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While the scaling of entanglement in a quantum system can be used to distinguish many-body quantum
phases, it is usually hard to quantify the amount of entanglement in mixed states of open quantum systems,
while measuring entanglement experimentally, even for the closed systems, requires in general quantum state
tomography. In this work we show how to remedy this situation in system with a fixed or conserved charge, e.g.,
density or magnetization, due to an emerging relation between quantum correlations and coherence. First, we
show how, in these cases, the presence of multipartite entanglement or quantumness can be faithfully witnessed
simply by detecting coherence in the quantum system, while bipartite entanglement or bipartite quantum discord
are implied by asymmetry (block coherence) in the system. Second, we prove that the relation between quantum
correlations and coherence is also quantitative. Namely, we establish upper and lower bounds on the amount
of multipartite and bipartite entanglement in a many-body system with a fixed local charge, in terms of the
amount of coherence and asymmetry present in the system. Importantly, both for pure and mixed quantum states,
these bounds are expressed as closed formulas, and furthermore, for bipartite entanglement, are experimentally
accessible by means of the multiple quantum coherence spectra. In particular, in one-dimensional systems, our
bounds may detect breaking of the area law of entanglement entropy. We illustrate our results on the example of

a many-body localized system, also in the presence of dephasing.
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I. INTRODUCTION

Classical phases of matter are often distinguished by ob-
servable order parameters, such as densities or magnetiza-
tions, and by the properties of their fluctuations [1]. For
quantum matter, it has been shown that the entanglement
properties of quantum states are reliable indicators of quantum
phase behavior, both for quantum phase transitions in the
ground state [2,3] and for excited-state phase transitions, such
as the one that leads to many-body localization (for reviews
see [4-6]; for other kinds of quantum phase transitions at the
excitation level see, e.g., [7]). While entanglement encodes
the properties of quantum fluctuations, in contrast to classical
order parameters, measures of entanglement [8—12] are diffi-
cult to calculate for mixed states, and even for pure states are
generally not directly observable, except through full quantum
tomography [13]. Entanglement is known, however, to be a
necessary resource for quantum information protocols [14].
This means that the success of performing a given quantum
protocol can be used to determine the presence of entangle-
ment in the corresponding quantum state, that is, it can be
used as a witness of entanglement.

Quantum metrology refers to the possibility of decreasing
parameter estimation errors beyond those set by the classical
central limit theorem [15—17]. This enhanced scaling is only
due to the presence of quantum correlations associated with
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multipartite entanglement (MPE) of the quantum state being
probed, and thus can be used as an entanglement witness. In
particular, the sensitivity of a quantum state to perturbations of
the parameter being estimated, and thus the usefulness of the
state as a quantum sensor, is quantified by the quantum Fisher
information (QFI) [18-20]. The QFI guarantees the presence
of MPE whenever its value exceeds a separability threshold,
which, however, in general scales with the system size. This
is especially a problem for mixed states, where the noise that
leads to mixedness of the state contributes to estimation errors,
possibly decreasing the QFI below the threshold even when
entanglement is present.

In this paper we show that for systems with a fixed local
charge, for example, when the number of particles is fixed,
witnessing entanglement simplifies as follows. We prove that
the state is coherent in local charge basis if and only if
it is multipartite entangled, which is illustrated in Fig. 1.
Therefore, for estimation of parameters encoded by diagonal
observables, the separability threshold of the QFI vanishes
and MPE can be witnessed efficiently. Moreover, for non-
degenerate diagonal observables, the QFI becomes a faithful
witness of MPE, i.e., the presence of MPE is always mani-
fested in a nonzero QFI. Similarly, for a given bipartition, the
block coherence, i.e., the asymmetry, of the charge difference
in the partition implies the presence of bipartite entanglement
(BPE). Therefore, in systems with a fixed local charge, also
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FIG. 1. Coherence and asymmetry implies multipartite and bi-
partite quantum correlations in the presence of fixed or conserved
charge. A state p of the conserved charge Q, [p, Q] = 0, is block
diagonal [light blue (light gray) squares] with respect to the charge
eigenspaces (with values of Q denoted by ¢), while when a charge
value is fixed [(middle) light blue square shaded into red], Qp =
qp, it is supported within only a single block corresponding to ¢
eigenspace. When the charge is local, Q = ", 0%, and Q® is
nondegenerate for each subsystem, it uniquely defines the separable
basis without coherence [dark blue (dark gray) squares]. As we show
in Secs. III B and III D, when the charge Q is fixed or conserved,
any coherence in this basis (faithfully) implies MPE or MPD, re-
spectively. Furthermore, when the system is divided into two parts A
and B, the local charges Q) = Y, _, O are in general degenerate.
Nevertheless, the block coherence (asymmetry) with respect to Q“
eigenspaces [blue (gray)] still implies BPE or BPD when the charge
Q is fixed or conserved, respectively, as we show in Sec. III C.

BPE can be witnessed at a zero threshold, by the QFI for
block-diagonal observables (commuting with charges of the
two system parts). We also demonstrate that for systems with
a conserved, rather than fixed, local charge, i.e., when the
state is block diagonal with respect to different charge values,
the coherence and the asymmetry imply a weaker type of
quantum correlations instead of entanglement: multipartite
discord (MPD) [21,22] and bipartite quantum discord (BPD)
[23-25] (cf. Fig. 1).

Importantly, we further show that the emerging relation
of entanglement to coherence and asymmetry is also quan-
titative. The amount of multipartite entanglement [9,10] in
a many-body quantum system with a fixed charge can be
faithfully bounded from above by the amount of coher-
ence [26-30] when quantified by the relative entropy (cf.
[31-33]). Furthermore, also bipartite entanglement of forma-
tion [8,11,34,35] is bounded from below by the asymmetry
[26-28] quantified by the relative entropy with respect to
charge difference. In particular, for a pure quantum state, the
asymmetry is a lower bound for the entanglement entropy, i.e.,
the von Neumann entropy of a reduced subsystem state. Our

bounds are expressed as closed formulas and thus can be eas-
ily calculated for both pure and mixed states. Furthermore, in
one-dimensional systems, our bounds may detect breaking of
the area law of entanglement entropy. We also derive a lower
bound on bipartite entanglement quantified by the convex roof
of negativity [36,37]), which can be accessed experimentally
by the multiple quantum coherence spectra [38—41].

The implications of the connection between entanglement
and coherence in systems with particle conservation are im-
portant in practice. Take, for example, the case of disordered
quantum many-body systems that display a thermal to many-
body localized (MBL) transition or crossover, which is driven
by the strength of the quenched disorder [4-6]. Here the
entanglement characteristic of many-body eigenstates serves
to distinguish between thermal and MBL phases: In the bulk
of the energy spectrum thermal eigenstates have bipartite
entanglement, as measured by the entanglement entropy, that
scales with the size of the partition (volume law), as they
are believed to obey the eigenstate thermalization hypothesis
[42]; for MBL eigenstates, instead it scales with the size
of the boundary of the bipartition (area law). Nevertheless,
in the MBL phase, the entanglement entropy of an initially
separable state grows slowly (logarithmically in time) towards
an asymptotic value that scales with volume, a feature that
distinguishes MBL from the noninteracting case of Anderson
localization. Since the entanglement entropy is not directly
observable there have been attempts to connect it to observ-
able quantities for closed (i.e., nondissipative) systems. These
observable proxies have included fluctuations in the number
of particles within the partition [43], diagonal entropies [44],
and QFI itself [45]. There are a number of problems in
connecting these observables to bipartite entanglement: In
Ref. [43] logarithmic growth is observed on a much shorter
time regime than that of the entanglement entropy; in Ref. [44]
the logarithmic growth is absent, as diagonal entropy corre-
sponds to the asymptotic value of the entanglement entropy;
and in Ref. [45] the QFI, while growing logarithmically, does
not usually exceed the separability threshold.

For systems with a conservation of density the relation
between these approaches is clarified by our results here from
the emerging connection between coherence and entangle-
ment. We find that the behavior of fluctuations in the number
of particles is connected to the charge asymmetry in the bipar-
tition into half chains, while fluctuations of the imbalance are
related to the charge asymmetry in the staggered bipartition.
The amount of asymmetry further bounds the entanglement
from below. In particular, in a many-body localized phase,
for the bipartition into half chains, we find numerically that
the asymmetry breaks the area law present in the Anderson-
localized phase, although it saturates at earlier times than the
entanglement entropy. Finally, the diagonal entropy measures
the coherence in closed systems, which here bounds from
above both the bipartite and multipartite entanglement and
thus necessarily follows the volume law.

The paper is organized as follows. In Sec. IIC we review
approaches for witnessing MPE by measuring the QFI above
a separability threshold, as well as quantifying the amount
of coherence. Section III onward contains the results of the
paper. In Sec. III we show that when conservation laws
are present, coherence and asymmetry can be connected to
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multipartite and bipartite entanglement (for a fixed charge) or
discord (for a conserved charge). As a consequence, entangle-
ment or discord can be witnessed by the QFI for appropriately
chosen observables with a zero separability threshold. In
Sec. IV we make these relations quantitative by showing how
coherence and asymmetry monotones can serve as bounds on
the amount of bipartite and multipartite entanglement present
in a quantum system with a fixed charge. Throughout the
paper we illustrate our results with the example of a many-
body localized system, which is discussed in detail in Sec. VL.
We finish with a brief conclusion and outlook in Sec. VII.

II. COHERENCE AND ENTANGLEMENT

Enhanced quantum protocols rely on two properties: the
possibility of creating superpositions between states in the
computational basis and the entanglement between subsys-
tems. Therefore, the success rate of performing a given quan-
tum protocol above a certain threshold can be used to certify
the presence of a resource required by the protocol.

In this section we first review how the QFI, which bounds
errors in quantum phase estimation, is used as a witness of
both coherence and entanglement. This method will be used
later in Sec. III, where we will show how, in the presence of a
fixed or conserved local charge, the relation between quantum
correlation and coherence is strengthened, with the coherence
implying the presence of entanglement or quantum discord.
Second, we will also review how to quantify the amount of
coherence present in a system state by coherence monotones,
which will prove relevant in Sec. IV, where we will derive
bounds on the amount of entanglement or quantum discord in
systems with a fixed or conserved local charge, respectively.

A. Witnessing coherence

Let {|i):i=1,..., D} be an orthonormal basis, with D
being the dimension of the system Hilbert space. Let p be
a density matrix describing a state of the system. The state
is coherent if p features nonvanishing off-diagonal terms p
in the given basis. The state is incoherent if p is diagonal.
Therefore, the notion of coherence is related to the possibility
of creating superpositions (see, e.g., [26-30]).

One of the quantum protocols for which coherence is
a resource is quantum estimation of a parameter unitarily
encoded with an observable M diagonal in the computational
basis M = Y, m;|i)(i|. In this case, the phases are encoded
in the off-diagonal terms in a density matrix p describing the
system state,

e WM pe M =% 7m0 i (. (1)
ij

where p;; = (i|p|j). The errors of unbiased estimation of ¢
are bounded from below by the inverse of the QFI [15-20],

200 — Aj)?

MM, 2
Py [{(A:| M2 ;)] 2

QFI(M. p) =)

ij
where |A;) is an (orthonormal) eigenstate of p that corresponds
to an eigenvalue A;, i.e., p = Y_; A;|A;) (A;]. In particular, if the
state p is diagonal in the computational basis, i.e., incoherent,
the QFI also equals zero, as there are no phases encoded in the

state. Furthermore, when M is nondegenerate the QFI can only
vanish when p is diagonal, and in this case the QFI becomes a
faithful witness of coherence, meaning that any nonzero QFI
guarantees the presence of coherence.

Consider, for example, the Werner state [46] of two qubits

ol
(spins 3),
1—p N
pw = T+ p) (¥
I—=p

1+p
—2p

I+p ' ©)

Bl—

l—p

where the Bell state [¥~) = (]} 1) — |1 {))/+/2 (with |1)
denoting an spin-up state and ||,) denoting the spin-down state
in the z direction) and 0 < p < 1. The density matrix in the
second line of Eq. (3) is shown in the computational basis
L 4 14 1), 11 ), and |1 1). In this basis, the Werner state is
coherent, i.e., nondiagonal, for p > 0. However, for M chosen
as the z magnetization M, = Zi;l S¢ (with S} denoting the z
magnetization of the k = 1, 2 spin), we have QFI(M_, pw) =
0 for all p due to degeneracy of M, in the subspace of
[{ 1) and |1 |). For the imbalance in the z direction (the
staggered z magnetization), I, = Zi:l (—l)kSli; however, we
have QFI(Z, pw) = 8p2 /(1 + p), so the coherence is faith-
fully witnessed for all p > 0 (due to I, being nondegenerate in
the subspace of || 1) and |1 |), where coherence is present).

When the state is pure p = |[)(y|, the QFI is sim-
ply proportional to the quadratic fluctuations QFI(M, p) =
4 Var(M, p), i.e., the variance,

Var(M, p) = Tr(pM?) — [Tr(oM)]*. “4)
For a mixed state p, however, the variance is higher,
QFI(M, p) < 4 Var(M, p). &)

Therefore, the variance cannot be used as a witness of
coherence, as it captures also classical fluctuations due to
mixedness and can be nonzero even in incoherent diagonal
states (cf. Fig. 3). For the example of the Werner state (3), we
have Var(M,, pw) = (1 — p)/2 and Var(l,, pw) = (1 + p)/2,
which are both nonzero at p = 0, although py is diagonal and
thus incoherent.

We thus conclude that for open systems described by mixed
density matrices, it is necessary to calculate and measure the
QFI rather than the variance in order to witness coherence.
Although the QFI can be measured experimentally only for
certain families of states, e.g., thermal states [47], lower
bounds are accessible [48-57] (see also [58]). In particular,
in Appendix A we describe the lower bound on the QFI in
terms of curvature [39,41,59] which can be measured by the
multiple quantum coherence spectrum [39,41].

B. Witnessing coherence as a proxy for witnessing entanglement

We now explain how witnessing coherence via the QFI
(2) can be used to witness multipartite entanglement. A state
p of N subsystems is multipartite entangled when it is not
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separable p # psp, Wwhere

Psep = ijQ;I) Q& Q;N)y (6)
J

with o® describing the state of the kth subsystem.

Multipartite entanglement is a resource for quantum
metrology, when the phase to be estimated is encoded in a
quantum state via a local observable [15-17]

N
M= M, ™
k=1

where M® acts on the kth subsystem. Indeed, in this case the
maximum QFI

N 2
QF L,y (M) = (Z AM“”) : 8)

k=1

where AM® is the difference between the extreme eigen-
values of M®, is achieved by the superposition of the
two extreme eigenvectors of M, which is a multipartite-
entangled state. For an illustration consider an example of
M chosen as the z magnetization of N spin—% particles M, =
S Si (where S;”* are spin operators for the kth spin ).
The maximum QFI is then achieved for the Greenberger-
Horne-Zeilinger state |GHZ) = (|1)®N + |1)®N)/+/2, which
gives quadratic scaling of the QFI, QFI, .. (M) = N2, termed
Heisenberg scaling.

