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Apparatus to probe the influence of the Mott-Anderson metal-insulator transition in doped
semiconductors on the Casimir effect
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We describe an isoelectronic differential apparatus designed to observe the influence on the Casimir force
of the Mott-Anderson metal-insulator transition in doped semiconductors. Alternative theories of dispersion
forces lead to different predictions for this effect. The investigation of this problem by standard apparatus, based
on absolute measurements of the Casimir force, is very difficult because the effect is small in the region of
submicron separations, where the Casimir force can be measured precisely. The differential apparatus described
here is immune by design to several sources of error that blur the interpretation of Casimir experiments, such as
electrostatic patches, inaccurate determination of plates separation, surface roughness, and errors in the optical
data. With the help of the proposed setup, it should be possible to establish conclusively which among the
alternative theories of the Casimir effect for semiconducting test bodies is correct.
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I. INTRODUCTION

The Casimir effect [1] is the force between two polarizable
(discharged) bodies, caused by quantum and thermal fluc-
tuations of the electromagnetic field in the region of space
bounded by the two bodies. Even though it was predicted
long ago, the Casimir effect has attracted widespread attention
only during recent decades because the availability of new
experimental techniques for the observation of small forces
acting between macroscopic bodies at submicron separations
has made it possible for the first time to accurately measure
the tiny Casimir force and study its properties in detail. For
a review of the diverse roles played by the Casimir effect in
both fundamental and applied physics, we address the reader
to Refs. [2–7].

In his pioneering work [1], Casimir calculated the force
between two ideal plane-parallel plates at zero temperature.
The investigation of the Casimir effect in real material media
started with the fundamental paper of Lifshitz [8], which
presented a derivation of the force between two plane-parallel
dielectric slabs in vacuum, at finite temperature. In his work,
Lifshitz made use of the then new theory of electromagnetic
fluctuations developed by Rytov [9]. Nowadays, Rytov’s the-
ory has blossomed to a vast field of research, with many
diverse applications extending from heat radiation to heat
transfer, as well as to Casimir and van der Waals forces
in nonequilibrium situations etc. For a recent overview of
fluctuational electrodynamics, as this field is called today, the
reader may consult Ref. [10].

Lifshitz theory of the Casimir effect is based on the
calculation of the stress tensor for the fluctuations of the
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electromagnetic field in the vacuum region between the two
bodies. By making use of the fluctuation-dissipation theo-
rem, the latter fluctuations can be expressed in terms of the
macroscopic electromagnetic response functions characteriz-
ing the bodies, i.e., their respective electric (and magnetic)
permittivities at imaginary values of the frequency ω. Since
the time of Lifshitz, the theory of the Casimir effect has
been extended to arbitrary geometries of the bodies by using
modern scattering methods (see [10] and references therein).
The general theory is formulated in terms of the Matsubara
Green’s function of the electromagnetic field, which depends
on the T matrices of the two dielectric bodies, computed for
imaginary frequencies.

The numerous experiments carried out during the last
20 years [4,6,7,10], which used dielectric bodies of diverse
materials and shapes, have shown in general good agreement
with theoretical predictions based on Lifshitz theory, within
a few percent for submicron separations of the test bodies.
This is a remarkable achievement, indeed, in view of the
macroscopic character of the Casimir effect, testifying to great
efforts made both by experimentalists and theoreticians over
the years. To reach this goal, the surfaces of the bodies have
to be fabricated with great care, their separation has to be
determined with nanometer precision, and several potential
sources of error need to be carefully scrutinized, for example
the influence of surface curvature [4] and roughness [4,11], as
well as possible issues with electrostatic calibrations [12,13]
and/or electrostatic patches on the surfaces of the bodies
[14,15]. Among the potential sources of systematic errors, the
importance of an accurate determination of the electric per-
mittivity of the involved materials deserves a special mention.
The crucial importance of this quantity for an accurate predic-
tion of the Casimir force, especially in the commonly adopted
case of metallic bodies, is now widely recognized [16]. Nowa-
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days, it is a common practice to measure the optical properties
of the actual bodies that are used in the experiment. These
data are then used to compute, via dispersion relations [4],
the electric permittivity for the experimentally inaccessible
imaginary frequencies entering the Lifshitz formula. Special
forms of dispersion relations have been devised [17,18] to
reduce the impact of an incomplete knowledge of the optical
data on the low-frequency side, an issue of special importance
in the case of conductors.

The optimistic scenario outlined above should not make
one think that everything is settled and in good order in
Casimir physics because two series of precise experiments
with metallic bodies carried out by two distinct groups, one
using micromechanical oscillators [19–22] and the other using
atomic force microscopes [23–25], have revealed small, but
nevertheless significant deviations from theoretical predic-
tions based on Lifshitz theory. As a premise to the discussion
of these experiments, we recall that according to our current
understanding of Lifshitz theory, based on the fluctuation-
dissipation theorem, the response functions of the bodies to be
used in the computation of the Casimir force should coincide
with those that describe their response to real external electro-
magnetic fields, as can be measured in an optical experiment.
Surprisingly, it appears that this expectation is contradicted
by the precise experiments listed above. The results of these
experiments have been shown to be inconsistent with Lifshitz
theory, if in the computation of the Casimir force the metallic
surfaces are modeled at low frequency by the familiar (lossy)
Drude model, which is known to provide the correct descrip-
tion of ohmic conductors for low frequency. Surprisingly, it
appears instead that agreement with data is restored if the
conductors are modeled as lossless plasmas. Agreement with
the Drude model has been reported in a single torsion-balance
experiment [26], probing the Casimir force up to the large sep-
aration of 7.3 μm. The interpretation of this latter experiment
is, however, partly obscured by the fact that the Casimir force
was not measured directly, but rather estimated indirectly after
subtracting from the data a much larger force, supposedly
originating from electrostatic patches, by a fit procedure based
on a phenomenological model of the unknown electrostatic
force.

