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The Hartree-Fock ground state of a homogeneous electron gas is never translation invariant, even at high
densities. As proved by Overhauser, the (paramagnetic) free Fermi gas is always unstable under the formation
of spin- or charge-density waves. We give here an explicit bound on the energy gain due to the breaking of
translational symmetry. Our bound is exponentially small at high density, which justifies a posteriori the use of
the noninteracting Fermi gas as a reference state in the large-density expansion of the correlation energy of the
homogeneous electron gas. We are also able to discuss the positive temperature phase diagram and prove that
the Overhauser instability only occurs at temperatures which are exponentially small at high density. Our work
sheds a new light on the Hartree-Fock phase diagram of the homogeneous electron gas.
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I. INTRODUCTION

The homogeneous electron gas (HEG), where electrons
are placed in a positively charged uniform background, is a
fundamental system in quantum physics and chemistry [1,2].
In spite of its simplicity, it provides a good description of
valence electrons in alkaline metals (e.g., in solid sodium [3])
and of the deep interior of white dwarfs [4,5]. It also plays
a central role in the local density approximation of density
functional theory [1], where it is used for deriving empirical
functionals [6–9].

The ground state of the HEG is highly correlated at low and
intermediate densities. It was first predicted by Wigner that the
particles form a bcc ferromagnetic crystal at small densities
[10,11]. But correlation also plays an important role at high
densities: The exact large-density expansion of the correlation
energy has a peculiar logarithm due to the long range of the
Coulomb potential, which cannot be obtained from regular
second-order perturbation theory [12–15].

In principle, the correlation energy of a HEG is defined
as the difference between the Hartree-Fock (HF) ground-
state energy and the true energy. However, many authors use
instead the (paramagnetic) noninteracting Fermi gas (FG) as a
reference. This state indeed provides the first two terms of the
large-density expansion of the HEG total energy [16]. But it is
not the absolute ground state of the Hartree-Fock HEG. This
was first suggested by Wigner [11] at high densities and then
proved by Overhauser [17–19] who showed that a free Fermi
gas is unstable under the formation of spin- or charge-density
waves. Recently, the phase diagram of the Hartree-Fock HEG
has been studied numerically in great detail [20–23]. It was
discovered that the system is crystallized at all densities and
that, at high densities, the electrons form an incommensu-
rate lattice having more crystal sites than electrons [21,23].
Similar conclusions were reached in two space dimensions
[23–25].

These works naturally raise the question of determining the
energy gain of the true HF ground state, compared with the

free Fermi Gas. A too large deviation could affect the large-
density expansion of the exact correlation energy of the HEG.
In Ref. [26, Eqs. (26)–(28)] it was argued that the Overhauser
trial state only lowers the energy by an exponentially small
amount:

eHF(rs) − eFG(rs) � −6.32 × 10−4

r2
s

exp

(
−23.14√

rs

)
. (1)

Here eHF(rs) is the exact (unknown) Hartree-Fock energy per
particle and

eFG(rs) = 3
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is the energy per particle of the (paramagnetic) free Fermi
gas. We work in terms of the dimensionless parameter rs =
(3/4πρa3

B)1/3, where aB = h̄2(me2) is the Bohr radius. The
energies are expressed in Hartree units: 1 Ha = h̄2/(ma2

B).
Based on the numerical simulations from Ref. [26], it

seems plausible that the energy gain is indeed exponentially
small. We provide here the first proof of this fact. More
precisely, we show the exact inequality
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(2)
The parameter a can be adjusted as we like, but the bound
(2) is only valid for rs smaller than a critical value rs(a),
which tends to 0 when a → 0. Choosing, for instance, a = 4,
the condition is rs � 1.7. Our estimate (2) takes exactly the
same form as the upper bound (1) derived in Ref. [26], with,
however, rather different constants. It confirms the prediction
that the breaking of symmetry induces an exponentially small
energy gain at large densities. In particular, our bound (2)
justifies of the use of the free Fermi gas as a reference state
to obtain all orders in the large-density expansion of the
correlation energy of the HEG.
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Our proof of (2) proceeds in two steps. First, we bound the
energy gain in terms of the lowest eigenvalue of an effective
one-particle operator involving the Coulomb potential and a
degenerate effective dispersion:∣∣P2 − k2

F

∣∣ − 1

r
.

