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Quantum-electrodynamic corrections to the 1s3d states of the helium atom
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We perform quantum-electrodynamic calculations of the ionization energy of the 1s3d states of the 4He atom,
including a complete evaluation of the mα6 correction. We find a large contribution from the nonradiative part
of this correction, which has not been accounted for in previous investigations. The additional contribution
shifts theoretical predictions for ionization energies by about 10σ . Despite this shift, we confirm the previously
reported systematic deviations between measured experimental results and theoretical predictions for transitions
involving 3D states. The reason for these deviations remains unknown.
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A steadily increasing accuracy of spectroscopic experi-
ments on the helium atom opens new possibilities for im-
proved determinations of fundamental physical constants,
tests of the standard model of fundamental interactions, and
a search for the new physics. The recent measurement of the
2 3P1–2 3P2 helium transition frequency with an accuracy of
25 Hz [1] demonstrated a potential for determining the fine-
structure constant α with a sub-parts-per-billion accuracy. The
main obstacle in achieving this goal is that the present theory
of the helium fine structure [2] is not yet developed enough.
Another prominent example is the recent measurement of the
2 3P–2 3S transition frequency with an accuracy of 1.4 kHz
[3]. This accuracy is sufficient for the determination of the nu-
clear charge radius with a precision below 0.1%, which is bet-
ter than what is expected from the muonic helium Lamb shift.
This determination also requires further developments of the
helium theory, the corresponding project being under way [4].

It has been previously pointed out [5] that experimental
results for helium transitions involving 3D states do not agree
well with theoretical predictions. The theoretical values of
energy levels of the D states were obtained by Drake and
co-workers [6–9] and have not been verified by independent
calculations. Moreover, their calculations did not fully ac-
count for the mα6 QED effects, in contrast to more complete
calculations available for the n = 1 and n = 2 states [5,10].
Motivated by the reported disagreements, in this work we
perform calculations of the ionization energies of the 1s3d
states of 4He. We extend the previous works [6–9] by com-
pleting the leading QED effects of order mα5 and performing
calculations of the next-order corrections of orders mα6 and
mα5 m/M.

I. NONRELATIVISTIC QED EXPANSION

Within the QED theory, the bound-state energies are de-
fined as the positions of the poles of the Fourier transform
of the equal-time n-particle propagator as a function of the
complex energy argument. To calculate the position of these
poles for light atoms, it is convenient to use the nonrelativistic

QED (NRQED), which is an effective quantum field theory
that gives the same predictions as the full QED in the region
of small momenta, i.e., those of the order of the characteristic
electron momentum in an atom.

The basic assumption of the NRQED is that the bound-
state energy E can be expanded in powers of the fine-structure
constant α,
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where m/M is the electron-to-nucleus mass ratio and the
expansion coefficients E (n) may contain finite powers of ln α.
The coefficients E (i)(m/M ) are further expanded in powers of
m/M:
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According to NRQED, the expansion coefficients in Eqs. (1)
and (2) can be expressed as expectation values of some
effective Hamiltonians with the nonrelativistic wave function.
The derivation of these effective Hamiltonians is the central
problem of the NRQED approach. While the leading-order
expansion terms are simple, formulas become increasingly
complicated for higher powers of α.

II. NONRELATIVISTIC ENERGY

The first term of the NRQED expansion of the bound-
state energy, E (2,0) ≡ E , is the eigenvalue of the Schrödinger-
Coulomb Hamiltonian in the infinite nuclear mass limit,

H0 ≡ H = p2
1

2
+ p2

2

2
− Z
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− Z

r2
+ 1

r
, (3)

where ri = |�ri | and �r = �r1 −�r2. The finite-nuclear-mass cor-
rections are induced by the nuclear kinetic energy operator
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(m/M ) δMH ,

δMH =
�P2

2
, (4)

where −�P is the nuclear momentum, and in the center-of-mass
frame �P = �p1 + �p2. In the literature, δMH is often separated
into two parts:

δMH = p2
1 + p2

2

2
+ �p1 · �p2. (5)

The first part can be absorbed in the nonrelativistic Hamil-
tonian by introducing the reduced mass, whereas the second
part is called the mass polarization operator. In the present
work, we prefer to express the recoil corrections in terms of
δMH , since it makes the resulting formulas simpler and more
transparent.

The first- and second-order recoil corrections to the non-
relativistic energy are given by

E (2,1) =〈δMH〉, (6)

E (2,2) =
〈
δMH

1

(E − H )′
δMH

〉
. (7)

It is also possible to account for the nonrelativistic recoil
effect nonperturbatively, by including (m/M ) δMH into the
nonrelativistic Hamiltonian. In the present work, we use the
nonperturbative approach. For the convenience of the pre-
sentation, we express the complete nonrelativistic energy as
E (2) = E (2,0) + E (2,1) + E (2,2+), where E (2,2+) contains cor-
rections of second and higher orders in m/M.

The spatial part of the nonrelativistic wave function of a D
state is represented in Cartesian coordinates as a second-rank
traceless and symmetric tensor φi j ,

φi j ( 1,3D) = (
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where (ri
a r j

b )(2) = 1
2 (ri

ar j
b + r j

ari
b − 2

3 δi j rk
ark

b ) and the upper
(lower) sign corresponds to the singlet (triplet) state, respec-
tively. The functions F and G are scalar functions of r1, r2, and
r. In our case they are chosen to be linear combinations of ex-
ponentials of the form e−α r1−β r2−γ r with different nonlinear
parameters α, β, and γ . The normalization is taken to be

〈φi j |φi j〉 = 1. (9)

Here and in what follows, we assume the implicit summation
over the repeated Cartesian indices. The matrix element of the
nonrelativistic Hamiltonian (or any other spin-independent
operator) between the states a and b is of the form

〈a|H |b〉 = 〈
φi j

a

∣∣H ∣∣φi j
b

〉
. (10)

The Hamiltonian is represented as a large square matrix,
whose eigenvalues are upper bounds of the exact
nonrelativistic energies. By increasing the size of the
basis, one determines the nonrelativistic energy with a
well-controlled uncertainty. The obtained nonrelativistic
wave functions are used for calculating relativistic and QED
corrections discussed in the next sections.