In contrast, for separable states, the QFI is not larger than
the separability threshold [15,16,47-54,57]

N

QFl, (M) = max QFI(M, pep) = Y (AM®P),  (9)
psep k=1

which is achieved for a product state of the superposition of
extreme eigenvectors of M® on each subsystem.! For the
example of N spin—% particles with M chosen as the z magneti-
zation, we have that the separability threshold QFL.,(M) = N
is achieved for the product state 27V/2(|]) + [1))®Y. The
linear scaling of the QFI with system size is called standard
scaling. Whenever the QFI (2) or its lower bound is measured
above the separability threshold (9), the presence of MPE is
certified. Given that QFI witnesses MPE only if it goes beyond
the threshold (9) that scales linearly with the system size, its
usefulness as an entanglement witness is severely limited in
many situations. This is what can occur, for example, when
attempting to observe logarithmic growth of entanglement
in MBL experiments [45] (see Fig. 2). Furthermore, since
entanglement is not related to any specific basis, in general it
is not obvious which local observables M®) in (7) are optimal,
i.e., lead to the maximal value of the QFI (cf. Fig. 2), and all
local unitary transformations of the operators M® should be
considered. Even with the optimal choice of the observable,
crossing of the separability threshold is not guaranteed for
entangled states [49]. Take the example of the Werner state

't is easy to see that this is the optimal product state, as classical
correlations in (6) do not increase the QFI due to its convexity.

QFI/N

L T TOX

0.0l/ri

10t 10

A 3

10 10 10° g

FIG. 2. QFI in an MBL system. Throughout the paper we il-
lustrate our results with the example of a many-body localized
system, an XXZ chain with strong disordered longitudinal field
(see details in Sec. VI). The figure shows the evolution of the QFI
per number of subsystems N. We consider four different phase
encodings: x magnetization M, = Zszl S¢ [green (top) line], the
difference of z magnetization between two halves of the chain M, =

kNi 21 S — Sy /2+1 5% [black (bottom) line], and x and z imbalance
I, = Zszl (—1)"S;’Z [blue and gray (at Jt = 10~! lower and upper
middle) lines, respectively]. The QFI witnesses entanglement only if
the corresponding separability threshold QFl,/N = 1 [red dashed
(horizontal) line] is crossed [cf. Eq. (9)]. Due to the conservation of
M by the dynamics, for an initial state with a fixed M., the spin axes
x and y are equivalent (and the QFI for M, and I, is equal to the
QFI for M, and I, respectively). For observables commuting with
M, (here 6M, and I,) the separability threshold is reduced to zero (see
Sec. III). The parameters of the dynamics [cf. Egs. (52) and (56)] are
N = 14 spins, V/J =2,h/J =5,and y/J = 0.

of two qubits in (3). From the convexity of the QFI we have
QFI(M, pw) < pQFI(M, |¥™)) < 4p, where the last inequal-
ity is achieved for the M chosen as the imbalance in the z
direction (the staggered z magnetization) I, = Zi;l(—l)"S,f.
Thus, for p < % the QFI cannot exceed the separability thresh-
old QFI,, = N = 2, although the Werner state is entangled
for p > %, as it is confirmed, e.g., by the concurrence [34].
In Sec. III we will show that these issues are remedied in
the presence of a fixed local charge, when the separability
threshold is reduced to O for any observable commuting with
the charge (see also Fig. 2).

We note that other methods to witness MPE with
coherence include, among others, those in Refs. [51,60—62]
and the multiple quantum coherence (MQC) spectra [41],
which we discuss in the next section. We also note that QFI
can be considered a measure of quantum macroscopity [63]
(see also [64,65]).

sep

C. Coherence and asymmetry monotones

In Sec. IV we will derive bounds on the amount of en-
tanglement or quantum discord in systems with a fixed or
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conserved local charge, respectively, which depend on the
amount of coherence and asymmetry present in the system
and hold for both closed and open dynamics. Therefore, we
now discuss how to quantify the amount of coherence present
in a quantum state.

Below we review examples of coherence monotones,
which are convex functions of a quantum state that attain a
value of zero only for diagonal (incoherent) states and are
strongly nonincreasing under incoherent operations (opera-
tions which preserve the set of diagonal states both on average
and probabilistically) [29] (for a review see, e.g., [66]).

1. Relative entropy of coherence

A coherence monotone can be defined as a bona fide
distance of a given state p from the set of incoherent, i.e., di-
agonal, states [29]. For example, if we choose as the distance
the relative entropy S(p||lo) = Trplog, p — Trplog, o > 0,
we obtain the relative entropy of coherence [26-29,67]

Clp) = min S(p||0diag) = =S(0) + S(paiag),  (10)

Odiag

where S(p) = —Trplog, p is the von Neumann entropy
and pgiag = ), piili) (il is obtained from p by removing
all coherences. This is a consequence of the closest state
from the incoherent set being pgag, since for any other
incoherent state ogiag We have S(pl|ogiag) = S(0||Pdiag) +
S(pdiagl|0diag) = S(p|lpdgiag), Where the equality follows from
the fact that pgia, and ogiae share the same eigenbasis.

For the example of the Werner state (3) we have that

Stpw) = — P og, 132 — H¥ log, HH2, while S(paiae) =
2 log, = —” — lJr—"’logz e 5o C(pw) = —Plog, 22 +
1?U+pb&ﬁ+ﬂ—@b&0—@LWMWP—Z&Q

Therefore, indeed C(pw) > O for all p > 0 when the state is
coherent [we then have p # % so both terms in C(py ) are
positive].

The relative entropy of coherence C(p) has direct opera-
tional interpretation as it corresponds to distillable coherence,
i.e., the rate at which maximally coherent qubits can be
asymptotically distilled from many copies of p by using an
incoherent operation [68,69]. When the state p is pure, the
relative entropy of coherence equals S(pdgiag) [cf. (10)], which
can be accessed by measuring occupation in the basis {]i)}2
For mixed states, however, it cannot be easily measured in
experiment, as S(p) generally requires full quantum state
tomography (with a few exceptions such as noninteracting
fermions [70]). In Secs. IVA and IVB we show that the
relative entropy of coherence is a faithful upper bound on the
amount of multipartite entanglement or multipartite discord in
states with a fixed or conserved local charge, respectively.

2. The I, coherence

Another coherence monotone that fulfills the axioms of
resource theory of coherence with incoherent operations [29]

is the L;-norm,
> il (1)
i#]

L(p) =

For the example of the Werner state (3), we simply have
l1(pw) = p, which is nonzero for all p > 0.

In this work we show that (11) is a faithful upper bound on
multipartite discord measured by negativity of quantumness
[33,71,72]. While [;(p) is a monotone of coherence, being
nonpolynomial in p means it cannot be directly related to
observations, but requires full quantum tomography of the
system state p.

We will now introduce a lower bound on (11), which
entails the so-called multiple quantum coherence spectrum
[38,73,74] that can be experimentally accessed also in many-
body systems [38-41,75] (see also Appendix A). The MQC
spectrum is defined for an observable M diagonal in the
computational basis M = )", m;i)(i| as

()= > oyl (12)
ijimi—mj=m
where p;; = (i|p|j). We introduce
B0y =Y VIn(p). (13)
m#0

From the inequality between L;- and L,-norms, we then obtain
an experimentally accessible lower bound on /; coherence as

Li(p) 2 Z |pij|=Z Z | 0ijl

ijimi#Em; m#£Q ij:mi—m;=m

> | 2

m#0 \ ijimij—mj=m

lpij1> =I5 (). (14)

In general, as I,,(p) < 1, we have that the experimentally
accessible lower bound fulfills I{%7(p) < d, where d is the
number of different gaps in M spectrum, which for local
observables, e.g., magnetization, makes it feasible to detect
experimentally the growth of coherence with the system size.
In general, the first inequality in Eq. (14) is only saturated
when M is a nondegenerate observable, while the second
inequality is saturated when all the gaps in the M spectrum are
nondegenerate. Therefore, when d = D(D — 1)/2, the bound
in Eq. (14) is saturated. In particular, in the example of the
Werner state, for the choice of the observable M = I, as
the imbalance, we indeed have l'l’}XCk(pW) =p=L(pw) U,
features two different gaps, m = £2 in the subspace of || 1)
and |1 | ), where the coherence is present).

3. Asymmetry monotones

In the case when not all basis states |i) in {|i):i=
1, ..., D} are distinguishable (e.g., due to degeneracy of a sys-
tem Hamiltonian H = )_ k;|i){i|), the amount of coherence
between distinguishable subspaces (e.g., energy eigenspaces)
can be quantified with the resource theory of asymmetry as
[27,28,76-78]

A(p) = =S(p) + S(pbiock), 15)

where ppock 18 obtained from p by removing all co-
herences (i.e., dephasing) between the different distin-
guishable subspaces (e.g., Hamiltonian eigenspaces ppiock =
Zi’ jihi=h, Pij [7)(j|). In the nondegenerate case [79] we recover
A(p) = C(p) [cf. Eq. (10)]. For pure states, (15) can be ac-
cessed experimentally by measuring occupation in the distin-
guishable subspaces (e.g., energies in the Hamiltonian), as the
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entropy of this distribution equals S(opjock). In Sec. IVC we
will consider systems with a fixed local charge and show that
the bipartite entanglement is lower bounded by the asymmetry
(15) with respect to the charge of a subsystem in the partition.

In analogy to /; coherence (11) for & indexing distinguish-
able subspaces (e.g., h being an eigenvalue of the system
Hamiltonian indexing energy eigenspaces), we now introduce

Peoy=3" 1> > leul”

hth' \| ish=h jih=h'

(16)

Note that /P is independent of the choice of basis elements
inside a degenerate subspace. It is not known whether it is
an asymmetry monotone.” Nevertheless, it is bounded from
below by experimentally accessible l}’_l,?jk [Eq. (13)],

1% (p) = 13 (p) an

when M is diagonal in the computational basis, and chosen
so that its eigenvalues for states |i) and |j) fulfill m; = m;
whenever h; = h; [cf. Eq. (14)]. For example, when the ob-
servable is chosen as the Hamiltonian M = H, the inequality
(17) is saturated for H with nondegenerate gaps. As we
will show in Sec. IV C, IPk serves as a lower bound on
bipartite entanglement in states with a fixed local charge and
is experimentally accessible [cf. (13) and (17)].

III. VANISHING SEPARABILITY THRESHOLDS FROM
FIXED OR CONSERVED LOCAL CHARGE

We now derive the first set of our results. After defining
a fixed and conserved charge in Sec. IIT A, in Sec. III B we
show how coherence implies MPE for states with a fixed local
charge and how with an appropriate choice of observables
the QFI faithfully witnesses MPE with the zero separability
threshold (cf. Sec. II B). In Sec. III C we further discuss how
by appropriate choice of observables also bipartite entangle-
ment can be witnessed with zero threshold when a local charge
is fixed. When a local charge is not fixed, but it is conserved,
we demonstrate in Sec. IIID that coherence is related to
quantum discord. We finish by discussing the relation to the
superselection rules in Sec. IITE.

A. Definition of fixed and conserved local charge

We begin by defining a fixed and a conserved charge. A
charge is understood to be an observable Q on the system.
When we consider a state of a multipartite quantum system
consisting of N subsystems, we refer to Q as local when it is
the sum of subsystem observables Q = Zk Q(k), e.g., a total
magnetization of a spin-% chain along the z axis.

When a quantum state p is supported within only a single
eigenspace of Q,

Op = qp, (13)

It may be an asymmetry monotone only with respect to a restricted
subset of translationally invariant operations, in analogy to coherence
monotones for the set of incoherent operations [29] and the set of
maximally incoherent operations [26].

we say that this state is of a fixed charge g (see Fig. 1). For
example, a general state of two qubits (spins %) with total z
magnetization equal 0 is given by (in the basis || |), |{ 1),

11 1), and |1 1))

fi P
IOZX c*

, 19
L (19)
0

where |c|?> < p(1 — p) and 0 < p < 1. This state is coherent
for all |c| > O.

When the state p features no coherences between different
eigenspaces of Q, i.e., no asymmetry with respect to Q,

[0, 0] =0, (20)

we say that a quantum state is of a conserved charge (see
Fig. 1). For example, the Werner state in Eq. (3) is of
conserved total z magnetization (for all values 0 < p < 1),
while the most general state of two qubits (two spins %) with
conserved total z magnetization is given by (in the basis || | ),

1), 11 ), and |1 1))
Poo

cons pOI ¢
. ' , @)

P

where |c|> < poi1pi1o and pij = 0 with Zij:O.l pij = 1. The
state p5°" is coherent for all [c| > 0.

We now explain when, in a system undergoing closed or
open dynamics, a fixed or a conserved charge is present at all
times. In unitary dynamics, the state of the system at time ¢
is given by p, = e~ H pye™ | where py is the initial state and
H the Hamiltonian of the system. When the Hamiltonian H
conserves the charge Q, [Q, H] = 0, we have that p, is of a
fixed (conserved) charge whenever the initial state py is of a
fixed (conserved) charge. This is the case for closed dynamics
of the XXZ spin chain with disorder, which we discuss in
detail in Sec. VI and show in Figs. 2-9. In this system the
total magnetization in the z direction is conserved.

The same holds also in the case of open dynamics gov-
erned by a master equation [80,81] when Q is a generator
of a strong symmetry of the dynamics [82,83], i.e., both
the Hamiltonian and jump operators in the master equation
conserve the charge. For example, the disordered XX Z spin
chain in the presence of dephasing, which we also discuss in
Sec. VI, fulfills this condition for the total magnetization in the
z direction. Finally, in the case when the local charge Q is only
a generator of weak symmetry of the dynamics [82,83], i.e.,
the master equation commutes with the symmetry generated
by QO only as a whole, when p, is of a conserved charge, so
is p;. This is the case when the XXZ spin chain exchanges
excitations with the environment (see Sec. VI).

In Secs. III B and III C we show that entanglement in the
presence of a fixed local charge is implied by the coherence
with respect to subsystem charges. In the presence of a
conserved local charge, coherence instead implies quantum
discord, as we argue in Sec. [IID.
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B. Fixed local charge and witnessing multipartite entanglement

Any additional information about a state p, in which the
presence of multipartite entanglement is to be determined, can
be used to refine the separability threshold (9) as the threshold
should be computed for separable states consistent with that
information. In particular, we will now show that for a state
with a fixed local charge, the separability threshold can be
reduced to 0.

First, let us consider systems of a fixed charge Q of a value
q [Eq. (18)]. For a mixed state p = Z p;jpj with probabilities
Dj, a fixed charge implies that the charge of all p; is also fixed
to g, i.e., Qp; = qpj, as follows. A fixed charge implies that
Var(Q, ,o) = 0, but we also have

Var(Q, p) = Zp]Var(Q P+ Y pipr((Q); — (Q)),
j>j
(22)
which together give Var(Q, p;) = 0 and (Q); = (Q); for all
J, j so that
Opj = qp;. (23)

Second, for a separable state oy, [Eq. (6)] we have that
pj= Qﬁl) - ® Q(N ) are product states. When the charge O
is local, Q = Zk:l Q(k), we then have that

N
Var(Q, pj) = ) _ p;Var(, ). (24)

k=1

This means that Var(Q, psep) = 0 implies Var(Q®), Q;-k)) =0,
that is, the charge is fixed locally for each of the states Q(]-k).
In particular, when the operators Q) are nondegenerate, e.g.,
a single-spin magnetization, this implies that Q;k) are pure
eigenstates of O, so all p ; are elements of one basis of the
Hilbert space of the system. In other words, in the case of
the fixed charge with nondegenerate operators Q©), all sepa-
rable states are always diagonal and with zero coherence in
this basis. Moreover, as all diagonal states in the computation
basis are separable, we conclude that a quantum state with
fixed local charge is coherent if and only if it is entangled. For
example, the state of N = 2 qubits with a fixed magnetization
(19) is entangled for all |c| > 0.

