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Quantum work distributions associated with the dynamical Casimir effect
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We study the joint probability distribution function of the work and the change of photon number of
the nonequilibrium process of driving the electromagnetic (EM) field in a three-dimensional cavity with an
oscillating boundary. The system is initially prepared in a grand-canonical equilibrium state and we obtain the
analytical expressions of the characteristic functions of work distributions in the single-resonance and multiple-
resonance conditions. Our study demonstrates the validity of the fluctuation theorems of the grand-canonical
ensemble in nonequilibrium processes with particle creation and annihilation. In addition, our work illustrates
that, in the high-temperature limit, the work done on the quantized EM field approaches its classical counterpart,
while in the low-temperature limit, similar to Casimir effect, it differs significantly from its classical counterpart.
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I. INTRODUCTION

Fluctuation theorems have attracted considerable attention
in the field of nonequilibrium thermodynamics in the past two
decades. One of the most important results is the Jarzynski
equality [1]

〈e−βw〉 = e−β�F . (1)

It connects the equilibrium free-energy difference �F with
the fluctuating nonequilibrium work w done on a system ini-
tially prepared in a canonical equilibrium state at the inverse
temperature β = 1/kBT . This equality is first derived in the
classical regime and later generalized to the quantum regime
[2–4]. The validity has been tested experimentally in various
systems [5–7].

For the grand-canonical equilibrium initial state, besides
the trajectory work w, the particle number along every “trajec-
tory” is also a fluctuating quantity and the Jarzynski equality
takes a similar form [8–10],

〈e−β(w−μ�N )〉 = e−β��, (2)

where μ is the chemical potential of the initial state; �N
and �� are the change of the particle numbers and the
difference of the grand potentials respectively before and
after the force protocol. This equality has been discussed in
chemical reaction networks [10], exchange fluctuation sys-
tems [9,11–13], and isolated systems without particle number
change [8,14,15]. However, fluctuation theorems of the grand-
canonical ensemble in isolated systems in nonequilibrium
processes with particles creation and annihilation, which is a
consequence of the effect of special relativity, have not been
studied so far (but see Ref. [16]). The reason may be that
usually the mass gap of massive particles is so large that the
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energy input during the driving of the boundary is too small
to create massive particles.

Nevertheless, photons are massless particles, which makes
it possible to create photons with relatively low-energy input.
One example is the dynamical Casimir effect (DCE). The
DCE is a quantum effect which describes the generation of
photons due to the EM field in the presence of time-dependent
boundaries. The study was initiated by Moore [17] and fol-
lowed by many researchers [18–33]. The first experimental
verification was carried out in 2011 [34,35]. The researchers
used a modified SQUID to mimic a mirror moving at the
required relativistic velocity and observed the DCE in a super-
conducting circuit. The main concern in the studies of DCE is
about the average number of photon creation. The studies of
the DCE inspire us to investigate the distributions of work and
photon number change in the nonequilibrium processes with
the photon creation and annihilation. It is worth mentioning
that classical ideal gas inside a cylinder [36] has been a
prototype model for the study of thermodynamics. EM field
in a cavity is an analog [37,38] of gas inside a cylinder,
but with more complicated dynamics, because it incorporates
effects of quantum mechanics, quantum statistics, and special
relativity. Nevertheless, for certain specific protocols, we are
able to obtain the analytical results of the joint distribution of
work and the change of photon number. The analytical results
enable us to study the quantum-classical correspondence of
the work done on the EM field in the high-temperature limit
and the quantum nature (Casimir effect) of the work in the
low-temperature limit.

In this paper, we focus on the DCE in a three-dimensional
cavity with one oscillating boundary. Because the energy
levels of the system are not equidistant, only a limited number
of modes of the EM field are coupled for a specific oscillation
frequency of the boundary. In addition, relevant to Fermi’s
golden rule, there are only three kinds of resonance con-
ditions, which significantly simplify the calculation of the
characteristic function of the joint probability distribution.
We further obtain the analytical expressions in the DCE with
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several different time-dependent geometries (the rectangular,
cylindrical, and spherical cavities with one moving bound-
ary). Analytical expressions of work distributions for an arbi-
trary nonequilibrium process is extremely rare. This example,
which incorporates effects of quantum mechanics, quantum
statistics, and special relativity has pedagogical value, and
deepens our understanding of the quantum trajectory work
and the validity of the fluctuation theorems in nonequilibrium
processes with photon creation and annihilation.

We notice that Ref. [37] also discussed the Jarzynski
equality for the photon gas. However, we believe that the
particles considered in Ref. [37] are not real photons but some
relativistic massless particles, since the wave character of light
is ignored and no particle creation and annihilation occur
during the force protocol.

This paper is organized as follows. In Sec. II, we introduce
the effective Hamiltonian of a quantized EM field in a three-
dimensional cavity with a moving boundary. In Sec. III, we
clarify the concept of trajectory work and the validity of
the Jarzynski equality in the system. In Sec. IV, we obtain
the analytical expressions of the characteristic functions by
utilizing the matrix representation technique. And then we
analyze the characteristic functions in the single-resonance
and multiple-resonance conditions. We summarize this work
and make conclusions in Sec. V.

II. EFFECTIVE HAMILTONIAN AND RESONANCE
CONDITIONS FOR THE EM FIELD

IN A TREMBLING CAVITY

We begin with the quantization of the EM field confined
in a 3D rectangular cavity, expressed in the scalar Hertz
potentials [26]. Then we derive the effective Hamiltonian,
which describes the dynamics of the EM field when one of
the boundaries is moving with time. Finally, we introduce
some thermodynamic concepts relevant to the nonequilibrium
driving process, where the photons are created or annihilated,
including the two-point measurement and the characteristic
function G(u, v). The study can be straightforwardly extended
to the EM field in other geometries, such as the cylindrical and
the spherical cavity (see Appendix A).

A. Hertz potential formalism

It is known that the electric field E and the magnetic field B
and the Maxwell’s equations can be formulated in terms of the
scalar potential φ and the vector potential A, E = −∇φ −
∂t A, B = ∇ × A. Alternatively, the Hertz potentials, �e and
�m, offer an equivalent, more convenient for EM field in a
cavity, formalism. In the Lorenz gauge, the relations between
the two formulations can be written as follows:

φ = −1

ε
∇ · �e, A = μ

∂�e

∂t
+ ∇ × �m, (3)

with ε and μ being the permittivity and the permeability of
the medium.

In source-free vacuum, the vector Hertz potentials become
two scalar fields, i.e., �e = ψTMez and �m = ψTEez, where
ψTM and ψTE are the transverse magnetic (TM) and the
transverse electric (TE) field with respect to the longitudinal
z axis, with ez being the unit vector along the z axis. The
Maxwell’s equations in the form of the scalar Hertz potentials

can be written in the following form:(∇2 − ε0μ0∂
2
t

)
ψTE,TM = 0, (4)

with ε0 and μ0 being the permittivity and the permeability of
the vacuum.

