
PHYSICAL REVIEW A 99, 052504 (2019)

Functional derivative of the zero-point-energy functional from the strong-interaction
limit of density-functional theory

Juri Grossi, Michael Seidl, Paola Gori-Giorgi, and Klaas J. H. Giesbertz
Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modelling, FEW, Vrije Universiteit,

De Boelelaan 1083, 1081HV Amsterdam, The Netherlands

(Received 11 January 2019; published 9 May 2019)

We derive an explicit expression for the functional derivative of the subleading term in the strong interaction
limit expansion of the generalized Levy-Lieb functional for the special case of two electrons in one dimension.
The expression is derived from the zero-point-energy (ZPE) functional, which is valid if the quantum state
reduces to strongly correlated electrons in the strong coupling limit. The explicit expression is confirmed
numerically and respects the relevant sum rule. We also show that the ZPE potential is able to generate a bond
midpoint peak for homonuclear dissociation and is properly of purely kinetic origin. Unfortunately, the ZPE
diverges for Coulomb systems, whereas the exact peaks should be finite.
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I. INTRODUCTION

Kohn-Sham (KS) density-functional theory (DFT) is the
workhorse of electronic structure calculations in physics and
chemistry thanks to its good compromise between accuracy
and computational cost. Although exact in principle, KS DFT
must rely in practice on approximations for the exchange-
correlation (XC) functional, which, despite their many suc-
cesses, still have problems in describing strongly correlated
systems, whose physics is very different than that of the
noninteracting KS reference system [1–4].

The strong interaction limit (SIL) [5–7] of the universal
part of the ground-state energy density functional [8–10] is
a semiclassical limit in which the electron-electron energy
dominates over the kinetic energy, and it is the first term of an
expansion of the generalized Levy-Lieb functional in the form
of an asymptotic series for the electronic coupling constant
λ → ∞. This same expansion also determines the asymptotic
behavior of the exact XC functional of KS DFT [11–13] at
strong coupling. In specific cases, the SIL solution reduces to
a particular simple form of strictly correlated electrons (SCE),
in which the position of one electron dictates the position of
all other electrons [5–7]. In more general cases, the search
over SCE-type solutions yields the exact SIL as an infimum
[14]. The SCE solution unveils how the exact XC functional
mathematically transforms the information on the electronic
density into an expectation value of the electron-electron
repulsion, even if only in the case of its λ → ∞ asymptotic
expansion. Its investigation led to the construction of new
nonlocal density functionals, based on particular integrals of
the density [15–17] rather than on the traditional ingredients
of standard approximations (local density and gradients, oc-
cupied and unoccupied KS orbitals).

The first subleading term for SCE-type solutions intro-
duces kinetic energy in the form of zero-point oscillations
(ZPE). It was first evaluated in 2009 [18] and received nu-
merical confirmations only recently [19,20]. Little is known
yet of the third leading term, for which scaling arguments

suggest it to be of purely kinetic nature [18,21]. This third
term should incorporate exact pieces of information on the
ionization energy of the system under examination [22].

Besides the XC functional itself, another quantity that
plays an important role in KS DFT is its functional derivative
with respect to the density, which determines the XC potential
entering in the KS equations. The exact (or very accurate)
XC potential has been studied for small systems in several
works, using various reverse-engineering procedures [23–25]:
these works have shown that for strongly correlated systems
the XC potential must display very peculiar features, such as
“peaks” and “steps” [26–28]. While the functional derivative
of the SCE leading term has been evaluated and used as an
approximation for the XC potential in the self-consistent KS
equations in various works [11–13,29], the potential associ-
ated with the next leading term has never been investigated
in an exact manner (only very recently, a semilocal approx-
imation for the ZPE has been used to look at KS potentials
coming from functionals that interpolate between the weak-
and strong-coupling limits of the XC functional [30]).

It is the purpose of this paper to fill this gap, by starting
an investigation of the exact ZPE functional derivative. The
SIL functionals have a density dependence that is rather
complicated and unusual, making it actually difficult to eval-
uate functional derivatives. The reason why the functional
derivative of the leading SIL term (the SCE term) could be
easily computed is that it can be obtained from an exact
shortcut [11,12], which seems to be missing at the next
leading order. For this reason, our investigation starts from
a simple, yet nontrivial, case: two electrons confined in one
dimension (1D). Similar 1D models have been widely used
to investigate features in exact KS DFT, proving to provide
a good qualitative description of the relevant features of their
3D counterparts [27,31–35].

Besides its interest as an XC potential at strong coupling,
the ZPE functional derivative that we compute here is also a
crucial ingredient in analyzing the third term in the large-λ
expansion of the exact Levy-Lieb functional. This next term,
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in fact, requires solving a hierarchy of Schrödinger equations
for which knowledge of the asymptotic expansion at strong
coupling of vλ (the one-body potential that keeps the density
fixed at each λ) is needed; the potential vλ at orders λ1/2

should be given by minus the ZPE functional derivative [18].
The paper is organized as follows: we first briefly cover the

key concepts of SCE and ZPE formalism in Sec. II. The core
of the paper, Sec. III, hosts an analytical expression of the
functional derivative of the ZPE functional (35). Its features
are discussed and numerical calculation is provided to verify
the consistency of our results. Last, in Sec. V we draw our
conclusions and outline future steps.