Therefore, when the QFI (2) of any diagonal (i.e., com-
muting with local charges) observable M is nonzero, the
state is entangled, as the separability threshold vanishes [cf.
Eq. (9) and Fig. 2]. Furthermore, when M is nondegenerate,
e.g., chosen as a linear combination of the local charges
with appropriate fields M = Y°¥ | Q™ , the QFI becomes a
faithful witness of MPE. We also note that the experimentally
accessible lower bound on the QFI in terms of the curvature
(see Appendix A) is a faithful witness as well.

The case of degenerate Q% is discussed in the next section,
where we consider bipartite entanglement.

C. Fixed local charge and witnessing bipartite entanglement

We now discuss how in the presence of a fixed local charge,
bipartite entanglement between two parts of a quantum system

is related to the asymmetry with respect to the asymmetry of
the charge difference.
A state p is bipartite entangled if it is not bipartite separable

© 7 PBP-sep> Where

prpsep = Y pie’ @0, (25)

j

with Q;A) (Q;B ) a state of subsystem A (B) in the bipartition of
the system [cf. (6)]. In particular, in this work we consider a
system composed of N subsystems, which we divide into two
groups labeled A and B, e.g., two halves of a spin chain, and
refer to them as subsystems A and B (see Fig. 3).

For a local observable M = Y"3_ M® [Eq. (7)], the AB-
separability threshold corresponds to a tensor product of
maximally entangled states inside A and B subsystems [cf. (9)]

QFIBP sep(M) = max QFI(M PBP- sep)

PBP-sep
2 2
= (Z AM<k>> + (Z AM‘“) . (26)
keA keB

where AM® is the difference between the extreme eigen-
values of M®. This threshold in general scales quadrat-
ically in the subsystem size. For the case of N spin-
% particles with M chosen as the staggered z magneti-
zation M =1, =Y} (—1)S®, we have that the sepa-
rability threshold for the half-chain partition (when N is
even) equals QFlgp ., (l;) = N?/2 and is achieved for the
state (|4 P - AN PO LI
+ 1 I ... 1))/2. Therefore, in general, other methods to
detect BPE are used [84,85]. We will now show, however, that
in the presence of a fixed local charge, when an observable M
is chosen to commute with the subsystem charges, e.g., as the
subsystem charge difference, the separability threshold (26) is
again reduced to O [cf. Fig. 3(a)].

Consider a quantum state of a fixed local charge (18),
with the subsystem charges denoted by 0“ and 0®, 0 =
0“W + 0P being in general degenerate (for systems with N
particles, QW =3Y",_, 0% and 0® =Y, , 0%, e.g., the
magnetizations of the two parts of a spin cham) Although the
charge is fixed (18), the subsystem charges 0 and Q® do
not have to be in general. For a bipartite-separable state (25),
however, we obtain from the fixed charge condition that

Var(Q™, o) = 0 = Var(0®, ¢'”) 27)

[cf. Egs. (22)-(24)] and thus o\ and o'”
subsystem charge QW and Q'®, respectively. Therefore, the
bipartite separable state pgp.sep is block diagonal,

['Osep’ Q(A)] [Iosep’ Q(B)] (28)

with respect to (degenerate) eigenspaces of @ and Q®,
which are equivalent as the total charge Q is fixed (cf. Fig. 1).

We conclude that the asymmetry (block coherence) with
respect to the subsystem charge Q“ or Q® (or equiva-
lently 6Q = QW — Q®) implies the presence of BPE, i.e.,
a quantum state with fixed local charge is block coherent only
if it is bipartite entangled. Furthermore, any block-diagonal

are of a fixed
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FIG. 3. Witnessing bipartite entanglement in an MBL system with conserved charge. We show for the XXZ chain of Sec. VI that not
only MPE can be witnessed, but also BPE, provided the phase encoding observable commutes with subsystem charges Q“ and Q® in the
bipartition. (a) For closed dynamics (y /J = 0) the QFI of the z-magnetization difference between two halves of the chain (solid lines) witnesses
BPE at all times ¢ > 0. Similarly, the QFI of the z imbalance (dashed lines) witnesses BPE in the staggered partition (ABAB ... AB instead of
AA---AB...BB) atall times . The inset shows that the asymptotic values (taken from J¢ = 10*) of the QFI for the z-magnetization difference
(circles) and the z imbalance (triangles), as a function of size N, grow with system size (cf. Ref. [43]). For the z imbalance the asymptotic value
grows with N even after rescaling by the system size. (b) In the presence of local dephasing (y /J = 2 x 10™*) the QFI of the magnetization
difference (solid lines) decays in comparison with the closed case (dotted lines), while the variance (dashed line) increases, thus overestimating
the QFI [cf. Eq. (A7)]. The inset shows that both the QFI (solid lines) and its lower bound in terms of the curvature (dotted lines) (defined in
Appendix A) witness BPE for the observable chosen as the magnetization difference, although the curvature decays at a faster rate dependent
on the system size [40,63]. The parameters of the dynamics [cf. Egs. (52) and (56)] are N = 6, 8, 10, 12, 14 [yellow, green, red, blue, and
black (grayscale: light gray to black), respectively, open case only up to N = 12], V/J = 2, and h/J = §; gray (bottom) curves correspond to
the noninteracting case V/J = 0 with N = 12 (closed dynamics) and N = 8 (open dynamics). Here the QFI is independent of system size as

entanglement obeys the area law.

observable M, i.e., an observable commuting with the sub-
system charges [M, QW] = 0 = [M, Q'®)] such as the charge
difference (M = 6Q), e.g., a difference of the subsystem
magnetizations for a fixed total magnetization, encodes phases
only in coherences between different values of a subsystem
charge. Therefore, the corresponding QFI is a witness of BPE
with zero separability threshold (see Fig. 3).

We need to note, however, that a bipartite-entangled state
does not need to feature asymmetry, but can be entangled
within the individual blocks, e.g., [¥7) = (|11 |)® || 1) —
1L 1) ® 11 1)/+/2 is a Bell |W™)-like state, but without
asymmetry (¢ = 0 = ¢®). Therefore, the QFI for block-
diagonal observables is in general not a faithful witness of
BPE, as it cannot detect entanglement inside the blocks.

D. Conserved local charge and witnessing quantum discord

Let us stress that a fixed value of the charge Q [Eq. (18)] is
essential for the coherence to imply MPE and the separability
threshold to disappear. In general, a separable state p conserv-
ing the local charge [Eq. (20)] can be coherent. We now give
two examples.

When Q is the total z magnetization of N spins %, the

symmetrized product state |V (p)) = /pli) ++/1 = plT),
given by

2 1 ) .
Py = / dg— WP PP, (29)
0 T

is separable, as e~*¢ is a local unitary. Nevertheless, the
state coherence is nonzero for 0 < p <1 and we have

[cf. (10)]

al N N
Clow) =Y p'1— p)N—"(k> log, <k> (30)

k=1
and [cf. (11)]

Lo =3 - (I -1]

k=1

3D

Another good example is given by the Werner state py
[Eq. (3)]. This state is invariant under all identical local
transformations [46] U ® UpwU' ® U™ = py, thus implying
conservation of all local charges. However, as we already
discussed in Sec. IIC, the Werner state is coherent for all
p > 0, although it is entangled only for p > % Similarly, a
general state of two qubits with conserved magnetization p5°"
[Eq. (21)] is coherent for all |c| > 0, while it is entangled
only when |c|?> > poop11. as confirmed, e.g., by the partial
transpose [86].

We will show that, although in the presence of local charge
conservation [Eq. (20)] coherence and asymmetry no longer
imply MPE and BPE, they instead imply multipartite and
bipartite discord, respectively (cf. Fig. 1). In particular, the
states pw [Eq. (3)], p3°® [Eq. (21)], and py [Eq. (29)] are
discordant (for p > 0, |c| > 0,and 1 > p > 0, respectively).

1. Witnessing multipartite quantum discord

The weakest type of quantum correlations that can be
present even in separable quantum states, i.e., states without
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entanglement, corresponds to quantum discord [23-25]. For
multipartite discord [21,22], also referred to as quantumness,
the classical states (i.e., those without MPD) can be character-
ized as diagonal in some orthogonal separable basis

pat = Z My | €N D] ® - - @ | )N

. (32

where {|efk ))},-k is an orthonormal basis in kth subsystem, k =
1, ..., N [21]. Therefore, the minimal coherence with respect
to all separable bases can be used as a witness of multipartite
discord [31-33,87] (see also [55,56] for thermal states).

In Appendix B we show that in the presence of conserved
local charge [Eq. (20)], for classical states (32) we have that

(0%, pal=0 fork=1,...,N, (33)

(k)) can be chosen as eigenstates of Q' charges. When

so |e
Q™ are nondegenerate, this basis is uniquely defined and all
classical states are diagonal. Therefore, for a quantum state
all the contributions to coherence correspond to multipartite
discord and all diagonal states are classical. We thus conclude
that a quantum state with conserved charge is coherent if and
only if it is discordant. Therefore, the QFI of any diagonal,
i.e., commuting with local charges, nondegenerate observable
becomes a faithful witness of multipartite discord and the
usual minimization over local basis is no longer necessary.
‘We note that the experimentally accessible lower bound on the
QFI in terms of curvature is also faithful (see Appendix A).

2. Witnessing bipartite quantum discord

We now show that for a system with a conserved local
charge divided into two parts, the asymmetry with respect
to a subsystem charge implies bipartite quantum discord (see
Fig. 1), analogously to the case for BPE with a fixed local
charge. For a given bipartition of a system into subsystems A
and B, a system state p features symmetric bipartite discord if
it is not a bipartite classical-classical state [21] p # Pelcls

pear = 3 b ey el | @ e, Ner)”

iasip

; (34)

with |e(A) ) (|e(B ))) being an element of orthonormal bases of
A (B). A classwal classical state (34) with a conserved local
charge [0 + 0P, pa] = 01is block diagonal with respect
to the subsystem charges QW and Q®,

(0D, paral =0 = [0P, pa.al] (35)

[cf. Eq. (33)]. In other words, when the charges for A and
B parts are degenerate, classical-classical states can feature
coherence inside the subsystem charge eigenspaces, but no
asymmetry, i.e., coherence between different eigenspaces of
Q"W and Q® (see Fig. 1). Similarly, in Appendix B we show
that for any bipartite classical-quantum state

paa= YoMl @ o, (6)

the local charge conservation (20) again implies (35). There-
fore, also quantum-classical states are block diagonal with
respect to Q¥ and Q.

We conclude that the asymmetry with respect to the
charges Q) or Q® implies the presence of both symmetric

and asymmetric BPD, i.e., a quantum state with conserved
local charge is block coherent only if it is bipartite discordant.
Furthermore, the QFI for block-diagonal (i.e., commuting
with the subsystem charges) observables is a witness of BPD,
analogously to the fixed charge case (cf. Sec. IIIC). We
note that this last result is also implied by Ref. [88], which
establishes the difference between the QFI for the total charge
and the sum of the QFI for the subsystem charges, as a witness
of bipartite discord (also without charge conservation).

Finally, note that the QFI for block-diagonal observables
is not faithful in general. Consider, e.g., a Werner-like state
pw = (1 — p)1/4 + p|¥~) (¥, where 1 is the identity op-
erator on the subspace of zero magnetization in both halves
of the spin chain and [Y)=(P VDN DN —-1I N ®
[T ¢))/ﬁ also belongs to this subspace. The state py fea-
tures no asymmetry, but it is known to be discordant for
p > 0. Moreover, note that even though py is of fixed charge
(Zero total magnetization), it is bipartite entangled only for
p > z. This illustrates that, in contrast to the multipartite
case, blpartlte discordant states with fixed charge are not
necessarily bipartite entangled.

E. Superselection rules, entanglement, and QFI

We now briefly discuss the closely related theory of en-
tanglement in the presence of a superselection rule (SSR)
[76,89-91], e.g., for the total number of particles. In the
presence of a superselection rule given by a conservation
of a local charge, a state p with the conserved charge can,
by definition, be constructed only as a probabilistic mixture
of states with a fixed local charge (in general with differ-
ent values). A probabilistic mixture of separable states with
fixed charges (which are diagonal; cf. Sec. III B) is diagonal.
Thus, the coherence in a state with the conserved charge
necessarily implies multipartite entanglement. For example,
the separable states pw [Eq. (3)] and px [Eq. (29)] cannot be
constructed from separable states of fixed charges and thus
are SSR entangled [89]. In other words, in the presence of
a SSR all multipartite-discordant states are SSR entangled,
while the QFI for nondegenerate observables commuting with
the charge becomes a faithful witness of SSR MPE. In the
bipartite case, the QFI of the charge difference in a given
bipartition not only becomes a witness of BPE entanglement
for states with the conserved (rather than a fixed) charge, but
also quantifies the nonlocality of the state (another, beyond
BPE, resource implied by the SSR [90-92]) as a convex roof
of superselection induced variance (cf. [93,94]).

IV. BOUNDS ON ENTANGLEMENT AND DISCORD
MONOTONES FOR SYSTEMS WITH FIXED OR
CONSERVED CHARGE

In this section we show how the relation between coher-
ence and quantum correlations, be it entanglement, or discord
(quantumness), can be strengthened. By this we mean going
from simply witnessing entanglement or discord to establish-
ing a stronger quantitative relation between monotones for
entanglement and monotones for coherence or asymmetry.
The bounds we present in Egs. (38), (41), (46), and (51) are
the second set of central results for this paper.
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FIG. 4. Coherence as an upper bound on the MPE in an MBL
system. We show coherence (10), which is a faithful upper bound
on MPE [cf. Eq. (38)], for the XXZ chain of Sec. VI. The curves
are rescaled by the effective system size N = log, (NA/IZ) of the zero
z-magnetization subspace. In the presence of dephasing, coherence
decays at a rate proportional to the dephasing strength y and is
weakly dependent on the interaction strength, but not on the system
size. The inset shows that the coherence in the closed dynamics
(y =0) at t = 1/J (triangles) and ¢ = 103/J (circles) follows the
same scaling with system size. The parameters of the dynamics [cf.
Egs. (52) and (56)] are N = 6, 8, 10, 12, 14 spins [yellow, green,
blue, red, and black (grayscale: light gray to black), respectively],
V/J =2, h/J =5, and y/J =2 x 107*; gray (bottom) curves are
the noninteracting case V/J = 0 with N = 8 (here results are inde-
pendent of system size as entanglement obeys the area law).