III. LEADING-ORDER RELATIVISTIC CORRECTION

The leading relativistic correction to the nonrelativistic
energy is of order mα4 and is given by the expectation value
of the Breit Hamiltonian, which is of the form
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The operators Qi include the dependence on the nuclear mass
M and the electron anomalous magnetic moment (amm) ae =
α/(2π ) + · · · . They are given by
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The upper index in H (4+) indicates that this Hamiltonian
includes operators of order mα4 and higher (due to the pres-
ence of ae and m/M). We also need the Hamiltonian that
contains only mα4 operators, which is obtained from the
above equations by setting ae → 0 and m/M → 0,

H (4) = QA + �QB · (�σ1 + �σ2)

2
+ �QC · (�σ1 − �σ2)

2
+ Qi j

D σ i
1 σ

j
2 ,

(16)

where we assume the short-hand notation Qi ≡ Qi(0, 0).
The relativistic corrections to the nonrelativistic energy are

given by

E (4,0) = 〈H (4)〉, (17)

E (4,1) = 2

〈
H (4) 1

(E − H )′
δMH

〉
+ 〈δMH (4)〉, (18)
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where δMH (4) is the M-dependent part of H (4+) (with ae →
0). The higher-order (in the mass ratio) terms can be neglected
for the D states.

In practical calculations of E (4,0) it is convenient to use
instead of QA its regularized form of QAreg, given by Eq. (46),
which has the same expectation value on eigenstates of the
(nonrecoil) nonrelativistic Hamiltonian.

The expectation values of spin-dependent operators on the
eigenstates of J2 and Jz (�J = �L + �S, where �S = �s1 +�s2) are
calculated with help of the following formulas:

〈 3DJ | �Q · �σa | 3DJ〉 = 〈 3DJ | �Q · �S | 3DJ〉
= uJ ι̇ ε jli 〈 3D jk|Ql | 3Dik〉, (19)

〈 3DJ |Qi j σ i
1 σ

j
2 | 3DJ〉 = 2 〈 3DJ |Qi j Si S j | 3DJ〉

= 2 vJ 〈 3Dik|Qi j | 3D jk〉, (20)

where Qi is an arbitrary vector, Qi j is an arbitrary symmetric
and traceless tensor operator, | 3Dik〉 ≡ |φik ( 3D)〉 is the spa-
cial part of the wave function (8), and

uJ = (1, 1/3,−2/3), (21)

vJ = (−1, 1,−2/7), (22)

for J = 1, 2, 3, respectively. The above formulas were derived
by taking into account that

〈DJ |Q|DJ〉 = 1

2J + 1

∑
MJ

〈DJMJ |Q|DJMJ 〉

= 1

2J + 1

∑
MJ

Tr[Q |DJMJ 〉〈DJMJ |], (23)

(where MJ = −J, . . . , J is the angular momentum projection)
and then evaluating traces with help of Eqs. (C3)–(C9).

IV. LEADING-ORDER QED

The leading QED correction to energy levels is of order
mα5 and can be expressed by

E (5,0) = 〈H (5)〉, (24)

E (5,1) = 2

〈
H (5) 1

(E − H )′
δMH

〉
+ 〈δMH (5)〉. (25)

The effective mα5 Hamiltonian is [11,12]
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)
4 Z

3
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+
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+ 14

3
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)
δ3(r) − 7

6 π

(
1

r3

)
ε

+ H (5)
fs ,

(26)

where the index a = 1, 2 numerates the electrons and the spin-
dependent operator H (5)

fs is the nuclear-mass-independent mα5

part of H (4+) in Eq. (11). Further notations are as follows: ln k0

TABLE I. Numerical results for the Bethe logarithm β ≡
ln(k0/Z2) for the 3 1D and 3 3D states of helium. δβ = β − β1s,
where β1s is the Bethe logarithm for the hydrogenic 1s state, β1s =
2.984 128 555 765 498 [16]. For each state, the upper line presents re-
sults for the infinitely massive nucleus; the lower line presents results
with inclusion of the mass polarization contribution (m/M ) �p1 · �p2.

State β 106δβ 106δβ

3 1D 2.984 119 109 (7) −9.447 (7) −9.38 (7)a

�p1 · �p2 2.984 119 106 (7) −9.449 (7)
3 3D 2.984 125 886 (2) −2.670 (2) −2.64 (11)a

�p1 · �p2 2.984 125 891 (2) −2.665 (2)

aRef. [14].

is the Bethe logarithm defined as

ln k0 =
〈 ∑

a �pa (H − E ) ln[2 (H − E )]
∑

b �pb
〉

2 π Z
〈∑

c δ3(rc)
〉 , (27)

and (1/r3)ε is the so-called Araki-Sucher term, defined by its
matrix elements as〈

1

r3

〉
ε

= lim
ε→0

∫
d3r φ∗(�r)

[
1

r3
�(r − ε) + 4 π δ3(r)

× (γ + ln ε)

]
φ(�r). (28)

The recoil addition to the mα5 Hamiltonian is given by [13]

δMH (5) =
∑

a

[(
62

3
+ ln(α−2) − 8 ln k0 − 4

Z
δM ln k0

)

× Z2

3
δ3(ra) − 7 Z2

6 π

(
1

r3
a

)
ε

]
+ δMH (5)

fs , (29)

where δMH (5)
fs is the nuclear-mass-dependent mα5 part of

H (4+) in Eq. (11) and δM ln k0 is the correction to the Bethe
logarithm ln k0 induced by the nonrelativistic kinetic energy
operator δMH in Eq. (4).