II. THEORETICAL OVERVIEW

Let us consider the universal functional Fλ[ρ], defined in
the Levy constrained search formulation for any λ ∈ R as

Fλ[ρ] = min
�→ρ

〈�|T̂ + λV̂ee|�〉

≡ 〈�λ[ρ]|T̂ + λV̂ee|�λ[ρ]〉. (1)

Under the assumption of a ground-state v-representable den-
sity, the minimizing wave function �λ[ρ] in (1) is also a
ground state [9,36] of the λ-dependent Hamiltonian

Ĥλ[ρ] ≡ T̂ + λV̂ee + V̂ λ[ρ], (2)

where T̂ is the familiar kinetic energy operator, and V̂ee =
1
2

∑N
i �= j vee(|ri − r j |) is the electron-electron interaction oper-

ator. For realistic electrons in 3D space,

vee(x) = 1

|x| . (3)

For the 1D case, see Eq. (38) below. Generally, we choose
piecewise convex functions vee(x). The local one-body oper-
ator V̂ λ[ρ] = ∑N

i=1 vλ[ρ](ri ) is the Lagrange multiplier that
enforces the constraint

〈�λ|ρ̂(r)|�λ〉 = 〈�λ=1|ρ̂(r)|�λ=1〉 ≡ ρ(r) ∀ λ ∈ R. (4)

The λ-dependent energy

Eλ[ρ] ≡ 〈�λ[ρ]|Ĥλ|�λ[ρ]〉

= min
ρ̃

(
Fλ[ρ̃] +

∫
dr ρ̃(r)vλ[ρ](r)

)
(5)

connects (1) and (2). The minimization over ρ̃ implies that
[37]

δFλ[ρ̃]

δρ̃(r)

∣∣∣∣
ρ̃=ρ

= −vλ[ρ](r), (6)

modulo a constant. In what follows, we recall the basic ideas
needed to apply these concepts to the regime λ 
 1.

A. Strictly correlated electrons

From physical arguments, one suspects that
limλ→∞ Fλ[ρ]/λ = 〈�λ→∞[ρ]|V̂ee|�λ→∞[ρ]〉 [5,6,18]; this
result was proved rigorously only recently [38,39]. As a con-
sequence, to satisfy the density constraint (4) we must have
to leading order that in the limit λ → ∞ the force exerted by

the external potential is of the same order in λ as the electron-
electron repulsion. In the SIL regime we hence define the local
one-body operator V̂ SIL = ∑N

i=1 vSIL[ρ](ri ) as

lim
λ→∞

Ĥλ

λ
= lim

λ→∞
λV̂ee + V̂ λ

λ
≡ V̂ee + V̂ SIL, (7)

and the functional V SIL
ee [ρ] as

Fλ[ρ] ∼ λ inf
�→ρ

〈�|V̂ee|�〉 ≡ λV SIL
ee [ρ] λ 
 1. (8)

These two quantities are connected by (6), i.e.,

δV SIL
ee [ρ]

δρ(r)

∣∣∣∣
ρ=ρ0

= −vSIL[ρ0](r). (9)

Equation (7) defines a function in configuration space:

Epot(r1, . . . , rN ) ≡
∑
i> j

vee(|ri − r j |) +
N∑

i=1

vSIL(ri ). (10)

The minimization problem in (8) can be regarded as an
optimal transport problem with repulsive cost [40].

A candidate solution to this problem was first the so-
called strictly correlated electrons (SCE) ansatz and satisfies
V SCE

ee [ρ] � V SIL
ee [ρ]. The SCE ansatz was suggested on physi-

cal grounds by Seidl and co-workers [5,6] and has been proved
rigorously to be exact for D = 1 or N = 2 in D > 1, provided
the interaction vee(x) is convex and bounded from below [41].
In the following, we assume that the proposed SCE solution
is the exact SIL solution, so we replace SIL by SCE.

The underlying idea of SCE is that the positions of the
electrons become strictly correlated, i.e., the position of one
electron dictates the whereabouts of all other electrons. This
means that the minimizer of (8) is a distribution that is zero
in the whole configuration space except for a subset �0 of
dimension D

|�SCE(r1, . . . , rN )|2 ≡ |�λ→∞(r1, . . . , rN )|2

= 1

N!

