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A recent experiment [Norte et al. Phys. Rev. Lett. 121, 030405 (2018)] probed the variation of the Casimir
force between two closely spaced thin Al films as they transition into a superconducting state, observing a null
result. We present here computations of the Casimir effect for superconductors, based on the Mattis-Bardeen
formula for their optical response. We show that for the Al system used in the experiment the effect of the
transition is over 250 times smaller than the experimental sensitivity, in agreement with the observed null result.
We demonstrate that a large enhancement of the effect can be achieved by using a system consisting of a Au
mirror and a superconducting NbTiN film. We estimate that the effect of the superconducting transition would
be observable with the proposed Au-NbTiN configuration, if the sensitivity of the apparatus could be increased
by an order of magnitude.
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I. INTRODUCTION

One of the most spectacular manifestations of vacuum
fluctuations of quantum fields is provided by the Casimir
effect [1]. This is the tiny force acting between two dis-
charged dielectric bodies, which results from the modification
of the spectrum of quantum and thermal fluctuations of the
electromagnetic field in the region of space bounded by the
two bodies. In his pioneering work, Casimir studied this phe-
nomenon for the idealized case of two perfectly conducting
plane-parallel mirrors at zero temperature. The investigation
of the Casimir effect in real material media started with
the fundamental paper of Lifshitz [2], which presented a
derivation of the force between two plane-parallel dielectric
slabs in vacuum, at finite temperature. In recent years, in-
tense experimental and theoretical efforts have been made
to probe the dependence of the Casimir force on the shapes
and material properties of the test bodies. For a review of the
Casimir effect, and its perspective applications to nanotech-
nology the reader may consult several recent books and review
articles [3–10].

Many experiments have now probed the Casimir effect
with test bodies made of diverse materials, embedded in dif-
ferent media. Apart from two metallic conductors in vacuum,
which still constitute the standard configuration, experiments
have been carried out with semiconductors [11–13], conduc-
tive oxides [14–16], magnetic materials [17,18], and liquid
crystals [19]. Experiments exist as well in which the bodies
are immersed in gases or in liquids [20,21].

Another interesting class of candidate materials for
Casimir experiments is represented by superconductors
[22,23]. The study of the Casimir effect in superconductors
is indeed very interesting, since these materials constitute an
excellent arena [24] to investigate yet unresolved fundamental
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problems [5,6] about the influence of relaxation phenomena
on the strength of the Casimir force between metallic bodies.
Unfortunately, observing the influence of the superconducting
transition on the Casimir effect is very difficult, because on
theory grounds one expects that the effect is extremely small.
This can be understood by considering that the transition mod-
ifies significantly the optical properties of a superconductor
only for frequencies of the order of kBTc/h̄, where Tc is the
critical temperature. This region represents only a very small
fraction of the spectrum of frequencies that contribute to the
Casimir interaction between two bodies at distance a. The
latter spectrum is known to stretch up to the characteristic
frequency ωc = c/a, which for typical sub-μm separations
is tens of thousands times larger than the frequency kBTc/h̄
for classical BCS superconductors. In view of the difficulty
of a direct force measurement, in Refs. [22,23] we proposed
an indirect approach, based on observation of the Casimir-
induced shift of the critical magnetic field Hc of a thin super-
conducting film, constituting one of the two plates of a rigid
Casimir apparatus. An experiment with an Al film based on
this scheme, placed an upper bound on the shift of the critical
field not far from theoretical predictions [25,26].

An alternative route to successful detection is represented
by differential measurements, which offer the advantage of
a far superior sensitivity in comparison to absolute force
measurements. An experiment based on the observation of
the differential Casimir force between a Au-coated sphere
and the two sectors of a microfabricated plate, respectively,
made of superconducting Nb and Au, was indeed proposed
in Ref. [27]. The latter setup exploits the principle of iso-
electronic differential measurements [28,29], whose power in
precision Casimir measurements has been demonstrated by
a room temperature experiment [18] with a microfabricated
plate consisting of alternating Au and Ni sectors.

More recently, an unpublished experiment [30] mea-
sured the Casimir force between a Au-coated sphere with a
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radius R = 100 μm and a superconducting NbTiN film, with
a critical temperature Tc = 13.6 K. The experimental data for
room temperature showed good agreement with theoretical
predictions. The low-temperature data displayed, however, an
anomalous behavior, due to an unexpected 20% increase in
the measured force, for which no explanation could be found.
Apart from this, the experiment did not detect any change in
the strength of the Casimir force across the superconducting
transition, and placed an upper bound of 2.6% on the maxi-
mum magnitude of the ensuing variation of the Casimir force.