In numerical calculations, it is sometimes convenient to
separate δMH into the reduced-mass and mass-polarization
parts according to Eq. (5). The former can be parametrized
analytically by introducing the reduced mass, whereas the
latter needs to be calculated numerically. The separation of
Eq. (5) leads to

δM

〈
1

r3

〉
ε

= δp1 p2

〈
1

r3

〉
ε

− 3

〈
1

r3

〉
ε

+ 〈4 πδ3(r)〉, (30)

δM ln k0 = δp1 p2 ln k0 + 1, (31)

where δp1 p2 denotes the perturbation due to the mass polariza-
tion operator �p1 · �p2.

In this work we performed direct numerical calculations
of the Bethe logarithm for the 1s3d states, with the method
described in Ref. [10]. Our numerical results are presented in
Table I . They are in good agreement with previous results [14]
obtained by the numerical method developed by Drake and
Goldman [15]. We also performed calculations of the Bethe
logarithm with the mass polarization term included into the
Hamiltonian. We found that the mass polarization contribution
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to the Bethe logarithm is very small and cannot be clearly
identified at the level of our present numerical accuracy of
a few parts in 10−9.

V. SINGLET-TRIPLET MIXING

The correction due to mixing of the 3 1D and 3 3D states
is formally of order mα6 but it is strongly enhanced due to a
small energy difference between these states. For this reason
we consider this contribution separately.

We calculate the mixing correction by forming an effective
Hamiltonian matrix in the subspace of the two strongly mixing
states,

Heff =
(

Edia ( 3D2) Eoff

Eoff Edia ( 1D2)

)
, (32)

where

Edia = mα2 [E (2) + α2 E (4) + α3 E (5)], (33)

Eoff = mα4 〈 3D2MJ |HC | 1D1MJ 〉
= mα4 〈 1D2MJ |HC | 3D1MJ 〉, (34)

and HC = �QC (ae, m/M ) · (�σ1 − �σ2)/2 is the part of the Breit
Hamiltonian H (4+) that mixes the triplet and singlet states.

The mixing correction is obtained by diagonalizing the effec-
tive Hamiltonian (32), with the result

EMIX( 1D2) = −EMIX( 3D2) = 1

2

√
(�E )2 + 4E2

off − 1

2
�E ,

(35)

where �E = Edia (3 1D2) − Edia (3 3D2) > 0 and the square of
the off-diagonal term is evaluated as

|〈 3D2MJ |HC | 1D1MJ 〉|2 = 2
3 〈 3Dik|εkl j ι̇ Ql

C | 1Di j〉2. (36)

VI. mα6 QED

The mα6 correction to the energy levels was derived in
Refs. [17,18]. It can be represented as a sum of the first-order
and second-order perturbation corrections induced by various
effective Hamiltonians,

E (6) = EQ + EH + ER1 + ER2 + ELG + Efs,DK + Efs,amm

+ Esec, (37)

where

EQ =
〈
− E3

2
− 1

8
EZQ1 + Q2

8
+ 1

8
Z (1 − 2Z )Q3 + 3

16
ZQ4 − 1

4
ZQ5 + Q6S

24
− (S + 3)

96
Q6T + 1

4
(E2 + 2E (4,0))Q7

− (5S + 31)

32
EQ8 + (5S + 23)

32
Q9 + 1

2
EZ2Q11 + EZ2Q12 − EZQ13 − Z2Q14 + Z3Q15 − 1

2
Z2Q16 − (5S + 23)Z

16
Q17

− (5S + 13)Z

32
Q18 + 1

2
ZQ19 − 1

8
Z2Q20 + 1

4
Z2Q21 + 1

4
Z2Q22 + (5S + 47)

32
Q23 + 1

2
ZQ24 + (S − 3)

192
Q25 − 1

4
ZQ26

− 1

8
EQ27 − 1

2
ZQ28 + Q29

4
+ Q30

8

〉
, (38)

where S = �σ1 · �σ2, 〈S〉 = −3 for singlet and 〈S〉 = 1 for triplet states, and operators Qi are defined in Table II. EH is the
high-energy contribution induced by the forward three-photon exchange scattering amplitude,

EH =
[

− 39ζ (3)

π2
+ 32

π2
− 6 ln 2 + 7

3

]
π

4
〈δ(r)〉, (39)

and ELG is the logarithmic contribution,

ELG = −π ln α〈δ(r)〉. (40)

ER1 and ER2 are the radiative one-loop and two-loop contributions, respectively:

ER1 = Z2

[
427

96
− 2 ln 2

]
π 〈δ3(r1) + δ3(r2)〉 +

[
6 ζ (3)

π2
− 697

27 π2
− 8 ln 2 + 1099

72

]
π 〈δ3(r)〉, (41)

ER2 = Z

[
− 9 ζ (3)

4 π2
− 2179

648 π2
+ 3 ln 2

2
− 10

27

]
π 〈δ3(r1) + δ3(r2)〉 +

[
15 ζ (3)

2 π2
+ 631

54 π2
− 5 ln 2 + 29

27

]
π 〈δ3(r)〉. (42)

Efs,DK is the Douglas-Kroll correction to the fine structure,

Efs,DK = −3 Z

8
R1 − Z R2 + Z

2
R3 + 1

2
R4 − 1

2
R5 + 5

8
R6 − 3

4
R7 − 1

4
R8 − 3

4
R9 + 3

8
R10 − 3

16
R11 − 1

16
R12 + 3

2
R13 − 1

4
R14

+ 1

8
R15, (43)
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TABLE II. Expectation values of operators Qi with i = 1, . . . , 30 for the 3 1D and 3 3D states, �p = ( �p1 − �p2)/2, �P = �p1 + �p2.