A. Faithful upper bound on multipartite entanglement

A monotone of multipartite entanglement of a state p can
be defined in terms of the relative entropy between the state
and the closest separable state [9,10]

Evp(p) = I[rrlil‘l S(p“O'sep)’ (37

where the relative entropy S(p|lo)=Trplog, p —
Trplog, o. In general, this minimum is difficult to evaluate,
in particular for mixed states of many-body systems [95].

For a state p with a fixed local charge, we now derive a
faithful upper bound for MPE in terms of coherence in the
computational basis [cf. Eq. (10)]

Ewr(p) < =S(p) + S(pdaiag) = C(p), (38)

where S(p) = —Trplog, p and paiag = D _; piili)(i| is ob-
tained from p by removing all coherences, thus leaving only
the diagonal (see Fig. 1). Analogously to (38), also the geo-
metric entanglement [96,97] can be faithfully bounded from
above in the presence of a fixed local charge by the geometric
coherence [98] (see Appendix D). Note that the bound (38)
can be directly accessed by measuring occupations in the
computational basis whenever p is pure (see Fig. 4).
Derivation. In order to arrive at (38), for p with a fixed
local charge, instead of the distance from the set of all

separable states in (37), consider the distance from the set of
separable states with a fixed charge. Note that the latter set is
smaller and thus the distance from it is greater, thus providing
an upper bound on MPD. Furthermore, since separable states
with a fixed charge are diagonal in the corresponding basis
(cf. Sec. III), the closest state from this set is given by pgiag.
Finally, the bound (38) is faithful as it reaches zero whenever
p is separable.

We note that it is known that for p obeying a local
symmetry it is enough to consider the minimum over the
separable states also obeying this symmetry [99]. For p con-
serving a local charge [Q, p] = 0, we thus have Eyp(p) =
ming, :(0,0,,1=0 S(0|0sep)- For example, for a Bell diagonal
state of two spins (i.e., a state which diagonalizes in the Bell
basis), with a fixed total magnetization [Eq. (19) with p = %],
the closest separable state is known to be given by pgiae =
(|01)(01] + [10){101)/2, so Emp(p) = C(p) [10]. In general,
however, for a state p with a fixed local charge, the charge of
the closest separable state, although conserved, is not fixed,
as there might be a trade-off in spreading the support of pgep
to other eigenspaces of O, where pg, no longer needs to be
diagonal (cf. Sec. Il D). For example, consider a symmetric
W state of N = 3 spins

Wa) = (11 L4 + 14 A4 + 1L 4 )/V3. (39)

It is known that the state p3 in Eq. (29) with p = % is the
closest separable state to |W3), so Eyp(|Wa)) = 210g2(%) [97].
The bound (38) corresponds then to 2 logz(%) < log, 3.

Entanglement monotones are required to be nonincreasing
under local operations and classical communications (LOCC)
[9,10,12], which are considered free in the resource theory of
entanglement. Actually, the relative entropy of entanglement
is an entanglement monotone even under a larger set of
separable operations, which transform separable states into
separable states. Since LOCC and separable operations do
not conserve a local charge, the bound (38) is in general
not saturated, as illustrated by the example of (39). When
only a restricted set of separable operations that preserve the
charge conservation in a quantum state is considered, the
coherence in (38) becomes an entanglement monotone (as
such operations are incoherent and thus cannot increase the
coherence), which we show in Appendix C.

B. Faithful upper bound on multipartite discord

Multipartite discord can be quantified as the relative en-
tropy to the closest classical state

Dye(p) = min S(pl|pa), (40)

where a classical state p. is diagonal is some local basis
[21,31-33,87] [see Eq. (32)]. For p commuting with a local
charge, i.e., the case of the conserved charge, we obtain a
faithful upper bound on MPD in (40) as follows. In analogy
to (38), instead of considering the distance to classical states,
we now consider the smaller set of classical states with
the conserved charge, which are diagonal, as we showed in
Sec. III D. This again gives a bound in terms of the coherence
in the computational basis [cf. (10)]

Dap(p) < —S(p) + S(pdiag) = C(p), (41)
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where pgiae is obtained from p by removing all coherences
Pdiag = > piili) (il (cf. Fig. 1). The bound (41) is faithful, as
it is zero when the state p is classical.

For the Werner state of two qubits (3), we have Dyip(pw ) =
C(pw) (cf. Sec. I1 C), so the bound (41) is saturated. Similarly,
for the example of the W state of three spins (39), the
MPD is exactly equal Dyp(|W3)) = S(pdiag) = log, 3 [21].
In general, however, Eq. (41) is only an upper bound for
MPD, even when the state is pure, since the minimum in
(40) cannot be restricted to classical states with the conserved
charge, as the set of classical states is not convex (cf. [99]).
Indeed, it is instead known that the minimum in (40) corre-
sponds to dephasing of p in some separable basis [21], while
Eq. (41) corresponds to dephasing in the computational basis.
For example, take the separable state p; given by Eq. (29)
with p = % In this case (for optimal dephasing in the x

basis [21]) we have Dyip(p) = 0.942 ... < C(p3) = %log2 3
[cf. Eq. (30)].

Analogously to (41), in the presence of a conserved local
charge, also the geometric multipartite discord or quantum-
ness [100] can be faithfully bounded from above by the geo-
metric coherence [98], while the negativity of quantumness
[33,71,72] can be faithfully bounded by /; coherence (see
Appendix D). Those bounds are a demonstration of the fact
that entanglement or quantum discord quantified geometri-
cally by a bona fide distance to a set of separable or classical
states, e.g., by the relative entropy, is bounded from above
by coherence in any separable basis [31-33]. Furthermore,
it is known that the multipartite quantum discord quantified
this way can be considered as minimum coherence in some
separable basis [21,31-33,87]. A conserved local charge,
however, guarantees that the bound (41) on MPD is faithful,
while, when the charge is fixed, the analogous bound (38)
holds also for MPE (cf. Fig. 1). Interestingly, the QFI (2)
itself for a nondegenerate observable with a fixed spectrum
which is minimized over a local choice of basis can also be
viewed as a measure of multipartite discord (see [101,102] and
cf. [55,56,88]), and in this case the choice of computational
basis again provides a faithful upper bound on MPD. Finally,
we note that there exist similar bounds from above on the
amount of entanglement or quantum correlations created by
incoherent operations between a system state and an ancilla,
in terms of the corresponding coherence of the initial system
state [87,98] (see also [103,104] in the context of bipartite
settings).

C. Lower bounds on bipartite entanglement

Bipartite entanglement can be quantified by its relative
entropy to the set of bipartite-separable states (25), so-called
relative entropy of entanglement, or entanglement entropy
(9,101,

Epp(p) = min S(p||pPBp-sep), (42)

PBP—sep
which operationally corresponds to entanglement of
distillation, i.e., the asymptotic rate at which Bell states
can be distilled from many copies of p by LOCC. In
particular, BPE of a pure state |{) is given simply by the
von Neumann entropy of the reduced state to the subsystem

A or B in the bipartition Egpp(|¥r)) = S(pa) = S(pp), with
pa = Trg(|¥)(¥]) [10]. For mixed states, however, a closed
formula for (42) is not known.

As the set of bipartite separable states (25) for a given
bipartition always contains separable states (6), we have that
Ep(p) < Emp(p) [see Egs. (37) and (42)]. Thus, in the pres-
ence of a fixed local charge, the coherence (10) is also an
upper bound for bipartite entanglement with respect to any
partition of the system [cf. (38)]

Epp(p) < —=S(p) + S(pdiag) = C(p). (43)

This upper bound, however, is not in general faithful. In this
section we remedy this situation by deriving lower bounds on
bipartite entanglement monotones in Egs. (46) and (51) in the
case when a local charge is fixed.

1. Lower bound on entanglement of formation

In Sec. IIC we showed how bipartite separable states
cannot feature coherences between subspaces with different
values of the subsystem charge (cf. Fig. 1). Exploiting this
structure, we obtain below a lower bound on the bipartite
entanglement of formation in terms of the charge asymmetry
[see Eq. (46)].

Bipartite entanglement of formation [8] is defined as

ggPE = {pm&;?)} Z ij(p/(aj))’ 44)
] J _]

where p\/) = Trp(|y;)(¥;]) is the state of |y;) reduced to
the subsystem A, while the minimization (so-called convex
roof) is performed over all decompositions of p into pure
states p = Z]-pj|l/fj><1//j|. The entanglement of formation
after regularization corresponds to the entanglement cost, i.e.,
the asymptotic rate at which Bell states need to be supplied in
order to prepare p via LOCC [105]. From the joint convexity
of relative entropy, it is an upper bound on the relative-entropy
bipartite entanglement [11] in Eq. (42),

Eppe < Eppp, (45)

and these measures coincide for pure p.

A lower bound on BPE of formation (44) in a state with a
fixed local charge is given by the asymmetry of a subsystem
charge (15),

Egpr(P) = —S(p) + S(Phiock) = A(p), (46)
where pPplock = Zi,.f: P=g® pijli){j| is obtained from p by
removing all coherences between different eigenspaces of the
charge in the A or B subsystem (or equivalently of the charge
difference between the subsystems) (cf. Fig. 1). Note that
for pure states, the bound equals the entropy of the subsys-
tem charge QW statistics, which can be directly accessed
by measuring Q. The derivation of (46) can be found in
Appendix E.

Let us first consider Eq. (46) for the example of a Bell di-
agonal state of N = 2 spins % with a fixed total magnetization
[Eq. (19) with p = %]. Here the asymmetry equals the relative
entropy of entanglement

A(p3) = 1+ (3 + lel) logy (5 + Iel) + (5 = lel)
x log, (% — |c|) = 5BP(,0§X)
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FIG. 5. Bipartite entanglement and asymmetry in an MBL system. (a) Entanglement entropy S(p4) (solid lines) and asymmetry Spjock Of
half-chain magnetization (dashed lines) [cf. (46)] for the XX Z chain of Sec. VI, with closed dynamics. The asymmetry initially follows the
area law (Jt < 1), which is broken at later times, in analogy with the entanglement entropy. The inset shows that the asymptotic value of the
asymmetry (taken from Jt = 10%) scales as log,(N/2 + 1) with system size (cf. Fig. 10). (That of the entanglement entropy, not shown, scales
as N, as expected.) (b) Similar to (a), but with dephasing, so for —S(p) + Spiock (solid lines) and —S(p) + S(p4) (dashed lines). Here the decay
rate of the asymmetry is independent of the system size, but depends on the interaction strength (cf. Fig. 10). (c) Entanglement entropy (solid
lines) for the staggered bipartition (ABAB . ..AB instead of AA...AB-- - BB) and corresponding asymmetry of the staggered magnetization.
The curves are scaled by N/2 and log,(N/2), respectively. The inset shows that the asymptotic value of the entanglement entropy per site
(taken from J¢ = 10*) shows an additional weak dependence on N. (d) Same as (c) but for the dissipative case (subtracting the von Neumann
entropy S). In the presence of dephasing, the decay of both sets of curves is independent of the system size, but depends on the interaction
strength. The parameters of the dynamics [cf. Egs. (52) and (56)] are N = 6, 8, 10, 12, 14 [yellow, green, red, blue, and black (grayscale: light
gray to black), respectively, open case only up to N = 12], V/J =2, h/J =5, and with y /J = 2 x 107 for the dissipative case [(b) and (d)];
gray (bottom) curves correspond to the noninteracting case V/J = 0 and N = 12 (closed dynamics) and N = 8 (open dynamics), but in both
cases the results follow area laws.

[10], but the entanglement of formation is higher, Second, let us discuss the scaling of the bound (46) with
the system size N (see also Fig. 5). For a system of N

Fo fix 1—+/1—4|c|? 1—+/1—4|c? spins % (with N even), the maximum entanglement in the
ErpE ('02 ) == ) log, ) bipartition into half chains is proportional to the number of

spins S(pa) = N/2. When the total magnetization along one
axis is fixed, the Hilbert space dimension D = 2" is reduced
to () = exp[Nu(a) + O(InN)] (with a the filling), where
u(a) = —alog, a — (1 — a)log,(1 — a), which in the large-
size limit is still exponential in size. In particular, for the
biggest subspace of zero total magnetization (a = %), S(pa) =
N/2 is still achievable (by the uniform superposition of 2V/2
possible states of half a chain, each in the tensor product,

3In Appendix E we show that the bipartite entanglement is actually e.g., with the same state but with all spins flipped, which
bounded by the asymmetry of formation. This bound is saturated for guarantees zero magnetization for an even number N of spins)
any Bell diagonal state with a fixed total magnetization. (cf. Fig. 5).

1 — 4|c|? 1+/1—4|c|?
3 log,

[34], whenever the state is not pure (|c| < %).3
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In contrast, the maximal asymmetry scales logarithmically
with the system size and we have S(pplock) < 10g,(N/2 4 1)
for the subspace of zero magnetization [cf. Figs. 5(c) and
5(d)], which is achieved for pure states uniformly distributed
over the half-chain magnetization. It is thus still possible to
certify breaking of the area law for one-dimensional systems,
where it means constant scaling (independent of the system
size). Indeed, for the example of the state achieving the
maximal entanglement entropy N/2, and thus the volume
law, we have S(ppock) ~ log,(N/2)/ 2,% so the asymmetry
displays a logarithmic law and thus breaking of the area law
is detected. Furthermore, also for the ground state of the crit-
ical one-dimensional system of interacting spinless fermions,
where the entanglement entropy scales only logarithmically
S(pa) ~ log,(L)/6 in the A-subsystem size L [3,106], it is
known that S(ppiock) ~ log,(K1InL)/2 [70,107], where K is
the Luttinger liquid parameter.’ Therefore, also in this case the
bound in Eq. (46) detects breaking of the entanglement area
law. We observe an analogous behavior for an MBL system in
Figs. 5(a) and 5(c).

Furthermore, for mixed states the bound (46) can be tighter
than the known bound with the reduced state [108],

—S(p) + S(pa) < Espe(p) < Egpr(p) (47)
[see Fig. 5(b)]. In particular, the bound (46) is always positive,
—S(p) + S(pbiock) = 0, (48)

in contrast to what occurs with —S(p) + S(p4) [cf. Fig. 5(b)].

In Sec. VI we discuss the bound (46) for the example
of a many-body localized system as shown in Fig. 5. In
particular, for the case of closed dynamics we observe very
good agreement between the asymmetry and the entanglement
entropy in the Anderson-localized phase without interactions
[cf. Fig. 5(a)].

Finally, we note that BPE of formation (44) is actually
bounded by the convex roof of asymmetry (cf. Appendix E).
We can thus relate the bound (46) to the known equality
[69] between the coherence of formation [26,68,69] for a
state p =), ; pijli){jl and the entanglement of formation
[8,11,34,35] for the corresponding maximally correlated state
Ome = Zij 0ijli1)(jj| as follows. Namely, in the presence of
a fixed local charge Q = QW + Q®), a given A-subsystem
charge value QY in the subsystem A fully determines a value
of the B-subsystem charge Q'®. We also note that a relation
similar to that in [69] holds between the relative entropy of
coherence and the relative entropy entanglement (cf. [98]).
Thus, it is an interesting open question whether the asymmetry
of charge difference is also a valid lower bound for the relative
entropy entanglement in states with a fixed local charge.