Motivated by these unexpected findings, some researchers
felt the need for new theoretical criteria to select the low-
frequency prescription for the material response functions,
to be used in Lifshitz theory. A viable criterion that has
been found is consistency of the chosen prescription with
Nernst heat theorem. Detailed analysis [27–30] has in fact
demonstrated that the low-frequency behavior of the Drude
permittivity leads to violation of the Nernst theorem, in
the idealized limit of conductors with perfect crystal lat-
tices, while the plasma prescription is in agreement with
that theorem. The picture provided by the general prin-
ciples of statistical mechanics is not totally unequivocal
though because later studies have shown that the Drude
model is consistent with the Bohr–van Leeuwen theorem
of classical statistical physics, while the plasma model is
not [31].

The attitude of the community towards the above conun-
drum is mixed. The opinion has been expressed that the
experimental evidence in favor of the plasma prescription is

not really solid. After all, the observed discrepancies which
motivated this prescription are very small in the submicron
separation region where the Casimir force can be measured
accurately, something like one or two percent. It has been
pointed out that perhaps the observed small discrepancies are
due to small experimental errors that have escaped detec-
tion, such as small errors in the determination of the bodies
separation or in the electrostatic calibration, the presence of
patches on the surfaces, roughness, or incomplete and/or in-
accurate optical data. There is widespread opinion that before
abandoning the guidance of principles as fundamental as the
fluctuation-dissipation theorem, one should be sure that there
is a crisis.

More puzzles connected with the influence of free charge
carriers on the Casimir force have emerged from recent exper-
iments [32–34] with semiconducting plates. Investigations of
the Casimir effect with semiconductors are of special interest
in view of the unique role played by these materials in modern
technology, where they represent the reference materials for
the fabrication of opto-, micro-, and nanomechanical devices.
The process of miniaturization of these machines has now
reached the point where the Casimir interaction between their
movable constituent parts is often comparable with electro-
static forces. In such circumstances, the Casimir force can
either appear as a nuisance capable of perturbing the correct
operation of the machine, possibly determining stiction and
adhesion of its parts [35], or rather as a useful resource that
can be harnessed to operate the device in new ways [36].
This explains why the study of the Casimir effect between
semiconducting bodies has been pursued intensely in recent
years.

Apart from technology, the unique properties of semi-
conductors make them a very interesting tool to investigate
aspects of Casimir physics relating to relaxation phenomena
in conductors. As it is well known [37], intrinsic semicon-
ductors are insulators at zero temperature, and even at room
temperature their resistivity is very high due to the low density
of thermally excited free charge carriers. The conductivity
of semiconductors can, however, be greatly increased by
doping, and it has been known for a long time [38] that for
concentrations of dopants higher than a critical density ncr

(which depends on both the semiconductor and the dopant),
doped semiconductors undergo a Mott-Anderson insulator-
metal transition. The possibility of altering, by doping, the
conductivity of semiconductors by several orders of magni-
tudes prompted some researchers to investigate whether the
Casimir force can be modified by changing the carrier density
of a semiconductor plate. That this is indeed possible was
demonstrated in [32], where the Casimir forces between a
gold-coated sphere and two P-doped Si plates of different
carrier densities were measured and compared. The carrier
densities of the two Si plates, na = 1.2 × 1016 and nb =
3.2 × 1020 cm−3, were chosen to be respectively lower and
larger than the Si critical density ncr = 3.84 × 1018 cm−3. In
accordance with Lifshitz theory, the Casimir force was found
to have a larger magnitude for the plate of lower resistivity.
More precisely, the measured force for the plate of higher
resistivity is in agreement with the value obtained by plugging
the tabulated optical data [39] of intrinsic Si into the Lifshitz
formula, while the larger force observed for the plate of
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lower resistivity can be reproduced by the Lifshitz formula
by augmenting the permittivity of intrinsic Si by a Drude
contribution accounting for the density of free carriers. A
successive, more precise experiment [33] with a B-doped Si
plate having a carrier density n ≈ 3 × 1019 cm−3 allowed one
to establish that the measured Casimir force, while consistent
with inclusion of the contribution of free carriers in the electric
permittivity of the plate, is in fact inconsistent with neglect of
such a contribution. In another experiment [34], it was demon-
strated that the Casimir force between a gold-coated sphere
and a Si membrane can be modified by laser illumination.
The observed change in the Casimir force results from the
large increase in the carrier density of the Si membrane caused
by laser illumination, from its room-temperature equilibrium
value ñ = 5 × 1014 cm−3 to a value larger than 1019 cm−3 in
the presence of light. The analysis of the data shows that the
observed change in the Casimir force is consistent with the
theoretical prediction if and only if the contribution of free
carriers is included in the Lifshitz formula when computing
the force in the presence of light, and fully excluded from it
when computing the force in the absence of light.

A very interesting question that can be asked about
the Casimir effect in semiconductors is whether the metal-
insulator transition has any influence on the Casimir force
at room temperature. The theoretical answer to this question
crucially depends on the prescription that is used to describe
the influence of free carriers in doped semiconductors in
the Lifshitz formula. According to the standard prescription
based on the fluctuation-dissipation theorem, no effect is to
be expected since the optical properties of semiconductors
at room temperature do not change appreciably across the
transition. A different theoretical approach leads, however,
to the bold and surprising prediction that the Casimir force
should display a discontinuous change across the transition.
Let us see how this comes about.

To assess whether the contribution of the free carriers
should be included or excluded from the determination of the
Casimir force, recourse can again be made to the criterion
of consistency with the Nernst heat theorem. One then finds
[40–43] that in materials that are insulators at zero temper-
ature, the theorem is violated if the temperature-dependent
contribution of thermally excited carriers is included in the
permittivity. These findings led the authors of [44] to the fol-
lowing prescription for semiconductors: free charge carriers
of doped semiconductors do contribute to the Casimir force
if and only if the semiconductor is in the metallic phase, i.e.,
for charge concentrations larger than the critical density ncr

for the insulator-metal transition. Instead, the contribution of
charge carriers has to be neglected when the semiconductor is
in the insulator state, i.e., for densities n smaller than ncr. So,
similarly to metals, here we have another instance of a pre-
scription for the low-frequency response of a semiconductor,
which is in sharp contrast with the observed response of these
materials to real external electromagnetic fields. We point out
that there is no consensus on the thermodynamic argument
that led the authors of [44] to formulate this prescription. The
claimed violation of Nernst heat theorem by insulators with
dc conductivity included was, in fact, proven on the basis
of the standard formulation of Lifshitz theory, in which the
material is characterized by a local response function. The

validity of this approach for conductors with a small density
of carriers has been criticized by other investigators [45–47]
on the basis of the observation that the response function
of poor conductors at low frequency is nonlocal because of
incomplete screening of electric fields (Debye screening). It
has been shown [48,49], however, that the nonlocal approach
of [45] leads to predictions for the Casimir force that are in
disagreement with the precise measurements of the experi-
ment [34].

