for
ω′/E� 1, we have ω̃′

s ≈ sω. Namely, in the classical limit,
the harmonics are simply multiples of the REF frequency,
as expected according to the Schott formula [65]. In the
high-energy limit, ω̃′

s approaches the initial energy E for
increasing number of absorbed photons, s → ∞. This means
that even though the emission probability decays for ω′ → E,
a restriction on s does not exist, giving rise to the emergence
of a semicontinuum.

Furthermore, since �̃s appearing in Eq. (41) bears no
angular dependence, ω′

s does not depend on θ as well. The
meaning is that all the emitted photons associated with a
certain harmonics have the same energy. In other words,
the harmonics width integrated over the angle, according to
the SC formula, is vanishing. It should be noticed that the
formula determining the central energy of the PWF harmonics
is identical to Eq. (42), as shown in Eq. (A7) of the Appendix.

However, as opposed to the SC case, the PWF harmonics do
have significant width, as discussed in detail in Sec. V.

2. WKB approach

The harmonics energies ω′
s arise from the solution of

the energy-conservation equation (18). Hence, one should
obtain E′

av , appearing in this equation. For vanishing initial
momentum, Eq. (11) reduces to E′ =

√
m2 + [eA(t ) + k′]2.

Substituting Eq. (3) and writing k′ explicitly, one arrives at

E′ =
√

m2 + (mξ cos(ωt ) + ω′ sin θ )2 + ω′2 cos2 θ. (43)

Averaging it over a single cycle, one obtains (see also [61])

E′
av = 2

π

√
GE2(μ), (44)

where E2(μ) is the complete elliptical integral of the second
kind, μ ≡ 4mξω′| sin θ |/G, and the definition

G ≡ ω′2 + m2(1 + ξ 2) + 2ω′mξ | sin θ | (45)

is introduced. Accordingly, the derivative of �s, appearing in
Eq. (35), may be evaluated analytically. Finally, employing
E,E′

av , Eq. (18) should be solved numerically for ω′
s.

Even though an analytical expression for ω′
s is not avail-

able, several conclusions can be drawn from Eqs. (18) and
(44) for �s. Considering the low-energy limit ω′/E� 1, we
have E ≈ E′

av so that �s ≈ �̃s ≈ sω − ω′. Namely, the clas-
sical result is recovered. On the other hand, the high-energy
spectrum exhibits qualitatively different behavior as compared
to the SC result, derived in the previous section. The quantum
model predicts a cutoff for the number of absorbed photons,
whereas according to the SC approach, s tends, in principle,
to infinity. A crude estimation to this cutoff may be obtained
as follows. The high-energy tail of the spectrum corresponds
to ω′ → E. Consequently, ω′ and E cancel out in Eq. (18)
and it approximately reduces to scω ≈ E′

av . In this limit, θ →
π/2 so that μ → 1 and, therefore, E′

av = 4mξE2(1)/π . Since
E2(1) = 1, the cutoff may be estimated as

sc ≈ 4mξ

πω
. (46)

The dimensionless parameter sc determines the maximal num-
ber of absorbed photons for the REF configuration.

As opposed to the SC approximation, �s bears angular
dependence (through E′

av). Therefore, various θ values yield
different ω′

s, giving rise to a spectral width. In the case exam-
ined numerically below, however, it is explicitly shown that
the width after angle integration is much smaller as compared
to the spacing between neighboring harmonics, so that they
may be regarded as discrete as well.

B. Matrix-element calculation

1. SC approach

In order to calculate the matrix element, one must first
obtain the periodic part of the phase, ψ̃p. From Eq. (39), one
may deduce

ψ̃p = sξ√
1 + ξ 2

sin θ sin(ωt ) ≡ z sin(ωt ), (47)
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where ω′ was replaced by the harmonic energy ω̃′
s given by

Eq. (42), and the following quantity is introduced:

z ≡ sξ sin θ√
1 + ξ 2

. (48)

Employing ψ̃p and the momentum Pμ given by Eq. (37), the
matrix element Eq. (28) takes the form

M̃s = εμM̃
μ

s , (49)

where

M̃μ

s ≡ m√
E(E− ω̃′

s)ω̃′
s

(B
√

1 + ξ 2, ξB1, ξB2, 0). (50)