A promising on-chip platform for observing the Casimir
force between superconductors has been described very re-
cently in Ref. [31]. The apparatus consists of two micro-
fabricated Al-coated SiN parallel strings, having a length of
384 μm and a width of 926 nm. By application of a large
tensile stress, the strings can be kept perfectly parallel, at
litographically determined fixed separations. Several cavities
of different widths were realized on the same chip, the min-
imum separation being of one hundred nm. One of the two
strings is attached to the movable mirror of an optomechanical
cavity, whose resonance frequency is monitored by a laser.
The detection scheme is based on the idea that when the
system transitions to superconductivity, the resulting variation
of the Casimir force between the Al strings should affect
the mutual distance between the strings, thus determining
a change in the length of the cavity and therefore in its
resonance frequency. The experiment [31] provides a nice
implementation the differential measurement scheme, since
the apparatus is sensitive to the variation �F (T ) = F (T ) −
F (Tc) across the superconducting transition of the Casimir
force F (T ) on the Al strings. Up to edge effects, the force
F (T ) can be expressed as F (T ) = P(T ) × A, where P(T ) is
the unit-area Casimir force, i.e., the Casimir pressure, and A
is the area of the strings. The above relation shows that the
measurement of �F (T ) is directly related to the variation
�P(T ) = P(T ) − P(Tc) of the Casimir pressure across the
critical temperature of the superconducting transition (Tc =
1.2 K for Al). The null result reported by the experiment sets
on the magnitude of �P an upper bound of 6 mPa, which
represents the sensitivity of the apparatus.

In this paper we work out a detailed theory of the Casimir
effect between superconductors. We compute the variation
�P(T ) of the Casimir pressure for two distinct configura-
tions of a superconducting plane-parallel system. In the first
configuration, similarly to the experiment [31], both plates
are made of the same superconductor, while in the second
configuration, similarly to the experiment [30], one of the two
superconducting plates is replaced by a Au mirror. We model
the frequency-dependent permittivity of the superconductor
by the Mattis-Bardeen formula [32,33], which provides the
best known description of the optical properties of super-
conductors. We present numerical results for NbTiN and Al,
which are the superconductors used in the experiments [30]
and [31], respectively. It is important to note that optical
measurements performed on NbTiN superconducting films
[34] show excellent agreement with the local limit (so called
dirty limit) of the Mattis-Bardeen formula, providing strong
support in favor of our theoretical model. Our computations
show that for the Al setup used in the experiment [31]
the magnitude of �P is over 250 times smaller than the

experimental sensitivity. Our results, while in agreement with
the null result reported by the experiment, make it unlikely
that the effect of the superconducting transition can be ob-
served with an Al system. We find, however, that the mag-
nitude of �P(T ) can be enhanced by a factor of 15, by
considering a setup composed by a Au mirror and a NbTiN
film, having a thickness larger than 200 nm. The enhancement
factor increases to 34 if the separation a is decreased from
100 nm to 60 nm. This is an encouraging result, since it shows
that the effect would be detectable with a Au-NbTiN setup,
if the sensitivity of the apparatus could be improved by one
order of magnitude.

The plan of the paper is as follows. In Sec. II we review
the general formalism for computing the Casimir pressure
between two superconducting parallel plates, and we present
the models we use to describe their optical properties. In
Sec. III we present the results of our numerical computa-
tions. In Sec. IV we present our conclusions. Finally, in the
Appendix we provide the explicit formula for the analytic
continuation to the imaginary frequency axis of the Mattis-
Bardeen formula for the frequency-dependent conductivity of
BCS superconductors.

II. GENERAL FORMALISM FOR
THE CASIMIR PRESSURE

We consider a Casimir setup, formed by two plane-parallel
homogeneous and isotropic dielectric plates at temperature
T , separated by an empty gap of width a. We denote by
ε (k)(ω), k = 1, 2 their respective (complex) permittivities (we
only consider nonmagnetic materials, and thus we set μ(1) =
μ(2) ≡ 1). According to Lifshitz formula [2], the Casimir
pressure P(a, T ) among the plates can be expressed as (nega-
tive pressures correspond to attraction):

P(a, T ) = −kBT

π

∞∑
l=0

′
∫ ∞

0
dk⊥k⊥ql

×
∑

α

[
e2aql

r (1)
α (iξl , k⊥)r (2)