∑
℘

∫
ds

N∏
i=1

ρ(s)

N
δ(ri − f℘ (i)(s)),

(11)

where ℘denotes any permutation of N elements, and

�0(s) ≡ {f1(s), f2(s), . . . , fN (s)}, s ∈ RD. (12)

The optimal maps or co-motion functions fi[ρ] are nonlocal
functionals of the density and their physical meaning is to
provide the position of N − 1 electrons as a function of
the position of the first electron. Indistinguishability can be

052504-2



FUNCTIONAL DERIVATIVE OF THE … PHYSICAL REVIEW A 99, 052504 (2019)

guaranteed by requiring the following group properties [6,29]:

f1(r) ≡ r,

f2(r) ≡ f (r),

f3(r) ≡ f (f (r)),

...

fN (r) = f (f (. . . f (r) . . .))︸ ︷︷ ︸
N−1 times

f (f (. . . f (r) . . .))︸ ︷︷ ︸
N times

= r.

(13)

Furthermore, the density constraint implies the differential
equation

ρ(r)dr = ρ(fn(r))dfn(r), n ∈ [1, N] ⊂ N. (14)

The minimum of Eq. (7) must be degenerate in �0(s): a
hypothetical minimum in a specific point s∗ would col-
lapse the system into a frozen configuration of positions
{f1(s∗), f2(s∗), . . . , fN (s∗)}, in violation of the smooth density
constraint (4). Hence we must have

Epot(�0(s)) ≡ ESCE, ∀ s ∈ RD. (15)

Finally, with Eq. (11), V SCE
ee [ρ] reads

V SCE
ee [ρ] =

∫
RDN

dN r V̂ee|�SCE[ρ]|2

= 1

N

N−1∑
i=1

N∑
j=i+1

∫
RD

dr ρ(r)vee[|fi(r) − f j (r)|]

= 1

2

N−1∑
i=1

∫
RD

dr ρ(r)vee[|r − fi(r)|]. (16)

B. Zero-point energy

As anticipated, at finite large λ the characterization of the
ground state of Hamiltonian (2) departs from the semiclassical
picture, as the kinetic energy starts to play a relevant role in the
description of the underlying physics in the form of zero-point
oscillations performed near �0.

Consider H(s), the Hessian of Epot (r1, . . . , rN ) evaluated
in �0(s). This matrix has D zero eigenvalues and DN − D
positive s-dependent eigenvalues, ωμ(s)2,

Tr(
√
H(s)) ≡

DN∑
μ=D+1

ωμ(s). (17)

The corresponding eigenvectors induce a set of curvilinear
coordinates uμ in terms of which Ĥλ can be expanded [18,20].

Retaining the leading order in the expansion of the
Laplace-Beltrami operator for the kinetic energy, we have
argued [18,20]

vλ(r) ∼ λ vSCE(r) +
√

λ vZPE(r), λ 
 1. (18)

This allows one to write

Ĥλ ∼ λ ESCE +
√

λ ĤZPE, λ 
 1, (19)

where the operator ĤZPE reads

ĤZPE = 1

2

ND∑
μ=D+1

(
− ∂2

∂u2
μ

+ ωμ(s)2u2
μ

)

+ V̂ ZPE(s, f2(s), . . . , fN (s)). (20)

For each fixed s, ĤZPE has the structure of a set of harmonic
oscillators in the coordinates uμ. The term denoted V̂ ZPE,
depending only on s, does not affect the harmonic nature of
its solution and, by correcting the external potential computed
in (8), keeps the degeneracy of the energy with respect to s
through order

√
λ, provided the following constraint [18] is

imposed

V̂ ZPE(s, f2(s), . . . , fN (s)) =
N∑

i=1

vZPE(fi(s))

= −
DN∑

μ=D+1

ωμ(s)

2
+ const. (21)

This allows us to give an explicit expression for the subleading
term of the generalized universal functional in the strong
interaction limit

Fλ[ρ] ∼ λV SCE
ee [ρ] +

√
λ F ZPE[ρ], λ 
 1, (22)

with

F ZPE[ρ] = 〈�ZPE[ρ]|ĤZPE − V̂ ZPE|�ZPE[ρ]〉

= 1

2

∫
RD

ds
ρ(s)

N
Tr(

√
H(s)), (23)

and |�ZPE[ρ]〉 denotes the ground state of Eq. (20). Notice that
in previous works [5,18,20] F ZPE[ρ] was denoted as 2W ′

∞[ρ],
in analogy with the linear coefficient in the expansion at small
λ of Fλ[ρ] [see also Eq. (48) below].

III. FUNCTIONAL DERIVATIVE OF FZPE[ρ]
FOR N = 2, D = 1

A. SCE + ZPE for N = 2 electrons in 1D

This brief paragraph is devoted to providing the quantities
described so far in the case of two electrons in D = 1, as well
as a set of useful relations that help to considerably simplify
the calculation outlined in the next sections.

