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Quantum cryptographic protocols are typically analyzed by assuming that potential opponents can carry out all
physical operations, an assumption which grants capabilities far in excess of present technology. Adjusting this
assumption to reflect more realistic capabilities is an attractive prospect, but one that can only be justified with a
rigorous, quantitative framework that relates adversarial restrictions to the protocol’s security and performance.
We investigate the effect of limitations on the eavesdropper’s (Eve’s) ability to make a coherent attack on the
security of continuous-variable quantum key distribution (CV-QKD). We consider a realistic attack in which the
total decoherence induced during the attack is modeled by a Gaussian channel. Based on our decoherence model,
we propose an optimal hybrid attack, which allows Eve to perform a combination of both coherent and individual
attacks simultaneously. We evaluate the asymptotic and composable finite-size security of a heterodyne CV-QKD
protocol against such hybrid attacks in terms of Eve’s decoherence. We show that when the decoherence is greater
than a threshold value, Eve’s most effective strategy is reduced to the individual attack. Thus, if we are willing
to assume that the decoherence caused by the memory and the collective measurement is large enough, it is
sufficient to analyze the security of the protocol only against individual attacks, which significantly improves the
CV-QKD performance in terms of both the key rate and maximum secure transmission distance.
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I. INTRODUCTION

Coherent attacks are known to be the most powerful
eavesdropping attacks on quantum key distribution (QKD)
protocols. The eavesdropper, Eve, prepares a global ancillary
system, interacting collectively with all the quantum states
sent through the channel, with the entire output ancillae
stored into a quantum memory and a collective measurement
applied over the stored ensemble [1,2] to extract the maximum
information on the key. Making such an attack, particularly on
a continuous-variable (CV) QKD system [1–3], represents an
extreme technical challenge for Eve.

For a no-switching CV-QKD protocol [4,5], based on
Gaussian-modulated coherent states and heterodyne detec-
tion, the finite-size composable security against coherent at-
tacks can be analyzed by considering Gaussian collective
attacks [6]. In a collective attack Eve prepares an ensemble
of independent and identical quantum systems, each one
interacting individually with a single quantum state trans-
mitted through the channel, with the output ancilla stored
into a quantum memory [1,2]. In a collective attack on
Gaussian-modulated coherent-state CV-QKD protocol the an-
cillae stored in Eve’s quantum memory is a tensor product
of n coherent states, i.e., an n-symbol codeword. In order
for Eve to extract the maximum information upper bounded
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by the Holevo information [7–9], a sequence of projective
binary-outcome collective quantum measurements has to be
applied to the n-symbol codeword [10]. In [11] a quantum op-
tical realization of the sequential decoding strategy has been
provided, which in a large number of 2nR steps determines
which codeword was sent (with R the rate in bits/symbol
being bounded by the Holevo information). In [12] a more
efficient (in terms of scaling) sequential decoding strategy
(but with no evidence of quantum optical implementation)
has been proposed, consisting of a sequence of complex
adaptive collective quantum measurements performed in a
series of nR concatenated steps to determine which codeword
was sent. Thus, in a realistic collective attack a significant
amount of time and/or coherent operations are required for
Eve to collectively decode the stored ensemble to approach
the Holevo information.

In this work we investigate Eve’s optimal attack in a no-
switching CV-QKD protocol, given practical restrictions on
her storage and processing ability. The realistic assumption of
restricted quantum memories has been studied in the context
of quantum data-locking protocols [13–16] and two-party
cryptographic tasks of oblivious transfer and bit commitment
[17–21]. In a no-switching CV-QKD protocol, Eve can avoid
the decoherence induced over the storage and processing time
of the collective attack by performing individual attacks where
she interacts individually with each quantum state sent by Al-
ice, and she immediately performs an individual measurement
on the output ancilla. This is an optimal individual attack
strategy, because there is no basis information withheld in
the no-switching protocol. With the aim of allowing Eve to
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simultaneously benefit from both the collective decoding and
avoiding the decoherence induced over the decoding, we
propose realistic optimal attacks, hybrid attacks, that lie in
between the coherent and individual attacks. In the hybrid at-
tack we model the total decoherence induced on each quantum
system stored into the quantum memory with a thermal, lossy
Gaussian channel. We will evaluate the asymptotic and com-
posable finite-size security of a no-switching CV-QKD proto-
col in terms of Eve’s attack decoherence, thereby demonstrat-
ing that if the decoherence is higher than a threshold value,
Eve’s best strategy is the individual attack; thus the security
of the CV-QKD protocol can be analyzed by considering only
the individual attack, which remarkably improves both the key
rate and the maximum secure transmission distance of the
protocol. Note that our realistic assumption of decoherence
over the storage time of a collective (or coherent) attack
is fully future proof in the sense that if a perfect quantum
memory becomes possible in the future, the key which is
secure now will remain secure.