The coefficients B, B1, B2 are defined as

B ≡ 1

2π

∫ 2π

0
dφei(z sin φ−sφ), (51)

B1 ≡ 1

2π

∫ 2π

0
dφ cos φei(z sin φ−sφ), (52)

and

B2 ≡ 1

2π

∫ 2π

0
dφ sin φei(z sin φ−sφ), (53)

where φ = ωt . Recalling the integral definition of the Bessel
function Js, one may write

B = Js(z), B1 = s

z
Js(z), B2 = −iJ ′

s(z). (54)

Due to the Ward identity [62], the sum over the photon
polarizations is given by∑

ε

|M̃s|2 = −M̃μ

s M̃s,μ. (55)

Employing Eqs. (49)–(54), we obtain∑
ε

|M̃s|2 = K

{
ξ 2

[(
s2

z2
− 1

)
+ J ′2

s (z)

]
− J2

s (z)

}
, (56)

where the following quantity is introduced:

K ≡ m2

E(E− ω̃′
s)ω̃′

s

. (57)

The final result is very similar to the matrix element corre-
sponding to a circularly polarized plane wave, as obtained
by Ritus and Nikishov [15] (see the Appendix). The main
difference lies within the definition of z.

Since we are interested in the ξ � 1 domain, the integrals
appearing in Eqs. (51)–(53) are rapidly oscillating and there-
fore may be approximated using the saddle-point technique
[15], yielding

Js(z) ≈
(

2

s

)1/3

Ai(y), J ′
s(z) ≈

(
2

s

)2/3

Ai′(y), (58)

where Ai(y) designates the Airy function, with the argument

y ≡
( s

2

)2/3
(

1 − z2

s2

)
. (59)

As a result, the sum over polarizations of the squared matrix
element reads∑

ε

|M̃s|2 ≈ K

{
−Ai2(y) + ξ 2

(
2

s

)4/3

[yAi2(y) + Ai′2(y)]

}
.

(60)

2. WKB approach

In the following, the relation between the quantum and SC
matrix elements is established. The WKB matrix element was
defined in Eq. (17). Since E is constant, the periodic part of
the phase given by Eq. (15) takes the form

ψp = E′
avt −

∫ t

−∞
dt ′E′. (61)

For the case considered in this work, i.e., γ ≈ ξ � 1, the
argument ψ is rapidly oscillating and the contribution to the
integral comes from the region where θe < 1/γ , as explained
in Sec. III. Therefore, one may use the Baier-Katkov approxi-
mation for the phase

ψ = ω′
st +

∫ t

−∞
dt ′(E′ − E) ≈ E

E− ω′
s

(k′
s · x), (62)

where k′
s = ω′

s(1, sin θ, 0, cos θ ) is the wave vector of the
emitted photon corresponding to the s harmonic, and ω′

s is
found according to the procedure described in Sec. IV A 2.
Plugging

∫ t
∞ dt ′E′ from Eq. (62) into Eq. (61) and using

sω + E = ω′
s + E′

av , one obtains

ψp = E′
avt − Et − E

E− ω′
s

(k′
s · x) + ω′

st

= sωt − E
E− ω′

s

(k′
s · x). (63)

Hence, in the vicinity of the saddle point, we have

ψp − sωt ≈ − E
E− ω′

s

(k′
s · x). (64)

Writing explicitly the right wing, we have

ψp − sωt ≈ E
E− ω′

s

k′
s · xp − seffωt, (65)

where seff , defined by

seffω ≡ ω′
sE

E− ω′
s

, (66)

is an effective (and not necessarily integer) index for which
the emitted energy of the SC model coincides with the WKB
harmonic ω′

s. One may explicitly verify that even though the
functions on the right and left wings of Eq. (65) are not iden-
tical, their Taylor expansion up to third order in the vicinity
of the saddle point is identical. Additionally, it should be
noted that as opposed to E− ω′ appearing in the denominator
of Eq. (28), Eq. (17) contains instead the time-dependent
quantity E′. However, Taylor expanding E′ in the vicinity of
the saddle point t = 0, one observes that the zeroth-order term
is E− ω′ and the first-order one vanishes. Hence, as both the
prefactor and the phase of the WKB and SC are identical up
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FIG. 2. (a) The number of absorbed photons s vs the emitted photon energy ω′
s: WKB (green line) and SC (blue thin line). The PWF

