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We construct a correspondence between quantum states and the observable input-output correlations they are
compatible with. The problem is framed as a game involving an experimenter, claiming to be able to prepare
some family of states, and a theoretician, whose aim is to falsify such a claim based on observed correlations
only. For any such claim, the optimal strategy consists of providing (i) to the experimenter, all the measurements
that generate extremal input-output correlations, and (ii) to the theoretician, the full characterization of such
correlations. Comparing the correlations observed in (i) with those predicted by (ii) corresponds to device-
independently testing the states. While no assumption is made about the actual states and measurements, we
derive the optimal strategy in closed form for the case when the claim consists of qubit states and the performed
measurements are tests, and as applications we specify our results to the case of any pair of pure states and to
the case of pure states uniformly distributed on the Bloch equatorial plane.
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I. INTRODUCTION

Quantum systems are most generally described by quan-
tum states, abstract vectors in a mathematical space with the
property of not being perfectly distinguishable—a property
called superposition of pure states. However, all an observer
can ultimately observe are just correlations among perfectly
distinguishable events in usual space and time. Hence, how
can quantum states be inferred? Here, we answer this question
by constructing a correspondence between quantum states and
the observable input-output correlations they are compatible
with.

The problem is most generally framed as a game involving
an experimenter, claiming to be able to prepare m quantum
states {ρx} and to measure them, and a skeptical theoretician
whose aim is to falsify such a claim based on observed
correlations only. At each run of the experiment, first the
experimenter prepares state ρx upon input of x, and then
performs measurement {πy|w} upon input of w. Finally, the
theoretician collects outcome y, thus reconstructing correla-
tion {py|x,w}. The setup is as follows:

Let us denote with Sn(ρx ) the set of correlations generated
by states {ρx} for any n-outcomes measurement {πy}, that is,

Sn(ρx ) := {p | py|x = Tr[ρxπy]}
(we take y ∈ [0, n − 2] since for y = n − 1 one simply has
pn−1|x = 1 − ∑n−2

y=0 py|x). On the theoretician’s side, the prob-
lem amounts to fully characterizing Sn(ρx ), for any {ρx},
in order to check if {py|x,w} ∈ Sn(ρ), for any w. On the
experimenter’s side, the problem amounts to choosing mea-
surements {πy|w} generating all the extremal correlations of
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Sn(ρx ) (of course, the validity of the conclusion itself will be
independent of {πy|w}). Therefore, w represents a direction to
be probed in the space of correlations in order to reconstruct
Sn(ρx ). Since, as shown later, Sn(ρx ) is strictly convex, w is a
continuous parameter.

Here, we provide a full closed-form solution of this prob-
lem for the case when the claim {ρx} consists of qubit
states—notice that this is a restriction on the claim to be
tested, rather than an assumption on the actual states—and
the performed measurements are tests, that is, measurements
with n = 2 outcomes. In particular, for any {ρx}, we explic-
itly derive (i) the measurements {πy|w} generating a corre-
lation at the boundary of S2(ρx ) for any arbitrarily given
direction w; and (ii) the full closed-form characterization
of S2(ρx ). It turns out that S2(ρx ) is given by the convex
hull of the two isolated points 0 and u (vectors with null
and unit entries, respectively) and the ellipsoid given by the
system:

(1 − Q−1Q)(p − 1
2 u) = 0,

(p − 1
2 u)T Q−1(p − 1

2 u) � 1,
(1)

where Qx0,x1 = 1
2 Tr[ρx0ρx1 ] − 1

4 . This situation is represented
in Fig. 1. As applications, we explicitly discuss the case
where m = 2 and {ρx} are pure states, and the case where {ρx}
are distributed on the m vertices of a regular polygon on the
Bloch equatorial plane.