Defining f1(s) ≡ s and f2(s) ≡ f (s), we have [29]

f [ρ](s) =
{

N−1
e [Ne(s) + 1], s < N−1

e (1),

N−1
e [Ne(s) − 1], s > N−1

e (1),
(24)

where

Ne(s) ≡
∫ s

−∞
dx ρ(x). (25)

The co-motion function is such that the integral of the density
between x and f (x) always integrates to 1 independently
of x. Therefore, when x < 0, for a symmetric density, f (x)
must necessarily be positive and vice versa. As the reference
electron approaches 0 from the left, the second electron is
pushed toward +∞. When the reference electron crosses the
origin, the second electron must “jump” to −∞.
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The only nonzero frequency [eigenvalue of the 2 × 2 ma-
trix H(s)] is given by [29]

ω(s) ≡ ω2[ρ](s) =
√

v′′
ee[s − f (s)]

(
f ′(s) + 1

f ′(s)

)
. (26)

Notice that vee(x) is convex, v′′
ee(x) > 0, and that f ′(x) > 0,

see Eq. (28b) below. Equation (23) reads explicitly

F ZPE[ρ] = 1

4

∫ +∞

−∞
ds ρ(s)ω(s). (27)

Moreover, Eqs. (13) and (14) read

f ( f (s)) = s ⇒ f ′( f (s)) = 1

f ′(s)
, (28a)

f ′(s) = ρ(s)

ρ( f (s))
, (28b)

implying ω( f (s)) = ω(s).

B. Explicit expression

Inserting Eqs. (18) and (22) into (6) and comparing the
terms proportional to

√
λ, we have

δF ZPE[ρ]

δρ(x)
= −vZPE(x). (29)

The derivation of an explicit form for δF ZPE/δρ(x) starts from
noticing that

δF ZPE[ρ]

δρ(x)
= 1

4

δ

δρ(x)

∫ +∞

−∞
dy ρ(y)ω(y)

= ω(x)

4
+ 1

4

∫ +∞

−∞
dy ρ(y)

δω(y)

δρ(x)
. (30)

The frequency function ω(x) is an implicit functional of
the density, via the co-motion function and its derivative.
Even for two electrons in D = 1, computing the functional
derivatives of f (x) can be delicate, as it changes sign when
Ne(s) = 1: perturbing the density in this point implies taking
into account a step function, for which the chain rule does
not apply (see Appendix in [42] for further details). Step
functions are also expected whenever there is a step in ρ(x)
or a difference in the values of the density at the boundaries
in a compact support. This is not our case, however, since we
assume ρ(x) to be a continuous integrable function defined on
the whole real axis. As a consequence, limx→N−1

e (1)↑ ω(x) =
limx→N−1

e (1)↓ ω(x), there is no step to be taken into account.
Hence, we can simply apply the chain rule and write

δω[ f [ρ], f ′[ρ]](y)

δρ(x)
= ∂ω

∂ f

δ f [ρ](y)

δρ(x)
+ ∂ω

∂ f ′
δ f ′[ρ](y)

δρ(x)
, (31)

which reads

δω[ f [ρ], f ′[ρ]](y)

δρ(x)

= ω(x)[ f ′(x)2 − 1]

2[ f ′(x) + f ′(x)3]

δ f ′[ρ](y)

δρ(x)

+
(

f ′(x) + 1
f ′(x)

)
v′′′

ee[x − f (x)]

2ω(x)

δ f [ρ](y)

δρ(x)
. (32)

Λ[ρ1](x)
Λ[ρ2](x)
Λ[ρ3](x)

−4 −2 0 2 4
−2

−1

0

1

2

x

FIG. 1. 
(y) for the densities in Eq. (39) below. Hartree atomic
units.

For the chain rule, only the regular part of the functional
derivative of f (x), which can be found in [42], is relevant,
and reads in 1D

δ f [ρ](y)

δρ(x)
= �(y − x) − �( f (y) − x)

ρ( f (y))
, (33)

�(x) being the Heaviside step function.
For the functional derivative of f ′[ρ](x), we make use of

(28b),

δ f ′(y)

δρ(x)
= δ

δρ(x)

(
ρ(y)

ρ( f (y))

)

= δ(y − x) − f ′(y)δ( f (y) − x)
ρ( f (y))

− f ′(y)
ρ ′( f (y))
ρ( f (y))

δ f (y)

δρ(x)
. (34)

In the Appendix, we show that, using (33) and (34) in (31) and
inserting the result into (30), δF ZPE/δρ(x) can be expressed as
(see Appendix for details)

δF ZPE[ρ]

δρ(x)
= ω(x)

4
+ 1

4

∫ f (x)

x
dy 
(y)︸ ︷︷ ︸

=I (x)

, (35)

where 
(y) is an odd, well-behaved function (see also Fig. 1)
and reads explicitly


(y) = v′′′
ee( f (y) − y)

ω(y)
+ v′′

ee( f (y) − y)
ω(y)

ρ ′( f (y))
ρ( f (y))

3 f ′(y)2 + 1

f ′(y)2 + 1
.