A striking implication of the above prescription is that
the Casimir force among semiconducting test bodies should
display a discontinuous change, as the carriers’ density of the
semiconductor traverses the critical value ncr. What is striking
here is that the discontinuous change in the Casimir force
occurs without a detectable change in the optical properties
of the semiconductor. The authors of [44] observe that the
possibility of having a change, and in fact a very large
change, in the Casimir force in the absence of a detectable
change of the optical properties of the plate has been indeed
demonstrated by an experiment with an indium tin oxide
(ITO) film [50,51]. In this experiment, it was shown that the
Casimir force between an Au-coated sphere and an ITO film
deposited on a quartz substrate can be decreased up to 35%
by UV treatment of the ITO film. Ellipsometry measurements
of the imaginary part of the permittivity of the untreated and
UV-treated ITO film showed no significant differences, which
led the authors to conjecture that the observed change in the
Casimir force was determined by a phase transition of the ITO
film from a metallic to an insulator state, caused by the UV
treatment. As a final remark about the prescription proposed
in [44], we would like to point out that the authors did not
explicitly address the question of whether, in the metallic
phase, the carriers’ contribution to the Casimir force should be
described by the lossy Drude model or rather by the lossless
plasma model. Analogy with ordinary metals suggests that the
plasma model provides the correct description. We note that
the precision of the experiments with semiconductors quoted
earlier is not sufficient to discriminate the Drude model from
the plasma model, and so the question remains open.

The above considerations motivated us to see if it is pos-
sible to observe experimentally the variation of the Casimir
force across the metal-insulator transition predicted in [44].
Achieving this goal by measuring the absolute Casimir force
with an ordinary apparatus is very difficult because the effect
predicted by the theory of [44] is small (a few percent) in
the region of submicron separations where the force can be
measured precisely. In this paper, we demonstrate that an
isoelectronic differential setup may provide the answer (see
Fig. 1). The proposed setup would also allow one to establish
whether the Drude or plasma prescriptions provides the cor-
rect description of the influence of the charge carriers on the
Casimir force in the conducting state of the semiconductor.

Isoelectronic differential Casimir setups were proposed
by us a few years ago [52–54] to help resolve the Drude-
plasma conundrum with ohmic conductors, whether nonmag-
netic or magnetic. It is well known that differential force
measurements offer great advantages compared to absolute
force measurements since they have a much higher sen-
sitivity. Sensitivities of one or two fN in difference-force
measurements which are a thousand times larger than the
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FIG. 1. Isoelectronic differential setup: an Au-coated sphere can
be moved in a plane parallel to a microfabricated patterned Si plate,
consisting of two differently doped regions. The measured quantity is
the differential Casimir force between the sphere and the two regions
of the Si plate. The isoelectronic configuration is realized by covering
the plate with a uniform conductive Si overlayer of thickness d = 50
nm. To prevent carrier diffusion from the overlayer to the undoped
left sector of the plate, a thin SiO2 interlayer of thickness D = 10 nm
is interposed between the overlayer and the bottom Si sectors.

typical pN sensitivity of modern absolute-force measurement
apparatus have already been reported in the literature [55,56].
Another advantage results from the fact that the differential
measurement is performed by executing a small lateral dis-
placement (a few tens of microns) of the sensing apparatus
in a plane parallel to a structured plate (or vice versa, as in
the experiment [55]). This procedure leads to cancellation of
uncertainties in the vertical separation among the surfaces,
which represent a delicate problem in absolute Casimir mea-
surements. A differential setup inspired by these principles
was indeed proposed in [56] to observe the difference among
the Casimir forces between an Au-coated sphere and the two
sectors of a structured Si surface, characterized by different
carrier densities. The nice configuration of [56] goes in the
right direction, but in our opinion it still presents a potential
drawback since the exposed surfaces of the two Si sectors may
have different potential patches as a result of their different
dopings. If this indeed happens, a spurious differential force of
electrostatic origin among the two sectors of the plate arises,
which could be very harmful in principle. The resolution of
this problem brings us to the second ingredient of our setup,
i.e., the isoelectronic scheme, which consists in covering
the structured plate used for the differential measurement
with a thin homogeneous conductive layer. The overlayer
provides an electrostatic screen, which neutralizes the effect
of possible inhomogeneities on the surface of the structured
plate. Eventual stray electrostatic forces that may be caused
by patches on the exposed surface of the overlayer are uni-
form with respect to the position of the sensing apparatus
over the plate, and therefore they automatically cancel out
from the differential force (up to small statistical fluctuations
[57]). By the same token, the differential isoelectronic scheme
ensures, of course, cancellation of surface-roughness effects
[52–54]. Isoelectronic setups were pioneered by the Purdue

group in Casimir-less experiments searching for Yukawa-
type corrections to Newtonian gravity [58,59]. The power
of differential isoelectronic setups in Casimir experiments
has been demonstrated by a recent experiment [55], which
measured the force difference between an Au- or Ni-coated
sphere and alternating Ni-Au sectors of a microfabricated
rotating disk, covered by a thin Au overlayer. In this ex-
periment, the isoelectronic configuration led to a 1000-fold
amplification of the difference among the Drude and plasma
prescriptions for magnetic materials [24,25], which allowed
for an unambiguous discrimination among them. In particular,
the Drude model with inclusion of the magnetic properties
of Ni was unequivocally ruled out, while the plasma model
with inclusion of the Ni magnetic properties was found to
be in good agreement with the data. The experiment also
showed that neither the Drude nor the plasma model with
exclusion of the Ni magnetic properties could account for the
observations. Very recently, we also proposed an isoelectronic
setup to probe the influence on the Casimir force of relaxation
phenomena in metals and in doped semiconductors in the
dielectric state [60].