The outline of the paper is as follows: In Sec. II we
briefly describe the no-switching CV-QKD protocol in both
the prepare-and-measure and equivalent entanglement-based
scheme. In Sec. III we discuss the security of the no-switching
protocol in the composable finite-size regime. In Sec. IV
we propose an optimal realistic eavesdropping attack in a
hybrid scheme and analyze the security of the protocol against
such attacks. In Sec. V we show the numerical results for
the performance of the CV-QKD system against the optimal
realistic attacks. Finally, we discuss and conclude this work in
Secs. VI and VII, respectively.

II. CV-QKD SYSTEM

We consider a Gaussian no-switching CV-QKD protocol
[4,5], where Alice generates a pair of random real num-
bers, chosen from two independent Gaussian distributions of
variance VA, to prepare coherent states. The prepared states
are then transmitted over an insecure quantum channel with
transmissivity T and excess noise ξ (relative to the input of the
quantum channel) to Bob. For each incoming state, Bob uses
heterodyne detection to measure both the q̂ and p̂ quadratures.
In this protocol, sifting is not needed, since both of the random
variables generated by Alice are used for the generation
of the key. When the quantum communication is finished
and all the incoming quantum states are measured by Bob,
classical postprocessing, including discretization, parameter
estimation, error correction, and privacy amplification, over
a public but authenticated classical channel is commenced to
produce a shared secret key.

This Gaussian CV-QKD system can also be represented
by an equivalent entanglement-based scheme [1,2], where
Alice generates a two-mode squeezed vacuum (TMSV) state
ρAB with the quadrature variance V = VA+1. Alice retains
mode A while sending mode B to Bob over the quantum
channel. In the entanglement-based scheme, Alice applies a
heterodyne detection to mode A, which results in projecting
mode B onto a coherent state. At the output of the channel,
Bob applies a heterodyne detection to the received mode B1,
with his detector having an efficiency of η and electronic noise
variance of υel [22,23].

III. COMPOSABLE FINITE-SIZE SECURITY ANALYSIS

We exploit the approach introduced in [6,24] to analyze the
composable finite-size security of the no-switching CV-QKD
protocol (acting on a 2N-mode state shared between Alice
and Bob) against coherent attacks. This approach consists of
two steps: first proving the security of the protocol against
Gaussian collective attacks with a security parameter ε [24],
and then applying the Gaussian de Finetti reduction [6] to
obtain the security against coherent attacks with a polyno-
mially larger security parameter ε̃ [6], where the security
loss due to the reduction from coherent attacks to collective
attacks scales like O(N4) (see Appendix A for more details).
There exists another approach to prove the security against
coherent attacks which is based on an entropic uncertainty
relation [25–27], but the relevant CV-QKD protocol requires
the preparation of squeezed states. Furthermore, due to the
looseness of the current best entropic uncertainty relations,
this approach predicts key rates that are pessimistic as a
function of loss.

The no-switching CV-QKD protocol with the number of
2n coherent states sent by Alice is ε-secure against collective
attacks in a reverse reconciliation (RR) scenario if [24,28]

ε = 2εsm + ε̄ + εPE + εcor (1)

and if the key length � is chosen such that [24,28]

� � N[βI (A:B)−χ (B:E )]−
AEP−2 log2

(
1

2ε̄

)
, (2)

where I (A:B) is the Shannon mutual information between
Alice and Bob (calculated and provided in Appendix B),
χ (B:E ) is the Holevo information between Eve and Bob, β

is the reconciliation efficiency, N = 2n, and the finite-size
correction term is given by [24,28]


AEP =
√

N

[
(d+1)2+4(d+1)

√
log2

(
2

ε2
sm

)

+ 2 log2

(
2

ε2εsm

)]
+ 4

εsmd

ε
, (3)

where d is the discretization parameter, and εcor and εPE are
the maximum failure probabilities for the error correction and
parameter estimation, respectively (see Appendix A for more
details). We have considered the same scenario as [24,28,29],
where almost all the raw data can be utilized to distill the
secret key. Note that for the ε-security analysis of the same
protocol against individual attacks we can still use Eq. (2),
where χ (B:E ) must be replaced by the Shannon mutual
information between Eve and Bob, I (B:E ).

IV. OPTIMAL REALISTIC ATTACK

Now we investigate the optimal eavesdropping attack on
a no-switching CV-QKD protocol, given Eve’s storage and
processing limitations. We propose an optimal realistic hy-
brid attack, where Eve performs a combination of both the
coherent and individual attacks. Note that Eve does not need
a quantum memory for the individual attack, since she does
not need to wait for any basis information to be disclosed
in the no-switching CV-QKD protocol. This hybrid attack
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FIG. 1. Eve’s optimal hybrid attack for the no-switching CV-
QKD protocol.

allows Eve to benefit from the advantage of both the collec-
tive decoding, as well as the individual measurement of the
nondecohered ancillae.