Here P = −i∇r is the usual momentum operator. Note that
the first term is degenerate on the Fermi sphere in momentum
space. Then, we estimate this eigenvalue by using spectral
techniques recently developed in the context of BCS theory
[27–29].

By slightly modifying the argument leading to the lower
bound (2), we are able to also estimate the critical temperature
Tc(rs) above which the system is a paramagnetic fluid. We
show below that

Tc(rs) � 5
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for rs sufficiently small. In addition, for the exponentially
small temperatures where symmetry can be broken, we can
prove that the gain in the free energy is also exponentially
small, as it is for T = 0.

The rest of the paper is devoted to the derivation of inequal-
ities (2) and (3).

II. A LOWER BOUND INVOLVING A DEGENERATE
HYDROGEN-TYPE OPERATOR

Let us consider a box CL of volume L3, with peri-
odic boundary conditions. We fix the Fermi level kF =
(9π/4)1/3r−1

s and denote by γFG the corresponding free Fermi
sea. Let γ be the exact (unknown) Hartree-Fock ground state
in CL, with the same number N = 2#{k ∈ (2π/L)Z3 : k �
kF} of electrons. The energy difference can be expressed as

E (γ ) − E (γFG)

=
∑
k,σ

εL(k)
(
γ̂ (k, k)σ,σ − γ̂FG(k, k)σ,σ

)
− 1

2

∫∫
(CL )2

|γ (x, y) − γFG(x − y)|2GL(x − y)dxdy

+ 1

2

∫∫
(CL )2

ργ (x)ργ (y)GL(x − y)dxdy. (4)

Here σ ∈ {↑,↓} is the spin variable. In the second term we
used the convention

|A|2 :=
∑
σ,σ ′

|Aσ,σ ′ |2

for a 2 × 2 matrix A. The function GL is the L-periodic
Coulomb potential with no zero mode, ργ (x) = TrC2 γ (x, x)
is the total density, and

γ̂FG
(
k, k′)

σ,σ ′ = �(kF − k)δk,k′δσ,σ ′ .

Finally,

εL(k) = k2

2
− 4π

L3

∑
p �=0

�(kF − p)

|p − k|2

is the L-periodic effective dispersion relation of the free Fermi
gas, which converges in the limit L → ∞ to

ε(k) = k2

2
− kF

π

(
k2

F − k2

2kkF
ln

∣∣∣∣k + kF

k − kF

∣∣∣∣ + 1

)
.

To arrive at the formula (4) we have expanded the exchange
term and we have used the fact that ργFG is constant, so the
free FG energy has no direct term.

We can replace εL by ε at the expense of an error
N maxk |εL(k) − ε(k)| = o(N ). Then we use the following
expression for the first term in Eq. (4):∑

k,σ

ε(k)(γ̂ (k, k)σ,σ − γ̂FG(k, k)σ,σ )

=
∑
k,k′

|ε(k) − ε(kF)||γ̂ (k, k′) − γ̂FG(k, k′)|2. (5)

Similar formulas have been used several times to control
the exchange term in Hartree-Fock quantum electrodynamics
[30,31] and the variation of energy that an external potential
can produce in a free Fermi sea [32]. Formula (5) follows from
the remarks that (i) for our two orthogonal projections we have

(γ − γFG)2 = γ ⊥
FG(γ − γFG)γ ⊥

FG − γFG(γ − γFG)γFG

and (ii) the dispersion relation is equal to ±|ε(k) − ε(kF)|
depending on whether k � kF or k � kF since ε is increasing.
In other words, we use the fact that

γFG = �(kF − k) = �(ε(kF) − ε(k))

is also the ground state of its own effective dispersion ε.
It is useful to think of the relative density matrix

	(x, y) := γ (x, y) − γFG(x, y)

as a two-particle wave function with spin 1/2 but without the
fermionic or bosonic symmetry. Then, using Eq. (5) we may
rewrite the kinetic and exchange terms of Eq. (4) in the form
〈	|H2,L|	〉 with the two-particle operator