Our results share analogies with previous works on device-
independent testing of quantum dimension [1–4]. Notice,
however, that therein the aim is to test a specific scalar prop-
erty of states {ρx} rather than their most general operatorial
form, and the set of correlations is probed along an arbitrarily
chosen direction rather than being fully reconstructed. More-
over, the present author has recently addressed the very related
problems of device-independent tests of quantum channels
[5–7] and measurements [8,9].
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FIG. 1. Our results admit a bidimensional geometrical represen-
tation for the case of m = 2 states {ρx}. For any direction w (yellow
vectors) in the space of correlations, we provide the experimenter
with the measurements {πy|w} generating a correlation that lies on
the boundary of S2(ρx ) if the measured states are {ρx}. To check if
this is the case, we provide the theoretician with a full closed-form
characterization of S2(ρx ), which turns out to be given by the convex
hull (blue area) of 0 and u and the ellipse (blue dashed line) given by
Eqs. (1).

II. EXPERIMENTAL OBSERVATIONS

We will make use of standard definitions and results in
quantum information theory [10]. Any quantum state is rep-
resented by a density matrix ρ, that is, a unit-trace positive
semidefinite operator. Any quantum measurement is repre-
sented by a positive operator-valued measure (POVM), that
is, a collection {πy} of positive semidefinite operators such
that

∑
y πy = 1. The conditional probability py|x of outcome

y given input state ρx is given by the Born rule, that is,
py|x = Tr[ρxπy].

The experimenter claims to be able to prepare states {ρx}
and to measure them. Their task is to support such claims by
generating all the correlations at the boundary of Sn(ρx ). To
this aim, for any direction w in the space of correlations, the
experimenter must measure the POVM {πy|w} that generates
the correlation py|x := Tr[ρxπy|w] that maximizes pT w. In this
section, we derive any such POVM for any given {ρx} and w.

Formally, {πy|w} is given by the solution of the following
optimization problem:

W (ρx,w) := max
{πy � 0}∑

y πy = 1

m−1∑
x=0

n−2∑
y=0

wx,y Tr[ρxπy]. (2)

In the following, we make the restriction n = 2, hence
p and w are column vectors with m entries. Therefore, the
maximum in Eq. (2) is attained when π0 is the projector
on Pos(

∑
x wxρx ), where Pos(·) denotes the positive part of

operator (·), and in this case one has

W (ρx,w) = Tr

[
Pos

(∑
x

wxρx

)]
. (3)

Hence, our first result provides a closed-form characteri-
zation of the POVM {πy|w} achieving the correlation p at the
boundary of S2(ρx ) that maximizes pT w, for any given family
{ρx} of states and direction w.

Proposition 1. For any family {ρx} of states and direction
w in the space of correlations, the POVM {πy|w} generating
the correlation py|x := Tr[ρxπy|w] on the boundary of S2(ρx )
that maximizes pT w is such that π0,w is the projector on
Pos(

∑
x wxρx ) and π1|w = 1 − π0|w.

Proposition 1 restricts the set of POVMs {πy|w} that need to
be measured. Indeed, whenever Pos (

∑
x wxρx ) has rank zero

or two, the corresponding correlation p is trivial (i.e., p = 0
or p = u, respectively), thus direction w does not need to be
probed.

III. THEORETICAL PREDICTIONS

The theoretician does not believe any of the claims made by
the experimenter about the experimental setup, in particular
about the set of POVMs {πy|w}. Their task is to test such
claims by comparing the observed correlations with S2(ρx ).
To this aim, in this section we provide a full closed-form
characterization of S2(ρx ) under the restriction that {ρx} are
qubit states.

The set S2(ρx ) is recovered by further optimizing
W (ρx,w), as given by Eq. (3), over any direction w, that is,

S2(ρx ) = {p | p = max
w

[pT w − W (ρx,w)] � 0}. (4)

Upon fixing a computational basis, {ρx} can be decom-
posed in terms of Pauli matrices {σk} as follows:

ρx = 1

2
1 +

3∑
k=1

Sx,kσk,

where Sx,k := 1
2 Tr[ρxσk]. Of course, our result will be inde-

pendent of the choice of computational basis.
It is then a simple computation to find that

W (ρx,w) = max

(
0, ||w||1, 1

2
||w||1 + ||ST w||2

)
,

where ||·||p denotes the p norm of vector (·). The maximum
is achieved by 0 and ||w||1 if {πy|w} is trivial (π0|w = 0 and
π0|w = 1, respectively), and by 1

2 ||w||1 + ||ST w||2 if {πy|w}
is rank-one projective. If {πy|x} is trivial, the optimization
problem in Eq. (4) becomes

maxw pT w � 0, if π0 = 0,

maxw(p − 1
2 u)T w � 0, if π0 = 1,

which, as expected, are satisfied if and only if p = 0 and p =
u, respectively.