We model the coherent-attack part of the hybrid attack with
a Gaussian collective attack and the individual-attack part of
the hybrid attack with a Gaussian individual attack. Gaussian
collective (individual) attacks are known to be asymptotically
optimal [1,2,30–33]. Furthermore, according to the Gaus-
sian de Finetti reduction, for the no-switching protocol it is
also sufficient to consider Gaussian collective attacks in the
finite-size, composable security proof [6]. These results are
crucial, since they allow us to explicitly model Eve’s attack
and her decoherence. Both the optimal Gaussian collective
attack [34] and the optimal Gaussian individual attack [35]
can be modeled using an entangling cloner attack (shown
in Fig. 1), where Eve replaces the Gaussian channel with
transmissivity T and excess noise ξ by a TMSV state ρE0

1 E2
of the quadrature variance ωE = 1+T ξ/(1−T ), and a beam
splitter of transmissivity T . Half of the TMSV state, mode
E0

1 , is mixed with the state sent by Alice in the beam splitter,
outputting mode B1 (which is sent to Bob through a perfect
quantum channel) and Eve’s ancillary, mode E1.

In order to combine both the Gaussian collective attack and
the Gaussian individual attack in a hybrid attack, we exploit
two beam splitters with identical transmissivities μ to split
each of Eve’s ancillary modes into two output modes, one
for the collective attack and the other one for the individual
attack. In fact, the output mode E1 (E2) is split in a beam
splitter of transmissivity μ into two output modes Ec

1 (Ec
2 )

for the collective attack and Ei
1 (Ei

2) for the individual attack.
The ancillary modes Ec

1 and Ec
2 are stored into Eve’s quantum

memories and collectively measured after the entire ancillae
are stored. Since we are modeling Gaussian attacks, we model
the total decoherence induced during the collective attack over
the storage and processing time by a thermal, lossy Gaussian
channel with transmissivity τ and thermal noise variance ω.
Explicitly, the ancillary mode Ec

1 (Ec
2 ) undergoes the decoher-

ence, modeled by a Gaussian channel with parameters τ1, ω1

(τ2, ω2) and the output mode E ′
1 (E ′

2). Note that the output
modes D1 and D2 are not accessible to Eve. On the other hand,

in the individual attack, the ancillary modes Ei
1 and Ei

2 are
mixed in a balanced beam splitter, resulting in modes E ′′

1 and
E ′′

2 , where the q̂ quadrature (the p̂ quadrature) is measured
using the homodyne detection on E ′′

1 (E ′′
2 ) [35,36].

A. Security analysis against the hybrid attack

The finite-size key length of the no-switching protocol in
the RR scenario, which is secure against the hybrid attack with
the security parameter ε̃, can be given as

�hyb �min
μ

[
NβI (A:B)−NIhyb

μ (B:E )−
H
AEP−2 log2

(
1

2ε̄

)]
,

(4)

where Ihyb
μ (B:E ) is the upper bound on the mutual information

between Eve and Bob, which is given by

Ihyb
μ (B:E ) = Ihyb

μ (B:E ′
1E ′

2E ′′
1 E ′′

2 ) = χμ(BE ′′
1 E ′′

2 :E ′
1E ′

2)

+ Iμ(B:E ′′
1 E ′′

2 ) − χμ(E ′′
1 E ′′

2 :E ′
1E ′

2), (5)

where χμ(BE ′′
1 E ′′

2 :E ′
1E ′

2) is Eve’s information contributed
from the collective attack, limited by the Holevo informa-
tion, Iμ(B:E ′′

1 E ′′
2 ) is Eve’s information contributed from the

individual attack, limited by the Shannon information, and
χμ(E ′′

1 E ′′
2 :E ′

1E ′
2) is the mutual information between Eve’s an-

cillary modes for the individual and collective attacks, limited
by the Holevo information. See Appendix C for calculation of
the right-hand terms of Eq. (5).