Without loss of generality, we only consider the TE field in
the following. The same procedure can be straightforwardly
applied to the study of the TM field (see Appendix B). Also,
we hereafter drop the superscript (TE) and set ε0 = μ0 = h̄ =
1 for simplicity, if not explicitly stated otherwise.

According to Eq. (4), the Lagrangian density of the TE
field is

L(r, t ) = 1
2 (−ψ̇∇2

⊥ψ̇ − ∇2ψ∇2
⊥ψ ). (5)

where ∇2
⊥ = ∂2

x + ∂2
y and ψ̇ = ∂tψ . Meanwhile, due to the

boundary conditions of E and B

E‖ = 0, B⊥ = 0, (6)

where ‖ and ⊥, respectively, denote the components of the
field, parallel and perpendicular to each boundary, the TE field
in a 3D cavity satisfies the following boundary conditions
[27]:

ψ |z=0,Lz = 0,
∂ψ

∂x

∣∣∣∣
x=0,Lx

= ∂ψ

∂y

∣∣∣∣
y=0,Ly

= 0, (7)

where the boundaries of the cavity locate at zero and Lα , with
α = x, y, z.

B. Quantization of the scalar Hertz potential

We quantize the scalar Hertz potential ψ by promoting it
from ordinary numbers to an operator ψ̂ and imposing the
following canonical commutation relations:

[ψ̂ (r, t ), ψ̂ (r′, t )] = [π̂ (r, t ), π̂ (r′, t )] = 0,

[ψ̂ (r, t ), π̂ (r′, t )] = iδ(r − r′), (8)

where the conjugate momentum operator π̂ (r, t ) is obtained
from the Lagrangian density in Eq. (5),

π̂ (r, t ) = −∇2
⊥

∂ψ̂ (r, t )

∂t
. (9)

Solving the wave equation (4) under the boundary condi-
tions (7), we obtain an orthonormal basis {ψk(r)}, where the
basis state ψk(r) is

ψk(r) =
√

2

Lz
sin

(
kzπ

Lz
z

)
2√

LxLy
cos

(
kxπ

Lx
x

)
cos

(
kyπ

Ly
y

)
,

(10)

with the subscript k ≡ (kx, ky, kz ) ∈ N3, and the eigenfre-

quency of the kth mode is ωk =
√

( kxπ
Lx

)
2 + ( kyπ

Ly
)
2 + ( kzπ

Lz
)
2
.

Then we expand the field operator ψ̂ (r, t ) and its conjugate
momentum operator π̂ (r, t ) as follows:

ψ̂ (r, t ) =
∑

k

Ckψk(r)âke−iωkt + H.c.,

π̂ (r, t ) = −i
∑

k

Ckω
2
k⊥ωkψk(r)âke−iωkt + H.c., (11)
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where k⊥ = (kx, ky ) and ωk⊥ =
√

( kxπ
Lx

)
2 + ( kyπ

Ly
)
2
, and Ck are

the normalization constants. Note that âk (â†
k) is the annihila-

tion (creation) operator for the kth mode, which satisfies the
canonical commutation relations,

[âk, âk′ ] = 0, [âk, â†
k′ ] = δk,k′ . (12)

Using Eqs. (5) and (11) and setting Ck ≡ (
√

2ωkωk⊥ )
−1

,
we obtain the Hamiltonian of the TE field as follows [26]:

Ĥ =
∫

dr
(

∂ψ̂

∂t
π̂ − L̂

)
=

∑
k

ωk

2
(â†

kâk + âkâ†
k ). (13)

C. Effective Hamiltonian for driving processes

Now we consider that one of the boundaries of the cavity
along the longitudinal z direction is moving according to a
prefixed time-dependent function λ(t ), i.e., Lz(t ) ≡ λ(t ). The
boundary conditions in Eq. (7) can be generalized to the
time-dependent case by utilizing the Lorentz transformation.
Detailed discussions can be found in Refs. [17,25,27].

We first define an instantaneous orthonormal basis
{ψk,λ(r)}. The basis functions ψk,λ(r) satisfy the following
Helmholtz equation:

∇2ψk,λ(r) + ω2
k,λψk,λ(r) = 0, (14)

with the time-dependent boundary conditions

ψk,λ(r)|z=0,λ = 0,
∂ψk,λ(r)

∂x

∣∣∣∣
x=0,Lx

= ∂ψk,λ(r)

∂y

∣∣∣∣
y=0,Ly

= 0,

(15)

where ψk,λ(r) have the same form as ψk(r) in
Eq. (10) except that Lz is replaced by λ and ωk,λ =√

( kxπ
Lx

)
2 + ( kyπ

Ly
)
2 + ( kzπ

λ
)
2
. And the TE field, ψ̂ (r, t ), also has

to satisfy the same boundary conditions shown in Eq. (15).
Note that both ψk,λ(r) and ωk,λ depend on time when the
boundary is moving with time. We then expand the field
operators ψ̂ (r, t ) and π̂ (r, t ) with the instantaneous basis
{ψk,λ(t )(r)},

ψ̂ (r, t ) =
∑

k

Q̂k(t )ψk,λ(t )(r), (16)

π̂ (r, t ) =
∑

k

P̂k(t )ψk,λ(t )(r). (17)

Taking time derivatives of Eqs. (16) and (17), we obtain the
following equations of Q̂k and P̂k by utilizing Eqs. (4) and (9):

dQ̂k(t )

dt
= P̂k(t )

ω2
k⊥

−
∑

p

g̃kp(t )Q̂p(t ), (18)

dP̂k(t )

dt
= −ω2

k,λ(t )ω
2
k⊥Q̂k(t ) −

∑
p

g̃kp(t )P̂p(t ), (19)

where the coupling coefficients g̃kp can be expressed as fol-
lows:

g̃kp(t ) =
∫

dr ψk,λ(t )(r)
∂ψp,λ(t )(r)

∂t
= λ̇(t )

λ(t )
gkp, (20)

with

gkp =
{

(−1)kz+pz 2kz pz

k2
z −p2

z
δk⊥,p⊥ , kz �= pz,

0, kz = pz.
(21)

Treating Eqs. (18) and (19) as the Heisenberg equations of

motion [19], Ô(t ) = ˆ̃U
†

eff (t )Ô(0) ˆ̃U eff (t ), where i d
dt

ˆ̃U eff (t ) =
ˆ̃H eff (t ) ˆ̃U eff (t ), Ô(t ) = P̂(t ) or Q̂(t ), we obtain the following
effective Hamiltonian:

ˆ̃H eff (t ) =
∑

k

(
P̂k(0)2

2ω2
k⊥

+ 1

2
ω2

k⊥ω2
k,λ(t )Q̂k(0)2

)

−
∑
kp

g̃kp(t )P̂k(0)Q̂p(0). (22)

In order to move into the Fock representation, we introduce
the following ladder operators:

âk(t ) = ω2
k⊥ωk,λ(t )Q̂k(t ) + iP̂k(t )√

2ωk,λ(t )ωk⊥
,

â†
k(t ) = ω2

k⊥ωk,λ(t )Q̂k(t ) − iP̂k(t )√
2ωk,λ(t )ωk⊥

. (23)

The first-order derivative of âk(t ) can be written as follows:

d

dt
âk(t ) = −iωk,λ(t )âk(t ) + 2γkâ†

k(t )

− 2
∑

p

[hkp(t )âp(t ) + dkp(t )â†
p(t )], (24)

with γk(t ) = − ω̇k,λ(t )

4ωk,λ(t )
and

hkp(t ) = λ̇(t )

4λ(t )

(√
ωk,λ(t )

ωp,λ(t )
+

√
ωp,λ(t )

ωk,λ(t )

)
gkp(t ),

dkp(t ) = λ̇(t )

4λ(t )

(√
ωk,λ(t )

ωp,λ(t )
−

√
ωp,λ(t )

ωk,λ(t )

)
gkp(t ). (25)

Similarly, treating Eq. (24) as the Heisenberg equation
of motion, Ô(t ) = Û †

eff (t )Ô(0)Ûeff (t ), where i d
dt Ûeff (t ) =

Ĥeff (t )Ûeff (t ), Ô(t ) = âk(t ) or â†
k(t ), we obtain the effective

Hamiltonian in terms of âk(0) and â†
k(0) as follows:

Ĥeff (t ) =
∑

k

ωk,λ(t )

(
â†

k(0)âk(0) + 1

2

)
− i

∑
k

γk(t )(â†
k(0)â†

k(0) − âk(0)âk(0))

− i
∑
k �=p

hkp(t )(â†
k(0)âp(0) − â†

p(0)âk(0))

− i
∑
k �=p

dkp(t )(â†
k(0)â†

p(0) − âp(0)âk(0)). (26)

This effective Hamiltonian (26) will be essential for our later
analysis. The off-diagonal terms [the last three terms on the
right-hand side of Eq. (26)] in Ĥeff (t ) indicate the creation
and annihilation of pairs of photons, which is a consequence
of the special relativity effect in quantum field theory.
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D. Perturbative driving processes

For simplicity, we consider the perturbative periodic driv-
ing protocol, in which the work parameter λ(t ) takes the
following form:

λ(t ) = λ0[1 + ε sin(�t ) + ε f (t )], (27)

where � is the oscillation frequency and the oscillation am-
plitude ε is assumed to be small, i.e., ε � 1. And f (t ) is
some decaying function that allows us to meet the continuity
conditions of λ(t ) and λ̇(t ) at t = 0 and t = τ [24]. We then
expand all relevant physical quantities to the first order of ε.

In the following, we turn to the interaction picture defined
by the free Hamiltonian Ĥ0 = ∑

k ωk(â†
k(0)âk(0) + 1

2 ), with
ωk ≡ ωk,λ(0), and treat V̂ (t ) = Ĥeff (t ) − Ĥ0 as the perturba-
tion. Similar to Fermi’s golden rule, if V̂ (t ) is a periodic
function of time with the angular frequency �, the transition
is into states with energies that differ by h̄� from the energy
of the initial state.

Using the rotating-wave approximation (RWA), we ob-
tain the perturbative Hamiltonians in the interaction pic-
ture, V̂ I

j (t ) = eiĤ0tV̂j (t )e−iĤ0t ( j = 1, 2, 3), under the follow-
ing three kinds of resonance conditions.

(1) The double-frequency (DoF) resonance: � = 2ωk

V̂ I
1 = − ig1

2
(â†

k(0)â†
k(0) − âk(0)âk(0)),

g1 = ε�k2
z π

2

4ω2
kλ

2
0

. (28)

(2) The sum-frequency (SuF) resonance: � = ωk + ωp

V̂ I
2 = −ig2(â†

k(0)â†
p(0) − âp(0)âk(0)),

g2 = ε�

4

(√
ωk

ωp
−

√
ωp

ωk

)
gkp. (29)

(3) The difference-frequency (DiF) resonance: � =
|ωk − ωp|

V̂ I
3 = −ig3

(
â†

k(0)âp(0) − â†
p(0)âk(0)

)
,

g3 = ε�

4

(√
ωk

ωp
+

√
ωp

ωk

)
gkp. (30)

Please note that after the RWA, V̂ I
j is actually time indepen-

dent and the decaying function f (t ) vanishes. In addition, we
can draw intuition from Eqs. (28)–(30). The DoF resonance
condition [Eq. (28)] corresponds to the process of simulta-
neously creating two photons with the same frequency ωk,
while the SuF resonance condition [Eq. (29)] corresponds to
the process of creating one photon with the frequency ωk and
another photon with the frequency ωp. The DiF resonance
condition [Eq. (30)] corresponds to the process of creating
one photon with the frequency ωk, meanwhile annihilating
one photon with the frequency ωp. It is worth mentioning that
the evolution of other modes are quantum adiabatic with no
photons being created or annihilated in these modes. Also,
if the driving frequency � does not satisfy any of these
resonance conditions [Eqs. (28)–(30)], the evolution of the
EM field is quantum adiabatic, i.e., no photons will be created
or annihilated during the driving process.

III. TRAJECTORY WORK AND THE JARZYNSKI
EQUALITY ASSOCIATED WITH THE DCE

We are interested in the statistics of the work and the
photon number difference of the EM field confined in a 3D
cavity driven by a perturbatively oscillating boundary. Before
t = 0 and after t = τ , with τ being the driving duration,
the boundary stops at λ0 ≡ λ(0) and λτ ≡ λ(τ ), respectively,
while it oscillates according to Eq. (27) when t ∈ [0, τ ].
During the driving process, both the work and the photon
number fluctuate, which requires the grand-canonical descrip-
tion [14,15].

When the boundary is fixed at λ, the Hamiltonian
Ĥλ = ∑

k ωk,λâ†
k,λâk,λ and the photon-number operator N̂λ =∑

k â†
k,λâk,λ commute with each other, i.e., [Ĥλ, N̂λ] = 0.