If, however, {πy|w} is rank-one projective, the optimization
problem in Eq. (4) becomes

max
w

[(
p − 1

2
u

)T

w − ||ST w||2
]
� 0. (5)
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This optimization problem is formally equal to that in Eq.
(5) of Ref. [8], where the problem of device-independent
tests of quantum measurements was addressed. Notice, how-
ever, that the operational interpretation and, accordingly, the
mathematical representation of the symbols are different. For
example, in Ref. [8] p represents the probability distribution
of the outcomes of a POVM, and thus

∑
y py = 1, while here

p represents the vector of probabilities of outcome π0 given
states ρx, and thus there is no linear constraint on the sum of
its elements. Analogous differences hold for u (t in Ref. [8])
and S. The consequences of these differences on the solution
of Eq. (5) will be discussed at the end of this section.

Since Eq. (5) is left invariant by the transformation w →
w = |(p − 1

2 u)T w|−1w (we recall that w only represents a
direction in the space of correlations), without loss of general-
ity one can take (p − 1

2 u)T w = 0,±1. When (p − 1
2 u)T w =

0,−1, the inequality in Eq. (5) is of course satisfied, thus let
(p − 1

2 u)T w = 1. Equation (5) becomes

min
w[

p − (1/2)u
]T

w = 1

||ST w||22 � 1, (6)

that is, a linearly constrained quadratic-programming prob-
lem.

Let us denote with Q the real symmetric matrix Q := SST .
Upon denoting with (·)−1 the Moore-Penrose pseudoinverse
[11] of matrix (·), one has that 1 − Q−1Q is the orthogonal
projector on the kernel of Q.

Let us first show that a necessary condition for p ∈ S2(ρx )
is that p − 1

2 u is orthogonal to the kernel of Q. Indeed,
suppose that (p − 1

2 u)T (1 − Q−1Q)(p − 1
2 u)>0. By setting

w = (1 − Q−1Q)
(
p − 1

2 u
)

(
p − 1

2 u
)T

(1 − Q−1Q)
(
p − 1

2 u
) ,

one immediately has that the constraint (p − 1
2 u)T w = 1 is

verified, and that ||ST w||22 = 0. Therefore, by Eq. (6) p �∈
S(ρx ).

Let then p − 1
2 u belong to the kernel of Q. In this case, we

can take without loss of generality w in Eq. (6) to have support
on the kernel of Q. Then, it is known [12] that Eq. (6) is solved
by

Qw = −λ(p − 1
2 u),

(p − 1
2 u)T w = 1,

(7)

where λ is a Lagrange multiplier. The system in Eq. (7) is
solved by [11]

w = −λQ−1(p − 1
2 u) + (1 − Q−1Q)v,

(p − 1
2 u)T

[
(1 − Q−1Q)v − λQ−1(p − 1

2 u)
] = 1.

(8)

If (p − 1
2 u)T Q−1(p − 1

2 u)>0, by taking v = 0,

λ =
[(

p − 1

2
u

)T

Q−1

(
p − 1

2
u

)]−1

,

and w = λQ−1(p − 1
2 u), one has that the system in Eq. (8)

is verified, as well as the constraint (p − 1
2 u)T w = 1. Hence,

w is the solution of the optimization problem in Eq. (6),
and one has ||ST w||22 = λ, that is, p ∈ S2(ρx ) if and only if

(p − 1
2 u)T Q−1(p − 1

2 u) � 1. If instead (p − 1
2 u)T Q−1(p −

1
2 u) = 0, one has p = 1

2 u, which is again p ∈ S2(ρx ).
Hence, the solution of the optimization problem in Eq. (6)

is given by

(1 − Q−1Q)(p − 1
2 u) = 0,

(p − 1
2 u)T Q−1(p − 1

2 u) � 1.
(9)

Finally, by explicit computation it immediately follows that
Q is given by Qx0,x1 = 1

2 Tr[ρx0ρx1 ] − 1
4 , thus as expected

the system in Eq. (9) does not depend on the choice of
computational basis.