The plan of the paper is as follows: in Sec. II, we describe
our differential apparatus and present the general formalism
for the computation of the differential Casimir force. In
Sec. III, we discuss alternative prescriptions that have been
proposed in the literature to deal with the influence of free
charge carriers on the Casimir force between conducting and
semiconducting test bodies. In Sec. IV, we present our nu-
merical computations of the differential force in our apparatus
and discuss the impact of several possible systematic errors.
Finally, in Sec. V, we present our conclusions.

II. ISOELECTRONIC SETUP AND GENERAL
FORMALISM

We consider the configuration of an Au-coated sphere with
radius R = 150 μm in vacuum, at a (minimum) distance a
from a microfabricated patterned plate at room temperature
T = 300 K. The thickness of the Au coating of the sphere
is supposed to be larger than 100 nm, which allows one to
consider it as if it were made entirely of Au in our com-
putations of the Casimir force. The key ingredient of our
setup is the microfabricated plate. Its structure is illustrated
in Fig. 1: its right half is made of P-doped Si, while its left
half is made of high-resistivity Si. The thickness of both
sectors is supposed to be large enough to consider both as
infinitely thick in the computation of the Casimir force. In
order to realize an isoelectronic configuration, both sectors
are covered with a conductive overlayer. As it was explained
in Sec. I, the purpose of the overlayer is to screen out poten-
tially detrimental electrostatic forces caused by nonuniform
potential patches on the surfaces of the differently doped Si
sectors of the plate. At the same time, the overlayer should
be semitransparent in order for the Au sphere to be able
to “see” the underlying Si sectors of the plate. These two
demands can be met by choosing for the overlayer a material
whose conductivity is large enough to ensure screening of
electrostatic fields, but not so large as to make it opaque. The
latter constraint leads one to exclude Au since its small plasma
length λp renders an Au overlayer exceedingly opaque for our
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purposes. These considerations led us to consider P-doped Si
as a possible material for the overlayer. We recall that P-doped
conductive Si plates have already been successfully utilized in
precision Casimir experiments [32]. In our setup, we consider
an overlayer with a thickness d = 50 nm. For simplicity, we
have assumed in our computations that the carrier density n
of the overlayer is the same as that of the right sector, but
this assumption is by no means necessary. To prevent carrier
diffusion from the overlayer to the undoped left sector of the
plate, a thin insulating SiO2 layer of thickness D = 10 nm is
interposed between the overlayer and the bottom Si sectors.
The light-colored sector (marked by the letter A) separating
the left and right sectors of the plate again has the purpose
of preventing carrier diffusion among the two sectors. Its
material needs not be specified for our purposes. We imagine
that the sphere can be moved in a plane parallel to the surface
of the patterned plate, from a position Pins (represented by the
filled yellow disk in Fig. 1) to the position Pdop (represented by

the dashed empty disk in Fig. 1). We shall denote as Fins(a, T )
and Fdop(a, T ) the respective Casimir forces on the sphere.
It is assumed that the vertical projections of the points Pins

and Pdop lie deep in the left and right sectors of the plate,
respectively [54]. This ensures that in the computation of the
forces Fins(a, T ) and Fdop(a, T ), one can neglect the sharp
boundary separating the left and the right halves of the plate,
and treat both sectors as infinitely wide in all directions in
the horizontal plane. The quantity of interest to us is the
differential force Fdiff (a, T ):

Fdiff (a, T ) = Fins(a, T ) − Fdop(a, T ). (1)

For separations a � R, the force can be estimated using the
proximity force approximation (PFA) [4]. It has been recently
shown that the error implied by PFA in the sphere-plate force
is smaller than a/R [61–65]. For our configuration, the PFA
gives

Fdiff (a, T ) = kBT R
∞∑

l=0

′ ∫ ∞

0
k⊥dk⊥

∑
α

ln
1 − e−2aql r (0,1)

α (iξl , k⊥)R(0,2,3,4)
α (iξl , k⊥)

1 − e−2aql r (0,1)
α (iξl , k⊥)R(0,2,3,2)

α (iξl , k⊥)
, (2)

where kB is the Boltzmann constant, ξl = 2π lkBT/h̄ are the
(imaginary) Matsubara frequencies, k⊥ is the modulus of the
in-plane wave vector, ql =

√
ξ 2

l /c2 + k2
⊥ , and the prime in

the summation sign indicates that the l = 0 term is taken
with a weight 1/2. The summation over α is taken over the
two independent polarizations of the electromagnetic field,
i.e., the transverse magnetic (TM) and the transverse electric
(TE) modes. To explain the meanings of the reflection coef-
ficients r (0,1)

α (iξl , k⊥), R(0,2,3,2)
α (iξl , k⊥), and R(0,2,3,4)

α (iξl , k⊥)
that occur in the above equation, we introduce the following
notations. The four materials that constitute our setup, i.e.,
Au, P-doped Si, SiO2, and high-resistivity Si, shall be dis-
tinguished by the labels p = 1, 2, 3, 4, respectively, and their
permittivities shall accordingly be denoted as ε (p)(iξl ) ≡ ε

(p)
l .

The label p = 0 denotes the vacuum and we set ε
(0)
l ≡ 1.