Thus there exists a set of common eigenstates |{nk}〉λ ≡
⊗k|nk〉λ, which satisfy

Ĥλ|{nk}〉λ = Eλ({nk})|{nk}〉λ,
N̂λ|{nk}〉λ = N ({nk})|{nk}〉λ, (31)

where the total energy Eλ({nk}) = ∑
k ωk,λnk and the total

photon number N ({nk}) = ∑
k nk, with nk ∈ N being the

number of photons in the kth mode. The density matrix and
the partition function of the grand-canonical ensemble of the
photon gas is written as follows:

ρ̂β = Z−1
λ

∑
{nk}

e−βEλ({nk})|{nk}〉λλ〈{nk}|,

Zλ =
∑
{nk}

e−βEλ({nk}), (32)

with β being the inverse temperature of the initial equilibrium
state. Here we would like to emphasize that although the
chemical potential of the photon gas is equal to zero, i.e., μ =
0, the total photon number is indefinite in thermal equilibrium.

To obtain the joint probability distribution of work and
photon-number difference, P (w,�N ), the conceptual proce-
dure of the two-point measurement protocol is prescribed as
follows.

(1) Prepare the system in the thermal equilibrium by
connecting it with a heat bath at the temperature β−1. Then
remove the heat bath so that the system is isolated.

(2) Perform the first projective measurements of Ĥλ0 and
N̂λ0 . Project the system to one of the common eigenstates, i.e.,
|{nk}〉λ0

, and record the eigenvalues Eλ0 ({nk}) and N ({nk}).
(3) Control the boundary according to Eq. (27) for a

prefixed duration τ . The frequency � is chosen such that one
of the resonance conditions (28)–(30) is satisfied,

(4) Perform the second projective measurements of Ĥλτ
and

N̂λτ
and record the eigenvalues Eλτ

({n′
k}) and N ({n′

k}).
Ideally, the above procedure is repeated infinitely many

times to obtain a good statistics of the joint probability dis-
tribution, which is defined as

P (w,�N )

= Z−1
λ0

∑
{nk},{n′

k}
e−βEλ0 ({nk})|λτ

〈{n′
k}|Û (τ )|{nk}〉λ0 |2

× δ(w − [Eλτ
({n′

k}) − Eλ0 ({nk})])δ�N,N ({n′
k})−N ({nk}),

(33)
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with δ(·) and δ·,· being the Dirac and the Kronecker delta
functions, respectively. Some discussions about the ultraviolet
divergence of the zero-point energy and the definition of the
evolution operator Û (t ) are provided in footnotes [39,41]

Alternatively, we can calculate the characteristic function
of the work and the photon-number difference, which is
defined as the Fourier transform of P (w,�N ),

G(u, v) =
∑
�N

∫
dw eiuw+iv�N P(w,�N )

= 〈eiuĤH
λτ

(τ )+ivN̂H
λτ

(τ )e−iuĤλ0 −ivN̂λ0 〉β, (34)

where the Heisenberg-picture operators are defined as
ÔH(t ) = Û †(t )ÔÛ (t ) and the ensemble average is taken over
ρ̂β in Eq. (32), i.e., 〈·〉 = Tr[·ρ̂β]. Then the joint probability
distribution P (w,�N ) can be obtained via the inverse Fourier
transform.

Although there exists no Schrödinger picture description in
our system during the driving process [17], the Hamiltonian
and the total photon number operators in the Heisenberg
picture before and after the driving process are well defined.
Especially at the end of the driving process, they are defined
as follows:

ĤH
λτ

(τ ) =
∑

k

ωk,λτ

(
â†

k(τ )âk(τ ) + 1

2

)
,

N̂H
λτ

(τ ) =
∑

k

(
â†

k(τ )âk(τ ) + 1

2

)
, (35)

where the time-dependent ladder operators âk(t ) at the begin-
ning (t = 0) and the end (t = τ ) of the driving process are
related via the unitary transformation defined by Ĥeff (t ) in
Eq. (26),

âk(τ ) = Û †
eff (τ )âk(0)Ûeff (τ ) = eiV̂ Iτ eiĤ0τ âk(0)e−iĤ0τ e−iV̂ Iτ ,

(36)

with V̂ I being one of V̂ I
j in Eqs. (28)–(30), depending on

the type of the resonance condition satisfied in the driving
process.

The Jarzynski equality for a grand-canonical ensemble,

〈e−β(w−μ�N )〉 = e−β��, (37)

is obtained by setting u = iβ and v = −iβμ, where we have
defined the grand potential difference �� = �λτ

− �λ0 with
the grand potential �λτ,0 = −β−1ln Tr[e−β(Ĥλτ −μN̂λτ )].

The equality in Eq. (37) reproduces the original Jarzynski
equality, 〈e−βw〉 = e−β��, in the following two cases:

(i) μ �= 0, N̂H
λτ

(τ ) = N̂λ0 , (38a)

(ii) μ = 0, N̂H
λτ

(τ ) �= N̂λ0 . (38b)

We would like to emphasize that Refs. [8,14,15] have
discussed systems that belong to case (i), while our system
belongs to case (ii).

IV. ANALYTICAL RESULTS OF WORK DISTRIBUTIONS
UNDER VARIOUS RESONANCE CONDITIONS

Generally, it is impossible to obtain closed-form expres-
sions of G(u, v) for arbitrary nonequilibrium driving pro-
cesses of a quantum many-body system, let alone the case
with particle creation and annihilation. However, we find that
for the photon gas confined in a cavity subject to a perturbative
resonant driving (27), the characteristic function G(u, v) can
be written into the expectation value of a product of a series
of exponentials of a quadratic form in the boson operators.
By substituting Eqs. (35) and (36) into Eq. (34) and then by
applying the matrix representation technique [42], we obtain
the analytical results of the characteristic function G(u, v) (for
more technical details see Appendix C).

A. Characteristic functions in single-resonance conditions

If � is chosen such that one of the three resonance con-
ditions [Eqs. (28)–(30)] is satisfied, the perturbation Hamil-
tonian becomes independent of time [see Eqs. (28)–(30)]. In
these cases, we can analytically calculate the characteristic
function G(u, v) in Eq. (34). The results are given below.

(1) The DoF resonance: � = 2ωk

G1(u, v) = sinh βωk
2√

sinh2 βωk
2 + sin(uωk + v) sin[(u − iβ )ωk + v] sinh2 g1τ

. (39)

(2) The SuF resonance: � = ωk + ωp

G2(u, v) = sinh βωk
2 sinh βωp

2

sinh βωk
2 sinh βωp

2 + sin
( u(ωk+ωp)

2 + v
)

sin
( (u−iβ )(ωk+ωp )

2 + v
)

sinh2 g2τ
. (40)

(3) The DiF resonance: � = |ωk − ωp|

G3(u, v) = sinh βωk
2 sinh βωp

2

sinh βωk
2 sinh βωp

2 + sin
( u(ωk−ωp )

2

)
sin

( (u−iβ )(ωk−ωp )
2

)
sin2 g3τ

. (41)

Note that we restrict ourselves to the cases with λ0 = λτ for simplicity. The analytic solutions for more general cases with
λ0 �= λτ are more cumbersome and can be found in Appendix D.