and SC curves coincide. (b) The spectral width of harmonics: WKB (red dashed line) and PWF (turquoise dash-dotted line) (the SC width is
vanishing). The gap between neighboring harmonics: WKB (green line) and SC/PWF (blue thin line). (c) The total harmonics intensity (solid
line) and the harmonic density (dashed line): WKB (green line) and SC/PWF (blue thin line). The laser parameters are ξ = 10, ω = 100 eV,
corresponding to χ = 0.02, IL = 1024 W/cm2. The electron initial momentum is p = 0. (d)–(f) Similar to (a)–(c), but with ω = 2.55 keV,
corresponding to χ = 0.5, IL = 1027 W/cm2.

to the required order near the saddle point, one may write

Ms ≈ M̃seff . (67)

Namely, the WKB matrix element coincides with the SC
one corresponding to an effective harmonic index seff , for
which the emitted energy ω′ would be the same. Alterna-
tively, Eq. (67) may be expressed in terms of Ti f . Comparing
Eq. (14) and Eq. (17), one may observe that

Ms = 1

T
T0T (k′

s), (68)

where the subscript 0T stands for the integration limits desig-
nated as ti, t f in Eq. (14). As a result, Eq. (67) may be written
as

T0T (k′) ≈ T̃0T (k′). (69)

Intuitively, this result may be explained as follows. As dis-
cussed in Sec. III, the difference between T, T̃ originates from
the interference between different cycles. The matrix-element
integration, however, is limited to a single cycle and a single
saddle point contributing to the emission. Accordingly, the
amplitudes of the two methods are sampling of the same func-
tion, where the difference arises from the different sampling
frequency, namely, the harmonics ω′

s, ω̃
′
s, respectively.

V. NUMERICAL RESULTS

In the following, the emission properties are calculated nu-
merically via the quantum WKB and SC methods for the REF
configuration, as well as compared with the well-known PWF
result. The nonlinear parameter is ξ = 10 and the electron
initial momentum is p = 0. Two cases were considered, cor-

responding to different values of the quantum parameter χ =
ξ 2(ω/m). The higher χ , the larger the discrepancy between
WKB and SC. The case of χ = 0.5, presented in Figs. 2(d)–
2(f), illustrates the expected effect in the spectral distribution.
It may be realized with ω = 2.55 keV, corresponding to an
x-ray free-electron laser (XFEL) with an intensity of about
IL ≈ 1027 W/cm2. A smaller but still visible effect can be
obtained, as shown in Figs. 2(a)–2(c), even by using less
demanding conditions, ω = 100 eV, χ = 0.02, and the laser
intensity IL ≈ 1024 W/cm2. These intensities lay above the
presently available ones [4,5,66]. Nevertheless, improvements
of the focusing technique to approach the diffraction limit may
allow for such intensities in the future [67].

A. Harmonic structure

Figures 2(a) and 2(d) show the relation between the num-
ber of absorbed laser photons s and the emitted photon energy
ω′

s for the lower and higher intensity, respectively. The values
for the WKB model stem from the numerical solution of
Eq. (18), as explained in Sec. IV A 2. The SC and PWF
predictions are analytical and identical, as may be seen in
Eqs. (42) and (A7). For small values of the emitted photon
energy, both SC and WKB curves reduce to the classical
prediction. The deviation occurs near the high-energy tail of
the spectrum. For the lower intensity shown in Fig. 2(a), it
amounts to about 20% for harmonics still having a significant
intensity; see Fig. 2(c). For the high-intensity case depicted
in Fig. 2(d), the discrepancy is of orders of magnitude and
the different asymptotic behavior for ω′ → E is manifested.
One may see that according to the SC model, the harmonic
number s asymptotically increases, while the WKB model
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predicts a finite cutoff. The cutoff value is sc ≈ 2550, in
agreement with the theoretical estimation of Eq. (46). The
physical meaning is that in a REF, a higher amount of energy
would be depleted from the external field as compared to the
same emission in a PWF. Furthermore, since the difference
between the absorbed laser energy sω and the emitted photon
energy ω′ is converted to the kinetic energy of the electron,
it implies that for the PWF, the emission is accompanied by
higher outgoing electron energy.