Thus, r (p,q)
α (iξl , k⊥) denote the Fresnel reflection coefficients

for a planar interface between media p and q:

r (p,q)
TE (iξl , k⊥) = k(p)

l − k(q)
l

k(p)
l + k(q)

l

, (3)

r (p,q)
TM (iξl , k⊥) = ε

(q)
l k(p)

l − ε
(p)
l k(q)

l

ε
(q)
l k(p)

l + ε
(p)
l k(q)

l

, (4)

where k(p)
l =

√
ε

(p)
l ξ 2

l /c2 + k2
⊥ . The symbols R(0,p,q,r)

α (iξl , k⊥)
instead denote the reflection coefficients of a plane-parallel
three-layer slab consisting of a thick slab of material r covered
by two layers made of the materials p and q, of respective
thicknesses d and D, where p is the material of the outer layer.
The expression of R(0,p,q,r)

α (iξl , k⊥) is

R(0pqr)
α (iξl , k⊥) = r (0p)

α + e−2 dk(p)
l r (pqr)

α

1 + e−2 d k(p)
l r (0p)

α r (pqr)
α

, (5)

where

r (pqr)
α = r (pq)

α + e−2 D k(q)
l r (qr)

α

1 + e−2 D k(q)
l r (pq)

α r (qr)
α

. (6)

III. THREE PRESCRIPTIONS FOR THE CASIMIR FORCE

The equations presented in the previous section can be used
to compute the differential force, after a specific prescription
for the values of the permittivities ε

(p)
l is made. As it was ex-

plained in Sec. I, there exist in the literature three distinct pre-
scriptions for computing the Casimir force between test bod-
ies made of metals and/or conductive-doped semiconductors,
which for brevity we shall refer to as Drude model, plasma
prescription, and insulator-state prescription (ISP), respec-
tively. Below, we shall discuss what they imply for our setup.

A. The Drude model

The Drude model represents what we may think of as the
“orthodox” formulation of the Lifshitz theory. This formula-
tion, which is based on the fluctuation-dissipation theorem,
instructs us to use for ε

(p)
l the values that correspond to the an-

alytic continuation to the imaginary axis of the “true” complex
permittivities ε (p)(ω) of the materials, as can be measured in
an optical measurement. As it is well known [4], knowledge
of the imaginary part Im[ε (p)(ω)] of the permittivity allows
one to determine ε

(p)
l via Kramers-Kronig relations or their

generalizations [17,18]. Ideally, in a concrete experiment,
one would measure the optical data of the test bodies that
constitute the apparatus. In this work, we shall rely on the
tabulated optical data for Au, Si, and SiO2 [39].

In [39], optical data for Au are listed for frequencies
larger than 0.125 eV/h̄. This is not sufficient to compute
ε(iξl ) for small values of l (since ξ1 = 0.16 eV/h̄). Following
the standard procedure [4], the data are extrapolated to low
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frequencies by a Drude-like model of the form

εAu(ω) = − ω2
1

ω(ω + iγ1)
+ εcore

Au (ω), (7)

where εcore
Au (ω) accounts for the contribution of bound (core)

electrons, and ω1 and γ1 are the plasma and the relax-
ation frequencies, respectively. We set ω1 = 9 eV/h̄ and γ1 =
0.035 eV/h̄ [4]. The Drude model implies

ε
(1)
l = εAu(iξl ) = ω2

1

ξl (ξl + γ1)
+ εcore

Au (iξl ). (8)

The Si data of [39] refer to intrinsic (highly resistive) Si,
and we shall denote the corresponding permittivity by εint

Si (ω).
For the highly resistive Si constituting the left sector of our
patterned plate, we thus set, once and for all,

ε
(4)
l = εint

Si (iξl ). (9)

Now we consider P-doped Si. It is known [39] that the
permittivity of conductive Si is well described by the formula

εcond
Si (ω) = − ω2

2

ω(ω + iγ2)
+ εint

Si (ω), (10)

where the Drude term accounts for the contribution of free
carriers. The value of ω2 is related to the doping concentration
n by the formula

ω2 = e

√
4πn

m∗ , (11)

where e is the electron charge and m∗ is the effective electron
mass (in P-doped Si, the charge carriers are electrons). The
value of the relaxation frequency γ2 is related, via Eq. (10), to
the sample conductivity σ2:

γ2 = ω2
2

4πσ2
. (12)

We shall fix γ2 = 5.5 × 1013 rad/sec, which represents the
value of the relaxation frequency for a concentration n =
3.5 × 1018 cm−3 (close to the critical value for P-doped Si,
ncr = 3.84 × 1018 cm−3). The chosen value of γ2 corresponds
to the conductivity σ2 ≈ 0.64 × 1014 s−1 [66]. We remark that
the precise value of γ2 is not important for our purposes
because the force Fdiff is only weakly dependent on γ2. The
Drude model implies that for the conductive Si constituting
both the overlayer and the right sector of our plate, we should
set

ε
(2)
l = εcond

Si (iξl ) = ω2
2

ξl (ξl + γ2)
+ εint

Si (iξl ). (13)

Finally, we consider SiO2. This is an insulator. In our compu-
tations, we fix, once and for all,

ε
(3)
l = εSiO2 (iξl ), (14)

where for εSiO2 (ω) we take the data in [39].
It is interesting to note that within the Drude model,

the reflection coefficients r (0,1)
α (iξl , k⊥), R(0,2,3,2)

α (iξl , k⊥), and
R(0,2,3,4)

α (iξl , k⊥) attain a universal value for vanishing fre-
quency, i.e., for the Matsubara index l = 0 that corresponds

to the so-called classical term of the Lifshitz formula. It is a
simple matter to check that

r (0,1)
TM (0, k⊥) = R(0,2,3,2)

TM (0, k⊥) = R(0,2,3,4)
TM (0, k⊥) = 1, (15)

r (0,1)
TE (0, k⊥) = R(0,2,3,2)

TE (0, k⊥) = R(0,2,3,4)
TE (0, k⊥) = 0. (16)

According to Eq. (3), this implies that the classical l = 0 term
contributes nothing to Fdiff within the Drude model.

B. The plasma prescription

As we discussed in Sec. I, thermodynamic considerations
based on the Nernst theorem together with the results of
several precise experiments motivated some investigators to
propose a new prescription [4] for computing the Casimir
force between metallic and/or semiconducting bodies. This
alternative prescription, that we shall refer to as the plasma
prescription, posits the following rule [4,5]:

Plasma prescription. If a conductor is in the conducting
state (i.e., is a conductor at T = 0), the contribution of its free
carriers must be included in the computation of the Casimir
force, but relaxation phenomena must be neglected. In other
words, its free carriers should be modeled at low frequency as
a dissipationless plasma.