Note that the characteristic function G(u, v) for an externally driven closed quantum system should satisfy the following
requirements.
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FIG. 1. Marginal distributions of work P (w) (a)–(c) and the photon number change P (�N ) (d)–(f). The columns from the left to the right
are for the cases of the DoF, the SuF, and the DiF resonance conditions, respectively. The parameters are chosen as follows: βωk = 0.2, gjτ =
0.3 ( j = 1, 2, 3), and ωp = 2ωk.

(1) The normalization of the joint probability P (w,�N ),
i.e.,

∑
�N

∫
dwP (w,�N ) = 1, requires that G(0, 0) = 1.

(2) The grand-canonical quantum Jarzynski equality, i.e.,
〈e−β(w−μ�N )〉 = e−β��, requires that G(iβ,−iβμ) = e−β��.

(3) The grand-canonical Crooks’ fluctuation theorem, i.e.,
PF (w,�N )

PR (−w,−�N ) = eβ(w−μ�N−��), where the forward and the re-
verse processes are respectively described by λ(t ) and λ(τ −
t ), requires that GR(−u,−v) = GF(u + iβ, v − iβμ)eβ��.

(4) The discreteness of the distribution function of work for
a closed quantum system requires that G(u, v) is periodic in u.
More specifically, a delta-function peak δ(w − ω0) in P (w)
implies that G(u + 2π

ω0
, v) = G(u, v).

(5) The indivisibility of the constituent photons, �N ∈ Z,
requires that G(u, v + 2π ) = G(u, v). Furthermore, if only
n > 0 photons can be created or annihilated simultaneously,
G(u, v + 2π

n ) = G(u, v). Finally, if the photon creation and
annihilation processes are prohibited, G(u, v) is independent
of v, i.e., G(u, v) = G(u).

For the particular situation we are interested in, the EM
field confined in a 3D cavity resonantly driven by a trembling
boundary, the chemical potential vanishes and the positions of
the trembling boundary at the initial and final time are exactly
the same. It can be checked that Eqs. (39)–(41) satisfy all the
above requirements.

B. Marginal distributions of the work
and the photon-number difference

The joint distribution function P (w,�N ) can be ob-
tained from the inverse Fourier transform of the characteristic

function G(u, v),

P (w,�N ) = 1

4π2

∫
du

∫
dv e−iuw−iv�NG(u, v), (42)

from which we obtain the following marginal distributions
P (w) and P (�N ):

P (w) =
∑
�N

P (w,�N ) = 1

2π

∫
du e−iuwG(u, 0), (43)

P (�N ) =
∫

dwP (w,�N ) = 1

2π

∫
dv e−iv�NG(0, v).

(44)

In Fig. 1, we show the marginal distributions for all of the
three kinds of resonance conditions. Since we are considering
closed systems with discrete energy levels, all of the distri-
butions are discrete, consisting of a series of the Dirac delta
functions with different weights. The work performed on the
system is always an integer multiple of 2ωk, ωk + ωp, or
ωk − ωp, when the DoF [Eq. (28)], the SuF [Eq. (29)], or the
DiF [Eq. (30)] resonance condition is satisfied, respectively.
As to the photon number difference �N , the photons are
created and annihilated in pairs in the first two cases. And the
numbers of the photons created and annihilated are equal to
each other in the DiF resonance condition [43]. These features
are consistent with our understandings of the three resonance
conditions in Eqs. (28)–(30).
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C. Classical limit of the work distributions

The classical characteristic functions can be obtained from
the closed-form expressions in Eqs. (39)–(41) by taking the
classical limit, i.e., h̄ → 0 [44]. Similar to Ref. [15], we
introduce ũ = u/β.

The classical characteristic functions for the three reso-
nance conditions can be written as follows [45]:

Gcl
1 (ũ, 0) = 1√

1 + 4(ũ2 − iũ) sinh2 g1τ
,

Gcl
2 (ũ, 0) = 1

1 + (r+1)2

r (ũ2 − iũ) sinh2 g2τ
, (45)

Gcl
3 (ũ, 0) = 1

1 + (r−1)2

r (ũ2 − iũ) sin2 g3τ
,

with the ratio being defined as r ≡ ωp/ωk in the latter two
cases. Note that the classical work distributions for the latter
two cases can be obtained analytically as follows:

Pcl
j (w) = α j+α j−

α j+ − α j−
[eα j+w�(w) + eα j−w�(−w)], (46)

with j = 2, 3, where �(·) is the Heaviside step function and

α2± = β

2

⎛⎝1 ∓
√

1 + 4r csch2g2τ

(r + 1)2

⎞⎠,

α3± = β

2

(
1 ∓

√
1 + 4r csc2g3τ

(r − 1)2

)
. (47)

Figure 2 shows the consistency between the semiclassical
work distributions and the exact ones when the temperature
of the initial state is high. Also, we show the discrepancy
between the exact marginal distributions of work and the
Gaussian fitting with the same average value and the same
standard deviation of the work distribution. It can be seen that
the work distributions obviously deviate from the Gaussian
distribution.

D. Quantum-to-classical crossover

The analytic expressions of the average value and the
standard deviation of the work distributions are defined as

〈w〉 j ≡ −i
∂G j (u, 0)

∂u

∣∣∣∣
u=0

, j = 1, 2, 3, (48)

σ 2
w, j ≡ − ∂2G j (u, 0)

∂2u

∣∣∣∣
u=0

, j = 1, 2, 3, (49)

which can be obtained from Eqs. (39)–(41). For the con-
venience of analysis, we explicitly write down the Planck
constant h̄. It can be anticipated that, when h̄ → 0, the system
loses all of its quantum features [46].

In Fig. 3, we demonstrate the average work performed on
the system in these three resonance conditions. Inspecting the
figures, we find that the average work decreases to zero as h̄
vanishes in the low-temperature limit for the DoF and the SuF
cases, which is consistent with the fact that no work can be
done on the classical vacuum. Also, the dependence of 〈w〉 j
on h̄ becomes weaker for all three resonance conditions as
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FIG. 2. Cumulative distributions of work. Here F j (w) =∫ w

0 P j (w′)dw′. The panels from the top to the bottom are for the DoF
(a), the SuF (b), and the DiF (c) resonance conditions, respectively.
The parameters are chosen as follows: βωk = 0.1, gjτ = 0.3 with
j = 1, 2, 3, and ωk = 2ωp for the latter two cases. The blue stepwise
lines are the exact cumulative distributions obtained from the inverse
Fourier transform of G j (u, 0), while the red lines are the semiclassi-
cal ones and the black lines are the cumulative Gaussian fitting with
the same average value and the standard deviation.

the temperature increases, which implies a crossover from the
quantum to the classical regime.