“The distribution of the half-chain magnetization is binomial with
probability %, which from the central limit theorem can be approx-
imated as the Gaussian distribution with the variance (N/2) x i. In
S(poiock) We neglected the constant contribution log, (we/2)/2.

5The distribution of the subsystem charge is Gaussian with the
variance KInL/m? (see [70]), and in S(ppiocx) We neglected the
constant contribution log,(2e/m)/2.

2. Experimentally accessible lower bound on the convex
roof of negativity

When p is mixed, the asymmetry of the charge difference
(15) and (46) cannot be directly accessed experimentally, as
S(p) cannot be measured without full quantum state tomogra-
phy with a few exceptions (such as noninteracting fermions
[70]; cf. also [84,85]). Therefore, in Eq. (51) we derive
an analogous lower bound to (46) on the convex roof of
negativity of entanglement [36,37], which can be accessed
experimentally by using multiple quantum coherence spectra,
as explained in Appendix A.

V. NEGATIVITY IN THE MANY-BODY LOCALIZED
PHASE

The negativity of entanglement [34-36] is defined as
N(p)= ("1 = 1/2, (49)

where || X||; = Tr[X"X]'/? denotes the trace norm and p’
is the partial transpose of the subsystem A. This definition
is independent of the choice of the separable basis and the
subsystem A or B, and for the case of two qubits (D =2 x 2)
it corresponds to the concurrence [34,35]. The negativity is
a witness of bipartite entanglement, as although the trace is
conserved under partial transpose, the resulting matrix may
no longer be positive if the state is entangled, giving the Peres
criterion of separability [109]. For systems of dimensions
D =2 x 2and 2 x 3, the partial transpose is a faithful witness
of bipartite entanglement [86], but in general there exist
entangled states, so-called positive-partial-transpose-bound
(PPT-bound) states, which remain positive under the partial
transpose [110]. Furthermore, negativity of entanglement is
an entanglement monotone with respect to PPT operations
[36] and recently has been proposed to be accessible ex-
perimentally [111] by measuring moments of the transposed
state Tr[(p™ )] from which the efficient reconstruction of the
negativity can be achieved using machine learning techniques.
Finally, the positive partial transpose is a faithful witness
of the bipartite entanglement for pure states, and N (|v)) =
P [AiAi1'/2/2, with A; denoting the Schmidt coefficients
for a pure |y). This allows for the negativity of entanglement
(49) to be extended to a bipartite entanglement measure with
respect to LOCC [37] via the convex roof

Explp) = inf > pN (W), (50)
A J j

where p = Zj pilvi) (¥l and E]é\lf,(p) = N(p) for a pure
state p. A lower bound for the convex roof of negativity (50)
in states with a fixed local charge is given by

2600(p) = 17N (p) = 1955 (p). (51)

where 1P° is defined by Eq. (16) with respect to the sub-
system charge (H = QW), while /% [see Eq. (13)] can
be accessed in experiment by measuring multiple quantum
coherence spectra [39-41], as we outlined in Appendix A.°

®We also note that the negativity (49) itself also provides a bound
Ebp(p) = N (p).
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FIG. 6. Negativity and experimentally accessible lower bound in a closed MBL system. (a) We show the negativity of entanglement
[Eq. (50)] for the XX Z chain of Sec. VI. The negativity (solid lines) initially follows an area law for times Jz < 2 (with coefficient dependent
on the interaction strength for J# > 1), but at later times becomes dependent on the system size. The lower bound by /"% [Eq. (51)] is also
shown (dashed lines) (cf. Fig. 7). The inset shows that the asymptotic value of N in the closed dynamics (at Jt = 10*) scales exponentially
with the system size N (note the logarithmic scale of the vertical axis). (b) We show the lower bounds [Pk > I bl"“k , on the convex roof of

the negativity of entanglement [cf. Eq. (51)]. Both [P (solid lines) and the experimentally accessible lbl"c(A) (dashed lines) initially follow

the area law for times J¢ < 2, and at later times become dependent on the system size. In particular, the asymptonc value of IP°* for the
noninteracting system (gray) is crossed by l}";";(';) for sizes above N = 8. The inset shows that the asymptotic values of /P (circles) and

l"“)C o (triangles) in the closed dynamics (at Jt = - 10%) increase with the system size. The parameters of the dynamics [cf. Egs. (52) and (56)]
are N =6, 8, 10, 12, 14 spins [yellow, green, red, blue, and black (grayscale: light gray to black), respectively], V/J = 2, and h/J = 5; gray

(bottom) curves correspond to the noninteracting case V/J = 0 with (a) N = 12 and (b) N = 8 (b). Light blue stars in (a) correspond to a more
strongly interacting system with V/J =5 and N = 12.

For the example of a state of N =2 spins % with a is the subsystem-A size and K is the Luttinger liquid
5

fixed total magnetization (19), it is easy to verify that the  parameter.
lower bound equals the negativity l})lock(p X) = lblocm(p X) = Although, the experimentally accessible bound in (51) is
2le = 2 (pg") [cf. (50)]. Furthermore, in this case, although necessarily smaller, it can also detect breaking of the area law.

block block

the state is generally mixed, the convex roof of negativity and For example, v'vhen [y = N/2 is maximal, we have & M®
the negativity coincide (cf. [35,66]), so the bound in Eq. (51) 2/34/N/2, while for the state with the maximal negat1v1ty we
is saturated. have lb"’“(';) ~ 2(wN/8)"/** Similarly, for the critical ground
Let us now discuss the scaling of the bound (51) with the state lblock ~ 2(K InL/m)"*# In Figs. 6 and 7 we also show

. N 1 . 1,0W
system size N. For a pure state of a system of NV spins 5 with  {he qynamics of the bounds for a closed and an open MBL
the total magnetization along one of the axes fixed, the neg-

s N2 . system, which displays breaking of the area law.
ativity obe)//g N{¥) 52(2 — 1)/2 and thus also its con- The plethora of entanglement monotones [12,14] seems
vex roof Epp(p) < (277 — 1)/2 [with the bou'nds saturated to be in disagreement with the fact that asymptotically, for
exactly when the entanglement entropy is maximal S(ps) =

. St a large number of copies of a pure state, the bipartite en-
N/2] [cf. Fig. 6(a)]. Thj(:,/refore, in this ,Case_the VOhm,le law tanglement is uniquely quantified by the relative entropy of
corresponds to log,[2&5p(p) + 1] scaling linearly with the

b . ile b law for th di ronal entanglement [92]. For a finite number of copies, however,
subsystem size, “é tle the area atw ort le otr;le— llmeqst;long bipartite entanglement needs to be characterized by a set of
system corresponds (o a constan (s.ee also the fogarthmic bipartite monotones determining the equivalence class for the
negativity [112] which is additive with respect to the tensor Schmidt coefficients under LOCC [113]. For mixed states
product). f . . P . ;

block or an appropriate function quantifying the mixedness of
. In contrast, we have [;®™(p) < N/2, which is saturated the reduced state p4, the entanglement monotones can be
in the zero .magnetlzatlon subspace for the pure state un.1- constructed via the convex roof [113,114], as it is in the
formly d 1st.r ibuted between ].V/ 2 +1 V‘i‘lues of the half-chain case of entanglement of formation [8]’ and ’the convex roof
?r:agr(l)(;tlf}?go;e;lllae;efﬁre, tﬁ; lssep(;SfS 13112 :)Ooucrllfiteg ll))rezzl; of entanglement negativity [37]. In Appendix E we show that
Fig 7), similarly to t}i]e case of the relative entrony of also for the mixedness of the reduced state quantified by the

& 1 y . 24 concurrence [34,35] by Tsallis 2-entropy, the corresponding
asym{nf:try (46). Indﬁeﬂ{’ for the 4sta.te -Wlth the maximal convex roof monotones [114-117] can be bounded from
negativity, we have i ~ ~aN. Similarly, for' 2 groqnd below by the L,-norm of block coherence, also accessible in
state of a critical one-dimensional system of interacting y 2 ’

spinless fermions we have [P ~2./2KTnL/7, where L experiments.
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FIG. 7. Lower bound on BPE in an open MBL system. We show
the lower bound on the convex roof on the negativity of entanglement
by [Pk [cf. Eq. (51)] for the XX Z chain of Sec. VI. The solid curve
is for the closed case and the dashed curves for the dissipative case.
Decay in the presence of dephasing depends on both the system size
and interaction strength. The inset shows that the asymptotic value of
[Pk (p) in the closed dynamics at # = 10°/J (circles) grows approx-
imately linearly with N (for N = 8, 10, 12, 14). The parameters of
the dynamics [cf. Egs. (52) and (56)] are N = 6, 8, 10, 12, 14 spins
[yellow, green, red, blue, and black (grayscale: light gray to black),
respectively, open case only up to N = 12], V/J =2, h/J =5, and
v/J =2 x 107%; gray curves correspond to the noninteracting case
V/J =0 with N =12 (closed dynamics) and with N =8 (open
dynamics) (here results are independent of system size as the system
follows an area law). Light blue stars in (a) correspond to a more
strongly interacting system with V/J = 5and N = 12.

Lower bounds on BPE as entanglement monotones
in the presence of a SSR

We now explain that in the presence of a superselection rule
related to a local charge, the asymmetry of a subsystem charge
(15) becomes a lower bound on the bipartite entanglement
for the states with conserved charge (see also Sec. IIIE).
In the presence of a SSR related to a local charge, a state
of the conserved, but not fixed, charge can be created only
as a probabilistic mixture of states with fixed values of the
charge. This restriction is captured by the monotones of
entanglement for mixed states, which are constructed from
pure state monotones via the convex roof which obeys a
given SSR [90,91]. Therefore, in the presence of a SSR, the
subsystem charge asymmetry (15) becomes a lower bound
on the bipartite entanglement for all states. This lower bound
captures entanglement related to the resource of nonlocality
induced by the SSR, also quantified by the QFI of the charge
difference [90,91,93,94], as we now explain.

First, the asymmetry disappears if and only if the QFI of
the charge difference equals zero. Second, the asymmetry of
a subsystem charge is nonincreasing under LOCC that obey
the SSR, i.e., conserve the charge (see Appendix C). Actually,
it can even be shown that the asymmetry is nonincreasing
with respect to a larger class of separable operations which

preserve the charge conservation in a quantum state (see
Appendix C).

VI. APPLICATION TO A MANY-BODY LOCALIZED
SYSTEM, WITHOUT AND WITH DISSIPATION

Throughout the paper up to now we have exemplified our
results with the following model system, an XXZ chain of
spins % in the presence of a disordered longitudinal magnetic
field. This is a paradigmatic system widely believed to display
a transition from a thermal phase at small disorder to an MBL.
phase at large disorder (for reviews on MBL see [4-6]). The

Hamiltonian of this model is given by [118]

N—1 N—1 N
Hyxz =J ) (SSEa+SiSi) +V D SiSi + D S,
k=1 k=1 k=1

(52)

where §;”"* are the spin operators for the kth spin 1 and the
last term is a quenched random longitudinal field, with /; ran-
dom independent and identically distributed drawn uniformly
from [—A, h]. Note that we consider open boundary conditions
in order to remove residual symmetries. This Hamiltonian
maps via a Jordan-Wigner transform to one of interacting

spinless fermions in a random field

N-1 N-1
J
H)((‘Qz Y Z(Czck-&-l + CZHck) +V E NNy
k=1 k=1

N N v N
— g, —V n+—N+ he, (53
k;kk ](:Z]k ) k;k (53)

where the fermion density on the kth site is given by n; = cZ Ck
and we neglected a constant shift. We see that J drives hop-
ping of fermions, while V is the strength of density-density
interactions.

This is a convenient system to which apply the results
of Secs. III and IV, for two reasons. First, the Hamiltonian
(53) conserves the total number of fermions ZkN:] ng, which
corresponds to the conservation of the total z magnetization
M, = Z;cv=1 St in (52). Therefore, if the initial state has a
fixed z magnetization (or a fixed number of fermions) then
unitary dynamics under H will preserve it. [Note that while
it is natural to consider a superselection rule for the number
of fermions [90,91] in the case of (53), in the case of (52)
no restrictions apply to possible operations on a quantum
state.] For example, a state with fixed z magnetization is the
staggered state

Vo) =1t 4td ),

where |1) and ||) denote spin up and down, respectively,
often used as an initial state, both in numerics [4,118] and in
experiments [119]. Second, a key characteristic of the MBL.
state is how entanglement develops over time as the system
evolves from an initial unentangled state [43,44].

For h > h, the system described by (52), or alternatively
(53), is many-body localized. This is most immediately ob-
served in the inability of the system to forget initial conditions,
a key marker of nonergodicity. An example is the behavior of

(54)
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FIG. 8. Observable averages in MBL and thermal phases: imbal-
ance (solid lines) and average half-chain magnetizations difference
(dashed lines) for the XXZ chain of Sec. VI. They both show a
quick approach to stationarity for and in contrast to the behavior of
quantum correlations (cf. Fig. 5). In particular, there is no appreciable
difference in timescales between the interacting and noninteracting
cases. The parameters of the dynamics [cf. Egs. (52) and (56)] are
N = 6,8, 10, 12, 14 [yellow, green, red, blue, and black (grayscale:
light gray to black), respectively, open case only up to N = 12],
V/J =2,and h/J = 5; gray (top solid and bottom dashed) curves are
for V/J = 0 and N = 8. The bottom inset shows that in the thermal
phase (V/J =2 and h/J = 1) the asymptotic values decrease with
the system size [green (gray) N = 8 and blue (darker gray) N = 12].
The top inset shows that the average imbalance in the presence of
dephasing y /J = 2 x 107 (dashed curves) and 103 (dotted curves)
decays to zero.

the average imbalance (I;) as a function of time, starting from
the staggered initial state (54), where the imbalance operator
corresponds to a magnetization with the same stagger as the
initial state, reading in spin language

N
L= (-1)\s;, (55)
k=1

so that for |yp) in Eq. (54) it quantifies the degree of time
correlation with the initial conditions. Figure 8 shows how
for |Y) the imbalance becomes stationary at a value far from
zero, contrary to what would occur if the system thermalized
and became ergodic.

While in the thermal phase (7 < h.) the growth of entan-
glement is fast (see, for example, Fig. 9), in the MBL phase
entanglement grows more slowly (cf. Fig. 5), first towards
an area law plateau similar to that of an Anderson-localized
system (V =0 in H), only later growing logarithmically in
time towards its asymptotic value (which obeys a volume
law, but is nonetheless smaller than that of the thermal phase)
[4,43,44].