Note that the Shannon mutual information denoted by
I (X :Y ) quantifies the amount of correlations between the two
classical random variables X and Y , and is given by I (X :Y ) =
H (X ) − H (X |Y ) [37], with H (X ) the Shannon entropy and
H (X |Y ) the Shannon conditional entropy. In Eq. (5), the term
Iμ(B:E ′′

1 E ′′
2 ) quantifies the amount of correlations between the

random variables B resulting from Bob’s measurements and
the random variables E ′′

1 E ′′
2 resulting from Eve’s individual

measurements.
Note also that the Holevo information denoted by χ (X :Y )

is the upper bound on the mutual information between the
classical random variable X and the quantum system ρY ,
and is given by χ (X :Y ) = S(ρY ) − ∑

x pX (x)S(ρx
Y ) [37], with

S(ρY ) the von Neumann entropy of the quantum state ρY pre-
ceding the measurement, and S(ρx

Y ) the von Neumann entropy
of the quantum state ρY (preceding the measurement) condi-
tioned on the random variable X . Hence, χ (X :Y ) does not
depend on the type of measurement applied to the quantum
state ρY . In Eq. (5), the term χμ(BE ′′

1 E ′′
2 :E ′

1E ′
2) quantifies the

upper bound on the mutual information between the random
variables BE ′′

1 E ′′
2 resulting from Bob and Eve’s individual

measurements and the quantum system ρE ′
1E ′

2
. Also, the term

χμ(E ′′
1 E ′′

2 :E ′
1E ′

2) quantifies the upper bound on the mutual
information between the random variables E ′′

1 E ′′
2 resulting

from Eve’s individual measurements and the quantum system
ρE ′

1E ′
2
.

Since the 
 term in Eq. (4) is different for the coherent
and individual attacks, to compute �hyb in Eq. (4) we first
maximize Ihyb

μ (B:E ) over all possible values of 0 � μ � 1.
When the maximization of Ihyb

μ (B:E ) leads to μ = 1, Eve’s
hybrid attack reduces to the coherent attack. In this case,
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Eq. (4) changes to �hyb = �coh, where

�coh � N[βI (A:B)−χ (B:E ′
1E ′

2)]−
C
AEP−2 log2

(
1

2ε̄

)
, (6)

and where χ (B:E ′
1E ′

2) = χμ(BE ′′
1 E ′′

2 :E ′
1E ′

2) for μ = 1, and

C

AEP is given by 
AEP in Eq. (3) for ε�ε̃. When the max-
imization of Ihyb

μ (B:E ) leads to μ = 0, Eve’s hybrid attack
always reduces to the individual attack in the asymptotic
regime. However, this is not the case for the finite-size regime,
since the 
 term for the coherent attack is much larger than
that of the individual attack. This is because the 
 term for the
individual attack does not have to include the O(N4) reduction
in ε̃ that is required to reduce coherent attacks to collective
ones. This means there are instances where, although the
coherent attack results in a smaller mutual information with
Eve (which we would associate with a higher asymptotic key
rate), the coherent-attack finite key rate is still lower than
the individual-attack finite key rate because of this difference
in the finite-size corrections. Hence, when the maximization
of Ihyb

μ (B:E ) leads to μ = 0, the finite-size key length is
obtained by �hyb = min(�coh,�ind ), where �ind is the finite-size
key length where Eve’s hybrid attack reduces to the individual
attack and is given by

�ind � N[βI (A:B)−I (B:E ′′
1 E ′′

2 )]−
I
AEP−2 log2

(
1

2ε̄

)
, (7)

and where I (B:E ′′
1 E ′′

2 ) = Iμ(B:E ′′
1 E ′′

2 ) for μ = 0, and 
I
AEP is

given by 
AEP in Eq. (3) for ε = ε̃. Furthermore, when the
maximization of Ihyb

μ (B:E ) leads to 0 < μ < 1, Eve performs
a combination of both the individual and coherent attacks. In
this case we can only calculate a (presumably loose) lower
bound on the finite-size key length �hyb. Since ε�ε̃ leads
to 
C

AEP > 
I
AEP, the (loose) lower bound on �hyb can be

obtained by Eq. (4), where 
H
AEP = 
C

AEP.

V. NUMERICAL RESULTS

We illustrate these results with a practical example of
realistic devices [38,39] and a lossy channel with transmis-
sivity T = 0.1 (or approximately 50 km of telecom fiber) and
ξ = 0.01. In Fig. 2 the asymptotic and finite-size key rate of
the no-switching protocol in the RR scenario is illustrated
as a function of Eve’s memory-channel transmissivity for
different types of attacks: individual, coherent, and hybrid.
Note that in our numerical simulations we assume iden-
tical (i.e., τ1 = τ2 = τ and ω1 = ω2 = ω) but independent
quantum memories.

In the asymptotic regime, the secret key rate in the RR
scenario is given by Kind = βI (A:B)−I (B:E ′′

1 E ′′
2 ) against the

individual attack, Kcol = βI (A:B)−χ (B:E ′
1E ′

2) against the col-
lective attack, and Khyb = βI (A:B)− maxμ[Ihyb

μ (B:E )] against
the hybrid attack. Note that the derived bounds for the secret
key rate in the case of collective attacks remain asymptotically
valid for the arbitrary coherent attacks [33].