The implications of the above prescription for the permit-
tivities ε

(p)
l of the materials that constitute our setup are the

following. The values ε
(1)
l of the Au permittivity should be

computed using the following modified equation, instead of
Eq. (8):

ε
(1)
l

∣∣
pl = ω2

1

ξ 2
l

+ εcore
1 (iξl ). (17)

Now we turn to conductive Si. As we explained in
Sec. I, for carrier concentration n > ncr, a semiconductor
is in the conducting state (at T = 0). Thus, the plasma pre-
scription posits that for n > ncr, the permittivity ε

(2)
l of the

conductive Si constituting the overlayer and the right sector
of our patterned plate should be computed using the formula

ε
(2)
l

∣∣
pl = ω2

2

ξ 2
l

+ εint
Si (iξl ), for n > ncr. (18)

Of course, the permittivities ε
(4)
l of the highly resistive Si

constituting the left sector of the plate, as well as the per-
mittivity ε

(3)
l of the SiO2 layer, are still computed according

to Eqs. (9) and (14), respectively. It is interesting to note
that the plasma-model reflection coefficients are no more
universal in the limit of vanishing frequency. More pre-
cisely, while for TM polarization the three zero-frequency
reflection coefficients r (0,1)

TM (0, k⊥), R(0,2,3,2)
TM (0, k⊥), and

R(0,2,3,4)
TM (0, k⊥) remain equal to one, as in the Drude model

[see Eq. (15)], the TE reflection coefficients have the follow-
ing nonuniversal values:

r (0,1)
TE (0, k⊥)|pl = k⊥ − s1

k⊥ + s1
, (19)

R(0,2,3,4)
TE (0, k⊥)|pl =

(
k2
⊥ − s2

2

)
(1 − e−2ds2 )

(k⊥ + s2)2 − e−2ds2 (k⊥ − s2)2
, (20)
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R(0,2,3,2)
TE (0, k⊥)|pl = (k⊥ − s2)

(k⊥ + s2)

e2ds2
[
k2
⊥ + s2

2 + 2k⊥s2 coth(2Dk⊥)
] − (k⊥ + s2)2

e2ds2
[
k2
⊥ + s2

2 + 2k⊥s2 coth(2Dk⊥)
] − (k⊥ − s2)2

, (21)

where we set sp =
√

ω2
p/c2 + k2

⊥ , p = 1, 2. Notice that since
R(0,2,3,4)

TE (0, k⊥)|pl 
= R(0,2,3,2)
TE (0, k⊥), the classical l = 0 Mat-

subara term for TE polarization does contribute to the dif-
ferential force, within the plasma prescription. This fact,
which marks an important difference between the plasma and
the Drude prescriptions, constitutes the main reason for the
different magnitudes predicted by the two prescriptions for the
differential force Fdiff .

C. The insulator-state prescription

As we explained in Sec. I, thermodynamic considerations
suggest to neglect the contribution to the Casimir force of
thermally excited carriers in a conducting test body that is an
insulator at zero temperature. We thus formulate the following
insulator-state prescription (ISP) [4,5]:

Insulator-state prescription (ISP). If a conductor is in the
insulator state (i.e., is an insulator at T = 0), free charge
carriers should be neglected in the computation of the Casimir
force.

This prescription applies to P-doped Si if the carrier con-
centration n is less than the critical density ncr for the Mott-
Anderson insulator-metal transition. Thus, according to this
prescription, the contribution of free charges in the permit-
tivity of conductive Si, represented by the Drude term in
Eq. (10), has to be omitted for n < ncr, leaving us with

ε
(2)
l

∣∣
ISP = εint

Si (iξl ), for n < ncr. (22)

This prescription implies that for n < ncr, there is no differ-
ence among the permittivities εl of the highly resistive Si left
sector of the plate and of its right conductive Si sector,

ε
(2)
l

∣∣
ISP = ε

(4)
l , for n < ncr. (23)

This relation implies at once that within the insulator-state
prescription, the force difference Fdiff in our setup vanishes
for n < ncr,

Fdiff |ISP = 0, for n < ncr. (24)

We thus see that the insulator-state prescription leads to a
sharp prediction: for n < ncr, the measured force difference
Fdiff is zero.

IV. NUMERICAL COMPUTATIONS

In this section, we present the results of our numerical
computations of the force Fdiff (a) for the setup of Fig. 1. We
have considered three different values for the carrier density
of the conductive P-doped Si, i.e., n = 5 ncr, n = 2 ncr, and
n = 0.5 ncr, where ncr = 3.84 × 1018 cm−3 is, we recall, the
critical density for the Mott-Anderson insulator-metal transi-
tion. We note that for the above values of the carrier density,
the Debye radius RD =

√
εkBT/4πe2n, where ε = εint

Si (0) is
the bare dielectric constant (i.e., not including the carriers
contribution), is always much smaller than the separations
we shall consider. For example, for the smallest considered

density n = 0.5 ncr, the Debye radius is RD = 3 nm, while the
minimum separation that we consider is a = 100 nm. Since,
in all cases, RD � a, the influence of spatial dispersion can be
safely neglected when considering the contribution of charge
carriers to the material response of Si [45], and the local form
of Lifshitz theory based on the standard Fresnel reflection
coefficients given by Eq. (4) is fully adequate.

In Fig. 2, we show a plot of the room-temperature Casimir
force between an Au sphere and a thick slab of P-doped
conductive Si, with a carrier concentration n = 0.5 nc. The
solid blue, solid red, and dashed green lines in the top panel
correspond to the plasma, Drude, and ISP prescription, respec-
tively. The middle panel displays the difference F |excl − F |incl

among the forces which result by including or excluding the
contribution of free carriers. The force F |incl is computed
using either the plasma prescription (solid line) or the Drude
prescription (dashed line). The bottom panel shows the mag-
nitude of F |excl − F |incl as a percent of the absolute force. The
figure shows that the differences among the forces predicted
by the three prescriptions differ by less than 2 pN in the
separation region from 100 to 200 nm, representing a change
of less than 2.5 percent in the magnitude of the force. It is clear
that discrimination among the three prescriptions based on
an absolute-force measurement is extremely difficult. Below
we show that the differential setup proposed in this work
engenders a large amplification of the difference among the
three prescriptions.