3 1D 3 3D

Q1 4πδ3(r1) 15.99824880 15.99784093

Q2 4πδ3(r) 0.00002874 0

Q3 4πδ3(r1)/r2 1.78124709 1.78249111

Q4 4πδ3(r1) p2
2 1.78492102 1.78746694

Q5 4πδ3(r)/r1 0.00002428 0

Q6S 4π δ3(r) P2 0.00018470 0

Q6T 4π �p δ3(r) �p 0 0.00019375

Q7 1/r 0.11121606 0.11129738

Q8 1/r2 0.01496643 0.01497321

Q9 1/r3 0.00258825 0.00257961

Q10 1/r4 0.00058978 0.00065795

Q11 1/r2
1 4.00705950 4.00698329

Q12 1/(r1r2) 0.22267879 0.22284220

Q13 1/(r1r) 0.11870346 0.11879759

Q14 1/(r1r2r) 0.02973688 0.02979293

Q15 1/(r2
1 r2) 0.46021055 0.46055487

Q16 1/(r2
1 r) 0.44649022 0.44680978

Q17 1/(r1r2) 0.01618262 0.01620066

Q18 (�r1 · �r)/(r3
1 r3) 0.00039491 0.00039799

Q19 (�r1 · �r)/(r3
1 r2) 0.00678471 0.00679459

Q20 ri
1r j

2 (rir j − 3δi j r2)/(r3
1 r3

2 r) 0.00244330 0.00231961

Q21 p2
2/r2

1 0.47602349 0.47671633

Q22 �p1(1/r2
1 ) �p1 16.00022730 15.99977930

Q23 �p1(1/r2) �p1 0.03192362 0.03210149

Q24 pi
1 (rir j + δi j r2)/(r1r3) pj

2 −0.00025389 −0.00024600

Q25 Pi (3rir j − δi j r2)(1/r5) P j −0.00054572 −0.00051388

Q26 pk
2 ri

1 (1/r3
1 )(δ jkri/r − δikr j/r − δi j rk/r − rir jrk/r3) pj

2 0.00081210 0.00036806

Q27 p2
1 p2

2 0.44630062 0.44689565

Q28 p2
1 (1/r1) p2

2 1.37356243 1.37554162

Q29 �p1 × �p2 (1/r) �p1 × �p2 0.04578880 0.04728700

Q30 pk
1 pl

2 (−δ jl rirk/r3 − δikr jrl/r3 + 3rir jrkrl/r5) pi
1 pj

2 −0.02301349 −0.02388848

where Ri are defined in Table III, and Efs,amm is the amm
correction to the fine structure, which is the mα6 part of the
Breit Hamiltonian H (4+) in Eq. (11).

Esec is the second-order correction induced by the Breit
Hamiltonian. After the separation of divergences, it is
represented as

Esec =
〈
H (4)

reg
1

(E − H )′′
H (4)

reg

〉
, (44)

where H (4)
reg is the regularized Breit Hamiltonian defined be-

low. The double prime on the electron propagator 1/(E −
H )′′ indicates that one should exclude from the summation
over the Schrödinger spectrum not only the reference state
(as is the case in all second-order corrections), but also
the state with the opposite spin coupling. More specifically,
for the 3 2S+1D reference states relevant for this work, we
exclude both the 3 1D and 3 3D states from the summation
over the spectrum. We note that the intermediate state with
the opposite spin coupling (triplet for singlet, and vice versa)

is already accounted for in the mixing contribution discussed
in Sec. V.

The regularized Breit Hamiltonian is given by [17]

H (4)
reg = QAreg+ �QB · (�σ1 + �σ2)

2
+ �QC · (�σ1 − �σ2)

2
+Qi j

D σ i
1 σ

j
2 ,

(45)

where

QAreg = −1

2
(E − V )2 − pi

1
1

2r

(
δi j + rir j

r2

)
pj

2 + 1

4
�∇2

1
�∇2

2

− Z

4

(�r1

r3
1

· �∇1 + �r2

r3
2

· �∇2

)
, (46)

and V = −Z/r1 − Z/r2 + 1/r. The operator �∇2
1
�∇2

2 in the
above expression is non-Hermitian and requires an explicit
definition. Its action on a trial function φ on the right should
be understood as a plain differentiation (omitting δ3(r); no
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TABLE III. Expectation values of spin-dependent mα6 operators for the 33DJ states.

R1 p2
1 (�r1/r3

1 ) × �p1 · �σ1 −0.001359311 uJ

R2 (�r1/r3
1 ) × (�r/r3) · �σ1 (�r · �p2) −0.002475817 uJ

R3 (�r/r3) · �σ1 (�r1/r3
1 ) · �σ2 −0.000693482 2 vJ

R4 (�r/r4) × �p2 · �σ1 0.000921565 uJ

R5 (�r/r6) · �σ1 �r · �σ2 0.000197304 2 vJ

R6 p2
1 (�r/r3) × �p1 · �σ1 −0.001250197 uJ

R7 p2
1 (�r/r3) × �p2 · �σ1 0.014880254 uJ

R8 ι̇ p2
1 (1/r) �σ1 · ( �p1 × �p2) 0.001726521 uJ

R9 ι̇ p2
1 (�r/r3) · �p2 �r × �p1 · �σ1 −0.001924622 uJ

R10 ι̇ (�r/r5) × (�r · �p2) �p1 · �σ1 −0.000041310 uJ

R11 (�r/r5) × (�r × �p1 · �σ1) �p2 · �σ2 −0.000088519 2 vJ

R12 (1/r3) �p1 · �σ2 �p2 · �σ1 0.000182341 2 vJ

R13 p2
1 (�r/r5) · �σ1 �r · �σ2 0.001782698 2 vJ

R14 ι̇ p2
1 (�r/r3) · �σ1 �p1 · �σ2 0.001084191 2 vJ

R15 ι̇ p2
1 (1/r3) [�r · �σ1 �p2 · �σ2 +�r · �σ2 �p2 · �σ1 − (3/r2)�r · �σ1 �r · �σ2 (�r · �p2)] −0.005402678 2 vJ

differentiation by parts is allowed in the matrix element). We
note that the expectation value of the regularized Breit Hamil-
tonian on the eigenfunctions of the (nonrecoil) nonrelativistic
Hamiltonian is the same as that of H (4):

〈
H (4)

reg

〉 = 〈H (4)〉 = E (4,0). (47)

The second-order mα6 correction involves numerous con-
tributions from many different symmetries of intermediate
states. The angular momentum algebra is performed in Carte-
sian coordinates as explained in Appendix B, with the explicit
formulas listed in Appendix D.