In order to apply our results to both pure and mixed states,
we furthermore assume that the system can feature a local
noise that conserves the total z magnetization (cf. Sec. Il A).
This condition is only fulfilled for dephasing, when the system

9
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FIG. 9. Correlations in the thermal phase of an MBL system:
relative entropy coherence [black (top) curve] (10), a lower bound
on the relative entropy of entanglement [108] [green (lower mid-
dle) curve] —S(p) + S(pa), half-chain magnetization asymmetry
[red (bottom) curve] (15), and mutual information (total classi-
cal and quantum correlations) I = (A, B) = S(pa) + S(p) — S(p)
[gray (upper middle) curve] in thermal phase of MBL system (V/J =
2,h/J =1, and N = 8). Solid lines corresponds to the closed case,
while the open case with dephasing is illustrated by dashed (y/J =
2 x 10™*) and dotted (y /J = 107?) lines. The inset shows the closed
case for N = 8 (solid lines) and N = 12 (dashed lines) spins.

state p evolves according to the master equation [120]

N

d .
o= L(p;) = —ilHxxz, p ]l + v ;S,ipzS,i —Nyp

(56)

and [S%, M,] = 0. In particular, we consider weak dephasing
where the MBL effects are expected to be robust [120—-122], in
contrast to the limit of strong dephasing where the dynamics
becomes classical [123-125]. A more general local noise
which preserves the conservation of M, in a quantum state can
also feature thermal jumps /xS, and \/HS: (cf. Sec. IITA
and Appendix C). We note that the dynamics in Eq. (56) is
allowed by the MQC protocol in Appendix A, which delivers
a faithful lower bound on the QFIL.

Numerical simulations in Figs. 2—12 are obtained (for each
set of parameters) by averaging 10* trajectories from exact
diagonalization of the Hamiltonian (52) in the closed case and
from numerical integration of the master equation (56) (using
the BDF method), with an average over 5 x 103 trajectories,
in the open case. The error bars are not shown, as they are
smaller than the used widths of lines and symbols.

A. Witnessing entanglement in MBL dynamics

In Fig. 2 we investigate how MPE in the chain of N =
14 spins can be witnessed by measuring the QFI (2) (or
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equivalently the variance, as dynamics is closed) of the local
magnetization observables

N/2 N
SM, = ng - Z S, (57)
k=1 k=N/2+1

N
M, =) (-D'S;, (58)

k=1

N
L= (-1's; (59)

k=1

and the z imbalance I, [Eq. (55)] (cf. [45]). The QFI for M,
is maximal and it certifies the presence of MPE at all times as
it is larger than its separability threshold, which is equal to N
(see Fig. 2).

Since both 6M, and I, commute with the z magnetization
M, [which is fixed to zero for the initial condition (54)],
their separability threshold is reduced to zero (see Sec. III B).
Therefore, exactly as M,, they witness the MPE for all times
as well (see Fig. 2). Interestingly, after the initial growth the
QFI per spin for M, and I, saturates at times ¢ ~ J~!, while it
continues to grow for I, and §M, in the interacting case [see
Fig. 3(a)]. Moreover, even in the presence of interactions, the
QFI per spin for M, and I, remains unchanged for different
system sizes (not shown), while it increases for I, and M,
(the latter not rescaled by N) [see Fig. 3(a)].

This growth of the QFI for I, and §M, is related to the fact
that such a choice of observables also witnesses BPE for the
staggered partition (ABAB ...AB) and the partition into half
chains (AA...AB...BB), respectively. Indeed, the QFI for
such observables detects the asymmetry with respect to the
magnetization difference in the partitions ABAB...AB and
AA...AB...BB, respectively, while the asymmetry can be
present only in states with BPE due to a fixed total magne-
tization M, (cf. Fig. 1 and Sec. III C). Moreover, even in the
presence of dephasing, when both the QFI and its experimen-
tally accessible lower bound in terms of the curvature (see Ap-
pendix A) are reduced due to mixedness of the system state,
they continue to witness BPE, due to the bipartite-separability
threshold being zero [see Fig. 3(b)]. As we discuss in the
next section, it is possible not only to witness, but also to
bound from below the bipartite entanglement present in the
many-body localized system of Egs. (52) and (56).

We note that it is enough to measure the QFI of the mag-
netization difference §M, or the imbalance I, to distinguish
the Anderson localized phase from the many-body localized
phase (cf. Fig. 3), which is not possible by measuring simply
the averages of those observables (cf. Fig. 8), whose satura-
tion at nonzero value is used in experiments as markers of
localization [119,126]. This observation was already made in
Refs. [43,45]. As we will show in the next section, however,
our bounds (46) and (51) not only distinguish the Anderson-
localized phase from the many-body localized phase, but also
bound from below the amount of bipartite entanglement.

B. Measuring the growth of entanglement in MBL dynamics

In Fig. 4 we observe that the coherence in the basis of
z magnetization follows the volume law at all times [with

respect to the effective size of the subspace with fixed zero
magnetization Negr = log, ( NA/IZ)] both for closed dynamics and
in the presence of the dephasing. The dephasing leads to
exponential decay at a rate dependent only on the interactions,
but not on the system size. As we derived in Eq. (38), the
coherence is a faithful upper bound on MPE quantified by
relative entropy. Multipartite entanglement is also expected to
follow the volume law, as, by definition, it is the entanglement
across the partition of the system into N subsystems (and thus
the area of this partition is equal to the volume). Interestingly,
the coherence is also an upper bound on the entanglement
entropy [see Eq. (43)], which is known to be connected to the
diagonal entropy in the so-called /-bit basis [44,127,128].

In order to investigate the bipartite entanglement, in
Figs. 5(a) and 5(c) we show the growth in the entangle-
ment entropy (solid lines) for two different bipartitions:
half chains (AA...AB...BB) and the staggered bipartition
(ABAB...AB...AB). While in the presence of interactions
the entanglement entropy between half chains shows pro-
nounced logarithmic growth [43,44] between the initial area
law regime and the asymptotic saturation to the volume law,
the entanglement between staggered partitions initially fol-
lows the volume law [see Fig. 5(c)]. This is due to the presence
of N boundary faces between the A and B parts of the system
in the staggered partitioning. The asymptotic value of the
entanglement entropy per spin seems to follow a logarithmic
dependence on the system size [see the inset in Fig. 5(c)]. The
behavior of entanglement entropy for the staggered bipartition
is not directly captured by the usual MBL mechanism of
dephasing in the basis of exponentially localized integrals of
motions [44,127-129], as the minimum localization length is
single site, i.e., of the partition size, and thus entanglement
growth is necessary due to the neglected boundary effects and
higher-order corrections to the logarithmic growth [130].

We now discuss the behavior of the asymmetry of the
magnetization difference, which we derived as a lower bound
on the relative entropy of BPE in Eq. (46). Note that in the
closed case [dashed lines in Figs. 5(a) and 5(b)], the asymme-
try simply equals the entropy of the magnetization difference
distribution, which is created by (in the fermion language)
fermions hopping across the boundary of the partition and
bounded by log,(N/2 + 1) (cf. Sec. IV C). In particular, for
the half-chain bipartition, it initially follows the area law
which, in analogy to the entanglement entropy, is broken at
later times if the interactions are present in the system (see
also Fig. 10). Although the saturation to the asymptotic value
takes place an order of magnitude earlier than for the entangle-
ment entropy, for the considered system size the growth is still
longer than in the Anderson-localized phase (no interactions)
or thermal phase (low disorder) (see the inset in Fig. 10, for
quantum correlations in the thermal case, see also Fig. 9). The
asymptotic value for system sizes N = 8, 10, 12, 14 seems to
follow the logarithmic behavior, i.e., to be proportional to
log,(N/2 + 1). If this logarithmic scaling is present for all
system sizes, asymmetry will detect breaking of the area law
by the entanglement entropy.

Note that, similarly to the entanglement entropy in the
staggered bipartition, the dynamics of asymmetry is not ex-
plained by dephasing in the basis of exponentially localized
integrals of motions [44,127-129], which is responsible for
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FIG. 10. Growth of asymmetry in an open MBL system: asym-
metry of half magnetization [cf. Eq. (46)] for the XXZ chain of
Sec. VI, as also shown in Fig. 5. Decay in the presence of dephasing
(y/J =2 x 107*) depends on the interaction strength, but not the
system size. The parameters of the dynamics [cf. Egs. (52) and
(56)] are N =6, 8, 10, 12, 14 [yellow, green, red, blue, and black
(grayscale: light gray to black), respectively, open case only up to
N =12], V/J =2, and h/J = 5; light blue stars are for interaction
strength V/J =5 and N = 12 and gray curves correspond to the
noninteracting case V/J =0 with N =8. The inset shows that
although the asymmetry saturates one order of magnitude earlier
that the entanglement entropy [cf. Fig. 5(a)], its growth lasts for
one order of magnitude longer than in the thermal phase, where
asymptotic asymmetry is proportional to log,(N/2) (cf. Appendix
A). The parameters in the insetare V/J = 2,h/J = 5,and N = §, 12
[green (gray) solid line and blue (darker gray) solid line], V/J = 2,
h/J =1, and N = 8, 12 [green (gray) dashed line and blue (darker
gray) dashed line], V/J =0, h/J =5, and N = 8, 12 [light gray
dotted line and dark gray dotted line].

the logarithmic growth of entropy. The growth of asym-
metry is instead contained within boundary effects (which
are responsible for the area law of entanglement entropy in
the noninteracting system) and higher-order corrections to the
logarithmic growth in time of the entanglement entropy (at
times later than ~J~!). In particular, in the closed case with-
out interactions, i.e., in the Anderson-localized phase (gray
curves in Fig. 5), we observe good agreement between the
asymmetry and entanglement entropy. We leave as questions
for future investigation what the exact mechanism of the
asymmetry growth observed in Figs. 5 and 10 is and whether
this growth is unbounded.

For the staggered bipartition, the asymmetry follows a
logarithmic law at all times due to fermions hopping through
the N faces of the partition boundary [see Figs. 5(c) and 5(d)].
The dynamics of asymmetry is unchanged in the presence of
weak enough dephasing [see Figs. 5(b) and 5(d)], while the
decay at long times is independent of the system size, but it
changes with interactions (as it is also the case for coherence).
In Figs. 5(b) and 5(d) we also show the lower bound on the

relative entropy of BPE in Eq. (47),” which decays faster than
the asymmetry, and thus the asymmetry is a tighter bound at
long times.

As the asymmetry in not directly accessible in experiments
with noise, in Figs. 6 and 7 we show the lower bounds on the
convex roof of negativity of BPE (51), which demonstrate an
analogous behavior to the asymmetry in Fig. 5. This bounds
are related to multiple quantum coherence spectra [as shown
in (13) and explained in Appendix A]. In particular for the
choice of an observable as the magnetization difference, the
long-time dynamics of li’lgj/}( is system-size dependent, thus
again indicating breaking of the area law [cf. Fig. 6(b)].

Finally, we note that multiple coherence spectra featured
in the bound (51) have been recently proposed as a witness
of many-body localization in terms of the average correlation
length [75]. This approach is successful even for highly mixed
states, but many-body localization is considered in terms of
the logarithmic growth of entropy of a subsystem (i.e., all
bipartite correlations) rather than in terms of bipartite entan-
glement (i.e., only quantum bipartite correlations). Experi-
mentally feasible witnesses of many-body localization have
been discussed also in [131,132].

VII. CONCLUSION

In this work we investigated the relation of entanglement
and quantum discord to coherence and asymmetry in systems
with a fixed or conserved local charge. Our results, which we
summarize below, enable efficient witnessing of the presence
of entanglement and discord in many-body systems, as well as
the investigation of the entanglement scaling with the system
size, the very property used to distinguish quantum phases.

First, we showed that in the presence of a fixed local
charge, coherence or asymmetry in the local charge basis is
related to the presence in a quantum state of multipartite or
bipartite entanglement, respectively. Therefore, the nonzero
QFI of diagonal and block-diagonal observables becomes a
witness of multipartite and bipartite entanglement. When the
charge is conserved, but not fixed, we argued that coherence
and asymmetry are instead connected to multipartite and bi-
partite discord and they can also be witnessed by the nonzero
QFL

Second, we found that the relation of entanglement to
coherence and asymmetry is also quantitative. Namely, we
showed that the amount of coherence serves as a faithful upper
bound on the multipartite entanglement and the amount of
asymmetry as a lower bound on the bipartite entanglement.
Importantly, the derived bounds are expressed as closed for-
mulas for both mixed and pure states, and in the bipartite case,
where they can be accessed by multiple coherence spectra,
breaking of the area law of entanglement can be detected in
one-dimensional systems.

We applied our results to the problem of many-body local-
ization in a disordered XX Z spin chain and demonstrated a
slow growth of the asymmetry in the presence of interactions,

"We have S(p4) = S(pp) on average over trajectories, also in the
dynamics with dephasing, as the Hamiltonian (52) is symmetric un-
der flipping all spins and the disorder distribution is also symmetric.
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which breaks the area law behavior obeyed by the system
without interactions.

We leave the following questions open for further investi-
gation: first, in the presence of a fixed local charge, whether
the asymmetry of the subsystem charge (15) is also a lower
bound on the entanglement entropy (42), as it is the case
in (46) for the bipartite entanglement of formation (44), and
second, in the presence of a conserved local charge, whether
the asymmetry of the subsystem charge is a lower bound on
the relative entropy discord [21] (or whether l}’l"“k is a lower
bound on the negativity of quantumness [71,72]). It is also not
known whether the experimentally accessible /P'°°* [Eq. (16)],
which appears as a lower bound on bipartite entanglement in
(51), is an asymmetry monotone. Finally, the mechanism of
the asymmetry growth, which we observed numerically in the
many-body localized phase, is not captured by the usual MBL
mechanism of dephasing in exponentially localized basis and
requires further explanation.

Note added. Recently we learned about a closely related
work [133] where a decomposition of negativity with respect
to charge difference was discussed for systems with conserved
charge. In particular, a scaling of negativity for ground states
of one-dimensional critical systems was investigated, and a
method to experimentally access thus decomposed negativity
components was proposed based on [111]. An earlier work
[107] discussed entanglement entropy for closed systems in
the presence of charge conservation (and other symmetries),
including the charge-resolved scaling of entanglement entropy
within conformal theory. In our work we derived lower bounds
on relative entropy of bipartite entanglement in both closed
and open systems with a fixed charge in the context of
asymmetry. We also proposed an experimentally accessible
lower bound in Eq. (51) to the convex roof of negativity.
Furthermore, we discussed witnessing and quantifying mul-
tipartite entanglement (or discord when the charge is not fixed
but conserved) in terms of coherence.
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APPENDIX A: MEASURING THE MQC SPECTRUM
AND CURVATURE

We now briefly explain the methods of [38—41] to obtain
the MQC spectrum (12).

5 4 3 2 1
(tho| «— AT A — |¥o)

Measurement of p(¢)) Preparation of p

| p—ioM | —

Phase encoding

FIG. 11. Protocol for the curvature and the MQC spectrum. For a
system state p being a result of the dynamics from |y) (steps 1 and
2), its coherence with respect to the eigenbasis of an observable M
can be accessed by unitary perturbation encoding a phase ¢ (step 3),
followed by a measurement (step 4 and 5) of the overlap between
p(¢) and the unperturbed state p. This measurement scheme can
also be used to estimate the encoded phase value ¢, and in the
case of (noninteracting) closed dynamics it corresponds to Ramsey
spectroscopy [135].