H2,L = 1
2 [|ε(Px) − ε(kF)| + |ε(Py) − ε(kF)|] − 1

2 GL(x − y),

where Px = −i∇x, so |ε(Px) − ε(kF)| is the operator in direct
space corresponding to the degenerate dispersion relation
k → |ε(k) − ε(kF)| in momentum space. The energy differ-
ence now reads

E (γ ) − E (γFG) = 〈	|H2,L|	〉 + 1

2

∫∫
(CL )2

ργ (x)ργ (y)GL

× (x − y)dxdy + o(N ). (6)

The two-particle Hamiltonian H2,L naturally describes the
possible excitations of the free Fermi gas (under the condition
that the density is not altered to leading order, as is the case
for spin-density waves). It is the main object of interest for
the Overhauser instability. In fact, H2,L is the Hessian of the
Hartree-Fock energy at γFG, to which the direct term has been
dropped. The difficulty here is that we do not have the freedom
to generate any two-particle wave function 	(x, y) that we
like by perturbing γFG. This is because 	 = γ − γFG with
γ being a one-particle density matrix, which implies some
hidden constraints on 	. However, for a lower bound we may
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discard these constraints and simply bound

〈	|H2,L|	〉 � λ1(H2,L )
∫∫

(CL )2
|	|2 � 2Nλ1(H2,L ).

Here λ1(H2,L ) is the (negative) ground-state energy of H2,L

and we have used the fact that∫∫
(CL )2

|	|2 =
∑
k,k′

|γ̂ (k, k′) − γ̂FG(k, k′)|2 � 2N. (7)

After removing the center of mass we see that λ1(H2,L ) =
λ1(H1,L ) with the one-particle operator

H1,L = |ε(Pr ) − ε(kF)| − 1
2 GL(r).

Hence we have 〈	|H2,L|	〉 � 2Nλ1(H1,L ). For a lower
bound we may discard the positive direct term in Eq. (6) and,
after passing to the thermodynamic limit L → ∞, we arrive
at our final lower bound on the relative energy per particle

eHF(rs) − eFG(rs) � 2λ1

(
|ε(P) − ε(kF)| − 1

2r

)
(8)

with the momentum operator P = −i∇r.

III. STUDY OF THE DEGENERATE OPERATOR

In this section we derive a bound on the lowest eigenvalue
λ1(H1) of the one-particle operator

H1 := |ε(P) − ε(kF)| − 1

2r
, (9)

appearing in Eq. (8). This is a hydrogen-type Hamiltonian
with the usual kinetic energy replaced by a dispersion relation
degenerating on the Fermi sphere of radius kF.

First we replace ε by the noninteracting dispersion k2/2 by
using

|ε(k) − ε(kF)| � 1
2

∣∣k2 − k2
F

∣∣
for all k. This follows from the remark that if f and g are two
increasing functions, then

| f (k) + g(k) − f (kF) − g(kF)|
= | f (k) − f (kF)| + |g(k) − g(kF)| � | f (k) − f (kF)|.

This allows us to remove the mean-field part in ε, since it is
increasing in k. After scaling we deduce that

λ1(H1) � k2
F

2
λ1

(
|P2 − 1| − 1

kFr

)
, (10)

with of course P2 = −�r. In the large-kF limit, we claim that
the eigenvalue on the right behaves as

ln

[
−λ1

(
|P2 − 1| − 1

kFr

)]
∼

kF→∞
−C

√
kF

for some C. Only the lower bound matters for our study.
It is a general fact that operators of the form

|P2 − 1| − V (r)

always have negative eigenvalues, whatever the size of the
(attractive) potential V (r) [33,34]. Operators of this type have
appeared before in the study of the roton spectrum of liquid

helium II [35] and in the BCS theory of superconductiv-
ity [29,36–38]. Here we rely on techniques introduced in
Refs. [27,28,34] in the context of BCS theory. Since those
in principle only apply to potentials decaying faster than the
Coulomb potential at infinity, we first need to cut its long
range; for instance by using the Yukawa potential. So we use
the lower bound

|P2 − 1| − 1

kFr
� |P2 − 1| − Ym(r)

kF
− m

kF
, (11)

where Ym(r) = e−mr/r, and we estimate the first eigenvalue of
|P2 − 1| − Ym(r)/kF. The parameter m will be chosen at the
end of the argument.