(36)

Equation (21) implies a sum rule on δF ZPE/δρ(x). Inserting
(29) into (21), and remembering that ω(s) = ω( f (s)), we see
that we must have

δF ZPE[ρ]

δρ(s)
+ δF ZPE[ρ]

δρ( f (s))
= ω(s)

2
. (37)

Since I ( f (x)) = −I (x), this is consistent with our result (35).
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C. Numerical results for selected densities

In this section, we are going to verify Eq. (35) numerically,
using the effective convex Coulomb interaction renormalized
at the origin

vee(x) = 1

1 + |x| . (38)

(See [20] for a brief discussion on the importance of convexity
of the interaction in SCE-DFT.) We pick three test densities,
peaked at x = 0,

ρ1(x) = 2√
π

e−x2
, x ∈ R, (39a)

ρ2(x) = 2

π

1

cosh(x)
, x ∈ R, (39b)

ρ3(x) = 2

π

1

1 + x2
, x ∈ R. (39c)

All the respective co-motion functions can be evaluated an-
alytically since the inverse function of (25) can be written
explicitly. In Fig. 2, we provide the profile of δF ZPE/δρ(x)
for the test densities (39). The plots show that the shape of the
curve can vary drastically depending on the density chosen.
In particular, in all the densities we chose (excluding ρ3) the
functional derivative shows divergences both in the origin and
in the large x limit. The nature of these divergences shall be
investigated deeper in Sec. III D.

Since the derivation of (35) was cumbersome, we decided
to verify it numerically to exclude any possible error. We thus
simply use the definition of functional derivative

F ZPE[ρ + εφ] − F ZPE[ρ]

∼ ε

∫
dx

δF ZPE[ρ]

δρ(x)
φ(x), ε � 1. (40)

If our expression for the functional derivative is correct, we
should have that the slope of the left-hand side of (40) at ε =
0 coincides with the straight line on the right-hand side of
(40). For the numerical verification, we consider the following
perturbations:

φ1(x) = e−3x2(
x2 − 5

36

)
cos(x), (41a)

φ2(x) = e−3x4
(x2 − 0.171617) cos(x). (41b)

The shapes of these functions have been chosen arbitrarily,
though they are symmetric, integrate to 0 (thus not changing
the number of particles), and, thanks to their fast decay at large
x, are such that ρi(x) + εφ(x) > 0 ∀ x ∈ R, for at least ε ∈
[−0.5, 0.5] for the chosen densities. In Fig. 3 we show the left
side of Eq. (40) as a function of ε and the corresponding right
side linear in ε. In all cases the tangent of the left side of (40)
shows an excellent agreement with (35).

D. Divergencies of δFZPE/δρ(x) in 1D

In what follows, we study the behavior of the functional
derivative at large x. The same behavior can be deduced for
small x, because ω(x) = ω( f (x)) and limx→0± f (x) = ∓∞
[see text after Eq. (25)]. Keeping in mind that limx→∞ I (x) =

FIG. 2. Functional derivative as from (35) for the first three
densities (39). Hartree atomic units.

const, it is clear from (35) that for x 
 1

δF ZPE[ρ]

δρ(x)
∼ ω(x)

4
⇒ vZPE(x) ∼ −ω(x)

4
. (42)

The behavior of δF ZPE/δρ(x) at large x is dominated by ω(x),
which in turn is determined by the interplay between the
electron-electron interaction and the density decay at large x,
cf. (26). With interaction (38) v′′

ee(x) ∼ x−3 at large x, hence
the frequency will diverge whenever ρ(x) = o(x−3) for x 
 1.
This is the case for densities ρ1,2 in (39) which both decay
exponentially (or faster). Such a divergence of ω(x) makes the
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FIG. 3. For variation φ1 (left column) and φ2 (right column), and the densities (39) the two members of (40) are plotted. Hartree atomic
units.

interpretation of the expansion of vλ less straightforward: for
what was just stated in (42), at large distances, its asymptotic
expansion reads

vλ[ρ](x) ∼ λ vSCE(x) −
√

λ
ω(x)

4
, x 
 1. (43)

At first glance, it seems that the expansion at large λ for vλ is
not consistent with the requirement vλ ∈ L3/2 + L∞: if ω(x)
diverges to +∞ then, for every fixed λ, there is a point x
after which the second term in (43) becomes dominant and
the minimum of vλ(x) is at x = ±∞ [since vSCE(x) ∼ −(N −
1)/|x| for large x for the chosen interaction]. To make sense of
(43), one has to be careful in taking the correct order of limits:

what we mean here is that for each fixed x the expansion of vλ

as a function of λ follows Eq. (43).
On the other hand, 1D models often assume an effective

electron-electron interaction depending on the physics they
aim to describe, often leading to short-range interactions.
From the preceding discussion, it is clear that a short-range
interaction should lead to a better behavior of ω(x) and hence,
the behavior of vZPE. We have tried two different short-range
interactions, namely, a modified Yukawa potential

vYuk
ee (x) = e−α|x|

1 + |x| , (44a)
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FIG. 4. Different frequency profile for ρ2 with the regularized
Coulomb interaction (38) (ωCoul), the Yukawa interaction (44a) with
α = 2 (ωYuk) and the exponential interaction (44b) (ωexp). Hartree
atomic units.