Before we turn to the computation of the differential force,
it is useful to make the following observation. According to
the Lifshitz formula, the Casimir force Fdiff (a) is expressed by
a sum over the Matsubara frequencies, ξl = 2π lkBT/h̄. The
number of Matsubara frequencies that contribute significantly
to the (absolute) Casimir force between two dielectric bodies
at distance a in vacuum can be estimated to be around 10
ωc/ξ1, where ωc = c/a is the characteristic frequency of the
system. For the minimum separation a = 100 nm that we
are going to consider, this corresponds to approximately 120
terms. It is easy to see that far less Matsubara frequencies
contribute significantly to the force difference Fdiff in our
setup. This can be understood by looking at Fig. 3, which
shows plots of the permittivities along the imaginary axis of
intrinsic Si (the red curve) and of conductive P-doped Si for
two of the three values of the concentration that we consid-
ered, i.e., for n = 5 ncr (black solid line) and for n = 0.5 ncr

(blue solid line). The dashed blue and black curves correspond
to neglecting, in Eq. (10), the relaxation frequency γ2 in the
Drude term, and so they represent the permittivities that are
used to compute the force within the plasma prescription. The
dot-dashed vertical left and right lines shown in the figure
correspond, respectively, to the first and to the fifth Matsubara
mode, i.e., to ξ1 and ξ5. The figure clearly shows that the five
permittivities are practically indistinguishable for frequencies
ξ > ξ5, and this implies that only the first five or so Matsubara
terms contribute significantly to the force difference Fdiff .
This is very good news for us because the effect we are
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FIG. 2. Plots of the room-temperature Casimir force (in pN)
between a gold-coated sphere of radius R = 150 μm and a thick
slab of conductive P-doped Si, with carrier concentration n = 0.5 ncr .
The solid blue, solid red (light gray), and dashed green lines in the
top panel correspond to the plasma, Drude, and ISP prescription,
respectively. The middle panel displays the difference F |excl − F |incl

among the forces, which result by including or excluding the contri-
bution of free carriers. The force F |incl is computed using either the
plasma prescription (solid line) or the Drude model (dashed line).
The bottom panel shows the magnitude of F |excl − F |incl as a percent
of the absolute force.

after has a low-frequency character, and thus the fact that the
differential measurement is insensitive to the uninteresting
high-frequency region of the spectrum represents a big plus
for the proposed setup. This feature of the apparatus makes
it unnecessary to have detailed information on the optical
properties of the materials, whose incomplete or inaccurate
knowledge represents a source of theoretical uncertainty in
absolute-force measurements.

We computed the force Fdiff (a) for room temperature (T =
300 K) in the separation range 100 nm < a < 2 μm. Plots of

1 5
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FIG. 3. Plots of the imaginary-frequency permittivity of Si. The
three solid lines, from bottom to top, correspond, respectively, to
intrinsic Si (red line) and conductive P-doped Si, with concentrations
n = 0.5 ncr (blue line) and n = 5 ncr (black line), where ncr is the
critical carrier density for the Mott-Anderson insulator-metal tran-
sition. The dashed lines correspond to neglect of dissipation in the
contribution of free carriers (plasma-model prescription).

the force Fdiff (in fN) versus separation are shown in Fig. 4 for
n = 5 ncr, in Fig. 5 for n = 2 ncr, and in Fig. 6 for n = 0.5 ncr.
In all panels of these three figures, the lower red curves and
the upper blue curves correspond to the Drude and plasma
prescriptions, respectively. We remark that for n = 0.5 ncr, the
ISP prescription predicts a null force, Fdiff |ISP = 0. These fig-
ures show that the three prescriptions lead to widely different
predictions for the differential force Fdiff , which should be
easily distinguishable in a wide range of separations with an
apparatus having a fN sensitivity.

We have checked that the predicted differential force is
robust against systematic errors arising from uncertainties
in both geometric and material-dependent parameters that
characterize our setup. This is demonstrated by Figs. 7 and
8, which show the bands of variation of the differential force,
corresponding to a ten percent uncertainty in the thickness d
of the conductive Si overlayer (upper panels), in the thickness
of the SiO2 layer (middle panels), and in the carrier density n
(lower panels). In all panels, the lower red bands and the upper
blue bands correspond, respectively, to the Drude and plasma
prescriptions. Notice that in Fig. 8, no band of variation is
displayed for the ISP since this prescription predicts a null
differential force Fdiff = 0, irrespective of the thickness d and
D, and on the carrier density n (provided that n remains less
than ncr). The displayed graphs show that the parameter that
needs to be better controlled is the concentration of dopant n.

Finally, in Fig. 9, we show the band of variation of
the differential force corresponding to an uncertainty in the
plasma frequency ω1 of the gold sphere. The sample variation
of the Au plasma frequency has been much debated in the
literature (most Casimir experiments use Au test bodies),
for it has been shown that an inaccurate determination of
this parameter may by itself lead to a large theoretical error,
as large as five percent, on the magnitude of the Casimir
force [16]. In order to reduce this source error, modified
dispersion relations have been devised [17,18] that suppress

052506-8



APPARATUS TO PROBE THE INFLUENCE OF THE … PHYSICAL REVIEW A 99, 052506 (2019)

d � 50 nm
D � 10 nm
n � 5 ncr

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

100
200
300
400
500
600
700

a ( m)

F
di
ff(
fN
)

0.40 0.45 0.50 0.55 0.60 0.65 0.70
0

20

40

60

80

100

120

a ( m)

F
di
ff(
fN
)

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

40

50

60

a ( m)

F
di
ff(
fN
)

FIG. 4. Plots of the room temperature (T = 300 K) force Fdiff (in
fN) vs separation a, for carrier density n = 5 ncr . The three panels
show Fdiff in different separation ranges. In all panels, the lower red
curves correspond to the Drude model, while the upper blue curves
correspond to the plasma prescription.

the influence of low frequencies on the determination of
the permittivity for imaginary frequencies. It is fortunate
that this problem is irrelevant to the present scheme, for
the differential force is weakly dependent on the value of
ω1. The narrow bands shown in Fig. 9 (in all panels, the
lower red bands and the upper blue bands correspond to the
Drude and plasma prescriptions, respectively) correspond to
the wide interval, 6.8 eV/h̄ < ω1 < 9 eV/h̄, which includes
all sample-dependent values of the plasma frequency that have
been reported in the literature [16]. No band is shown in
Fig. 9 for n = 0.5 ncr because the differential force is zero
within the ISP, independently of the properties of the Au
sphere.

d � 50 nm
D � 10 nm
n � 2 ncr
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FIG. 5. Plots of the room temperature (T = 300 K) force Fdiff (in
fN) vs separation a, for carrier density n = 2 ncr . The three panels
show Fdiff in different separation ranges. In all panels, the lower red
curves correspond to the Drude model, while the upper blue curves
correspond to the plasma prescription.