In the finite-size regime, the secret key rate in the RR
scenario is given by Kind = �ind

N against the individual attack,

Kcoh = �coh
N against the coherent attack, and Khyb = �hyb

N against
the hybrid attack.
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FIG. 2. The finite-size and asymptotic key rate as a function of
memory’s transmissivity τ for individual (blue), coherent (red), and
hybrid attacks (black). The numerical values are η = 0.6 [38], υel =
0.015 [39], T = 0.1, ξ = 0.01, d = 5, ω = 1, β = 0.98 [40], and the
modulation variance is optimized. The region marked by the ellipse
shows memory’s transmissivities for which Eve’s optimal attack is
the individual attack.

In our numerical calculations of finite-size key rate, for all
types of attacks we consider the security parameters ε̃ = 10−6

and n = 109. Recall again that to analyze the security of
the no-switching protocol against coherent attacks with the
security parameter ε̃ = 10−6, it is sufficient to analyze the
security of the protocol against Gaussian collective attacks
with the security parameter ε using Eq. (6) where ε � ε̃.
Here we consider ε = 10−42 � ε̃ = 10−6 for n = 109, since
the security loss due to the reduction from coherent attacks
to collective attacks scales like O(N4). Thus, for coherent
attacks we choose εPE = εcor = ε̄ = 10−43 to satisfy Eq. (1)
for ε = 10−42, while for individual attacks we choose εPE =
εcor = ε̄ = 10−7 to satisfy Eq. (1) for ε = ε̃ = 10−6. Note
that for hybrid attacks we consider a pessimistic scenario
by choosing εPE = εcor = ε̄ = 10−43, which again leads to a
loose lower bound on the finite-size hybrid key rate.

In Fig. 2 we see that there is a threshold transmissivity
of Eve’s memory channel below which an individual attack
is always optimal. We denote τ as

c and τ fs
c for the threshold

transmissivity in the asymptotic and finite-size regime, respec-
tively. In Fig. 2, asymptotically we see that when τ � τ as

c =
0.17 individual attacks are optimal. For τ as

c < τ � 0.72 Eve’s
optimal strategy is a hybrid combination of both individual
and coherent attacks, and for τ > 0.72 coherent attacks are
optimal. In Fig. 2, in the finite-size case when τ � τ fs

c =
0.23 individual attacks are optimal, and for τ > τ fs

c (where
the optimal value of μ indicates hybrid attacks are optimal
for τ fs

c < τ � 0.7, and coherent attacks are optimal for τ >

0.7) a positive finite key rate cannot be generated, and the
protocol is not secure against hybrid attacks. That is why
the black circled line (i.e., the finite key rate secure against
hybrid attacks) has not been shown for τ > τ fs

c . Note that
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FIG. 3. Same as Fig. 2 except here we have a low-loss channel
with T = 0.5.

in the presence of memory’s thermal noise (i.e., ω > 1) the
threshold transmissivity becomes higher than that in the case
of Eve’s pure-loss quantum memory (i.e., ω = 1).

We repeat our numerical simulations for a low-loss quan-
tum channel in Fig. 3, which result in similar trends to high-
loss channels. Asymptotically we see that when τ � τ as

c =
0.18 individual attacks are optimal, for τ as

c < τ � 0.75 Eve’s
optimal strategy is a hybrid combination of both individual
and coherent attacks, and for τ > 0.75 coherent attacks are
optimal. In the finite-size case when τ � τ fs

c = 0.26 indi-
vidual attacks are optimal, for τ fs

c < τ � 0.89 Eve’s optimal
strategy is a hybrid combination of both individual and coher-
ent attacks (only a loose lower bound on the finite-size hybrid
key rate can be calculated), and for τ > 0.89 coherent attacks
are optimal.

Note that in Figs. 2 and 3 the threshold transmissivity of
the finite-size regime is higher than that of the asymptotic
regime, since the finite key rate is calculated based on the
estimated values of the channel (see Appendix A for more
details), while the asymptotic key rate is calculated based on
the expected values of the channel. Note also that in Fig. 3 for
the transmissivities τ > τ fs

c which are close to τ fs
c , the optimal

value of μ is close to zero, which means most of Eve’s signal
undergoes the individual measurement in the hybrid scheme.
However, we can see a discontinuity in the finite key rate
around τ fs

c , which is because the 
 term (and also εPE) for
the hybrid attack is always chosen pessimistically much larger
(much smaller) than that of the individual attack, even when
the hybrid attack is very close to the individual attack.