The gap between harmonics �ω′
s for the various ap-

proaches, as well as the spectral width of the WKB and PWF
harmonics, are shown in Figs. 2(b) and 2(e). The width is
defined so that 2/3 of the total intensity is contained within
its boundaries and is calculated using Eq. (36). Notice that
the SC harmonics have no width, as shown analytically in
Sec. IV A 1. First, one may observe that the gap changes only
slightly for the WKB, but decreases significantly for the SC
(40 and 1.4 times for the high and low intensity, respectively).
Second, the WKB harmonics width is significantly lower than
the gap, implying that they may be regarded as discrete. The
PWF width, however, is always much higher than the gap,
so that the spectrum is continuous and the harmonics cannot
be distinguished. Thus, the quantum mechanical calculation
of emission corresponding to two distinct field configurations
yields different results, even though the associated classical
trajectories are similar. Therefore, we can conclude that the
classical trajectory does not solely determine the emission, but
rather the particular features, such as the dispersion relation of
the wave vector, of the driving EM field play a role as well.

The total spectral intensity of the harmonics, obtained by
integrating over the angle θ [see Eq. (35)], is presented in
Figs. 2(c) and 2(f). The PWF and SC curves coincide, as in
Figs. 2(a) and 2(d). One can see that the high-energy WKB
harmonics are stronger than the SC ones (40 and 1.4 times
for the high and low intensity, respectively). The relation
between the discrepancies depicted in these figures and those
appearing in Figs. 2(a) and 2(d) call for a clarification. As
we demonstrate both analytically and numerically in the next
section, the harmonic-averaged spectrum takes the same shape
for all models, to an excellent approximation. Hence, the
concentration of harmonics obtained by the SC/PWF models
near the high-energy tail of the spectrum implies that their
intensity should be lower, as indeed is the case. In order to
further illustrate this point, this figure shows the normalized
harmonics density m/�ω′

s as well. The latter indicates clearly
that for the SC, the harmonics density is much higher. In other
words, the WKB exhibits distant and intense harmonics, while
the SC predicts weak and spectrally dense ones.

B. Average spectrum

Figure 3 presents the harmonic-averaged spectrum (i.e.,
the harmonics power divided by �ω′

s) of the WKB and SC
models, as well as the PWF and LCFA spectrum. Let us
provide a physical explanation for this result. One may see
that all curves coincide to a very good approximation. From
the relation given by Eq. (69) between T0T , T̃0T , it follows
that for a single-cycle pulse, the quantum and SC methods
should yield approximately the same transition amplitude, and
hence the same spectrum. In the following, we argue that the

FIG. 3. The harmonics-averaged spectrum: SC (blue thin line),
PWF (green line), and WKB (turquoise dashed line) as compared to
the LCFA expression (red dash-dotted line). The laser parameters are
ξ = 10, ω = 2.55 keV, corresponding to χ = 0.5, IL = 1027 W/cm2.
The electron initial momentum is p = 0. All curves coincide to a very
good approximation.

transition from a single cycle to a periodic pulse gives rise to
the concentration of the emitted energy in discrete harmonics
(which are different for the two models as seen above) without
changing the harmonic-averaged spectrum.

One may notice that Ti f given by Eq. (14) may be cast in
the form

Ti f =
∫ ∞

−∞
dt f (t, ω′)eiω′t , (70)

where the quantity f (t, ω′) is defined as

f (t, ω′) ≡ (ε · P)√
ω′EE′ exp

[(∫ t

∞
dt ′E′ −

∫ t

−∞
dt ′E

)]
. (71)

It resembles a Fourier transform except for the fact that
f (t, ω′) depends on ω′ as well as on t . Furthermore, according
to the derivation given in Secs. II and III [see Eq. (24)], the
intensity is proportional to

dI

d cos θ
∝

∫ ∞

−∞
ω′3|Ti f |2dω′, (72)

which takes the same form as the energy integration over
a Fourier spectrum, except for the ω′3 factor. In order to
take advantage of this analogy, we recall one of the Fourier
transform features.