1. Obtaining the MQC spectrum

Let the state of interest p be a result of certain quantum dy-
namics from an initial pure state |y), i.e., p = A(|¥o){(Vol)
with a quantum channel (a completely positive and trace-
preserving map) A. In the case of closed time-homogeneous
dynamics, A,(-) = e " (.)e" corresponds to coherent evo-
lution with the Hamiltonian H in time ¢. In the case of open
time-homogeneous dynamics, the evolution is given by A, =
¢'*, where the superoperator £ (often called the Lindbladian)
is the generator in the master equation for p [80,81],

d
—pr = L(pr), (AL)

dt
with

L) =—ilH, (O] + Y LiOL =Y HLIL;, (), (A2)
J J

where L; are the jump operators.

The protocol to obtain the MQC spectrum consist of the
following steps (see Fig. 11).

(1) Preparation of the initial state |v).

(2) Evolution of the initial state to the state of interest p =
A([Yo) (Yol).

(3) Unitary phase ¢ encoding with an observable M,
p(p) = e M peitM,

(4) Conjugate evolution AT[p(¢)].

(5) Measurement of the overlap with the initial state
F(9) = (Yol AT[p()]1Y0) = Trlpp($)].

In the case when A corresponds to time-homogeneous
unitary dynamics [39], step 4 corresponds to inverted system
evolution, i.e., evolution with Hamiltonian —H [75,134]. This
is also the case for open dynamics with Hermitian jumps Lj. =
L; [41], e.g., dephasing, or with a set of jumps invariant under
Hermitian conjugation L'; = Lj, e.g., infinite-temperature en-
vironments. The protocol can be generalized to a mixed initial
state preparation (discussed below).

Since F'(¢) = Tr[pp(¢)], we have from (12) that

Fg)=) e "oy =3 e (p).  (A3)
ij m

Therefore, the MQC spectrum for M can be accessed by the
Fourier transform of F (¢).

The usefulness of the method for many-body systems relies
on the fact that the initial pure state |y) is usually assumed
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classical, i.e., a product of individual subsystem states, while
the prepared state p can be entangled. It then follows that
the final measurement of the overlap can be implemented by
measuring local subsystem observables [39—41,75]. For the
example of a system of N spins % and the choice of M as
total spin magnetization [40,41,75], the Fourier transform of
F (¢) requires performing the protocol for d = N values of
¢ =2nk/N,k=1,...,N. For a classical initial state, each
protocol simply requires measurement of N individual spin
magnetizations (so in total d = N measurements). In order to
reconstruct p;; in the quantum state tomography, 4N measure-
ments of individual spin magnetizations in all directions are

required [13].

2. Curvature

In Sec. III we discuss how the QFI (2) can be used
to witness multipartite entanglement. Here we consider the
curvature [39,41,57,59,64,65]

CM. p) =Y (mj —m;P|pij|* = —Te(IM, p]*)
i#]

= (i = 21 MIM )P,

ij

(A4)

where p;; = (i|plj) and |A;) is an (orthonormal) eigenstate of
p that corresponds to an eigenvalue A;, i.e., p = Y, Ai|A;) (A
The curvature is a lower bound on the QFI [41,57]

QFI(M, p) = 2C(M, p), (A5)

with the inequality saturated for pure states and mixed states
of dimension 2. Note that, analogously to the QFI, the curva-
ture is also a faithful witness of coherence for nondegenerate
M, as it is zero if and only if the QFI is zero [cf. (A4)]. There-
fore, in the presence of a fixed (conserved) local charge for
nondegenerate diagonal observables, the nonzero curvature
is a faithful witness of multipartite entanglement (quantum
discord) (cf. Sec. III). Similarly, for a system divided into two
parts, for block-diagonal observables with respect to charges
of the two parts, the nonzero curvature is the witness of
bipartite entanglement (quantum discord), which performs as
well as the QFIL.

Most importantly, the curvature can be measured experi-
mentally in several approaches, which we now review. First,
the authors of [41] note that the second moment of the MQC
spectrum (12), the protocol for which we described above,
yields the curvature

Y mlu(p) = C(M, p), (A6)

so the curvature can be calculated from the MQC spectrum.
Second, the authors of [39,41,64,65] also note that it corre-
sponds to the second derivative of F (¢) [Eq. (A3)],

—02F@lp—o = Y mPL(p) =C(M. p).  (AT)

so the curvature can be found from F(¢) by numerically cal-
culating its second derivative around ¢ = 0. In particular, for a

pure state p = |1/) (¥| we have that F(¢) = |(¥ | (¢))]* cor-
responds to the fidelity between | (¢)) and |¢) (cf. Fig. 11).

Therefore, Eq. (A7) describes the fact that the Bures metric
equals the QFI (2). For a mixed state p, F(¢) = Tr[pp(¢)] is
the probability of measuring p on p(¢) and thus the curvature
is the speed of the decay of that probability with ¢ [136].

In the case when M is nonlocal, and thus the experimen-
tal implementation of the unitary rotation is challenging, it
was proposed in Refs. [64,65] to use dephasing along the
M observable, Ly/(p) = MpM — L(M?p + pM?) [cf. (A2)]
instead of the unitary rotation with M, in step 3 of the protocol
(cf. Fig. 11), since

C(M, p) = Tr{p[M, [M, p]l}
= —Tr[p(QMpM — M*p — pM?)]
= —0, Tr[pe™* (p)]l =0
We note that, for the parity P = (—1)” we have P> = 1, so
C(P, p) = Tr{p[P, [P, p]l} = —2Tr[p(PpP)] + 2Tr(p*)
= —4Tr[p(I1; pI1; + _pTI_)] + 4Tr(p%), (A9)

(A8)

where I1, and I1_ are the projections on the even and odd
eigenspaces of M, so Il +TI_ =1 and P=T1I, —II_.
Therefore, the curvature can also be measured in the protocol
in Fig. 11 with the unitary rotation replaced by the nondemoli-
tion measurement of the system parity [while the second term
in (A9) corresponds to step 3 omitted].

Finally, we also note that a different method for accessing
the curvature C(M, p), by measuring the overlap of two copies
of a state p with one of them unitarily perturbed to p(¢), was
proposed in Refs. [57,59].

3. Extensions of the method

Here we propose extensions of the method [38—41] to the
case of a mixed initial state and in the presence of dissipation,
which is not invariant under Hermitian conjugation.

a. Mixed initial state

The method can be generalized to a mixed initial prepara-
tion of py in step 1, instead of a pure state |1p) (cf. Fig. 11). In
this case the final measurement in step 5 needs to be replaced
by measurements of the pure states being the eigenvectors
of po with nonzero eigenvalues [40,41], i.e., projections on
[y") where po = 3", Al (¥"I. The value of F(¢) can
then be recovered as the weighted average F (¢) = Y _; 1;Fi(p)
of the individual overlaps F;(p) = (1//(()i)| p(¢)|wéi)). When the
initial state p is classical, its eigenvectors can be chosen as
product states, and thus the final measurement can be simply
implemented by measuring the local observable with single-
site resolution, while A; can be extracted by measurement of
that observable on py.

b. Dissipation not invariant under Hermitian conjugation
and a lower bound on QFI

We now consider the case when the dynamics L, re-
quired in step 4 of the protocol (cf. Fig. 11), cannot be
obtained from L simply by a change in the Hamiltonian
sign and only the Hamiltonian in (A2) can be changed,
while the dissipation is assumed to be given. We note
that the case of the protocol with L' replaced by any
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other dynamics L', e.g., L = L+ 2i[H, (-)] for the case
of the reverted Hamiltonian, corresponds to a measure-
ment of state pg, which is composed of steps 4 and 5,
as follows. This measurement has two possible outcomes 1
and 0, corresponding to the projections [Ty = e’ﬁ(lwo)(woD
and I, =1 — etﬁ/.‘.(h//o)(l/f()l). Therefore, we can consider
the Fisher information (FI) associated with this measure-
ment  Fl(pg, {T}e) = Y. | Pe(x)[9g log ps(x)]*, where
the probability p(x) = Tr(Il,pe), x =0, 1. In the case of
the closed dynamics, this corresponds to the Ramsey scheme
[135] and the FI equals the QFI, while in general the FI is
a lower bound on the QFI [20] (which equals the FI for the
optimally chosen measurement).

APPENDIX B: STATES WITHOUT QUANTUM DISCORD
IN THE PRESENCE OF CONSERVED LOCAL CHARGE

In this Appendix we characterize states without multi-
partite or bipartite quantum discord in the presence of a
conserved local charge.

1. Classical states with conserved local charge

Here we prove that classical states (32), with a conserved
local charge, are block diagonal with respect to subsystem
charges [see Eq. (33)].

Proof. The charge conservation is defined as [Q, p] =0,
while

~Tr([Q, pI*) = Tr(Q*p*) — Tr(QpQp) = C(Q, p) (BI)

[cf. Eq. (A4)]. Moreover, when the conserved charge is local,
0= szvzl 0® for the classical state (32) the curvature is
additive in the charges,

CQ, pa) = Z iy = Moy’

Iyeo.,Iyn
J1s -5 JN

x [(e10 el )

N
= _C©¥, pa),

k=1

(B2)

where in the first equality we exploited orthogonality of the
basis in p [cf. Eq. (A4)], while the second equality follows
from noting that the difference (;, — Aj,,...jy) Tequires
the indices to differ. Therefore, for a conserved charge, from
the positivity of curvature in (B2) together with (B1) we

arrive at

(0%, pal =0 fork=1,...,N (B3)

2. Classical quantum states with conserved local charge

Here we prove that classical-quantum states (36), in the
presence of local charge conservation, are block diagonal in
the eigenspaces of QW and 0®.

Proof. We have

~Tr([Q, peiq]*) = C(Q, peiq)
= ZZ wir? = 0 ) el Q1) 1P
ij

(B4)

[cf. Eq. (A4)] where we have introduced the eigendecompo-
sition of,o =>, A(’)| (B.Dy ¢ (B | and have defined |Ay) =

le) ® |el®"). When the charge islocal 0 = QW + 0®), we

furthermore have that
(alQlhn) = (0 e )
+85(e>" 0P ") (BS)
[cf. (B2)]. Note that when i # j, we have only the first term in
(B5), while for i = j we have that the Q4 term is multiplied
by ( B:4) |e(B Dy = &, imposing the multiplicative term to
Vamsh A k(’) A A(f ) = 0. Therefore, the only contribution
comes frorn the ﬁrst term, and thus the curvature is additive in
the charge,

C(Q. peq) = C(QY, peig) +C(Q™, perg).  (BO)
We thus conclude, using positivity of the curvature, that any
classical-quantum state with a conserved local charge [0 +
0P, paql = 0 fulfills

[0, pegl = 0 = [QP, peig]- (B7)
APPENDIX C: SEPARABLE OPERATIONS CONSERVING
LOCAL CHARGE OR PRESERVING LOCAL CHARGE
CONSERVATION

In this Appendix we derive conditions on separable opera-
tions conserving a local charge or preserving its conservation
in a quantum state. We show that under such operations, the
asymmetry of subsystem charge and the coherence are non-
increasing, in the bipartite and the multipartite case, respec-
tively. We also discuss their relation to LOCC with ancillas in
the presence of a SSR [91].

1. Separable operations conserving a local charge

We consider the bipartite case, where a local charge Q =
0“W + 0P is conserved by separable operations both on
average and probabilistically, i.e., A(p) = Zj ijj,oK;. By
definition, this requires Kraus operators to be separable, K; =
K; D K; (B) (here also LOCC are included), and to conserve
the charge [K;, Q] = 0 for all j. This property is also known
as strong symmetry with respect to Q (cf. [83]).

Let K](.A)(q;\, ga) be a restriction on K;A) =

> and, K;M(q;‘, ga) to mapping from states of a fixed value
qa to ¢)y. We have

0=1[K;, Q= Y (aa—ds+ds—dp)

99,9895

x KM (qh:q4) ® K (g qm). (C1)
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which implies g4 — g, = g — g} for all g4, q);, gs, and gj.
As the Kraus operator is separable, the shift in charge must be
constant, g4 — g, = o,

[K;, QY] = a/K;, (C2)

and compensated by the rest of the system gz — g5 = 8; =
—o; (similarly, in the multipartite case, in which a fixed
subsystem charge is mapped to a fixed subsystem charge by
a uniform shift which cancels over the whole system, «; +
Bj + - -- = 0isrequired). In particular, when the shift o; = o
is the same for all Kraus operators, they correspond to block-
diagonal operators on a subsystem and a local ancilla, i.e.,
conserving the total charge of a subsystem and an ancilla [91].
We now argue that the relative entropy of asymmetry (15)
is a nonlocality monotone with respect to a subsystem charge,
as follows. The separable operations conserving the charge
belong to the set of free operations in the asymmetry theory
[27,28,76-78], since they preserve the symmetric states, by
causing only a shift by a constant in the subsystem charge
[cf. (C2)]. Therefore, they cannot increase any asymmetry
monotone, including the relative entropy of asymmetry (15).

2. Separable operations preserving local charge conservation

Here we consider separable operations that transform
a state with a conserved charge into another state with
a conserved charge, both on average and probabilistically,
[Kj,oKT, Q] = 0, for all j, whenever [p, Q] = 0. In the bipar-
tite case the separable operation is given by K; = K;A) ® Kj(-B).
For a state p of fixed subsystem charges of values g4 and g3,
we thus have

0=I[KipK].Ql= > (q\+ds

44949595
x KM (qh:90) ® KV (gl qs)p
K@ (g KB (" am)Tt C3
X [K;"(q4394) @ K;”" (g q8)] (C3)

v

and the condition ¢} + g5 = ¢}, + ¢ follows. Since K; =
K;A) ® K;B), by considering a separable state p = ps ® pp,
we see that this condition can only be fulfilled when a given
charge g4 is mapped into another, single charge ¢, = g4 +
«j(ga) and analogously g is mapped into g = gz + B,(gs).
Therefore, the set of separable operations preserving the local
charge conservation transforms states of a fixed subsystem
charge into states of another fixed subsystem charge.

From this observation we can already conclude that the
asymmetry of the subsystem charge (15) in the states with
conserved total charge again remains strictly nonincreasing
with respect to those operations (i.e., it remains a nonlocality
monotone). This follows from the fact that such operations
preserve the set of symmetric states with respect to the sub-
system charge (also compare the proof for relative entropy in
Supplemental Material of [29]).

Similarly, in the multipartite case, the separable operations
which preserve charge conservation in the state require that a
fixed charge is transformed into a fixed charge. This leads to
the coherence (10) being not only a faithful upper bound (38),
but also an entanglement monotone. In contrast to the degen-
erate bipartite case, this entanglement monotone is faithful.

— 4 — qp)

In order to finish the characterization of the separable
operations preserving local charge conservation, we now
investigate mapping of coherences in p. For the bipartite case,
consider the coherence between different fixed subsystem
charges, denoted by g4 and ¢z and by ¢, and g¢J. First, from
the charge conservation in p, we have g4 + g = ¢y + gj. i.e.,
qa = q, — 8q and gp = g5 + 8q for some 8g. Second, from
the conservation of the charge in K j,oK]T [cf. Eq. (C3)], we
have that g4 (gp) is mapped to a single value «;(g4) [B;(ga)],
as well as

a;(qy) —aj(ga) = —[Bj(qp) — Bi(gs)] (C4)
for all ga, ¢, gp, and g} such that K;A) (K;B )) acts nontrivially
(is nonzero) on states with charges g4 and ¢ (gp and gp).
Therefore, for such g4 and ¢/, (gp and gj) we have that (C4)
corresponds to a function of the subsystem charge difference
vi(8q),ie.,

a;j(ga+3q) = y;(8q) + aj(qa), (C5)

Bilgs — 8q) = B;(gp) — v;(3q). (Co)

In particular, if KJ(.A) connects nontrivially all charges, this
function is additive in the subsystem charge difference ¢, i.e.,
vj(8q) = c;8q [note that for the Kraus operators that conserve
charge, we have ¢; =0, i.e., the shift is constant; cf. (C2)],
which corresponds to weak symmetry. This is not possible to
implement by local ancillas [91].