Additional calculations beyond those illustrated here have
been carried out covering direct reconciliation (DR), which
results in similar trends to those indicated here. However,
DR is successful only when the channel loss is below 3 dB.
For instance, in the DR scenario of the no-switching protocol
with the same parameters as Fig. 3, individual attacks result
in positive finite key rates only for low-loss channels with
T � 0.72. Hence, if Eve’s decoherence is large enough to

0 10 20 30 40 50 60 70
Distance (km)

10-3

10-2

10-1

100

K
ey

 R
at

e

Individual-Asymptotic
Coherent-Asymptotic
Individual-Finite
Coherent-Finite

FIG. 4. The finite-size and asymptotic key rate as a function of
channel distance (with the assumption of 0.2 dB loss per kilometer)
for individual (blue) and perfect coherent attacks (red). The numeri-
cal values are the same as Fig. 2.

make individual attacks the optimal attacks, positive finite key
rates can be generated only for T � 0.72.

Thus, we find that our analysis can translate a model for
the decoherence of Eve’s attack into a rigorous, quantifiable
bound on performance. This fact results in a remarkable
improvement of the key rate up to that achievable under
the assumption of individual attacks. For a Gaussian-channel
model we generically find a threshold value for the overall
decoherence of Eve’s attack above which the mutual infor-
mation between Bob and Eve is degraded so severely that
Eve is forced to make an individual attack. These results
are of significant practical relevance. For instance, Fig. 2
shows that while positive finite key rates cannot be generated
under the unrealistic assumption of perfect coherent attacks,
by considering Eve’s attack decoherence we are able to move
from an insecure regime to a secure regime and generate
nontrivial positive finite key rates. Figure 4 also shows the
advantage of individual attacks over perfect coherent attacks
in terms of the maximum secure transmission distance of
the CV-QKD protocol, where this advantage is significant,
especially in the finite-size regime.

VI. DISCUSSION

In our model of restricted attack we make no assumption
on the size of Eve’s quantum memory. In fact, we assume a
less-restricted assumption on Eve’s storage ability where she
is able to store all the ancillary modes. However, we assume
any mode stored into the memory undergoes the same amount
of decoherence. It could also be reasonable to consider a
bounded memory, where only a small fraction of the total
modes can be stored and the rest of them are only individually
measured. Further, it would be more realistic to consider
different amounts of decoherence for Eve’s stored ancillary
modes, as some of them are stored in the memory longer than
others. Finally, it would be desirable to extend this result to
the other Gaussian CV-QKD protocols, although this would
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require solving the open problem of explicitly identifying the
corresponding optimal attacks.

VII. CONCLUSIONS

Given the realistic restriction that in a coherent (or col-
lective) attack, Eve’s quantum system undergoes a certain
amount of decoherence over the storage and processing time,
we found that there is always a threshold for Eve’s decoher-
ence above which Eve’s best strategy is limited to individual
attacks. Since the decoherence is an increasing function of
the storage time, if Eve’s required time to store the entire
ensemble and perform a collective measurement on the stored
ensemble is sufficiently long, the security analysis of the pro-
tocol reduces to that of individual attacks, which substantially
improves the key rate and the secure transmission distance of
the CV-QKD protocol.
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APPENDIX A: COMPOSABLE FINITE-SIZE
SECURITY ANALYSIS

In the finite-size security analysis the key is proved to be
secure against Eve’s attacks up to a small failure probability,
while in the asymptotic security analysis the key is proved
to be perfectly secure in the limit of infinite quantum states
distributed between Alice and Bob.

The security of a QKD protocol against general attacks is
established by proving that the real protocol is approximately
equal to an ideal protocol. We first introduce the properties
an ideal protocol is required to achieve—correctness, secrecy,
and robustness. Note that an entanglement-based QKD proto-
col can be described as a completely positive trace-preserving
map that takes an input state ρAB and outputs a key consisting
of two classical strings SA and SB on Alice’s and Bob’s
side, respectively. The protocol is correct when SA = SB. The
resultant key is secret when SA is uniformly distributed and is
uncorrelated with Eve’s system. A protocol is called secure
if it is both correct and secret. The protocol is robust if it
never aborts when Eve is passive (i.e., Eve does not disturb
the quantum channel) [24,25].

However, for a real protocol we can only hope to achieve
an almost ideal protocol up to small failure probabilities εcor

and εsec. The protocol is εcor-correct when Pr[SA �= SB] � εcor.
The protocol is εsec-secret when the key is δ-close in trace
distance to a uniformly distributed key that is uncorrelated

with Eve’s system, i.e., 1
2‖ρSAE ′ − τSA ⊗ ρE ′ ‖ � δ and (1 −

pabort )δ � εsec, where ‖.‖ is the trace norm and pabort is the
probability to abort. In this definition τSA is the uniform (i.e.,
fully mixed) state over SA, ρE ′ are states on Eve’s system
E ′ (which characterizes Eve’s quantum states E , as well as
the public classical information C leaked during the QKD
protocol), and ρSAE ′ = ∑

s |s〉〈s| ⊗ ρs
E ′ is a classical quantum

state describing the state of SA and Eve’s system E ′ [24,25].
A QKD protocol is called ε-secure when it is εcor-correct and
εsec-secret, with εcor + εsec � ε [24,25]. Note that this security
definition also ensures that the QKD protocol is secure in the
framework of composable security [24,25], in which different
cryptographic protocols can be combined without compromis-
ing the overall security.