Let us consider a function q(l ) which is nonvanishing only
in the interval 0 < l < L. Its Fourier transform reads

Q(v) ≡
∫ ∞

−∞
q(l )e−ivl dl =

∫ L

0
q(l )e−ivl dl. (73)

Now we use q(l ) to define a periodic function,

qp(l ) ≡ q(l − nL), n ≡
⌊

l

L

⌋
, (74)

where �� designates the flooring function. Owing to its
periodicity, the new function may be written as a Fourier
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series,

qp(l ) =
∑

j

Q(v j )

L
eilv j , v j = 2π j

L
. (75)

Accordingly, its Fourier transform reads

Qp(v) = 2π

L

∑
j

δ(v − v j )Q(v j ). (76)

Namely, the transition from a single to periodic function in-
duced “roaming” of the spectral energy to discrete frequencies
(harmonics) without changing the average energy. In order to
observe it explicitly, let us consider the energy contained in
the interval v j < v < v j+1,∫ v j+1

v j

dv|Qp(v)|2 = 1

2
[Q2(v j ) + Q2(v j+1)][v j+1 − v j],

(77)

where the definition of v j as well as the identity δ2(v − v j ) =
(L/2π )δ(v − v j ) were employed. One may see that Eq. (77)
approximately equals the integral over a single-cycle spec-
trum

∫ v j+1

v j
dv|Q(v)|2, given that the envelope function Q(v)

changes only slightly in the interval under consideration.
The same reasoning applies in our case, given that the

functions ω′3 and f (t, ω′) are slowly varying envelope func-
tions which stay almost constant on the frequency scale of
the above-mentioned “energy roaming,” i.e., ω′ → ω′ + �ω′

s.
Since �ω′

s � ω, as demonstrated in Figs. 2(b) and 2(e), and as
ξ � 1 corresponds to ω′ � ω, this condition is satisfied and
hence one should expect the harmonic-averaged spectrum to
be equivalent to the single-cycle one. The same argument ap-
plies for the SC case, so that its harmonic-averaged spectrum
recovers the single-cycle one. Finally, since the WKB and SC
single-cycle spectrum is equivalent, as established above, one
may deduce that the harmonic-averaged spectra of the WKB
and SC approaches coincide as well.

Having established the agreement of the harmonic-
averaged spectrum with the LCFA formula, we call atten-
tion to the following points. First, even though all scenarios
asymptotically approach the LCFA limit, one may expect
certain deviations for finite ξ values, even in the strong-field
regime. The nature of deviations, however, is substantially
different for the two configurations. The PWF spectrum, as
was shown in [44–46], is continuous for the most part and
the discrepancies are to be found mainly for the first few
harmonics, as their formation time is comparable to the field
cycle. For the REF calculation, however, the deviations are
much more manifest (i.e., the harmonics are discrete) and
are not limited to the low-energy tail but are rather present
through the entire spectrum.

Second, the phenomenon illustrated in this section, namely,
the reduction of a rich harmonic structure to the plain univer-
sal LCFA form after averaging, is not unique. It also appears
in the well-established problem of radiation in constant mag-
netic field [20], where the exact quantum harmonics may be
replaced by the synchrotron formula (which is identical to the
LCFA one). Whether or not approximating of the spectrum by
its harmonic-averaged one is justified depends on the required
resolution. In the quantum regime, the energy of the emitted

photon is of the order of magnitude of the emitting electron. In
order to resolve the harmonics structure, however, a measure-
ment resolution of the order of magnitude of ω (the oscillation
frequency) is required. For the case of synchrotron facilities,
for instance, the electron energy is well above GeV, while the
typical frequency lies below the MHz domain. Since these two
energy scales are separated by so many orders of magnitude,
considering the harmonics structure is meaningless. In the
case considered in our manuscript, on the other hand, the
number of harmonics amounts to several thousand, so that
the emitted photon energy is about 3–4 orders of magnitude
above the field frequency. It implies that accuracy of about
0.1 percent is required. This is indeed beyond present-day
capability, but may be accessible in the future.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the radiation emitted by a particle in the pres-
ence of REF, which may represent either a plasma wave or the
antinode of a standing wave, has been explored. An analytical
emission rate has been derived within the Furry framework,
employing the WKB approximation for the dressed particle
wave function.