VII. HIGHER-ORDER QED CORRECTION

We estimate the mα7 correction to the ionization energy of
1snd states as

E (7) =
[

Z3(L2 A62 + L A61 + A60) + Z2

π
B50 + Z

π2
C40

]

×
[
〈δ(�r1) + δ(�r2)〉 − Z3

π

]
, (48)

where L = ln[(Zα)−2] and Ai j , Bi j , and Ci j are the coefficients
of the Zα expansion of one-loop, two-loop, and three-loop

TABLE IV. mα6 corrections for ionization energies, in units of 10−3 mα6. Conversion factor to MHz is 0.018658054. S = 0, 1 denotes the
spin of the reference state, whereas S ′ = 1 − S denotes the opposite spin state (triplet for singlet and vice versa).

Intermediate 3 3D

Contribution states symmetry 3 1D J = 1 J = 2 J = 3

EQ 19.711 19.853 19.853 19.853
EH −0.006
ER1 −10.667 −13.220 −13.220 −13.220
ER2 −0.098 −0.118 −0.118 −0.118
ELG 0.035
Efs,DK −6.395 0.377 2.471
Efs,amm −0.050 0.051 −0.015

Esec
2S′+1P −0.018 −0.025
2S′+1D −1.156 −1.158
2S′+1F −0.057 −0.039
2S+1S 0.148
2S+1P −0.021 −0.145
2S+1D −0.156 (2) 0.705 (8) 0.233 (2) 0.313 (6)
2S+1F −0.056 −0.057
2S+1G −0.013

Total 7.589 (2) 0.873 (8) 5.816 (2) 9.175 (6)
Total (MHz) 0.142 0.016 0.109 0.171
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TABLE V. Theoretical ionization energies of the 1s3d states of 4He, in MHz. The values of fundamental constants used are R∞c =
3 289 841 960.355 MHz, α−1 = 137.035 999 139, M/m = 7294.29954136. Uncertainties of fundamental constants do not influence the
numerical results presented.

3 1D2 3 3D1 3 3D2 3 3D3

E (2,0) −365 966 841.606 −366 069 330.717 −366 069 330.717 −366 069 330.717
E (2,1) 49 946.656 50 208.515 50 208.515 50 208.515
E (2,2+) −13.886 −13.652 −13.652 −13.652
E (4,0) −851.144 259.290 −1 039.409 −1 141.056
E (4,1) 0.154 −0.465 0.081 0.143
E (5,0) −13.962 −15.707 −17.705 −16.413
E (5,1) −0.004 0.003 0.004 0.004
EMIX 24.967 (5) 0.0 −24.967 (5) 0.0
E (6,0) 0.142 0.016 0.109 0.171
E (7,0) 0.019 (19) 0.023 (23) 0.023 (23) 0.023 (23)
EFNS −0.008 −0.009 −0.009 −0.009
Total theory −365 917 748.673 (20) −366 018 892.702 (23) −366 020 217.728 (24) −366 020 292.992 (23)
Previous theory [9] −365 917 749.02 (2) −366 018 892.97 (2) −366 020 218.09 (2) −366 020 293.41 (2)
Difference 0.35 (3) 0.27 (3) 0.36 (3) 0.42 (3)

QED effects for the 1s hydrogenic state, respectively. The
numerical values of the coefficients are A62 = −1, A61 =
5.286040, A60 = −31.501041, B50 = −21.5544, and C40 =
0.417504 [19]. Having in mind that in order mα6 the radiative
QED correction is one of the largest but not the dominant
contribution, we ascribe the uncertainty of 100% to this
approximation of E (7).

VIII. RESULTS AND DISCUSSION

The results of our numerical calculations of the mα6 cor-
rections are listed in Table IV. The numerical values presented
are corrections to the ionization energy; i.e., the corresponding
hydrogenic 1s contributions are subtracted from EQ, ER1, ER2,
and Esec( 2S+1D). The subtraction of the hydrogenic contri-
bution leads to a cancellation of about five decimal figures,
which makes calculations rather demanding, especially for the
Esec( 2S+1D) correction. Specifically, for the 3 1D2 reference
state, the numerical value of −0.156 (2) quoted in Table IV for
the E (3 1D2| 1D) arises as −16 000.156 (2) + 16 000, where
the latter term is the hydrogenic 1s contribution.

The interesting feature about the obtained mα6 results is
that the one-loop radiative correction ER1 is not dominant. The
remaining, nonradiative mα6 contribution is larger than the
radiative, and of the opposite sign. As a result, the total mα6

correction is quite small numerically and differs significantly
from the previous estimations [9]. The nonradiative part of
mα6 correction, which has not been accounted for in the
previous calculation [9], shifts the 3 1D2 and 3 3D1 ionization
energies by 0.34 and 0.27 MHz, respectively.

Table V presents a summary of individual contributions to
the ionization energy of the 3 1D2 and 3 3DJ states of the
4He atom. Our theoretical values of the ionization energies
differ from the previous results of Morton et al. [9] by about
0.3 MHz, or 10σ . The main reason for such a large deviation
is the nonradiative part of the mα6 correction described in
the preceding paragraph. Moreover, our final uncertainty is
similar to that of Morton et al., but in our case it comes

from the higher-order mα7 contribution, which is estimated
by scaling the known result for the hydrogenic radiative
corrections. Since we found that in order mα6 the radiative
correction is not dominant, we have to assume that a similar
situation can occur in the next order, so we estimate the uncer-
tainty as 100% of the radiative effects. For the fine-structure
and the singlet-triplet separation intervals, we keep the same
uncertainty as for the individual ionization energies, since we
assume that the nonradiative mα7 effects could contribute on
the same level as the radiative ones.