Let us consider the equivalent entanglement-based scheme
of a no-switching CV-QKD protocol [4,5] in the reverse
reconciliation scheme where Alice prepares N = 2n two-
mode squeezed vacuum states with the quadrature variance
V , keeping the first mode of each state while sending the
second mode to Bob over an insecure quantum channel with
transmissivity T and excess noise ξ (relative to the input of the
quantum channel). Alice and Bob measure their own modes
with heterodyne detection to obtain two strings: X ∈ R4n and
Y ∈ R4n. Bob discretizes his string by dividing the continuous
range of his quadrature variables Y into 2d intervals I1, ..., I2d

of the normal distribution, where d is the discretization param-
eter. Bob applies the discretization map D : Y → U such that
D(Yk ) = j if Yk ∈ I j [24]. As a result of the discretization,
Bob ends up with the m = 4dn-bit string U , where each
symbol is encoded with d bits of precision.

Here, similar to [24] we assume parameter estimation can
be performed after the reconciliation (or error correction).
This assumption leads to the improvement of parameter es-
timation and enables us to use almost all the raw data to
distill the secret key. In the error-correction step based on
a linear error-correcting code agreed on in advance, Bob
sends the syndrome of his vector U of size lEC to Alice,
who outputs an estimate Û of U . In order to know whether
the error correction passed (i.e., Û = U ), Alice and Bob
compute a hash of their strings Û and U , respectively. Bob
then reveals his hash to Alice. If both hashes coincide, the
protocol proceeds; otherwise it aborts. Note that the syndrome
of size lEC contributes to most of the leakage during the error
correction. In the parameter estimation which is performed
after the error correction, Bob sends only a few additional
bits of information to Alice that allow her to compute the
covariance matrix of the state ρ

⊗(2n)
AB as well as a confidence

region for the covariance matrix. (For a detailed discussion
of the parameter estimation and how Alice and Bob know
the parameter estimation passed, see Ref. [24].) We indicate
the maximum failure probabilities for the error correction and
parameter estimation steps with εcor and εPE. In the privacy
amplification step Alice and Bob apply a random universal2
hash function to their respective strings in order to extract two
strings SA and SB of size �.

Based on the leftover hash lemma [41,42], the key of
size � is εsec-secret, provided that � is slightly smaller
than the smooth min-entropy of Bob’s string U conditioned
on Eve’s system E ′, H εsm

min(U m|E ′) [41], where m indicates
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the length of the string U , and εsm is the smoothing pa-
rameter which is dependent on the value of εsec.1 The
conditional smooth min-entropy H εsm

min(U m|E ′) characterizes
Eve’s uncertainty (or lack of knowledge) about Bob’s string
U . Note that the chain rule for the smooth min-entropy
[24] gives H εsm

min(U m|E ′) = H εsm
min(U m|EC) � H εsm

min(U m|E ) −
log2 |C|, where log2 |C| = lEC.

In order to calculate the length � of the final key
which is ε-secure, the conditional smooth min-entropy
H εsm

min(U m|E ) has to be lower bounded when the protocol
did not abort, but this is usually a hard task. However,
under the assumption of individual and collective attacks
(meaning that every signal sent from Alice to Bob is
attacked with the same quantum operation), where the
state between Alice, Bob, and Eve has a tensor product
structure, we can employ the asymptotic equipartition
property [24,43,44] and provide a bound in terms of von
Neumann entropy. This property states that for large N , the
conditional smooth min-entropy approaches the conditional
von Neumann entropy. Explicitly, we have H εsm

min(U m|E ) �
S(U m|E ) − 
AEP [24], where S(U m|E ) is the conditional
von Neumann entropy, and 
AEP = √

N[(d + 1)2 + 4(d +
1)

√
log2(2/ε2

sm ) + 2 log2 (2/(ε2εsm ))] + 4εsmd/ε [24,28].
The conditional von Neumann entropy S(U m|E ) is given
by S(U m|E ) = NH (U ) − N χ (U :E ), where H (U ) is Bob’s
Shannon entropy and χ (U :E ) is the Holevo information
between Eve and Bob for collective attacks. Note that for
individual attacks χ (U :E ) must be replaced by the Shannon
mutual information between Eve and Bob, I (U :E ).