This expression has been utilized as a benchmark to the SC
method. A detailed comparison has been carried out, showing
that the SC result is valid if the conditions given by Eqs. (31)
and (33) are met. These requirements may be formulated intu-
itively as follows. First, the angle between the emitted photon
and the particle classical velocity should be much smaller
than 1 for all times. Second, the particle energy should be
approximately constant in time. We further demonstrate that
these conditions may be approximated by a simple criterion
given by Eq. (34). Namely, the γ factor should dominate
over the nonlinearity parameter ξ . Careful examination of
the SC derivation suggests that these approximations were
employed by Baier and Katkov as well. Nevertheless, they
claimed that their approximation holds given that the particle
is ultrarelativistic, which is far less restrictive than Eq. (34).
Their reasoning is that ultrarelativistic velocity assures that
Eqs. (31) and (33) are satisfied on the radiation formation
length. We show, on the other hand, that the phase difference
between the emission amplitudes from subsequent cycles is
accrued during the whole electron motion within the laser pe-
riod and outside of the formation length, and, therefore, for its
correct description the mentioned approximations should be
fulfilled for all times of interaction. Only in this case can the
harmonic structure of the spectrum be correctly reproduced.

In order to explicitly demonstrate that the validity condi-
tion is Eq. (34) rather than γ � 1 and to explore the nature
of deviations, a particular initial momentum (p = 0) has been
chosen, corresponding to γ = ξ . Qualitative deviations in
the harmonic structure were demonstrated. The harmonic-
averaged spectra, on the other hand, were shown to be ap-
proximately equivalent. An analytical explanation of the latter
result has been given in Sec. V B, relying on the relation given
by Eq. (69) between the transition amplitudes calculated by
the two methods.

Furthermore, we took advantage of an additional feature
of the particular case studied in detail above, namely, the
fact that the classical trajectory associated with the incoming
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electron is a circular motion. An identical classical trajectory
corresponds to an electron counterpropagating a plane wave,
given that its initial momentum is appropriately tuned [see
(A1) in the Appendix]. It allows for a comparison between
two quantum calculations of different EM configurations, i.e.,
PWF and REF, sharing the same initial classical dynamics.
The following differences were found:

(i) Width. The PWF harmonics width has been shown to be
much larger than their spacing. Accordingly, the spectrum is
continuous and coincides with the LCFA result. The REF on
the other hand, yields discrete harmonics.

(ii) The harmonic structure. High-energy photon emission
involves an increasing number of absorbed laser photons in
the PWF case, while for the REF a cutoff sc emerges, limiting
the possible number of absorbed photons.

The following insights may be inferred from these dis-
crepancies. First, they serve as evidence that two distinct
EM fields corresponding to the same classical trajectory may
give rise to different emission characteristics. In the realm of
the quantum calculation, this finding poses no problem. For
each EM field, the energy-momentum conservation takes a
different form and thus yields dissimilar outgoing momentum
for a given emitted photon. Consequently, the wave functions
associated with the outgoing particle are not identical, giving
rise to various spectra. On the other hand, this result explicitly
contradicts the main paradigm of the SC approach, stating
that a certain incoming particle trajectory corresponds to a
distinct emission, regardless of the EM field. This implies that
an additional assumption, presumably related to the scattering
process kinematics, is incorporated in the SC expression. The
examination of the SC derivation suggests that this assump-
tion is not related to the approximations given by Eqs. (31)
and (33) discussed above. This conclusion stems from the fact
that even prior to the introduction of these approximations,
the emission expression depends exclusively on the incoming
particle classical dynamics [i.e., Pμ(t )]; see, for instance, Eq.
(2.22) in [40]. Since in the case of REF we have coincidence
of the SC result with WKB (discussed in Sec. III) without
this obscure approximation, one may reckon that it is auto-
matically satisfied for the particular case of the REF. Further
investigation is requested in order to discover this assumption
and shed light on the exact criterion which predicts for which
conditions the classical trajectory does not solely determine
the emission.