α (iξl , k⊥)
− 1

]−1

, (1)

where kB is Boltzmann constant, k⊥ is the in-plane momen-
tum, the prime in the sum indicates that the l = 0 term is taken
with weight one-half, ξl = 2π lkBT/h̄ are the imaginary Mat-

subara frequencies, ql =
√

ξ 2
l /c2 + k2

⊥, and the sum over α =
TE, TM is taken over the independent states of polarization
of the electromagnetic field, i.e., transverse magnetic (TM)
and transverse electric (TE). Finally, the symbols r (k)

α (iξl , k⊥)
denote the Fresnel reflection coefficients of the kth slab:

r (k)
TE (iξl , k⊥) = ql − s(k)

l

ql + s(k)
l

, (2)

r (k)
TM(iξl , k⊥) = ε

(k)
l ql − s(k)

l

ε
(k)
l ql + s(k)

l

, (3)

where s(k)
l =

√
ε

(k)
l ξ 2

l /c2 + k2
⊥, and ε

(k)
l ≡ ε (k)(iξl ). If instead

of thick homogeneous slabs, one considers more complex
mirrors constituted by plane-parallel metallic films deposited
on some substrate, the corresponding Casimir pressure can
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still be computed by the general Lifshitz formula Eq. (1),
provided that the Fresnel reflection coefficients Eqs. (2)–(3)
are replaced by the reflection coefficients of the layered
mirrors [5]. We will consider two distinct configurations for
our system: in the first one, both plates are made of the same
superconducting material. Concretely, we will consider two
superconductors, i.e., Al (which is the superconductor used
in the experiment [31]), and NbTiN (which is the super-
conductor used in the experiment [30]). The corresponding
configurations will be denoted as Al-Al and NbTiN-NbTiN,
respectively. The respective Casimir pressures are obtained
by substituting into Lifshitz formula the permittivities of Al
or NbTiN, respectively: ε

(1)
l = ε

(2)
l = ε (Al/NbTiN)(iξl ). In the

second configuration, one of the two superconducting plates
is replaced by a Au mirror. This second configuration will be
analyzed in detail only for the case of NbTiN, and we will
denote it as the Au-NbTiN configuration. The corresponding
Casimir pressure is obtained by setting into Eq. (1) ε

(1)
l =

ε (Au)(iξl ) and ε
(2)
l = ε (NbTiN)(iξl ).

To compute the Casimir pressure, one needs the permittiv-
ities ε

(k)
l of the materials constituting the plates. In a concrete

experimental situation, one would ideally like to measure the
optical data of the used samples, for the experimental values
of the temperature. The permittivities ε

(k)
l for the physically

inaccessible imaginary frequencies iξl would then be com-
puted on the basis of the optical data, using Kramers-Kronig
dispersion relations [5]. In order to obtain a precise theoretical
estimate of the Casimir pressure P(a, T ) for a separation
a, it is in principle necessary to know the optical data for
all frequencies lower than ten or twenty times the char-
acteristic frequency ωc = c/2a [5]. For a = 100 nm, ωc =
1.5 × 1015 rad/s.

It is fortunate that in the problem at hand we do not really
need this much information about the optical properties of
the materials. Indeed, the quantity that interests us is not the
Casimir pressure P(a, T ) at a single temperature, but rather its
variation �P(a; T ) across the critical temperature Tc:

�P(a; T ) = P(a, T ) − P(a, Tc), (4)

where T < Tc. Now, it is known [33] that the superconductive
transition affects significantly the optical properties of a
superconductor only for frequencies corresponding to photon
energies smaller than (a few times) the BCS gap �(0).
From BCS theory [33] one knows that �(0) = 1.76kBTc.
For Al (Tc = 1.2 K) this gives �(0) = 1.8 × 10−4 eV, while
for NbTiN (Tc = 13.6 K) �(0) = 2.1 × 10−3 eV. For these
small photon energies the optical response of a normal metal
is dominated by intraband transitions. The latter can be
phenomenologically described by a Drude-model dielectric
function of the form