Then, our second main result provides a full closed-form
characterization of the set S2(ρx ) of correlations compatible
with any arbitrary given qubit family {ρx} of states.

Proposition 2. The set S2(ρx ) of correlations generated by
a given family {ρx} of qubit states and any test {πy} is given
by

S2(ρx ) = conv {0, u, Eq. (9)},
where Qx0,x1 = 1

2 Tr[ρx0ρx1 ] − 1
4 .

Let us provide a geometrical interpretation of Proposition
2. The system of equalities in Eq. (9) represents rank(1 −
Q−1Q) linear constraints, while the inequality represents
an m-dimensional cylinder with (rank Q)-dimensional hy-
perellipsoidal section. Thus, Eq. (9) represents a (rank Q)-
dimensional hyperellipsoid embedded in an m-dimensional
space. Since rank Q � 3, we have that Eq. (9) respresents a
(possibly degenerate) ellipsoid. Notice as a comparison that,
while in this case S2(ρx ) includes the two isolated correlations
0 and u, in the case of the device-independent tests of quantum
measurements [8] no isolated correlations are included.

IV. COMPARISON

Finally, we discuss the comparison of the set of correlations
observed by the experimenter according to Proposition 1
and the set S2(ρx ) predicted by the theoretician according to
Proposition 2. Notice first that the inclusion relation S2(ρx ) ⊇
S2(ρ ′

x ) induces a partial ordering among families of quantum
states {ρx} and {ρ ′

x}, that is, {ρx} � {ρ ′
x} ⇔ S2(ρx ) ⊇ S2(ρ ′

x ).
Of course, if the experimenter produces some correlation not
in S2(ρx ), the theoretician must conclude that the prepared
states {ρ ′

x} are such that

{ρ ′
x} �≺ {ρx}. (10)

However, if the experimenter produces all the extremal
correlations of S2(ρx ) (as per Proposition 1), the theoretician
must conclude that the prepared states {ρ ′

x} are such that

{ρ ′
x} � {ρx}. (11)

Since the ordering � is partial, Eq. (11) is of course strictly
stronger than Eq. (10), that is, Eq. (11) implies Eq. (10) but the
vice versa is false. Informally, Eq. (11) allows the theoretician
to lower bound the “ability” to create input-output correlations
of the states prepared by the experimenter.

An even stronger result can be achieved when m = 2. In
this case Proposition 2 provides the full closed-form quantum
relative Lorenz curve for any pair {ρ0, ρ1} of qubit state, as
illustrated by Fig. 1. Quantum relative Lorenz curves have

052353-3



MICHELE DALL’ARNO PHYSICAL REVIEW A 99, 052353 (2019)

been recently introduced by Buscemi and Gour [13] in the
context of quantum relative majorization. As a consequence of
a result therein, in turn based on a previous result by Alberti
and Uhlmann [14], under the additional assumption that the
prepared states {ρ ′

0, ρ
′
1} are qubit states, Eq. (11) implies

the existence of a quantum channel C, that is, a completely
positive trace-preserving linear map, such that

C(ρ ′
x ) = ρx, x = 1, 2. (12)

Therefore, Eq. (12) means that the states {ρ ′
x} prepared by

the experimenter are less noisy than the claimed states {ρx}.
However, it is known [15] that this implication fails if the
assumption that the prepared states {ρ ′

x} are qubit states is
relaxed.

V. APPLICATIONS

As an application of the case m = 2, we consider any pair
of pure states ρx = |ψx〉〈ψx|, that can be written without loss
of generality as

|ψ0〉 = |0〉 , |ψ1〉 = cos
α

2
|0〉 + sin

α

2
|1〉 .

Since |〈ψ0|ψ1〉|2 = cos2 α
2 , matrix Qx0,x1 := 1

2 |〈ψx0 |ψx1〉|2 −
1
4 is given by Q = [(1 + cos α)v+v

†
+ + (1 − cos α)v−v

†
−]/4,

where v± = 1/
√

2(1,±1)T . If α �= 0, π , the system in Eq. (9)
becomes

1

1 + cos α
(p0 + p1 − 1)2 + 1

1 − cos α
(p0 − p1)2 � 1

2
.