To get our hands on the lowest eigenvalue, we use the
Birman-Schwinger principle [39]. It can be described as fol-
lows: Consider two positive operators A, B � 0. Then

(A − B) f = −E f

if and only if

C(E )g = g, with C(E ) = B
1
2 (A + E )−1B

1
2

and g = B1/2 f . Hence −E is an eigenvalue of A − B if and
only if 1 is an eigenvalue of C(E ). Now we remark that the
eigenvalues of the operator C(E ) are decreasing with E . This
implies that E � −λ1(A − B) if and only if all the eigenvalues
of C(E ) are below 1, which is the same as saying that∣∣∣∣B1/2(A + E )−1B1/2

∣∣∣∣
op � 1,

where ‖ · ‖op denotes the operator norm (the largest eigen-
value). In our context, we deduce from this principle that∣∣∣∣∣∣∣∣√Ym

1

|P2 − 1| + E

√
Ym

∣∣∣∣∣∣∣∣
op

� kF (12)

if and only if E � −λ1[|P2 − 1| − k−1
F Ym(r)]. This is how we

are going to estimate the first eigenvalue from below.
We now provide an upper bound on the operator norm in

(12). Following Refs. [27,28,34], we write the kernel of the
operator in (12) in the form

1

(2π )3

∫ ∞

0

r2dr

|r2 − 1| + E

√
Ym(x)

∫
S2

eirω·(x−y)dω
√

Ym(y)

and estimate its norm by∣∣∣∣∣∣∣∣√Ym
1

|P2 − 1| + E

√
Ym

∣∣∣∣∣∣∣∣
op

� 1

(2π )3

∫ ∞

0

r2N (r)dr

|r2 − 1| + E
,

where

N (r) :=
∣∣∣∣∣∣∣∣√Ym(x)

∫
S2

eirω·(x−y)dω
√

Ym(y)

∣∣∣∣∣∣∣∣
op

= 1

r2

∣∣∣∣∣∣∣∣√Ym
r
(x)

∫
S2

eiω·(x−y)dω
√

Ym
r
(y)

∣∣∣∣∣∣∣∣
op

. (13)

The operator on the right acts by first multiplying by
√

Ym/r ,
then going to the Fourier domain and restricting to the unit
sphere, then going back to the direct space and multiplying
again by

√
Ym/r . The operator norm is the same as if we do

things in the reverse order; namely, we work with functions
on the unit sphere that we multiply in space by Ym/r . This uses
the fact that the spectrum of AA† is the same as that of A†A,
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except possibly for the eigenvalue 0. From this we conclude
as in Refs. [27,34] that

N (r) = 4π

r2
max∫

S2 | f (ω)|2dω=1

∫
S2

∫
S2

f (p) f (q)dpdq

|p − q|2 + (m/r)2

= 1

r2

∫
S2

∫
S2

dpdq

|p − q|2 + (m/r)2

= 4π2

r2
ln

(
1 + 4r2

m2

)
.

In the second line we have used the fact that the maximum
is attained when f is constant on the sphere, by [34, Re-
mark 2.5]. This is because (p, q) → [|p − q|2 + (m/r)2]−1

is rotationally invariant and pointwise positive, so its highest
eigenfunction can only be the trivial spherical harmonics,
by the Perron-Frobenius theorem. As a conclusion, we have
proved that∣∣∣∣∣∣∣∣√Ym

1

|P2 − 1| + E

√
Ym

∣∣∣∣∣∣∣∣
op

� 1

2π

∫ ∞

0

dr

|r2 − 1| + E
ln

(
1 + 4r2

m2

)
:= I (E , m).

For small E and small m, the integral behaves as

I (E , m) ∼
E → 0+
m → 0+

1

π
ln(E−1) ln(m−1).