ε(iξ ) = ε0 + �2

ξ (ξ + γ )
, (5)

where the contribution from core interband transitions has
been included in ε0. Here � is the plasma frequency for
intraband transitions, and γ is the relaxation frequency. To
compute �P we have used the simple Drude model in Eq. (5)
to describe the permittivity of Au, as well as the permittivity of
the superconductors in the normal state. In our computations

we have neglected the temperature dependence of both the
plasma frequency � and of the core-electron permittivity ε0,
and thus we used their room-temperature values. The relax-
ation frequency is instead temperature dependent, and in gen-
eral it decreases as the temperature is decreased. At cryogenic
temperatures γ approaches a constant sample-dependent
residual value. Following the standard convention, we ex-
press the residual relaxation frequency in terms of the corre-
sponding room-temperature frequency γ0 by the formula γ =
γ0/RRR where RRR is the residual resistance ratio. The val-
ues of the parameters were chosen as follows. For Au, we used
the standard values � = 9 eV/h̄ and γ0 = 35 meV/h̄ [5],
while from the tabulated optical data [35] we obtained ε0 =
6.3. For Al, we used � = 13 eV/h̄, γ0 = 100 meV/h̄, and
ε0 = 1.03 [35]. Finally, for NbTiN we used the values quoted
in Ref. [30], i.e., � = 5.33 eV/h̄ and γ0 = 0.465 eV/h̄. In
Ref. [30] the optical data of the used NbTiN films were de-
termined by ellipsometry in the frequency range from 1.89 ×
1011 rad/s to 1.13 × 1016 rad/s, both at room temperature and
at 16 K. The optical data were afterwards fitted by a Lorentz-
Drude model with four oscillator terms. Unfortunately the
values of the corresponding parameters were not reported ex-
plicitly. We are thus unable to provide a value for the contribu-
tion of core electrons for this material. We have verified how-
ever that the pressure variation �P(a; T ) remains practically
unchanged when the value ε0 for NbTiN is varied in the inter-
val from one to ten. The value of the RRR parameter depends
on the sample preparation procedure, and therefore it cannot
be fixed a priori. For the NbTiN sample used in the experiment
[30], the fit to the optical data at 16 K gave γ = 0.415, which
corresponds to RRR = 1.12. To probe the sensitivity of the
pressure variation �P on this parameter, in our computations
we varied its value in the interval from one to ten.

Next, we describe the model for the permittivity of the
superconductors. For this we rely on the Mattis-Bardeen for-
mula [32] for the conductivity σ , which is known to provide
an accurate representation of the optical response of BCS
superconductors [33]. In its general form, the Mattis-Bardeen
formula depends both on the frequency ω and the wave
vector q, since superconductors display spatial dispersion.
However, the q dependence is negligible in the so-called dirty
limit �/ξ0 � 1, where � = vF /γ is the mean free path, and
ξ0 = h̄vF /π�(0) is the correlation length, with vF the Fermi
velocity. The dirty limit condition is well satisfied by both Al
(�/ξ0 = 5.7 × 10−3) and NbTiN (�/ξ0 = 1.4 × 10−2). This is
confirmed by optical measurements of NbTiN films in the
THz region, that are in excellent agreement with the local
dirty limit of the Mattis-Bardeen formula [34]. The analytic
continuation of the Mattis-Bardeen formula to the imaginary
frequency axis has been worked out in Ref. [37], where it is
shown that σBCS(iξ ) can be conveniently decomposed as:

σBCS(iξ ) = �2

4π

[
1

(ξ + γ )
+ g(ξ ; T )

ξ

]
, (6)

The first term between the square brackets on the right-hand
side (r.h.s.) of the above Equation coincides with the familiar
Drude contribution to the conductivity of a normal metal,
while the second term represents the BCS correction. The ex-
plicit expression of the function g(ξ ) is given in the Appendix.
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FIG. 1. Plot of g(ξ ) [see Eq. (6)] for NbTiN (RRR = 1.12),
versus ξ/2�(0) for T/Tc = 0.9 (lower blue line), and T/Tc = 0.1
(upper red line).

Here is a brief summary of its main properties. The function
g(ξ ) is different from zero only for T < Tc, and vanishes
identically for T → Tc. For T < Tc, it is a positive and mono-
tonically decreasing function of ξ > 0, approaching a finite
value g(0) < 1 for ξ → 0, and going to zero for ξ → ∞. Its
value depends parametrically on the temperature-dependent
BCS gap �(T ) as well as on the relaxation frequency γ .
In addition to that, g(ξ ) has an explicit dependence on the
temperature. For small ξ the function g(ξ ) has the expansion:

g(ξ ; T ) = ω2
s (T ) + B(T )ξ log(�/h̄ξ ) + o(ξ ), (7)

where ωs(T ) represents the (normalized) effective superfluid
plasma frequency. A plot of the function g(ξ ; T ) for NbTiN
(RRR = 1.12) is shown in Fig. 1 for T/Tc = 0.9 (blue line)
and for T/Tc = 0.1 (red line). By adding the contribution of
core electrons, we thus arrive at the following formula for the
permittivity of the superconductor:

εBCS(iξ ) = ε0 + 4π
σBCS(iξ )

ξ

= ε0 + �2

ξ

[
1

ξ + γ
+g(ξ ; T )

ξ

]
. (8)

The BCS term proportional to g(ξ ; T ) in the expression
of εBCS can be interpreted as a plasma-model contribution,
with an effective ξ -dependent plasma frequency �eff (ξ ) =
�

√
g(ξ ; T ). In Fig. 2 we show logarithmic plots of the

BCS permittivity of NbTiN as a function of ξ/2�(0), for
T/Tc = 0.9 (blue line) and for T/Tc = 0.1 (red line). The
dashed line corresponds to the Drude permittivity Eq. (5).
The figure shows that the BCS permittivity approaches the
Drude permittivity for ξ/2�(0) 	 1.

It is interesting to compare the BCS formula for the
permittivity with the old-fashioned Casimir-Gorter two-fluid
model [33,36]. According to this model a fraction ns(T ) of
the conduction electrons contributes to the supercurrent, while
the remaining fraction nn(T ) = 1 − ns(T ) remains normal.
Superconducting electrons behave as a dissipationless plasma,
while normal electrons are described by the usual dissipative
Drude model. Core electron remain unaltered. According to
this simple physical picture, the permittivity of the two-fluid

NbTiN

RRR = 1.12
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FIG. 2. BCS permittivity of NbTiN (RRR = 1.12) versus
ξ/2�(0) for T/Tc = 0.9 (solid blue line) and T/Tc = 0.1 (solid red
line). The dashed line shows the Drude permittivity Eq. (5). The
dot-dashed lines show the permittivity for the Casimir-Gorter two-
fluid model, for T/Tc = 0.9 (dot-dashed blue line), and T/Tc = 0.1
(dot-dashed red line)

model is written as:

ε(iξ ) = ε0 + (1 − ns(T ))
�2

ξ (ξ + γ )
+ ns(T )

�2

ξ 2
. (9)

The fraction ns(T ) of superconducting electrons follows the
Casimir-Gorter law:

ns(T ) =
[

1 −
(

T

Tc

)4
]
�(Tc − T ), (10)

where �(x) is the Heaviside step function: �(x) = 1 for x >

0, and �(x) = 0 for x � 0. In Fig. 2 we show plots of the
two-fluid model for NbTiN, for T/Tc = 0.9 (blue dot-dashed
line) and for T/Tc = 0.1 (red dot-dashed line). Comparison
with the BCS permittivity (solid lines) shows that the two-
fluid model overestimates the permittivity of a superconductor
by a very large factor. We note that the two fluid model
was used in Ref. [30] to compute the Casimir force between
superconductors.

III. NUMERICAL COMPUTATION OF �P

In this section we present our numerical computations of
the pressure variation �P(a; T ), based on the expressions of
the permittivity described in the previous section. In particu-
lar, for the permittivity of the superconductors we use the BCS
formula Eq. (8), where the function g(ξ ; T ) has the expression
provided in the Appendix.

We consider first a Casimir setup constituted by two thick
plates made of Al, which is the superconductor used in the
experiment [31]. In Fig. 3 the corresponding �P(a; T ) is
plotted versus the temperature T (in K), for the separation
a = 100 nm, which was the minimum separation probed in
the experiment. We took RRR = 1. For comparison, we show
in the same figure the variation of the pressure that would
obtain in the absence of the transition (dashed line). We see
that the solid curve lies below the dashed one, in accordance
with one’s expectation that the superconducting transition
determines an increase in the Casimir attraction with respect
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Al−AlAl−Al
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FIG. 3. Variation of the Casimir pressure across the supercon-
ducting transition of an Al plane-parallel system with thick walls,
versus temperature (in K). The dashed line represents the variation
of the Casimir pressure in the absence of the transition.

to the normal state, since superconductors are better reflectors
than normal metals. The magnitude of �P is seen to be
smaller than 0.05 mPa at all temperatures below Tc. To get
a feeling of how small an effect this represents, we note that
the magnitude of the Casimir force P(Tc) at the critical tem-
perature is estimated to be of 6.8 Pa [this value was computed
using the simple representation Eq. (5) for the permittivity of
Al, and must be just considered as an approximate estimate. A
more accurate estimate would require a better description of
core electrons]. Using this estimate, we obtain �P/P(Tc) <