Second, we recall that according to the Nikishov-Ritus
hypothesis given by Eq. (1), the spectrum should depend
on a single parameter χ and take the form of the LCFA
expression. Hence, the fact that the REF spectrum is dis-
crete is remarkable. Moreover, the spectrum is character-
ized by the additional dimensionless quantity sc, which is
absent in the PWF spectrum. On the other hand, the REF
harmonic-averaged spectrum coincides with the LCFA one.
Thus, our results demonstrate that Eq. (1) is sufficient only
for the harmonic-averaged spectrum to be approximated by
the LCFA formula, whereas the exact one may still feature the
harmonics structure.

Third, the cutoff sc predicted in this paper for the REF
may have another implication. It has been recently suggested
that significant depletion of the laser field due to hard pho-
tons emission may lead to the breakdown of the external

field approximation, which is the cornerstone of the Furry
strong-field QED picture [68,69]. This scenario is of special
interest for the QED cascades calculations, as it involves high
particle density corresponding to substantial field depletion.
The threshold corresponding to this breakdown has been
established [68] using the scaling s ∼ ξ 3 for the number of
absorbed laser photons associated with a typical emission
process. Consequently, our result sc ∝ mξ/ω, which scales
differently with the field parameters, should lead to an al-
tered breakdown condition. This issue will be addressed in
a separate paper. Fourth, the REF is shown in this paper to be
a quantum system exhibiting discrete emission modes in the
x-/γ -ray regimes. Such a property may be appealing from the
prospective of development of future novel radiation sources.
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APPENDIX: PLANE-WAVE AND CONSTANT CROSSED
FIELD FORMULAS

First, let us obtain the initial momentum for a particle
counterpropagating a plane wave which results in a circular
motion, similar to the REF case. We recall that in this case,
the time-dependent momentum is given by [15]

Pμ = pμ − eAl
μ + e2a2

2(kl · p)
kl
μ, (A1)

where the vector potential Al takes the same form as Eq. (3)
with k replaced by kl = (ω, 0, 0, ω). As a result, for initial
momentum (p0, 0, 0, pz ) satisfying pz = e2a2/[2(p0 − pz )],
the z component of the momentum vanishes, leading to the
same classical trajectory (circle) and quantum parameter χ as
in the REF problem we consider.

The intensity of the radiation emitted by a scalar particle
interacting with a circularly polarized plane wave is given by
[15]

dI

du
= αm2 u

(1 + u)3

∑
s

{
−J2

s (z) + ξ 2

[(
s2

z2
− 1

)
J2

s (z)

+ J ′2
s (z)

]}
, (A2)

where the relation between u and the emitted photon energy
for ultrarelativistic particles reads

u = ω′

E− ω′ , (A3)

so that ω′ = uE/(1 + u). The Bessel function argument is
given by

z ≡ ξ 2
√

1 + ξ 2

χ

√
u(us − u). (A4)

Each harmonic is nonvanishing on the interval 0 < u < us

where

us ≡ 2sχ

ξ (1 + ξ 2)
. (A5)
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The harmonic spectral location is defined according to the
peak emission, corresponding to u = us/2. Using Eq. (A3),
one may write it in terms of the emitted photon energy,

ω′
s = us

2(1 + us/2)
E. (A6)

Employing Eq. (A5) as well as χ = ξEω/m2 and E =
m

√
1 + ξ 2, one obtains

ω′
s = sωE

sω + E . (A7)

Notice that this expression is identical to the one obtained for
the SC model.

The LCFA expression arises from Eq. (A2) by using the
saddle-point analysis (similar to the derivation in the SC
matrix-element section) and replacing the discrete harmonics
with a continuous variable, namely,

dI

du
= αm2u

2(1 + u)3

(
u

2χ

)1/3 ∫ ∞

−∞
dτ

×
[
−Ai2(y) +

(
2χ

u

)2/3

[yAi2(y) + Ai′2(y)]

]
, (A8)

where

y ≡
(

u

2χ

)2/3

[1 + τ 2]. (A9)
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