Tables VI and VII present comparisons of theoretical pre-
dictions with experimental results for the fine-structure inter-
vals and various transition frequencies for the 4He atom. The
result for the 3 1D2–3 3D1 transition is obtained by combining
together four measurements [3,20–22]:

E (3 1D2 − 3 3D1) = E (3 1D2 − 2 1S0) + E (2 1S0 − 2 3S1)

− E (2 3P0 − 2 3S1) − E (3 3D1 − 2 3P0).

(49)

For the fine structure, we observe deviations of both sets of
theoretical predictions, ours and those of Morton et al., from
the experimental results on the level of 2–3 of experimental
σ . The experiments are rather old and their accuracy is lower
than what could be achievable nowadays, so it is desirable to
verify them before any definite conclusions are drawn.

The comparison of theory and experiment for transition
frequencies presented in Table VII is quite surprising. We

TABLE VI. Fine-structure energy differences of the 3 3DJ states
of 4He, in MHz.

ν32 ν21 ν31

−75.264 (24) −1325.026 (24) −1400.290 (23) This work
−75.32 (2) −1325.12 (2) −1400.44 (2) Theory [9]
−76.15 (30) −1324.50 (35) −1400.65 (37) Expt. [23]
−75.97 (23) −1400.67 (29) Expt. [24]
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TABLE VII. Comparison of different theoretical predictions with experimental results for various transition energies in 4He, in MHz.
Theoretical ionization energies of the n = 2 states in the column “Present theory” are taken from Ref. [5].

Difference Other theory Difference
Experiment Ref. Present theory from experiment [9] from experiment

3L′–2L transitions
3 1D2–2 1S0 594 414 291.803 (13) [20] 594 414 289.3 (1.9) 2.5 (1.9) 594 414 292. (5.) 0. (5.)
3 3D1–2 3S1 786 823 850.002 (56) [25] 786 823 848.7 (1.3) 1.3 (1.3) 786 823 845. (7.) 4. (7.)
3 3D1–2 3P0 510 059 755.352 (28) [22] 510 059 754.2 (0.7) 1.2 (0.7) 510 059 749. (2.) 6. (2.)
3 1D2–2 1P1 448 791 399.113 (268) [26] 448 791 397.8 (0.4) 1.3 (0.5) 448 791 400.5 (2) −1.4 (2)

2L′–2L transitions
2 3P0–2 3S1 276 764 094.657 2 (14) [3] 276 764 094.5 (2.0) 0.2 (2.0) 276 764 096. (7.) 2. (7.)
2 1S0–2 3S1 192 510 702.148 72 (20) [21] 192 510 703.4 (0.8) −1.3 (0.8) 192 510 697. (9.) 5. (9.)
2 1P1–2 1S0 145 622 892.886 (183) [27] 145 622 891.5 (2.3) 1.4 (2.3) 145 622 892. (5.) 0. (5.)
2 1P1–2 3S1 338 133 594.4 (5) [28] 338 133 594.9 (1.4) −0.5 (2.2) 338 133 589. (7.) 5. (7.)

3L′–3L transitions
3 1D2–3 3D1 101 143.943 (31) [3,20–22] 101 144.029 (23) 0.086 (37) 101 143.95 (3) 0.01 (4)

observe good agreement between theory and experiment for
all measured 2L′–2L transitions. For the 3D–2L intervals,
however, all experimental transition frequencies are about
1 MHz larger than the theoretical predictions. Since different
experimental results are supposed to be uncorrelated, a reason
for the systematic discrepancy should be on the theoretical
side. An unaccounted-for contribution of 1 MHz could hardly
come from the 3D ionization energy since two independent
calculations (ours and that of Drake and co-workers [9]) agree
on this level of accuracy. This would mean that an unknown,
nearly L-independent contribution of about 1 MHz is present
for all n = 2 ionization energies. Assuming the standard 1/n3

scaling of QED effects, this implies an unknown contribution
of 10/n3 MHz for an arbitrary state.

Having in mind that theoretical energies of the n = 2 states
of helium have been independently checked on the level of
the mα5 effects [10,29], possible sources of unaccounted
contributions could be a mistake in the evaluation of the
mα6 corrections or an underestimation of mα7 effects. The
latter possibility will be checked when our ongoing project
of calculating all mα7 effects to the 2 3S and 2 3P ionization
energies [4] is completed.

On the experimental side, it is desirable to conduct more
measurements of transitions between states from different
shells, as this will allow to confirm and study further the
systematic deviation of experimental results from theoretical
predictions.

In summary, we performed detailed calculations of ioniza-
tion energies of the 1s3d states in the 4He atom, including the
complete evaluation of the mα6 QED effects. The nonradiative
mα6 corrections, which have not been accounted for in the
previous calculations, turned out to be much larger than
previously anticipated, shifting the theoretical predictions by
about 10σ . However, this was not sufficient to explain the
previously reported systematic discrepancies between the the-
oretical and experimental results for the 3D-2L transitions.
These discrepancies could possibly indicate the presence of
some unaccounted-for contributions of order mα6 or underes-
timation of higher-order effects.
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APPENDIX A: WAVE FUNCTIONS IN CARTESIAN
COORDINATES

Since we use the explicitly correlated basis functions, it is
convenient to represent the angular part of the wave function
in Cartesian coordinates. In this section we list the explicit
expressions for wave functions of symmetries relevant for this
work. We denote by (· · · )(n) the traceless and symmetric rank-
n tensor and �R ≡ �r1 ×�r2.

The L = 0 wave function of a definite exchange symmetry
is of the form

φ(1,3Se) = F ± (1 ↔ 2), (A1)

where F is a scalar function of r1, r2 and r ≡ |�r1 −�r2|, the
upper sign corresponds to the singlet, and the lower sign to
the triplet state.