7 × 10−6 across the transition.
The Casimir setup used the experiment [31] consisted of

two identical layered plates, each consisting of an Al film
with a thickness w = 18 nm, deposited on a SiN substrate.
To determine how the thickness w of the Al films influences
�P, it is necessary to replace in Lifshitz formula the Fresnel
reflection coefficients for a thick Al slab Eqs. (2)–(3) by
those for the layered Al-SiN plate [5]. The results of this
computation are shown in Fig. 4 (we took ε0 = 4 for the
dielectric constant of SiN). We see that the thick-plate limiting

Al−Al

RRR = 1
a = 100 nm

T = 0.5 Tc

0.05 0.10 0.15 0.20 0.25

−0.040
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−0.020

w (Μm)

Δ
P

(m
P

A
)

FIG. 4. Variation of the Casimir pressure across the supercon-
ducting transition of an Al system consisting of two identical Al films
of thickness w deposited on a SiN substrate, versus films thickness
w (in μm).

NbTiN−NbTiN

RRR = 1.12

a = 100nm

2 4 6 8 10 12 14

−0.25

−0.20

−0.15

−0.10
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Δ
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FIG. 5. Variation of the Casimir pressure across the supercon-
ducting transition of a NbTiN plane-parallel setup, versus tempera-
ture (in K). The dashed line represents the variation of the Casimir
pressure in the absence of the transition. The solid and dotted
lines correspond, respectively, to taking ε0 = 1 and ε0 = 10 in the
permittivity of NbTiN [see Eq. (5)].

value of 0.041 mPa is nearly reached for a film thickness
of 250 nm, but for a thickness of 18 nm the magnitude of
�P decreases to 0.023 mPa. Recalling that the experiment
[31] has an estimated sensitivity of 6 mPa, we see that the
theoretical pressure variation for the Al setup is over 250 times
smaller than the sensitivity. While this is consistent with the
null result reported by the experiment, it makes one think that
observation of the effect with the Al system is hardly possible
in the near future.

Our computations predict that a significant increase in the
magnitude of the pressure variation can be achieved by using
NbTiN in the place of Al. This is demonstrated by Fig. 5,
which displays the pressure variation for two thick NbTiN
plates at a separation a = 100 nm, versus the temperature
T (RRR = 1.12). As we said earlier, we could not find in
the literature enough information on the optical properties of
NbTiN, to fix the value of ε0 in Eq. (8). For this reason, we
repeated the computations using two widely different values
for ε0. It is fortunate that the pressure variation is insensitive to
the contribution of core electrons, as it can be seen from Fig. 5
where the solid and dotted lines correspond to ε0 = 1 and
ε0 = 10, respectively. The weak dependence of �P on ε0 is
explained by the fact that the pressure variation is determined
by the optical response of the materials at frequencies of the
order the thermal frequency kBTc/h̄, for which the Drude term
is overwhelmingly large compared to ε0. Comparison of Fig. 5
with Fig. 3 shows that the variation of the Casimir pressure
for a NbTiN setup is five times larger than the corresponding
variation for an Al system.

A further increase of the pressure variation can be achieved
by replacing one of the NbTiN plates by a Au mirror. This is
so because Au is a better reflector than NbTiN, due to its larger
plasma frequency (recall that �Au = 9 eV/h̄, while �NbTiN =
5.33 eV/h̄). We note that Au-NbTiN was the combination
of materials adopted in the unpublished experiment [30]. We
assume in what follows that the thickness of the Au coating of
the first mirror is larger than 200 nm. This ensures that for the
purposes of the Casimir effect that mirror can be considered
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FIG. 6. Variation of the Casimir pressure across the supercon-
ducting transition of a Au-NbTiN plane-parallel system, versus
temperature (in K). The dashed line represents the variation of the
Casimir pressure in the absence of the transition. The solid and dotted
lines correspond, respectively, to taking ε0 = 1 and ε0 = 10 in the
permittivity of NbTiN [see Eq. (5)]. Data are for RRRNbTiN = 1.12
and RRRAu = 1.