More precisely, we have

I (E , m) � 1

π
ln(E−1) ln(m−1) + C ln(m−1) + C (14)

for some large constant C and for E , m < 1. This behavior of
I suggests that we take E = e−√

πkF and m = t
√

kFe−√
πkF for

some constant t . We then obtain

I (e−√
πkF , t

√
kFe−√

πkF ) � kF −
√

kF

2
√

π
ln kF + O(

√
kF).

Due to the logarithm, the right side is less than kF for kF

large enough. We define kF(t ) to be the smallest number for
which I (e−√

πkF , t
√

kFe−√
πkF ) � kF for kF � kF(t ). Then the

Birman-Schwinger principle gives

λ1

(
|P2 − 1| − Ym(r)

kF

)
� −e−√

πkF

for all kF � kF(t ). Inserting in (11) we obtain

λ1

(
|P2 − k2

F| − 1

r

)
� −k2

F

(
1 + t√

kF

)
e−√

πkF . (15)

Recalling (10) and (8), we obtain our final lower bound:

eHF(rs) − eFG(rs) � −k2
F

(
1 + t√

kF

)
e−√

πkF .

Inserting rs = (9π/4)1/3k−1
F and a = t (9π/4)1/6, this is (2).

To determine the concrete range of validity of our inequal-
ity; that is, the precise value of kF(t ), we numerically solve the
equation

I (e−√
πkF (t ), t

√
kF(t )e−√

πkF (t ) ) = kF(t ).

We have found, for instance, rs(2) � 0.47, rs(4) � 1.7, and
rs(10) � 5.5.

IV. THE CRITICAL TEMPERATURE

We have seen that the energy gain due to the Overhauser
instability is exponentially small at high density. Here we
explain that our bound (15) on the effective one-particle
operator |P2 − k2

F| − 1/r can also be used to estimate the
critical temperature.

Let us go back to the box of side length L and denote by
γrs,T,L the paramagnetic Hartree-Fock fluid state of density
ρ at temperature T > 0.1 This state is studied at length in
Ref. [40]. It solves the self-consistent equation

γ̂rs,T,L(k, k) = {
1 + exp β

(
εrs,T,L(k) − μrs,T,L

)}−1
(16)

with the dispersion relation

εrs,T,L(k) = k2

2
− 4π

L3

∑
p �=0

γ̂rs,T,L(p, p)

|p − k|2 (17)

and where the chemical potential μrs,T,L is chosen to ensure
that the total number of particles in the box is N = ρL3. Then
the free energy gain can be expressed similarly as in Eq. (4)
in the form

E (γ ) − T S(γ ) − E
(
γrs,T,L

) + T S
(
γrs,T,L

)
= THFD

(
γ , γrs,T,L

)
− 1

2

∫∫
(CL )2

∣∣γ (x, y) − γrs,T,L(x − y)
∣∣2

GL(x − y)dxdy

+ 1

2

∫∫
(CL )2

ργ (x)ργ (y)GL(x − y)dxdy, (18)

where

HFD(A, B) = Tr{A(ln A − ln B)

+(1 − A)[ln(1 − A) − ln(1 − B)]}
is the Fermi-Dirac relative entropy. In Ref. [41] (see also
Ref. [42, Lemma 1]), it is proved that

THFD(A, B) � Tr

{
h

tanh (h/2T )
(A − B)2

}
when B = (1 + eh/T )−1 is a Fermi-Dirac equilibrium state
with the one-particle Hamiltonian h. Using, for instance,

h

tanh (h/2T )
� T + |h|

2

and arguing as in Sec. II, we can control the energy gain from
below by

E (γ ) − T S(γ ) − E
(
γrs,T,L

) + T S
(
γrs,T,L

)
�

(
T + λ1

(
Krs,T,L

)) ∫∫
(CL )2

|	|2, (19)

1To be more precise, it is conjectured in Ref. [40] that this state is
unique for all T, ρ > 0 and all L large enough, but a rigorous proof
is still missing. Our arguments here apply to any minimizer, in case
there are several.
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with, as before, 	(x, y) = γ (x, y) − γrs,T,L(x, y) and with,
this time, the one-particle operator

Krs,T,L = 1
2

∣∣εrs,T,L(Pr ) − μrs,T,L

∣∣ − 1
2 GL(r).