The L = 1 odd and even wave functions are

�φ( 1,3Po) = �r1 F ± (1 ↔ 2), (A2)

�φ( 1,3Pe) = �R F ± (1 ↔ 2). (A3)

The L = 2 odd and even wave functions are

φi j ( 1,3Do) = (
ri

1R j + r j
1Ri

)
F ± (1 ↔ 2), (A4)

φi j ( 1,3De) = (
ri

1r j
1

)(2)
F + (

ri
1r j

2

)(2)
G ± (1 ↔ 2), (A5)
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where (
ri

1r j
1

)(2) = r j
1r j

1 − 1
3 δi j r2

1 , (A6)(
ri

1r j
2

)(2) = 1
2

(
r j

1r j
2 + r j

2r j
1 − 2

3 δi j �r1 · �r2
)
. (A7)

The L = 3 odd and even wave functions are

φi jk ( 1,3F o) = (
ri

1r j
1rk

1

)(3)
F + (

ri
1r j

1rk
2

)(3)
G ± (1 ↔ 2), (A8)

φi jk ( 1,3F e) = (
ri

1r j
1Rk

)(3)
F + (

ri
1r j

2Rk
)(3)

G ± (1 ↔ 2), (A9)

where

(
ri

1r j
1rk

1

)(3) = ri
1r j

1rk
1 − r2

1

5

(
δi j rk

1 + δikr j
1 + δ jkri

1

)
, (A10)

(
ri

1r j
1rk

2

)(3) = 1

3

[
ri

1r j
1rk

2 + ri
1r j

2rk
1 + ri

2r j
1rk

1 − r2
1

5

(
δi j rk

2 + δikr j
2 + δ jkri

2

) − 2�r1 · �r2

5

(
δi j rk

1 + δikr j
1 + δ jkri

1

)]
, (A11)

(
ri

1r j
1Rk

)(3) = 1

3

[
ri

1r j
1Rk + ri

1R jrk
1 + Rir j

1rk
1 − r2

1

5
(δi jRk + δikR j + δ jkRi )

]
, (A12)

(
ri

1r j
2Rk

)(3) = 1

6

[
ri

1r j
2Rk + ri

1R jrk
2 + Rir j

1rk
2 + ri

2r j
1Rk + ri

2R jrk
1 + Rir j

2rk
1 − 2�r1 · �r2

5
(δi jRk + δikR j + δ jkRi )

]
. (A13)

The L = 4 even wave function is

φi jkl (1,3Ge) = (
ri

1r j
1rk

1rl
1

)(4)
F + (

ri
1r j

1rk
1rl

2

)(4)
G + (

ri
1r j

1rk
2rl

2

)(4)
H ± (1 ↔ 2), (A14)

where

(
ri

1r j
1rk

1rl
1

)(4) = ri
1r j

1rk
1rl

1 − r2
1

8

(
δi j rk

1rl
1 + δikr j

1rl
1 + δil r j

1rk
1 + δ jkri

1rl
1 + δ jl ri

1rk
1 + δkl ri

1r j
1

)
, (A15)(

ri
1r j

1rk
1rl

2

)(4) = 1
4

[
ri

1r j
1rk

1rl
2 + ri

1r j
1rk

2rl
1 + ri

1r j
2rk

1rl
1 + ri

2r j
1rk

1rl
1 − 1

8 (δi jSkl + δikS jl + δil S jk + δ jkSil + δ jl Sik + δkl Si j )
]
, (A16)

Skl = r2
1

(
rk

1rl
2 + rk

2rl
1

) + 2�r1 · �r2 rk
1rl

1, (A17)(
ri

1r j
1rk

2rl
2

)(4) = 1
6

[
ri

1r j
1rk

2rl
2 + ri

1r j
2rk

1rl
2 + ri

1r j
2rk

2rl
1 + ri

2r j
1rk

1rl
2 + ri

2r j
1rk

2rl
1 + ri

2r j
2rk

1rl
1

− 1
8 (δi jPkl + δikP jl + δil P jk + δ jkPil + δ jlPik + δkl Pi j )

]
, (A18)

Pkl = r2
1rk

2rl
2 + r2

2rk
1rl

1 + 2�r1 · �r2
(
rk

1rl
2 + rk

2rl
1

)
. (A19)

APPENDIX B: TENSOR DECOMPOSITION IN CARTESIAN
COORDINATES

In order to perform the angular momentum algebra in
Cartesian coordinates, one requires decompositions of prod-
ucts of various operators into traceless and symmetric tensors.
First, we decompose the product of a traceless and symmetric
tensor Di j and an arbitrary vector Qk ,

Di j Qk = T i jk + εikl T l j + ε jkl T li + δik T j + δ jk T i

− 2
3 δi j T k, (B1)

where

T i jk = (Di j Qk )(3), (B2)

T i j = 1
6 (ε jklDik Ql + εikl D jk Ql ), (B3)

T i = 3
10 Di jQ j . (B4)

This decomposition was used in calculations of various
second-order matrix elements and in the evaluation of the
Bethe logarithm. In the latter case, with Qk = pk , we
obtain

〈Di j pkR̂pkDi j〉 = 〈Di j pk R̂ (Di j pk )
+〉

= 〈(Di j pk )(3) R̂ (Di j pk )(3)+〉 + 6 〈T i j R̂ T i j+〉
+ 20

3 〈T i R̂ T i+〉, (B5)

where R̂ = 1/(E − H ) and “+” denotes the Hermitian
conjugate.