Inspired by the observations in Fig. 3, we list in Table I
the average value and the standard deviation of the work
distributions for the three resonance conditions in two limits,
i.e., the low-temperature (β → ∞) and the high-temperature
(β → 0) limits. It can be seen clearly that the energy scale is
h̄ωk and β−1 in the low-temperature and the high-temperature
limits, respectively. In the high-temperature limit, the work is
equal to the work done on a classical EM field, which can be
seen from the fact that the work value does not depend on h̄. In
the low-temperature limit, due to the fact that all expressions
are proportional to h̄ωk or (h̄ωk)2, all expressions will go to
zero when h̄ → 0, which agrees with our intuition that no
work can be done on the classical vacuum.

E. Multiple-resonance cases

If � is chosen such that, for all modes in the cavity field, at
least two resonance conditions are satisfied simultaneously,
we are dealing with a “multiple-resonance” condition. The
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FIG. 3. Average work, 〈w〉 j with j = 1, 2, 3, for the driving protocols satisfying the DoF (left), the SuF (middle), and the DiF (right)
resonance conditions, respectively. The parameters are chosen as follows: ωk = 1, gjτ = 0.3 with j = 1, 2, 3, and r = 1.5 for the latter two
cases.

multiple-resonance condition can be double resonant, triple
resonant, and so on.

For the multiple-resonance condition, we consider the
following two cases: the uncoupled and the coupled.
For the uncoupled case, the involved modes are differ-
ent, e.g., � = 2ωk = ωs − ωp with k �= s �= p. Because
the resonance conditions are mutually independent, the
characteristic function can be decomposed into a prod-
uct of characteristic functions, each of which can be ob-
tained analytically in the corresponding resonance con-
dition. Let us denote the characteristic function for a
multiple-resonance case as Gk1,k2,...,s1±p1,s2±p2,...(u, v) for
resonance conditions � = 2ωk1 = 2ωk2 = · · · = ωs1 ± ωp1 =
ωs2 ± ωp2 = · · · . The characteristic function for this case
reads

Gk1,k2,...,s1±p1,s2±p2,...(u, v)

= Gk1 (u, v)Gk2 (u, v) . . .Gs1±p1 (u, v)Gs2±p2 (u, v) . . . ,

(50)

and the joint probability distribution function P (w,�N ) can
be obtained by the inverse Fourier transform.

For the coupled case, more than one resonance condi-
tion involves the same modes, for example, � = 2ωk =
|ωk − ωp|. Since the mode k appears in both resonance
conditions, these two resonance conditions cannot be con-
sidered separately. Instead, the perturbation Hamiltonian in
the interaction picture becomes V̂ I = −ig1(â†

kâ†
k − âkâk ) −

ig3(â†
kâp − â†

pâk ), with which the characteristic function
G(u, v) can also be obtained by the matrix representation
technique. The discussions can be straightforwardly extended
to the multiple-resonance case with more than two resonance
conditions satisfied simultaneously.

V. CONCLUSIONS

To calculate the work distribution in an arbitrary nonequi-
librium process in a quantum many-body system is usually
very cumbersome due to the interplay of effects of quan-
tum mechanics and quantum statistics [47,48]. In very rare
situations, one is able to obtain the analytical solution to
the distribution of work. These analytical results deepen our
understanding of quantum trajectory work and fluctuation
theorems in the nonequilibrium processes.

In our current study, we investigated the work distribution
of a quantized EM field in a three-dimensional cavity with
an oscillating boundary. This system incorporates the effects
of not only quantum mechanics and quantum statistics, but
also special relativity. For the periodic perturbative driving
protocol [Eq. (27)], under the RWA, we obtained the effective
Hamiltonian in the interaction picture. Also, we analytically
evaluate the characteristic function G(u, v) in the single-
resonance [Eqs. (39)–(41)] and multiple-resonance conditions
using the matrix representation technique. If � is chosen such
that none of the single resonance conditions is satisified, the
evolution of the EM field is quantum adiabatic. We discussed

TABLE I. Moments of work in two limits of the initial temperature. In the low-temperature limit, the nonzero works 〈w〉1 and 〈w〉2 are
manifestations of the quantum nature of the EM field (zero-point energy). When h̄ → 0, the works 〈w〉1 and 〈w〉2 become zero, which agrees
with our intuition that no work is done on the classical vacuum.

Low-temperature limit (β → ∞) High-temperature limit (β → 0)

〈w〉1 h̄ωk sinh2 g1τ 2β−1 sinh2 g1τ

σ 2
w,1

1
2 (h̄ωk )2 sinh2 2g1τ 4β−2 cosh 2g1τ1 sinh2 g1τ

〈w〉2 (1 + r)h̄ωk sinh2 g2τ β−1 (1+r)2

r sinh2 g2τ

σ 2
w,2

(1+r)2

4 (h̄ωk )2 sinh2 2g2τ β−2 (1+r)4

r2 (sinh2 g2τ2 + 2r
(1+r)2 ) sinh2 g2τ

〈w〉3 0 β−1 (r−1)2

r sin2 g3τ

σ 2
w,3 0 β−2 (1−r)4

r2 (sin2 g3τ3 + 2r
(1−r)2 ) sin2 g3τ
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the general properties of G(u, v) and verified various fluctu-
ation theorems in the nonequilibrium processes with photon
creation and annihilation. From the analytical result of the
work distribution, we can clearly see that nonzero work is
done at zero temperature, which is a manifestation of the
quantum nature (Casimir effect) of the EM field. However, the
work vanishes when h̄ → 0, which agrees with our intuition
that no work is done on the classical vacuum when the bound-
ary is driven. We also obtained the approximate expression
of the work distribution P (w) and the moments of work at
high temperature, which is consistent with the work done on
a classical EM field. Our study has pedagogical value because
analytical solutions to the work distribution in a quantum
many-body system are very rare. Last but not least, for a 3D
cubic cavity, if the length of the cavity is of the order of 10 cm,
the lowest resonant frequency is of the order of 10 GHz.
Usually, it is very difficult, if not impossible, to realize an
oscillation of the boundary with such a high frequency [25].
Maybe that is why the dynamical Casimir effect was exper-
imentally demonstrated in a mimical superconducting circuit
[34,35]. Hopefully, our theoretical predictions about the work
distributions and the validity of the Jarzynski equality can be
experimentally tested in the superconducting circuit [34] in
the future.
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APPENDIX A: EM FIELD IN VARIOUS GEOMETRIES

Our results of the EM field in a 3D trembling rectangular
cavity can be generalized to the EM field in a trembling
cylindrical or spherical cavity. We skip the derivation which
is similar to that of the rectangular cavity and list the main
results here. The work parameter λ(t ) takes the form λ(t ) =
λ0[1 + ε sin(�t ) + ε f (t )] [24] in the following, and we take
the first-order approximation when doing expansion in ε.