In the thermodynamic limit, this effective operator converges
to

Krs,T = 1
2

∣∣εrs,T (Pr ) − μrs,T

∣∣ − 1
2r ,

with now εrs,T (k) being the self-consistent dispersion relation
of the paramagnetic fluid state. In Ref. [40] it is explained that
εrs,T (k) is radial increasing, as it was for T = 0.

Our goal is to understand the region of the phase diagram
where rs is small and

T + λ1(Krs,T ) > 0. (20)

In this region we conclude from (19) that the paramagnetic
state γrs,T,L is the unique minimizer of the free energy, for L
large enough. Hence the free energies per particle satisfy

eHF(rs, T ) = eHF,para (rs, T )

and the temperature T is always above the critical temperature
Tc(rs). Here eHF,para (rs, T ) is the energy of the Hartree-Fock
paramagnetic state; that is, the solution to the self-consistent
equation (16) in the whole space R3 instead of the box CL.
We emphasize that eHF,para (rs, T ) differs from the Hartree-
Fock energy of the free Fermi gas at temperature T . On the
other hand, in the region where T + λ1(Krs,T ) � 0, spin- and
charge-density waves can form. We may, however, conclude
by using (7) that

eHF(rs, T ) � eHF,para
(
rs, T

) − 2
∣∣λ1(Krs,T )

∣∣.
Using similar arguments as for T = 0, we derive a bound on
λ1(Krs,T ) which implies an estimate both on the free-energy
gain and on the critical temperature.

The difficulty is that (20) is an implicit condition linking
T and rs. As a start we remark that the exchange term is
maximized for the free Fermi gas at zero temperature, by
rearrangement inequalities [43]:

1

2π2

∫
R3

γ̂rs,T (p, p)

|p − k|2 dp � 1

2π2

∫
R3

γ̂rs,T (p, p)

p2
dp

� 1

2π2

∫
R3

�(kF − p)

p2
dp

= 2kF

π
= 2

1
3 3

2
3 π− 2

3

rs
, (21)

an inequality which holds for all k. Next, to deal with all
cases, we split the phase diagram into two regions depending
whether μrs,T is smaller than T .

Let us first consider the region where μrs,T � T . Inserting
this information in the self-consistent equation for the HF
paramagnetic state γrs,T , we find

ρ = k3
F

3π2
= 1

(2π )3

∫
R3

TrC2
1

1 + eβ(εrs ,T (k)−μrs ,T )
dk

� 1

4π3

∫
R3

dk

1 + eβ(k2/2−2kF/π−T )

= 1

4π3

(
T + 2kF

π

) 3
2

J

(
1 + 2βkF

π

)
, (22)

with

J (η) := 4π

∫ ∞

0

r2dr

1 + eη(r2/2−1)
.

The function J is decreasing and behaves as

η
3
2 J (η) ∼

η→0
2(

√
2 − 1)π

3
2 ζ

(
3

2

)
, J (η) ∼

η→∞
2

7
2 π

3
.

Using the monotonicity of J in (22) provides the bound

T �
(

4π

3J (1)

) 2
3

k2
F − 2kF

π
.

With this information we can estimate λ1(Krs,T ) by simply
removing the absolute value. We obtain

T + λ1
(
Krs,T

)
� T − μrs,T

2
+ 1

2
λ1

(
εrs,T (Pr ) − 1

r

)
� T

2
+ λ1

(
P2/2 − 1/r

)
2

− kF

π

� 1

2

(
4π

3J (1)

) 2
3

k2
F − 2

π
kF − 1

4
. (23)

This is positive for kF � 4.53, that is, rs � 0.42. We can get a
slightly better condition by numerically evaluating the integral
in (22). Namely, we first find the largest solution τ = τ (kF) to
the implicit equation

k3
F

3π2
= 1

4π3

(
τ + 2kF

π

) 3
2

J

(
1 + 2kF

τπ

)
and then ask when

τ (kF)

2
− 1

4
− kF

π
> 0,

as required in (23). This provides the slightly better condition
kF � 3.53, or rs � 0.54, which we assume for the rest of the
argument. Note that the condition can be further improved by
taking μ � ηT and optimizing over η at the end, which we
refrain from doing in order to keep our argument short.