and a purely exponential one, popular in DMRG calculations
[43],

vexp
ee (x) = Ae−κ|x|, (44b)

with κ−1 = 2.385345 and A = 1.071295. As an example, in
Fig. 4 we plot how the profile of ω[ρ2](x) varies as we
pick different interactions. If we pick a sufficiently high
α, ω(x) is damped [and consequently the functional deriva-
tive δF ZPE/δρ(x)]. We choose α = 2, since α � 1 leads to
a convergent frequency [ω[ρ2](x) ∼

√
πα

2 x− 1
2 e(1−α)x]. Notice

that neither (44a) nor (44b) would provide a finite ω(x) when
using density ρ1, because the Gaussian decay would prevail
on both interactions with any choice of parameters. A faster
decaying interaction would be needed, e.g., ∼e−x2

.

IV. EXCHANGE-CORRELATION POTENTIAL
FOR A 1D DIMER

It is known [21,26,35,44–46] that the exact exchange-
correlation (XC) potential of a homonuclear dimer builds a
peak in the midbond region that, in the dissociating limit, must
be proportional in height to the ionization potential of each
fragment. Although some GGA functionals build peak-like
features in the bond midpoint [46], they miss its peculiar
scaling properties [21] which in general are not recovered by
local, semilocal, or hybrid functionals [21]. Using only −vSCE

as an approximation to the true XC correlation potential does
not allow us to recover exactly this feature, which is of purely
kinetic nature [21,22,29]. It is the purpose of this section to
investigate whether the expression obtained so far can help in
reproducing, at least qualitatively, this characteristic.

Consider the density ρD

ρD(R; x) = 1
2

(
e−|x− R

2 | + e−|x+ R
2 |). (45)

Having two equal maxima located at ±R
2 , ρD can be con-

sidered as a 1D model for a homonuclear dimer whose
density profile is parametrically dependent on the internu-
clear distance R. This model has been used several times

FIG. 5. The SCE XC potential (solid) and the effect of the
ZPO correction (dashed) for R = 15. Inset: functional derivative of
F ZPE[ρ] as from (35) for ρD(R; x) calculated numerically at different
internuclear distances R. Hartree atomic units.

[27,32,33,35,43] since it has been proved to mimic many
exact features of the exact KS potential for real molecules;
in particular, it gives us the opportunity to model the bond
stretching and analyze the kinetic contributions to the XC
potential.

To write an expression for the XC potential, we start from
the adiabatic connection formalism [47]. The XC energy can
be written exactly in terms of an integral over the coupling λ

EXC[ρ] =
∫ 1

0
dλWλ[ρ], (46)

where

Wλ[ρ] = 〈�λ[ρ]|V̂ee|�λ[ρ]〉 − UH[ρ], (47)

UH[ρ] being the Hartree functional. Using the large λ expan-
sion of the adiabatic connection integrand [7]

Wλ[ρ] ∼ V SCE
ee [ρ] − UH[ρ] + F ZPE[ρ]

2
√

λ
, λ 
 1, (48)

we obtain

EXC[ρ] ∼ EZPE
XC [ρ] = V SCE

ee [ρ] − UH[ρ] + F ZPE[ρ], (49)

and

vXC[ρ](x) ∼ −vSCE(x) − vH(x) + δF ZPE[ρ]

δρ(x)
. (50)

In Fig. 5 we show the potential in (50) for R = 15. Via (42),
δF ZPE/δρ(x) indeed introduces a correction in the midbond
region. In fact, since we have [42]

f [ρD](x → 0+) ∼ ln(x) − R + ln

(
2

1 + e−R

)
, (51)

from our treatment in Sec. III D, the divergence in the mid-
bond region can be readily evaluated inserting (51) into (26):

δF ZPE[ρD]

δρD(R; x)
∼ (8x)−1/2

[1 + |R + ln(1 + e−R) − ln(2x)|]3/2
.

(52)
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For any fixed x �= 0, we find δF ZPE/δρD(R; x) → 0 as R →
∞ while similarly, because ω(x) = ω( f (x)), a divergence of
the XC potential appears also at large x. Thus, the kinetic
correlation energy introduced by the ZPE creates a divergence
instead of a finite peak in the bond midpoint, and this diver-
gence occurs on a region that shrinks when R → ∞. This
divergence is due to the extreme correlation between the two
electrons: when, say, electron 1 oscillates around the origin,
electron 2 jumps from plus to minus infinity. In the exact
wave function, when one electron crosses the bond midpoint,
the conditional position of the other electron also “jumps”
from one atom to the other (which is the origin of the peak
[21,35,44]), but it is distributed according to the one-electron
density on each atom.