as equivalent to an infinitely thick Au slab [5]. We note that
Ref. [30] does not provide data for the RRR of Au at 16 K.
In our computations we take RRRAu = 1. It can be seen from
Fig. 6 that for a = 100 nm the maximum variation pressure for
the Au-NbTiN system has a magnitude of 0.42 mPa, which is
nine times larger than the corresponding maximum pressure
variation of the Al system (see Fig. 3). In Fig. 7 we show
the pressure variation of the Au-NbTiN setup as a function of
the separation a (in nm), for T/Tc = 0.5. The red and blue
curves correspond to RRRNbTiN = 1.12 and RRRNbTiN = 5,
respectively. In Fig. 8 the pressure variation is displayed
versus the residual resistance ratio RRR of the NbTiN film,
for the two separations a = 100 nm (upper red curve) and
a = 60 nm (lower blue curve). In Fig. 9 the pressure variation
is displayed versus the residual resistance ratio RRR of the Au
film, for the two separations a = 100 nm (upper red curve)
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FIG. 7. Variation of the Casimir pressure across the supercon-
ducting transition of a Au-NbTiN plane-parallel system, versus
separation a (in nm). The upper red line and the lower blue line
correspond, respectively, to residual resistance ratios RRR = 1.12
and RRR = 5 for the NbTiN film. In both cases RRRAu = 1.
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FIG. 8. Variation of the Casimir pressure across the supercon-
ducting transition of a Au-NbTiN plane-parallel system, versus the
RRR of the NbTiN plate. The RRR of the Au plate is fixed to one.
The upper red line and the lower blue line correspond respectively to
the separations a = 100 nm and a = 60 nm.

and a = 60 nm (lower blue curve). For both curves, the RRR
of the NbTiN film has the fixed value RRRNbTiN = 1.12. We
note that by increasing the value of RRR for the Au plate, it
is possible to obtain a significant increase in the magnitude
of �P. This indicates that it would be beneficial to realize
a Au mirror having a long mean free path for the electrons.
Finally, in Fig. 10 we display the pressure variation of the
system formed by a thick Au mirror and a NbTiN film of
thickness w, as a function of the film thickness w (in μm),
for a fixed separation a = 100 nm. The pressure variation is
moderately dependent on the properties of the substrate of
the superconducting film. We verified this by comparing the
results for a freestanding film (solid line of Fig. 10) with
those for a substrate having a static permittivity equal to 10
(dashed line in Fig. 10). The influence of the substrate of
course decreases for thicker films. The plot shows that NbTiN
films with a thickness larger than 200 nm are essentially
undistinguishable from an infinitely thick slab.
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FIG. 9. Variation of the Casimir pressure across the supercon-
ducting transition of a Au-NbTiN plane-parallel system, versus the
RRR of the Au plate. The RRR of the NbTiN plate is fixed to
RRR = 1.12. The upper red line and the lower blue line correspond
respectively to the separations a = 100 nm and a = 60 nm.
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FIG. 10. Variation of the Casimir pressure across the supercon-
ducting transition of a plane-parallel system formed by a thick Au
mirror and a NbTiN film of thickness w, versus film thickness w in
μm. Shown data are for RRRNbTiN = 1.12 and RRRAu = 1. The solid
and dashed lines correspond, respectively, to a freestanding NbTiN
film, and to a film deposited on a substrate having a static permittivity
equal to ten.

The important conclusion that can be drawn from the
computations described above, is that a large enhancement
of the pressure variation �P can be achieved by replacing
the thin Al plates used in the experiment [31], by a system
composed by a thick Au mirror and a NbTiN film having a
thickness larger than two hundred nm. To get a quantitative
idea of the magnitude of the enhancement that can be achieved
in this way, consider as an example a setup with a width
a = 100 nm, at a temperature T = 0.5 Tc. For the Al system
of Ref. [31], one gets �P = −0.023 mPa while for the Au-
NbTiN setup [with RRRAu = 1 and RRRNbTiN = 1.12] one
finds �P = −0.36 mPa. While this figure represents a 15.8-
fold enhancement with respect to the Al system, it is still
16.5 times smaller than the sensitivity of 6 mPa. One can get
closer to the sensitivity threshold by decreasing the separation
a. For example, going down to a = 60 nm, one gets �P =
−0.77 mPa, which is 7.8 times smaller than the sensitivity.
The remaining gap can be partly filled by improving the mean
free path � of the Au mirror. If Au mirrors with RRR = 3 can
be made, that would give �P = −0.98, which is just 6.1 times
smaller than the sensitivity. This shows that the effect of the
transition would be observable with the Au-NbTiN setup if
the sensitivity of the apparatus could be improved by only one
order of magnitude.