The second decomposition we need is that of the product
of two traceless and symmetric tensors Di j and Qi j ,

Di j Qkl = T i jkl + εikaT jal + ε jkaT ial + εilaT jak + ε jlaT iak

+ δikT jl + δil T jk + δ jkT il + δ jlT ik − 4
3 δi jT kl
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− 4
3 δklT i j + T a (εikaδ jl + εilaδ jk + ε jkaδil

+ ε jlaδik ) + T
(
δikδ jl + δil δ jk − 2

3 δi jδkl
)
, (B6)

where

T i jkl = (Di j Qkl )(4), (B7)

T jbl = 1
4 (εikb Di j Qkl )(3), (B8)

T jl = 3
7 (Di j Qil )(2), (B9)

T b = 1
10 ε jlb Di j Qil , (B10)

T = 1
10 Di j Qi j . (B11)

APPENDIX C: SPIN-ANGULAR REPRESENTATION
OF D STATES

Let �S be the angular momentum operator for S = 1 that
satisfies the commutator relation

[Si, S j] = i εi jk Sk, (C1)

then in the fundamental representation

Si S j Sk = i

2
εi jk �S 2 + δ jk Si + i εika S j Sa (C2)

and

Tr Si S j = 2 δi j, (C3)

Tr Si S j Sk = i εi jk, (C4)

Tr Si S j Sk Sl = δi j δkl + δ jk δil . (C5)

Assuming the explicit representation of the spin operator
in terms of Pauli matrices, �S = (�σ1 + �σ2)/2, we obtain the
following identities:

1

5

∑
M

| 1D2M〉 〈 1D2M | = | 1Di j〉〈 1Di j |
(

1 −
�S 2

2

)
, (C6)

1

3

∑
M

| 3D1M〉 〈 3D1M | = | 3Dik〉〈 3D jk|
(

δi j
�S 2

2
− S j Si

)
,

(C7)

1

5

∑
M

| 3D2M〉 〈 3D2M | = | 3Dik〉〈 3D jk|
(

− 1

3
δi j

�S 2

2
+ 2

3
Si S j

+ 1

3
S j Si

)
, (C8)

1

7

∑
M

| 3D3M〉 〈 3D3M | = | 3Dik〉〈 3D jk|
(

11

21
δi j

�S 2

2
− 10

21
Si S j

+ 4

21
S j Si

)
. (C9)

APPENDIX D: EXPLICIT FORMULAS FOR THE SECOND-ORDER CORRECTIONS

In this section we present explicit calculation formulas for the second-order corrections, for the singlet (S = 0) and triplet
(S = 1) reference states. For each reference state, there are four different symmetries of intermediate states contributing, with
rational weight factors that are determined by the angular momentum algebra method illustrated in the previous sections. The
results are as follows. For S = 1 and J = 1,

Esec( 3D1) = E ( 3D1| 1Pe) + E ( 3D1| 3S) + E ( 3D1| 3Pe) + E ( 3D1| 3D), (D1)

E ( 3D1| 1Pe) =
∑

n

1

E − En
〈 3Di j |ι̇ Q j

C

∣∣ 1Pi
n

〉2
, (D2)

E ( 3D1| 3S) = 4

3

∑
n

1

E − En
〈 3Di j |Qi j

D | 3Sn〉2, (D3)

E ( 3D1| 3Pe) = 1

2

∑
n

1

E − En
〈 3Dk j |ι̇ δki Q j

B − 2 ε jliQkl
D

∣∣ 3Pi
n

〉2
, (D4)

E ( 3D1| 3D) =
∑

n

′′ 1

E − En
〈 3Dik|δk j QAreg + ι̇ εkl jQl

B − 2 Qk j
D

∣∣ 3Di j
n

〉2
. (D5)

For S = 1 and J = 2,

Esec( 3D2) = E ( 3D2| 1D) + E ( 3D2| 3Pe) + E ( 3D2| 3D) + E ( 3D2| 3F e), (D6)

E ( 3D2| 1D) = 2

3

∑
n

′′ 1

E − En
〈 3Dik|εkl j ι̇ Ql

C

∣∣ 1Di j
n

〉2
, (D7)

E ( 3D2| 3Pe) = 1

10

∑
n

1

E − En
〈 3Dk j |3 ι̇ δki Q j

B + 2 ε jliQkl
D

∣∣ 3Pi
n

〉2
, (D8)
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E ( 3D2| 3D) =
∑

n

′′ 1

E − En
〈 3Dik|δ jk QAreg + ι̇

3
εkl jQl

B + 2 Qk j
D

∣∣ 3Di j
n

〉2
, (D9)

E ( 3D2| 3F e) = 2

3

∑
n

1

E − En
〈 3Dia|ι̇ δ ja Qk

B − 2 εab jQbk
D

∣∣ 3F i jk
n

〉2
. (D10)

For S = 1 and J = 3,

Esec( 3D3) = E ( 3D3| 1F e) + E ( 3D3| 3D) + E ( 3D3| 3F e) + E ( 3D3| 3G), (D11)

E ( 3D3| 1F e) = 5

7

∑
n

1

E − En
〈 3Di j |ι̇ Qk

C

∣∣ 1F i jk
n

〉2
, (D12)

E ( 3D3| 3D) =
∑

n

′′ 1

E − En
〈 3Dik|δ jk QAreg − 2

3
ι̇ εkl jQl

B − 4

7
Qk j

D

∣∣ 3Di j
n

〉2
, (D13)

E ( 3D3| 3F e) = 20

21

∑
n

1

E − En
〈 3Dia|ι̇ δ ja Qk

B + εab jQbk
D

∣∣ 3F i jk
n

〉2
, (D14)

E ( 3D3| 3G) = 20

7

∑
n

1

E − En
〈 3Di j |Qkl

D

∣∣ 3Gi jkl
n

〉2
. (D15)

For S = 0 and J = 2,

Esec( 1D2) = E ( 1D2| 1D) + E ( 1D2| 3Pe) + E ( 1D2| 3D) + E ( 1D2| 3F e), (D16)

E ( 1D2| 1D) =
∑

n

′′ 1

E − En
〈 1Di j |QAreg

∣∣ 1Di j
n

〉2
, (D17)

E ( 1D2| 3Pe) = 3

5

∑
n

1

E − En
〈 1Di j |ι̇Q j

C

∣∣ 3Pi
n

〉2
, (D18)

E ( 1D2| 3D) = 2

3

∑
n

′′ 1

E − En
〈 1Dik|ι̇εkl jQl

C

∣∣ 3Di j
n

〉2
, (D19)

E ( 1D2| 3F e) =
∑

n

1

E − En
〈 1Di j |ι̇Qk

C

∣∣ 3F i jk
n

〉2
. (D20)

In the formulas above, the double prime on the sum means that the singlet and triplet 3D states are excluded from the summation
over the spectrum.
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