Next we turn to the region where the chemical potential
satisfies μrs,T � T > 0. Arguing as in (22) we find, this time,

ρ = k3
F

3π2
� 1

4π3

(
μrs,T + 2kF

π

) 3
2

J

(
βμrs,T + 2βkF

π

)

� 1

4π3

(
μrs,T + 2kF

π

) 3
2

J (1) (24)

since βμrs,T + 2βkF/π � 1. This provides the lower estimate
to the chemical potential:

μrs,T �
(

4π

3J (1)

) 2
3

k2
F − 2kF

π
.

We can get a similar upper bound by noticing that

ρ = k3
F

3π2
� 1

4π3

∫
R3

dk

1 + eβ(k2/2−μrs ,T )

= 1

4π3
μ

3
2
rs,T

J
(
βμrs,T

)
� 1

3π2

(
2μrs,T

) 3
2 .
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Altogether this proves that(
4π

3J (1)

) 2
3

k2
F − 2kF

π
� μrs,T � k2

F

2
. (25)

In the second region, we have therefore shown that μrs,T

behaves essentially like r−2
s , as it does for T = 0.

At this step we define a Fermi momentum k∗ by the
condition that εrs,T (k∗) = μrs,T . Note that, at T = 0, k∗ is
nothing else than kF. We now demonstrate that k∗ behaves like
kF in the region where μrs,T � T . We have

μrs,T = k2
∗
2

− 1

2π2

∫
R3

γ̂rs,T (p, p)

|p − k∗|2 dp

so that, by (21),

μrs,T � k2
∗
2

� μrs,T + 2kF

π
.

Inserting (25), this gives, as we wanted,

2

(
4π

3J (1)

) 2
3

k2
F − 4kF

π
� k2

∗ � k2
F + 4kF

π
. (26)

The advantage of k∗ is that we can argue exactly as we did for
T = 0. Namely, in the absolute value∣∣εrs,T (k) − μrs,T

∣∣ = ∣∣εrs,T (k) − εrs,T (k∗)
∣∣,

we may remove the monotone exchange term as for (10) and
obtain

λ1
(
Krs,T

)
� k2

∗
4

λ1

(
|P2 − 1| − 2

k∗r

)

� −k2
∗
4

(
1 + t

√
2

k∗

)
e−√

πk∗/2, (27)

where, in the second line, we have used our eigenvalue bound
(15). For kF � 3.53 we obtain from (26) that k∗ � 1.76, and
we may, for instance, take t = 4(9π/4)1/6 [that is, a = 4 in
(2)]. Then the function on the right side of (27) is decreasing
and we may replace k∗ by its lower bound in (26). After a
numerical evaluation of the multiplicative constant, we can
conclude that the critical temperature is bounded above by

Tc(rs) � 0.68k2
F exp

{
−

√
cπkF

2

}
, (28)

where

c =
(

2
7
2 π

3J (1)

) 1
3

< 1.

With the first estimate (28) on Tc(rs) we can get a better
bound without the constant c by using the following argument:
In the region where T is less than the right side of (28), then
βkF is exponentially large. Hence, going back to (24) we may
replace J (1) by J (∞), up to exponentially small errors. Then
J (1) gets also replaced by J (∞) in (27), which replaces c by 1
in the final estimate. To make this more quantitative, we may
for instance use that in our region

J

(
βμrs,T + 2βkF

π

)
� J

(
2βkF

π

)

� J (∞) − 7.48kF exp

{
−

√
cπkF

2

}
,

since J (η) � J (∞) − 7/η for η large enough. Replacing J (1)
in (26) and using (27) together with a numerical evaluation of
the multiplicative constant, we are now able to conclude, as
we wanted, that

Tc(rs) � 5

4
k2

F exp

{
−

√
πkF

2

}

= 5

4

(
9π

4

) 2
3 1

r2
s

exp

{
−2− 5

6 3
1
3 π

2
3

√
rs

}
.