APPENDIX D: FAITHFUL UPPER BOUNDS
ON GEOMETRIC MPE, GEOMETRIC MPD,
AND NEGATIVITY OF QUANTUMNESS

1. Upper bounds on geometric MPE and MPD quantified
with infidelity

Here we discuss how the geometric entanglement [96,97]
and the geometric multipartite quantum discord [100] can be
faithfully bounded from above by the geometric coherence
[98]. The geometric entanglement [96,97] is defined as the
convex roof of infidelity 1 — F(|y), [¢)) = 1 — |(¢|¥)]? to
the set of pure separable states

EG (p) = min
MPLO) = )

=2 pymax F(y D), [gup)
J P

(D)

Therefore, for p with a fixed local charge, by considering the
infidelity to the smaller set of pure separable states with a fixed
local charge (i.e., the elements of the computational basis), we
again obtain a faithful upper bound in terms of the geometric
coherence C%(p) [98] whenever p also is of the fixed local
charge,

Eap(0)

VA

min |1— ‘max F([Y"), |ddiae))
P l¥)) ;p’ baiag) V) |aing

(P19 ing

- mags)}ijpj max F (| ) (¢ 1, 0iag)

=1 —max F(p, oaiag) = C%(p), (D2)

Odiag
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with  F(p,0) = [Tr(p'?0p'?)!/212. In particular, for
the pure state F(|Y)(¥],0) = (¥loly), CO(v)(¥]) =

maXeg,, F(y) (¥, Gdiag) = MaX|gy,,) F(y), |¢diag>) [66],
which we used in the second line. The third line follows from

the fact that the geometric coherence is equal to its convex
roof (cf. [66]).

Similarly, the geometric multipartite quantum discord
[100] is quantified by infidelity to the classical states

Dyp(p) = 1 — max F(p, o). (D3)
Ocl
Therefore, for p with a conserved local charge, by considering
the infidelity to the smaller set of classical states with a
conserved local charge (i.e., diagonal states), we again obtain
a faithful upper bound by the geometric coherence
Dip(p) < 1 —max F(p, odiag) = C%(p).

Odiag

(D4)

We note, however, that in contrast to the relative entropy
coherence in Eq. (10), the geometric coherence C%(p) is
usually difficult to evaluate.

2. Upper bounds on negativity of quantumness

Multipartite discord can also be measured by [; co-
herence minimized over the choice of a separable basis,
which yields so-called negativity of quantumness Djp(p)
[33,71,72]. Therefore, also in this case /; coherence in the
computational basis (11) becomes a faithful upper bound on
negativity of quantumness

Dhp(0) < Li(p). (D5)
APPENDIX E: LOWER BOUNDS ON BIPARTITE
ENTANGLEMENT

Here we derive the lower bounds on bipartite entanglement
given in Eqgs. (46) and (51). We also derive analogous lower
bounds in the case of bipartite entanglement quantified with
concurrence and Tsallis 2-entropy.

1. Lower bound on the bipartite entanglement of formation

We now derive Eq. (46). First, recall that a pure state |)
can be represented in Schmidt decomposition [137] as |¢) =
> Jk—i|efA)) ® |e§B)), where the Schmidt vectors {|e§A’B))}i
form orthonormal bases in the subsystems A and B, while the
Schmidt coefficients A; > 0. In particular, the von Neumann
entropy of the reduced state p4 equals the Shannon entropy of
the Schmidt coefficients S(p4) = — >, A;log, A;. It is known
(see, e.g., [90,107]) that when the local charge Q = QYW +
0® is fixed, the subsystem charges are also fixed (but not
necessarily the same) in all Schmidt vectors, i.e., |e§A)) is of
a fixed charge QW (and analogously for B), as follows. We
have

alv) = 0W1y) +Q®1y), (ED)
and by grouping orthogonal terms we have
qlei) @ [ef”) = (0@]e") ® lef”)
+ V)@ (@P)e”)  ®)

for each i. Thus, we obtain the proportionality Q™|e!") =
qEA) |e§A)), and analogously for B, with qEA) + qu) = g foralli.
Therefore, we can write, for the von Neumann entropy of

the reduced state,

S(pa) = =) hilogy &
i

> — Z Z Ai 10g2 Z Al = S(pblock)7

A) .. (A (A
q( ) l:ql(' )7(1(/\) l:ql( ! ,q(/\)

where ¢ denotes the value of the subsystem charge Q) for
the ith Schmidt vector (analogously for B). We now explain
the last equality in Eq. (E3). For a pure p = |) (Y| we have
Pblock = qu Pg® |1//q(A)><wq<A) |, where Pgw = izgM=q® Ai
and [ m) = Zi:q?m=q</" «/)\_,'|65A)> ® |e§B))/\/m (cf. Fig. 1).
Therefore, S(pplock) = — Y. 4» Pqw 108, pyw and Eq. (E3)
follows. Note that, since 0“4 + Q® = Qs fixed, we can also
equivalently consider the eigenspaces and eigenvalues of the
charge difference §Q = Q¥ — Q®.

Second, when a state p is of a fixed local charge Q, we have

that all pure states [y;) (¥ in p = Zj pjl¥j) (| are of the
same fixed charge as p (cf. Sec. III B). Therefore, from (E3)
we have

> o piS(e2) = Y piS(kthoa) = 2 2SIV Odi0ek)
J J J

> S Pl Wil D pithea |- ED
J J

where the second inequality is the joint convexity of the
relative entropy. By observing that Y~ ;o = Pblock> We
finally arrive at the lower bound in Eq. (46) in terms

of the asymmetry (15) of a subsystem charge (or equivalently
the charge difference).

2. Lower bound on the bipartite entanglement of formation

We now derive Eq. (51). First let us recall from Egs. (E1)
and (E2) that for a pure state |i) with a fixed charge Q, the
Schmidt vectors are always of a fixed subsystem charge. It
then follows that

AN(ly)) =Y [hire]'?

il
- 1/2
> D | X 2
GA £qg'A) i:q,fA):q‘A) i’:qﬁf‘):q(*‘)
- 1/2
2 2
= > | X Wl DD Il
q(A)¢qf(A) i:q,(A)=q(A) i/iql(.,A)=q(A>
block
= Ny, (ES)

where A; are Schmidt coefficients, {; = (i|y) are coordinates
of the state |¢) in the computational basis, and l}’l"d‘ is
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calculated with respect to the subsystem-A charge [see (16)].
In the second line we used the inequality between L;- and
Ly-norms. The third line is independent of the choice of the
basis, as long as it features both a fixed system and subsystem
charges (in particular it can be chosen with Schmidt vectors
as elements, which gives the equality in the second line). The
last equality follows by noting that p;;; = vy for the pure
p = 1Y) [cf. (16)].

J

We note that a related result for pure states con-
nects the entanglement negativity to the minimal [
coherence in an AB-separable basis [71,72] N(|¥)) =
minAB—sep basis ll (W) (W | )/2

Second, when a state p is of a fixed local charge O, we have
that all pure states [;) (] in p = Zj pjlvj) (| are of the
same fixed charge as p (cf. Sec. III B). Therefore, from (ES)
we have [cf. (50)]

2850(0) > min > 7 pli (1Y) (1)
A J ]

= min
Pjsl¥j)

> > b

gDEg®

>
Pl
P g g i
,

U

where the second inequality follows from the convexity
of Ly-norm. By noting that ) P jlﬂ[(j )wi(,j g Pir as p =
Zj pjl¥;){(¥;l, we finally arrive at a lower bound (51) on the
convex roof of the negativity in Eq. (50).

3. Lower bounds on bipartite entanglement quantified with
concurrence and Tsallis 2-entropy

a. The Ly-norm for coherence and asymmetry

In a given computational basis {|i) lD: |» in analogy to the

Li-norm coherence monotone (11), one can define the L,-

norm
L(p) = E |pij]?.
i#j

It is known that the square of the norm 122(,0) can increase
under incoherent operations and thus is not a coherence
monotone [29]. For pure states /;(p) is related the state purity
[138—140] of the diagonal state pgiag = Zi Pl (il,

(E7)

b(p) = /1= Tr(p)- (E8)
while for mixed states we have
bh(p) = \[Tr(p?) = Tr(p3,). (E9)

For the case of asymmetry, in analogy to (16), we now
introduce

lé)lOCk(p) =

Z |pijl?

l',j:hi?éhj

= \/Tr(pz) — Tr(pfoek )

(E10)

2

A
a" =
q

—q1/2
(), ()2
> v
iq® =q®W
i qf,,A) —g®
—1/2
2
(), ()%
> piv vy : (E6)
(A) J
— Zr(A)

(

where ppjock 1S Obtained from p by removing all coherences
(i.e., dephasing) between distinguishable subspaces ppiock =
Zi,j:h,:h, pijli){jl, e.g., eigenspaces of a Hamiltonian H =
> i hili)(i|. Similarly to the case of l}’k""k, it is not known
whether 5'°* corresponds to a measure of asymmetry. Nev-
ertheless, as we show below, [0k serves as a lower bound on
bipartite entanglement in states with a fixed local charge. It is
also a lower bound on (E7),

L(p) = 13°*(p),

which is saturated for nondegenerate Hamiltonians. As
L(p) < /(D —1)/D < 1 is bounded, we need to adjust the
notion of the volume law in the thermodynamic limit, but for
moderate sizes NV, breaking of the area law can still be detected
(cf. Fig. 12).

Importantly, Eq. (E10) can be obtained experimentally
from the MQC spectrum (12) [cf. (17)],

2 2

m#Q i, j:m;—mj=m

I ).
m##0

for diagonal observable M = ), m;|i)(i|, which distinguishes
the subspaces, i.e., fulfills m; = m; if and only if h; = hj, e.g.,
M = H. Otherwise, the right-hand side of Eq. (E12) provides
a lower bound. Alternatively, /Y°*(p) can be also obtained
from the MQC protocol by replacing the unitary rotation
with the generator M by strong collective dephasing with M,
which takes p into ppjock, and thus the outcome measured in
the protocol is given by F = Tr(pglock) [while F = Tr(p?)
without dephasing] (cf. Appendix A). Finally, Eq. (E10) can

(E11)

1% (p) = |pij |2

(E12)
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FIG. 12. Experimentally accessible lower bounds on BPE in an
MBL system. We show the dynamics of [2°*(p) (solid lines) and
C(PY, p), where the parity P45 = (— 1)‘”‘4/2 for the XXZ dis-
corded chain of N = 6, 8, 10, 12 14 spins [yellow, green, red, blue,
and black (grayscale: light gray to black), respectively]. The inset
shows the asymptotic values of [2°*(p) at Jt = 10*. The parameters
of the dynamics (52) and (56) are V/J =2, h/J =5,and y/J =0,
while the gray (bottom) curve corresponds to the noninteracting case
V/J=0and N = 12.

also be bounded from below by the curvature (A4),

CM, p)
AM

where AM is the difference between the extreme eigenvalues
of a diagonal observable M = ), m;|i){i|, which fulfills m; =
m; when ]’li = hj.

In Fig. 12 we show and the curvature of the parity
with respect to the half-chain magnetization, in the dynam-
ics of a disordered XXZ chain in Eq. (52) initially in the
staggered state (see Sec. VI). We observe very good agree-
ment between both quantities. Indeed, the parity is a good
choice for using the curvature as a lower bound of lgl‘mk
[Eq. (E13)], as its spectrum is bounded, AP = 2, as well as
CPPp)4=Y, i1pij1?, where Y~ is restricted to differences
in magnetization being odd. In particular, the good agreement
between two approaches in Fig. 12 is a consequence of the
Hamiltonian eigenstates being localized in the Hilben space,
so only the states with magnetization differing by —3 and 1
from the initial value contribute significantly to the dynamlcs

1% (p) > : (E13)

block
l2

b. Bounds on bipartite entanglement quantified with concurrence
and Tsallis 2-entropy

For the mixedness of the reduced state quantified by
the concurrence [34,35], Ca(p) = [1 — Tr(p»)]"/2/v/2.8 or
by Tsallis 2-entropy, $;°(p) = 1 — Tr(p?), the corresponding

8. We note that the entanglement negativity NV'(p) and concurrence
C,(p) coincide for the pure system of two qubits [34,35] and can be
considered as two nonequivalent extensions of that case.

convex roofs [114— 117]

= min Zpl sz

El4
P/ W/ )} ( )

and
ER = min ST (0] El5
BP = ,«Iw,')};pj 2 (1) (E15)
are entanglement monotones. Below we show that for p with
a fixed local charge Q = Q“ + Q® can be bounded from

below by the introduced above I51°°* [Eq. (E10)],
5§lz)(p) flblock

Eas(p) = [z§‘°°“<p>]2.

These bounds are accessible in experiments for both pure
and mixed states. We also note that when a state p is
pure, from concavity of the logarithm, we have Egp(p) =
S(pa) = =Trpalog pa > —log Tr(p3) = —log[1 — C3(p)],
where —log Tr(pi) is Renyi’s 2-entropy [113], and
analogously for the lower bounds (46) and (E16) we have
S(polock) = —log Tr(pgq0) (cf. [97]).

Derivation. We now derive the bounds in Eqgs. (E16) and
(E17). First, for pure |;) with Schmidt coefficients 1\ > 0,

we have
)
DY

p) =2 <Y
i @

9 \ig'=q

(E16)

(E17)

2

= Tr(plilock)2’

(E18)
where qEA) denotes the value of the subsystem charge Q4 for
the ith Schmidt vector. Equation (E18) follows from Eqs. (E1)
and (E2), which imply that for a pure state |i) with a fixed
charge Q, the Schmidt vectors are always of a fixed subsys-
tem charge. Observing that Tr(|¢) (@] pblock) = Tr(,oglock), we
further have from the absolute homogeneity ||xX |, = |x][|X ]2
of the Hilbert-Schmidt norm || X[, = [Tr(X7X)]'/? and the
triangle inequality that

2l -

= pilll6)) (8] = Pljoci 2
j

1,2
Ioblock) ] !

> ’ Z(pj|¢j)(¢j| — PiPioc) )
J

1/2
= [Te(p?) — Tr(pdou) ]~ (E19)
while from the operator convexity of the square function

1= piTr(phea)” = > pTe(16) @1 = Plioct)”
J

J

> Tr| D pile) (@] = Piotoa
J
- TT(PZ) - Tr(plzlock)' (EZO)

Bringing together Eqs. (E18) and (E19), or Eqgs. (E18) and
(E20), we arrive at the bounds in Eqgs. (E16) and (E17),
respectively.
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