As a final remark, we note that in the unpublished experi-
ment using a superconducting Au-NbTiN sphere-plate system
[30], the Casimir pressure was computed using the Casimir-
Gorter two-fluid model Eq. (9) for the permittivity of the su-
perconductor. Unfortunately, the results obtained in this way
are not quite correct. Using this model, the authors estimated
that for a = 100 nm, the variation of the Casimir pressure
�P(a; T ) for T � Tc was of −265 mPa, corresponding to a
5.1% fractional change �P(T )/P(Tc) of the Casimir pressure.
The corresponding variation �P(a; T ) obtained by us using
the BCS permittivity is of −0.42 mPa (see Fig. 6), which
amounts to a pressure fractional change �P(T )/P(Tc) =
8 × 10−5. We thus see that the two-fluid model overestimates

the magnitude of the pressure variation by a factor larger than
600. We note also that the prediction of a 5.1% change in
the pressure is in disagreement with the experimental bound
of 2.5%, while of course the prediction of the BCS model is
consistent with it.

IV. CONCLUSIONS

A much debated problem in the theory of the Casimir effect
is the role of relaxation phenomena of free charge carriers in
Lifshitz theory [5,6]. Different prescriptions have been pro-
posed in the literature to compute the Casimir force between
conducting test bodies, that go by the names of Drude and
plasma prescriptions [5,6]. Superconductors offer a unique
possibility to investigate this problem [24]. Unfortunately, it
is very difficult to probe the influence of the superconducting
transition on the Casimir force, because the effect of the tran-
sition is expected to be very small [24]. A recent experiment
with thin superconducting Al films reported a null result [31].

In this paper we have developed a detailed theory for
the Casimir effect with superconducting plates. Our analy-
sis relies on the Mattis-Bardeen formula for the frequency-
dependent conductivity of BCS superconductors, which
represents the best known theoretical description of the optical
properties of superconductors. We performed numerical com-
putations for Al and for NbTiN, which are the superconduc-
tors used in the experiments [31] and [30], respectively. The
excellent agreement with the Mattis-Bardeen formula demon-
strated by recent optical measurements on superconducting
NbTiN [34], lends strong support to the validity of our theo-
retical analysis. We estimate that for the Al system used in the
experiment [31], the magnitude of the variation of the Casimir
pressure across the transition is over 250 times smaller than
the sensitivity of the experiment. This result, while consistent
with the observed null result, makes it unlikely that the effect
of the superconducting transition can be observed with an
Al setup. We find however that the expected signal can be
enhanced by a factor of fifteen by substituting the thin Al films
used in Ref. [31] with a Casimir system constituted by a Au
mirror and a NbTiN superconducting film, having a thickness
larger than 200 nm. The enhancement factor increases to
34 times, if the separation between the plates is decreased
from 100 nm to 60 nm. According to our computations, a
further improvement is possible by using a Au mirror with
a long mean free path for the electrons. Our analysis shows
that the effect of the transition to superconductivity would be
observable with the Au-NbTiN system, if the sensitivity of the
apparatus used in Ref. [31] could be increased by one order of
magnitude.
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APPENDIX: EXPRESSION OF THE FUNCTION g(ξ)

In this Appendix we display the explicit expression of
the function g(ξ ) that enters in Eq. (6), providing the an-
alytic continuation to the imaginary frequency axis of the
Mattis-Bardeen formula for the conductivity of a supercon-
ductor. Details on its derivation can be found in Ref. [37]. The
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function g(ξ ) can be expressed as:

g(ξ ) = �(Tc − T )
∫ ∞

−∞

dε

E
tanh

(
E

2kBT

)
Re[G+(iξ, ε)],

(A1)

where �(x) is the Heaviside step function: �(x) = 1 for
x > 0, and �(x) = 0 for x � 0 and

G+(z, ε) = ε2Q+(z, E ) + [Q+(z, E ) + ih̄γ ]A+(z, E )

Q+(z, E ){ε2 − [Q+(z, E ) + ih̄γ ]2} ,

(A2)

with

E =
√

ε2 + �2, (A3)

Q+(z, E ) =
√

(E + h̄z)2 − �2, (A4)

and

A+(z, E ) = E (E + h̄z) + �2. (A5)

Here, � is the temperature-dependent gap. From BCS theory
[33] one knows that

� = c1 kBTc

√
1 − T

Tc

(
c2 + c3

T

Tc

)
, (A6)

where c1 = 1.764, c2 = 0.9963, and c3 = 0.7735.
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