The numerical constant in the first line is 1.245 which we have
bounded by 5/4 for simplicity. This concludes the derivation
of our upper bound (3) on the critical temperature Tc(rs).

Let us finally consider the region of symmetry breaking
which, for rs � 0.54, is contained in the region where μrs,T �
T and 0 � T � Tc(rs). Our estimate on λ1(Krs,T ) in this
region then provides immediately that

eHF(rs, T )�eHF,para (rs, T )− 5

2

(
9π

4

) 2
3 1

r2
s

exp

{
−2− 5

6 3
1
3 π

2
3

√
rs

}
.

Since T is exponentially small in this region, we may as well
replace the (unknown) free energy eHF,para (rs, T ) by the zero-
temperature energy eFG(rs) of the free Fermi gas on the right
side. This only generates another exponentially small error.

V. EXTENSION TO THE TWO-DIMENSIONAL
HOMOGENEOUS ELECTRON GAS

Our argument is general and works similarly in two dimen-
sions (2D). The estimates (8) and (10) are exactly the same.
As in (11) we can bound 1/r � Vm(r) + Cm where, this time,
Vm is defined in Fourier space by V̂m(k) = (k2 + m2)−1/2. The
norm N (r) in (13) is now given by an elliptic integral and the
corresponding two-dimensional integral I (E , m) satisfies the
exact same asymptotics (14). Hence we find the same lower
bound

e2D
HF(rs) − e2D

FG(rs) � −k2
F

(
1 + t√

kF

)
e−√

πkF .

An upper bound was first provided in 2D in Ref. [24, Eq. (44)]
but a better bound can be derived following the arguments in
Ref. [26]. It is possible to estimate the critical temperature and
the free-energy gain by following the exact same argument as
in Sec. IV.

VI. CONCLUSION

We have given a rigorous proof that the breaking of trans-
lational symmetry in the Hartree-Fock homogeneous electron
gas can only decrease the Hartree-Fock ground-state energy
by an exponentially small amount at large density, as com-
pared with the free Fermi gas. In particular, the correlation
energy can be defined by taking the FG as reference, up
to an exponentially small error. In addition, we have also
shown that the critical temperature (above which the gas is the
paramagnetic fluid) is exponentially small at large densities.
In the small region where symmetry breaking can happen, the
free-energy shift is also exponentially small.
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FIG. 1. (left) General form of the true HEG phase diagram, as computed in Refs. [44–51]. (right) Expected general form of the Hartree-
Fock HEG phase diagram, according to the present work. The system is believed to be crystallized at all densities at T = 0 but, as we prove in
this paper, this “Overhauser phase” shrinks exponentially fast to the horizontal axis at large densities. The corresponding (free) energy gain is
also exponentially small.

An interesting question is to determine the precise asymp-
totics of the first eigenvalue of the degenerate hydrogen-type
Hamiltonian (9). It is however not clear if this eigenvalue
can provide the exact behavior of the energy gain at T = 0.
Determining this gain in the large-density limit seems a very
challenging task.

The Hartree-Fock phase diagram at T = 0 was carefully
computed in the recent works [20–23]. To our knowledge,
much less is known about the full phase diagram at T > 0.
Our work gives the first indication that it has the general
form displayed in Fig. 1. It is common wisdom that the
Hartree-Fock model gives a very poor description of the HEG
phase diagram. The ferromagnetic-to-paramagnetic fluid tran-
sition at rs � 5.45 and T = 0 is sometimes mentioned as
a major defect. But this transition actually does not exist,
since the system is in a solid phase at this value of rs. As is

usual for nonlinear models, the use of more symmetry-broken
phases allows us to slightly improve the energy. Although
we have proved that this can only help by an exponen-
tially small amount at very large densities, our estimates
are too rough to conclude anything about what is happening
at intermediate densities. This definitely calls for a more
detailed numerical study of the HF phase diagram at positive
temperature.
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