V. CONCLUSIONS

Over the last 20 years, intense experimental and theoretical
investigations of the Casimir effect with conducting test bod-
ies raised puzzling questions about the influence of free charge
carriers on the strength of the Casimir force. Theoretical
predictions based on the Lifshitz theory of dispersion forces
between dielectric test bodies appear to be in disagreement
with the most precise experiments [19–25]. It appears that in
order to bring experimental data into agreement with Lifshitz
theory, one has to abandon the natural prescription based on
the fluctuation-dissipation theorem of statistical physics, to
account for the effect of conductance on the Casimir force.
Agreement with data can be achieved by neglecting the effect
of relaxation on the free carriers in the Lifshitz formula, which
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FIG. 6. Plots of the room temperature (T = 300 K) force Fdiff (in
fN) vs separation a, for carrier density n = 0.5 ncr. The three panels
show Fdiff in different separation ranges. In all panels, the lower
red curves correspond to the Drude model, while the upper blue
curves correspond to the plasma prescription. The insulator-state
prescription predicts a null force Fdiff = 0.

means that as far as the Casimir effect is concerned, free
charges in conducting test bodies behave as a dissipationless
plasma.

Semiconductors offer a unique opportunity to investigate
the influence of conduction on the Casimir effect [32–34]
since their conductivity can be modified by many orders of
magnitude by doping. It has been known for a long time
[38] that doped semiconductors undergo a Mott-Anderson
metal-insulator transition, when the concentration of dopant
atoms exceeds a critical density ncr. It is of great interest
to investigate whether the metal-insulator transition has any
bearing on the Casimir effect. The answer to this question
crucially depends on the prescription that is used to include
the effect of free carriers in doped semiconductors on the
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FIG. 7. Bands of variation of the differential force for n = 5 ncr ,
corresponding to a ten percent uncertainty in the thicknesses-d
conductive Si overlayer (upper panel), in the thickness of the SiO2

layer (middle panel), and in the carrier density n (lower panel). In all
panels, the lower red bands correspond to the Drude model, while the
upper blue bands correspond to the plasma prescription.

Casimir force. According to the standard prescription, based
on the fluctuation-dissipation theorem, no effect is to be ex-
pected since the optical properties of semiconductors at room
temperature do not change appreciably across the transition.
A different prescription, based on a thermodynamic argument
[44], suggests that free carriers contribute to the Casimir
force when the semiconductor is in the metallic state, i.e., for
doping levels higher than the critical one, while they should
be excluded for concentrations less than the critical one. This
prescription implies that for the Casimir force, a discontinu-
ous change occurs across the metal-insulator transition.

It is clearly of great interest to see if this bold predic-
tion can be tested experimentally. Observation of the effect
by conventional Casimir apparatus, based on absolute-force
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FIG. 8. Bands of variation of the differential force for n =
0.5 ncr , corresponding to a ten percent uncertainty in the thicknesses-
d conductive Si overlayer (upper panel), in the thickness of the SiO2

layer (middle panel), and in the carrier density n (lower panel). In
all panels, the lower red bands correspond to the Drude model, while
the upper blue bands correspond to the plasma prescription. No band
of variation is displayed for the insulator-state prescription since this
prescription predicts a null differential force Fdiff = 0, irrespective of
the thicknesses d and D, and of the carrier density n (provided that n
remains less than ncr).

measurements, is very hard because the effect is predicted to
be small, i.e., perhaps one or two percent in the submicron
separation range where Casimir experiments are most precise.

In this paper, we have described an isoelectronic differen-
tial apparatus that should allow for an easy observation of the
effect. The crucial ingredient of the setup is a microfabricated
patterned Si plate, whose left half is made of highly resistive
Si, while its right half is made of P-doped Si. A key feature
of the patterned plate is the presence of a P-doped thin Si
overlayer of uniform thickness that covers both halves of the
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FIG. 9. Bands of variation of the differential force corresponding
to values of the Au plasma frequency in the interval 6.8 eV/h̄ <

ω1 < 9 eV/h̄. In all panels, the lower red bands correspond to the
Drude model, while the upper blue bands correspond to the plasma
prescription. For the carrier concentration n = 0.5 ncr, no band of
variation is displayed for the insulator-state prescription since this
prescription predicts a null differential force Fdiff = 0, irrespective of
the optical properties of Au.

plate. The purpose of the overlayer is to screen out possible
inhomogeneities in the potential patches that may exist on
the surface of the left and right Si slabs, as a result of their
different doping levels. The proposed experiment consists in
a differential measurement of the force experienced by an
Au-coated sphere as it is moved from the undoped left half to
the doped right half of the Si plate. The differential character
of the measurement ensures automatic cancellation of several
effects that plague ordinary Casimir setups, such as errors in
the sphere-plate separation, roughness, and potential patches.
We have also checked that the apparatus is robust against
possible uncertainties in the parameters that characterize it,
such as the thickness of the overlayer, the concentration of
dopants, and errors in the optical properties of the materials. In
this work, we considered, for brevity, only the case of P-doped
Si. Doping the right section of the Si plate by other elements
such as sulfur [44] might lead to a larger differential force
and/or a better discrimination among the three theoretical
prescriptions for computing the Casimir force. We leave the
optimization of the setup for a future work.

In view of the fN sensitivity reached by the current differ-
ential Casimir apparatus [55,56], the numerical computations
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presented in this work show that the proposed scheme should
allow for a clear discrimination among alternative theories for
the Casimir effect in doped semiconductors. Observation of
the effects described in this paper would shed much light on
the puzzling and yet unresolved problem of the influence of
conductivity on the Casimir effect.
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