If α = 0 or α = π , that is, |ψ0〉 = |ψ1〉 or 〈ψ0|ψ1〉 = 0,
respectively, the system in Eq. (9) trivially becomes p0 = p1

or p0 = 1 − p1, respectively.
As an application of the general case we consider m

pure states ρx = |φx〉〈φx| uniformly distributed in the Bloch
equatorial plane, that can be written without loss of generality
as

|φx〉 = cos
πx

m
|0〉 + sin

πx

m
|1〉 .

Since |〈φx0 |φx1〉|2 = cos2 π (x0−x1 )
m , matrix Qx0,x1 :=

1
2 | 〈φx0 |φx1〉 |2 − 1

4 is circulant, that is, Qx0+k,x1+k = Qx0,x1

for any x0, x1, and k. Therefore, it is lengthy but not difficult
to show that its eigenvalues are given by

λ j = 1

4

m−1∑
k=0

cos
2πk

m
exp

2π i j(m − k)

m

=
(
e2π i j − 1

)(
e2π i j/m + e2π i( j+2)/m − 2e2π i/m

)
8
(
e2π i/m − e2π i j/m

)(
e2π i( j+1)/m − 1

) .

Hence, one has that λ1 = λm−1 = m/8 and λ j = 0 otherwise,
and two eigenvectors v± corresponding to non-null eigenval-
ues are given by v± where (v±)k := 1√

m
exp(± 2π ik

m ). Accord-

ingly, one has that Q = m
8 (v+v

†
+ + v−v

†
−), and the system in

Eq. (9) becomes

(1 − v+v
†
+ − v−v

†
−)p = 0,

||v†
+ p||22 � 16

m
.

For instance, consider the case of two mutually unbiased
bases [16] (MUBs), obtained for m = 4. MUBs have appli-
cations, e.g., in classical communications over quantum chan-
nels [17], quantum cryptography [18], and locking of clas-
sical information in quantum states [19]. One has that v± =
(1,±i,−1,∓i)T , from which the system in Eq. (9) becomes

p0 + p2 = p1 + p3 = 1,

||p||22 � 3
2 .

VI. CONCLUSION

In this work we have addressed the problem of construct-
ing a correspondence between any given family {ρx} of m
quantum states and the set Sn(ρx ) of observable correlations
they can generate for any POVM {πy}. The problem has been
framed as a game involving an experimenter, claiming to be
able to prepare some family {ρx} of states, and a theoretician,
willing to trust observed correlations only. For any such claim
{ρx}, the optimal strategy consists of providing (i) to the exper-
imenter, the measurement {πy|w} that generates a correlation
on the boundary of Sn(ρx ) for any given direction w, and (ii) to
the theoretician, the full characterization of Sn(ρx ). Compar-
ing the correlations observed in (i) with those predicted by (ii)
corresponds to device-independently testing the states. While
no assumption has been made about the actual states and mea-
surements, we have derived the optimal strategy in closed form
for the case when the claim consists of qubit states and the
performed measurements are tests, that is, measurements with
n = 2 outcomes, and discussed the geometrical interpretation
of our results. As applications, we have specified our results
to the case of any pair of pure states and to the case of pure
states uniformly distributed on the Bloch equatorial plane.

Natural open problems include relaxing some of the re-
strictions we considered, e.g., considering POVMs with ar-
bitrary number of outcomes and states in arbitrary dimension.
Furthermore, the characterization of the set Sn(ρx ) of correla-
tions compatible with an arbitrary dimensional family {ρx} of
m = 2 states might prove to be the key to solve a well-known
longstanding conjecture by Shor [20], based on numerical
work by Fuchs and Peres: whether the accessible information
of any binary ensemble is attained by a von Neumann POVM.
Finally, the full closed-form characterization of the quantum
relative Lorenz curve for qubit states provided by Proposition
2 naturally leads to applications in quantum resource theories
[21], within the general framework provided by the quantum
Blackwell theorem [22].

We conclude by noticing that our results are remarkably
suitable for experimental implementation. For any family of
qubit states that an experimenter claims to be able to prepare,
our framework only requires von Neumann measurements to
be performed in order to experimentally reconstruct the entire
boundary of the set of compatible correlations.
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