In a cylindrical cavity, we introduce the cylindrical coordi-
nates (ρ, φ, z). If the boundaries are at the radial coordinate
ρ = R and the longitudinal coordinate z = [0, λ(t )], we have
[26,27] the following.

(1) Hertz potentials:

�e = ψTMêz, �m = ψTEêz. (A1)

(2) Boundary conditions:

ψTE|z=0,λ(t ) = 0, ∂ρψ
TE|ρ=R = 0, (A2)

∂zψ
TM|z=0 = 0, [∂z + λ̇(t )∂t ]ψ

TM|z=Lz (t ) = 0,

ψTM|ρ=R = 0. (A3)

(3) Instantaneous orthonormal bases:

ψTE
nmk,λ(t )(r) =

√
2

λ(t )
sin

(
πkz

λ(t )

)

×
√

2Jn(ynmρ/R)

RJn(ynm)
√

1 − n2/y2
nm

einφ

√
2π

, (A4)

ψTM
nmk,λ(t )(r) =

√
2

λ(t )
cos

(
πkz

λ(t )

)√
2Jn(xnmρ/R)

RJn+1(xnm)

einφ

√
2π

,

(A5)

where Jn denotes the Bessel function of the first kind of the nth
order, ynm is the mth positive root of the equation J ′

n(y) = 0,
and xnm is the mth root of the equation Jn(x) = 0.

(4) Eigenvalues:

ωTE
nmk,λ(t ) =

√(ynm

R

)2
+

(
πkz

λ(t )

)2

, kz � 1, (A6)

ωTM
nmk,λ(t ) =

√(xnm

R

)2
+

(
πkz

λ(t )

)2

, kz � 0. (A7)

(5) Coupled strengths:

gTE
nmk,n′m′k′ =

{
(−1)k+k′ 2kk′

k2−k′2 δmm′δnn′ , if k �= k′,
0, if k = k′,

(A8)

gTM
nmk,n′m′k′ =

{
(−1)k+k′ 2k2

k2−k′2 δmm′δnn′ , if k �= k′,
δmm′δnn′ , if k = k′.

(A9)

Similarly if the boundaries are at the radial coordinate ρ =
λ(t ) and the longitudinal coordinate z = (0, Lz ), we have the
following.

(1) Boundary conditions:

ψTE|z=0,Lz = 0, [∂ρ + λ̇(t )∂t ]ψ
TE|ρ=λ(t ) = 0, (A10)

∂zψ
TM|z=0,Lz = 0, ψTM|ρ=λ(t ) = 0. (A11)

(2) Instantaneous orthonormal bases:

ψTE
nmk,λ(t )(r) =

√
2

Lz
sin

(
πkz

Lz

) √
2Jn[ynmρ/λ(t )]

λ(t )Jn(ynm)
√

1 − n2/y2
nm

einφ

√
2π

,

(A12)

ψTM
nmk,λ(t )(r) =

√
2

Lz
cos

(
πkz

Lz

)√
2Jn[xnmρ/λ(t )]

λ(t )Jn+1(xnm)

einφ

√
2π

.

(A13)

(3) Eigenvalues:

ωTE
nmk,λ(t ) =

√(
ynm

λ(t )

)2

+
(

πkz

Lz

)2

, kz � 1, (A14)

ωTM
nmk,λ(t ) =

√(
xnm

λ(t )

)2

+
(

πkz

Lz

)2

, kz � 0. (A15)
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(4) Coupled strengths:

gTE
nmk,n′m′k′ =

⎧⎪⎨⎪⎩
2ynmynm′
y2

nm−y2
nm′

√
y2

nm−n2

y2
nm′−n2 δnn′δkk′ , if m �= m′,

y2
nm

y2
nm−n2 δnn′δkk′ , if m = m′,

(A16)

gTM
nmk,n′m′k′ =

{
2xnmxnm′
x2

nm−x2
nm′

δnn′δkk′ , if m �= m′,
0, if m = m′.

(A17)

In a spherical cavity, we introduce the spherical coordi-
nates (r, θ, φ). If the boundary is at the radial coordinate
r = λ(t ), we have [28] the following.

(1) Hertz potentials:

�e = ψTMr̂, �m = ψTEr̂, (A18)

where ψTE and ψTE denote the Debye potentials.
(2) Boundary conditions:

ψTE|r=λ(t ) = 0, (A19)

[∂r + λ̇(t )∂t ](rψ
TM)|r=λ(t ) = 0. (A20)

(3) Instantaneous orthonormal bases:

ψTE
nlm,λ(t )(r) =

√
2

λ3(t )

jl [ jlnr/λ(t )]

j′l ( jln)
Ylm(θ, φ), (A21)

ψTM
nlm,λ(t )(r) =

√
2

λ3(t )

jl [κlnr/λ(t )]

j′l (κln)
√

κ2
ln − l (l + 1)

Ylm(θ, φ),

(A22)

where jl denotes the spherical Bessel function of the lth
order, Ylm(θ, φ) denotes the normalized spherical harmonics
of degree l and order m, jln denotes the nth zero for jl (x) = 0,
and κln denotes the nth zero of ∂x[x jl (x)] = 0.

(4) Eigenvalues:

ωTE
nlm,λ(t ) = jln/λ(t ), (A23)

ωTM
nlm,λ(t ) = κln/λ(t ). (A24)

(5) Coupled strengths:

gTE
nlm,n′l ′m′ =

{
2 jln jln′
j2
ln− j2

ln′
δll ′δmm′ , if n �= n′,

0, if n = n′,
(A25)

gTM
nlm,n′l ′m′ =

⎧⎪⎨⎪⎩
2κlnκln′
κ2

ln−κ2
ln′

√
κ2

ln−l (l+1)
κ2

ln′−l (l+1)
δll ′δmm′ , if n �= n′,

κ2
ln

κ2
ln−l (l+1)

δll ′δmm′ , if n = n′.
(A26)

APPENDIX B: TM FIELD IN A TREMBLING CAVITY

The TM field in the trembling cavity satisfies differ-
ent boundary conditions from the TE field. According to
Refs. [25,26], by using the Lorentz transformation, the bound-
ary conditions are

∂zψ
TM|z=0 = 0, [∂z + λ̇(t )∂t ]ψ

TM|z=λ(t ) = 0,

ψTM|x=0,Lx = ψTM|y=0,Ly = 0. (B1)

Similar to the TE field, we also define the following instanta-
neous orthonormal basis {ψT M

k,λ (r)}:

ψTM
k,λ (r) =

√
2

λ(t )
cos

(
πkzz

λ(t )

)
2√

LxLy
sin

(
πkxx

Lx

)
sin

(
πkyy

Ly

)
,

(B2)

which satisfies the Helmholtz equation [Eq. (14)] and the
boundary conditions [Eq. (B1)] to the first order of ε [notice
λ̇(t )∂tψ

TM
k |z=λ(t ) ∼ ε2]. Following the same procedure, we

obtain the expression of the effective Hamiltonian, which is
the same as that of the TE field [Eq. (26)] except

gkp =
{

(−1)kz+pz
2k2

z

k2
z −p2

z
δkx px δky py , if kz �= pz,

δkx px δky py , if kz = pz.
(B3)

APPENDIX C: MATRIX REPRESENTATION TECHNIQUE

The matrix representation technique is a mathematical
technique that can be used to calculate the trace of the
products of several exponentials of a quadratic form in boson
operators. For simplicity, we first consider the product of two
exponentials, i.e., Ĵ1Ĵ2, where Ĵi, i = 1, 2 is an exponential of
a quadratic form in boson operator

Ĵi = exp
(

1
2 α̂Siα̂

)
. (C1)

Here, α̂ = (â1, â2, . . . , ân, â†
1, â†

2, . . . , â†
n) and â j, j =

1, . . . , n satisfies the bosonic commutation relations and
the (2n × 2n) matrix Si is a complex symmetric matrix. For
later convenience, we introduce a characteristic matrix [Ĵi]
corresponding to Ĵi,

[Ĵi] = exp(σSi ), (C2)

where

σ =
(

0 I
−I 0

)
, (C3)

and I is the n × n identity matrix. Now, let us define a set
Ĵ which includes all operators of the type Eq. (C1). Also, we
define a set J which includes all matrices of the type Eq. (C2).
Then, it can be proved that both sets are the representations
of the 2n-dimensional complex symplectic group with oper-
ator and matrix multiplications, respectively [49]. Also, the
product of operators is related to the matrix multiplication,
i.e., if Ĵ3 = Ĵ1Ĵ2, we have [Ĵ3] = [Ĵ1][Ĵ2], where Ĵi ∈ Ĵ and
[Ji] ∈ J , i = 1, 2, 3. This result can be straightforwardly gen-
eralized to the product of more than two exponentials. So, the
product of several exponentials of a quadratic form in boson
operators can be related to one exponential of a quadratic form
in boson operator of which the characteristic matrix is known.
Finally, the trace of an exponential of a quadratic form in
boson operator can be calculated by its characteristic matrix
[42] by

TrĴ = [(−1)ndet([Ĵ] − Ĩ )]−1/2, (C4)

where

Ĩ =
(

I 0
0 I

)
. (C5)
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Thus we transform the trace of the product of several ex-
ponentials of a quadratic form in boson operators to the

calculation of the characteristic matrices which is easy to deal
with.

APPENDIX D: ANALYTICAL SOLUTIONS FOR THE GENERAL CASE WITH λ0 �= λτ

The matrix representation technique can also be applied to more general cases in which the trembling boundary starts
and stops at different positions λ0 �= λτ . In the single-resonance conditions, the modified characteristic function G(u, v) =
G(u, v)e−iu�� reads as follows.

(1) The DoF resonance: � = 2ωk

G1(u, v) = sinh
−iu�ωk+βωk,λ0

2√
sinh2 −iu�ωk+βωk,λ0

2 + sin(uωk,λτ
+ v)sin[(u − iβ )ωk,λ0 + v]sinh2g1τ

. (D1)

(D2)

(2) The SuF resonance: � = ωk + ωp

G2(u, v) = sinh
−iu�ωk+βωk,λ0

2 sinh
−iu�ωp+βωp,λ0

2

sinh
−iu�ωk+βωk,λ0

2 sinh
−iu�ωp+βωp,λ0

2 + sin
( u(ωk,λτ +ωk,λτ )

2 + v
)
sin

( (u−iβ )(ωk,λ0 +ωp,λ0 )
2 + v

)
sinh2g2τ

. (D3)

(3) The DiF resonance: � = |ωk − ωp|

G3(u, v) = sinh
−iu�ωk+βωk,λ0

2 sinh
−iu�ωp+βωp,λ0

2

sinh
−iu�ωk+βωk,λ0

2 sinh
−iu�ωp+βωp,λ0

2 + sin u(ωk,λτ −ωk,λτ )
2 sin

(u−iβ )(ωk,λ0 −ωp,λ0 )
2 sin2g3τ

, (D4)

where �ωs = ωs,λτ
− ωs,λ0 , s = k, p.

It is worth mentioning that the Crook’s fluctuation theorem in these cases is nontrivial. For later convenience, we consider the
moving boundary takes a more general form

λ(t ) = λ0[1 + ε sin(�t + ϕ) + ε f (t )], (D5)

where ϕ denotes the initial phase of the boundary. In this case, the effective Hamiltonian after the RWA becomes
e− iϕ

2 N̂λ0 V̂ I
j e

iϕ
2 N̂λ0 , j = 1, 2, 3. The characteristic function will not change after the unitary transformation because of the cyclic

property of trace.
In the nonzero initial phase ϕ cases, the modified characteristic functions associated with the forward process λ(t ) and the

reverse process λ(τ − t ) read

GF, j (u, v) = G j (u, v), j = 1, 2, 3, (D6)

GR,1(u, v) = G1(u, v)|ωk,λ0 ↔ωk,λτ
, GR, j (u, v) = G j (u, v)| ωk,λ0

↔ωk,λτ
ωp,λ0

↔ωp,λτ

, j = 2, 3, (D7)

where f |a↔b means the value of the parameters a and b in function f is interchanged. Then, we have GR(−u,−v) = GF(u +
iβ, v − iβμ)eβ��, which is equivalent to the Crook’s fluctuation theorem PF (w,�N )

PR (−w,−�N ) = eβ(w−μ�N−��) and the time reversal

symmetry of the effective Hamiltonian Ĥeff (t ) [9]

T̂ −1Ĥeff (λ(t ), λ̇(t ))T̂ = Ĥeff (λ(t ),−λ̇(t )), (D8)

where the time-reversal operator T̂ is an antilinear and antiunitary operator and which implies changing the sign of all odd
operators. We would like to emphasize that T̂ −1ψ̂TE(r, t )T̂ = −ψ̂TE(r,−t ) and T̂ −1ψ̂TM(r, t )T̂ = ψ̂TM(r,−t ), which indicate
that the electric field E (the magnetic field B) is an even (odd) operator. It is interesting to notice that the time derivative of the
work parameter λ̇(t ) also appears in the effective Hamiltonian in Ref. [50].
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