The ZPE correction to the SCE approximation of vXC in
(50) includes a positive contribution from the region λ ∼ 0
that, although integrable, is too large to provide a reasonable
estimate of the XC energy EXC[ρ]. This is due to the fact
that we are using only pieces of information from the high
coupling limit to approximate Wλ[ρ]. A way to improve
this approximation is to include also exact ingredients from
the λ → 0 limit [29,48–50], by writing an expression that
reproduces the correct behavior of Wλ at small and strong
couplings; among these, the interaction strength interpola-
tion (ISI) [48] has been the object of study in recent years
[30,50,51]. In this final paragraph, we investigate the effect of
a simplified ISI as proposed in [29], which is size consistent
for the dissociation of a system into two equal fragments.
Hence we approximate Wλ[ρ] to

W ISI ZPE
λ [ρ] = V SCE

ee [ρ] − UH[ρ] + F ZPE[ρ]

2
√

λ + a[ρ]
, (53)

with

a[ρ] =
(

F ZPE[ρ]

2
[
Ex[ρ] − (

V SCE
ee [ρ] − UH[ρ]

)]
)2

. (54)

The XC energy reads then

E ISI
XC[ρ] ∼ V SCE

ee [ρ] − UH[ρ]

+ F ZPE[ρ](
√

1 + a[ρ] −
√

a[ρ])︸ ︷︷ ︸
F ZPE

ISI [ρ]

. (55)

While the XC potential is changed considerably at small R
(see Fig. 6), for large internuclear distances the effect of the
ISI becomes negligible: already at R = 5 (Fig. 7) we see that
the effect is small and at R = 15 the two curves become
indistinguishable.

V. CONCLUSIONS

In this work we worked out an explicit expression for the
functional derivative of the subleading term of the generalized
universal functional F ZPE[ρ] in the strong coupling limit of
DFT for two electrons in 1D. Our expression respects the sum
rules deduced first in [18] on physical grounds, and has been
verified numerically.

We found that the asymptotic behavior of δF ZPE/δρ(x)
for x → ∞ is dictated by the asymptotic behavior of the
ZPE frequency ω(x). The asymptotic behavior of ω(x) is

FIG. 6. Functional derivative of F ZPE[ρ] and F ZPE
ISI [ρ] for R =

0.5. Hartree atomic units.

dominated by the ratio v′′
ee(x)/ρ(x) for large x, so typically

depends on the relative decay of the density compared to the
interaction. For relatively fast decaying densities, ω(x) and
hence vZPE diverges for x → ∞ and x → Ne(1). We expect
similar features to be present in more general cases (higher
dimensions and more particles). Though we do not have an
explicit expression of F ZPE to directly evaluate its functional
derivative, the sum rule (21) is generally valid and indicates
that vZPE should have at least the same divergencies as the
ZPE frequencies ωμ(x). So in the general 1D case, we expect
divergencies of the ZPE potential at the points where the
density integrates to an integer particle number.

By studying the dissociation of a symmetric dimer, we have
demonstrated that the ZPE correctly generates a peak in the
midpoint region, properly purely built by the kinetic energy.
Unfortunately, the diverging features of ω(x) also make the
peak diverging for Coulomb systems, instead of reaching a
finite value as in the exact case.

In the future, we aim to investigate the next leading term of
the generalized universal functional. This should include exact
pieces of information on the ionization energy, hence “curing”
the divergencies appearing at the ZPE order [22]. Another

FIG. 7. Functional derivative of F ZPE[ρ] and F ZPE
ISI [ρ] for R = 5.

Hartree atomic units.
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promising research line is the calculation of the kernel of
F ZPE[ρ], i.e., its second functional derivative, which can be
used as an adiabatic but spatially nonlocal XC kernel in the
response formulation of TD-DFT.
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APPENDIX: CALCULATION DETAILS FOR δFZPE/δρ(x)

We have from Eq. (27)

δF ZPE[ρ]

δρ(x)
= ω(x)

4
+ 1

4

∫ ∞

−∞
dy ρ(y)

δω(y)

δρ(x)
. (A1)

Using the chain rule in (31), the integral in the last equation
can be written as

∫ ∞

−∞
dy ρ(y)

δω(y)

δρ(x)
=

∫ ∞

−∞
dy

ω(y)

2

f ′(y)2 − 1

f ′(y)2 + 1
[δ(y − x) − f ′(y)δ( f (y) − x)]

+
∫ ∞

−∞
dy

ω(y)

2

(
v′′′

ee[ f (y) − y]

v′′
ee[ f (y) − y]

− f ′(y)2 − 1

f ′(y)2 + 1

ρ ′( f (y))
ρ( f (y))

)
f ′(y)[�(y − x) − �( f (y) − x)]. (A2)

With the substitution u = f (y), the second delta function and step function can be combined with the first ones to yield∫ ∞

−∞
dy ρ(y)

δω(y)

δρ(x)
=

∫ ∞

−∞
dy ω(y)

f ′(y)2 − 1

f ′(y)2 + 1
δ(y − x) +

∫ ∞

−∞
dy

ω(y)

2

[
v′′′

ee[ f (y) − y]

v′′
ee[ f (y) − y]

[ f ′(y) + 1]

− f ′(y)2 − 1

f ′(y)2 + 1

(
f ′(y)

ρ ′( f (y))
ρ( f (y))

+ ρ ′(y)

ρ(y)

)]
. (A3)

The integrand of the last integral is not well behaved due to the presence of ω(y), and is prone to numerical instabilities when
evaluated. In our investigation we found that both integrals have opposite divergences, which can be eliminated by combining
them. To do so, we proceed along two lines. First, we integrate the Dirac deltas in the first term and then rewrite the result
as an integral, effectively performing an integration by parts of the Dirac delta. Second, remembering that the functional
derivative is only defined modulo a constant, we can shift the region of integration, as this only gives a constant contribution,
and write∫ ∞

−∞
dy ρ(y)

δω(y)

δρ(x)
= ω(x)

f ′(x)2 − 1

f ′(x)2 + 1
+

∫ b+

x
dy

ω(y)

2

[
v′′′

ee[ f (y) − y]

v′′
ee[ f (y) − y]

[ f ′(y) + 1] − f ′(y)2 − 1

f ′(y)2 + 1

(
f ′(y)

ρ ′( f (y))
ρ( f (y))

+ ρ ′(y)

ρ(y)

)]
,

(A4)

where we defined b+ > 0 as the point where b+ = − f (b+). As outlined, we can now use the fundamental theorem of calculus
to rewrite the first term as

ω(x)
f ′(x)2 − 1

f ′(x)2 + 1
=

∫ x

b+
dy

(
ω′(y)

f ′(y)2 − 1

f ′(y)2 + 1
+ 4ω(y)

[ f ′(y) + 1/ f ′(y)]2

f ′′(y)

f ′(y)

)
. (A5)

We make use of

ω′(y) = 1

2ω(y)

[
v′′′

ee[ f (y) − y][ f ′(y) − 1]

(
f ′(y) + 1

f ′(y)

)
+ v′′

ee[ f (y) − y]

(
1 − 1

f ′(y)2

)
f ′′(y)

]
, (A6a)

f ′′(y) = f ′(y)

(
ρ ′(y)

ρ(y)
− f ′(y)

ρ ′( f (y))
ρ( f (y))

)
(A6b)

to write

ω(x)
f ′(x)2 − 1

f ′(x)2 + 1
=

∫ x

b+
dy

[
v′′′

ee[ f (y) − y]

2ω(y)
[ f ′(y) − 1)( f ′(y) − f ′(y)−1]

+ v′′
ee[ f (y) − y]

2ω(y)

f ′2(y) + f ′(y)−2 + 6

f ′(y) + f ′(y)−1

(
ρ ′(y)

ρ(y)
− f ′(y)

ρ ′( f (y))
ρ( f (y))

)]
. (A7)

Combining these results we can write the integral in (A1) as∫ ∞

−∞
dy ρ(y)

δω(y)

δρ(x)
=

∫ b+

x
dy

[
v′′′

ee[ f (y) − y]
f ′(y) + 1

ω(y)
− v′′

ee[ f (y) − y]

ω(y)

×
(

ρ ′(y)

ρ(y)

f ′(y)2 + 3

f ′(y) + f ′(y)−1
− f ′(y)

ρ ′( f (y))
ρ( f (y))

f ′(y)−2 + 3

f ′(y) + f ′(y)−1

)]
. (A8)
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It is not transparent from this expression that (A8) is odd under the exchange x → f (x). Moreover, the term ∼v′′′
ee f /ω might not

be bounded. To make it more clear, we apply again the transformation u = f (y) to the first two terms in the integrand above and
rewrite them as ∫ b+

x
dy

[
v′′′

ee[ f (y) − y]
f ′(y)

ω(y)
− v′′

ee[ f (y) − y]

ω(y)

ρ ′(y)

ρ(y)

f ′(y)2 + 3

f ′(y) + f ′(y)−1

]

= −
∫ −b+

f (x)
du

[
v′′′

ee[ f (u) − u]

ω(u)
+ v′′

ee[ f (u) − u]

ω(u)
f ′(u)

ρ ′( f (u))
ρ( f (u))

f ′(u)−2 + 3

f ′(u) + f ′(u)−1

]
. (A9)

Now the integrands can be summed to yield∫ ∞

−∞
dy ρ(y)

δω(y)

δρ(x)
=

(∫ b+

x
dy +

∫ f (x)

−b+
dy

)[
v′′′

ee[ f (y) − y]

ω(y)
+ v′′

ee[ f (y) − y]

ω(y)

ρ ′( f (y))
ρ( f (y))

3 f ′(y) + f ′(y)−1

f ′(y) + f ′(y)−1

]
, (A10)

and adding the integration between −b+ and b+, which amounts to adding only an immaterial constant to the functional
derivative, yields Eq. (35).
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