According to the security theorem proved in [24,28], the
no-switching CV-QKD protocol is ε-secure against collective
attacks if 2

ε = 2εsm + ε̄ + εPE + εcor (A1)

1In fact, the εsm-smooth min-entropy of Bob’s string U conditioned
on Eve’s system characterizes that given Eve’s system, how much
εsm-close to uniform randomness (which is uncorrelated with Eve’s
system) can be extracted from the random variable U .

2Note that terms here are slightly different to [24] because, as
pointed out in [28], they are unnecessarily pessimistic on two counts.
First, in Theorem 1 of the Supplemental Information of [24], the
terms εPE and εcor are both divided by p (the unknown passing
probability of the protocol), which is subsequently lower bounded
by ε, the overall collective security parameter. This is unnecessarily
pessimistic and stems from substituting the unconditional failure
probability for parameter estimation and error correction, which
are indeed εPE/p and εcor/p, respectively. However, the quantity
in Eq. (A1) is conditioned upon passing the test; therefore the
terms should be multiplied by p, which cancels. Second, in [24] an
extra step is introduced to bound the Shannon entropy appearing
in Eq. (A2) by the so-called empirical entropy. This leads to an
extra correction term in Eq. (A2) and an extra failure probability in
Eq. (A1). However, neither of these are necessary, since the term
NH (U ) − lEC is directly measured in an experiment. Therefore it
does not need to be rigorously bounded by the empirical entropy but
can instead be modeled for the purposes of plotting the expected key
rate by NβI (A:B).

and if the key length � is chosen such that3

� � N[H (U ) − χ (U :E )] − lEC − 
AEP − 2 log2

(
1

2ε̄

)
.

(A2)

Considering that the leakage during the error correction is
given by lEC = N[H (U ) − βI (A:B)] [24,25,28], where I (A:B)
is the Shannon mutual information between Alice and Bob,
we can rewrite Eq. (A2) as

� � N[βI (A:B) − χ (U :E )] − 
AEP − 2 log2

(
1

2ε̄

)
,

(A3)

where χ (U :E ) is upper bounded by χ (Y :E ) = χ (B:E ), since
the discretization algorithm cannot increase the mutual infor-
mation. According to [24] the Holevo information χ (B:E )
can be calculated based on a covariance matrix Mab =
[
∑max

a I,
∑min

c Z;
∑min

c Z,
∑max

b I] with I a 2 × 2 identity ma-
trix, and Z = diag(1,−1), where the elements of Mab provide
a bound on the elements of the covariance matrix of the state
shared between Alice and Bob:

max∑
a

= 1

2n

[
1 + 2

√
log(36/εPE)

n

]
‖X‖2 − 1,

max∑
b

= 1

2n

[
1 + 2

√
log(36/εPE)

n

]
‖Y ‖2 − 1, (A4)

min∑
c

= 1

2n
〈X,Y 〉 − 5

√
log(8/εPE)

n3
(‖X‖2 + ‖Y ‖2),

where ‖X‖2, ‖Y ‖2, 〈X,Y 〉 can be achieved by taking values
differing by three standard deviations from the expected val-
ues [24] (for an expected Gaussian channel with parameters
T and ξ ). It is then assumed that Eve’s information can be
upper bounded by calculating χ (B:E ) based on the covariance
matrix Mab, except with the probability of εPE.

The final key rate where the key is ε-secure against col-
lective attacks is given by �/N . We recall that in Eq. (A3) we
have considered the same scenario as [24], where almost all
the raw data can be utilized to distill the secret key4 (by per-
forming the parameter estimation after the error correction).
However, if the parameter estimation is performed before the
error correction, Alice and Bob are required to disclose a
non-negligible number of data points of size NPE during the
parameter estimation, which means a classical data of size
N ′ is used for the key extraction, where N ′ = N − NPE. As
a result, the final secure key rate is given by �/N , where � is
given by Eq. (A3), but now N in Eq. (A3) has to be replaced
by N ′.

In order to prove the security of the no-switching CV-
QKD protocol against coherent attacks, we apply the Gaussian

3Note that ε̄ comes from the leftover hash lemma [24].
4Note that it has been recently shown in [29] that in CV-QKD the

whole raw keys can be used for both parameter estimation and secret
key generation, without compromising the security and without any
requirements of doing error correction before parameter estimation.
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de Finetti reduction technique [6]. In order to apply this
technique we need to truncate the Hilbert space in a suitable
manner. This can be achieved with the help of an energy
test [6], which ensures that the state shared between Alice
and Bob is suitably described by assigning a low-dimensional
Hilbert space. Considering the input state shared between
Alice and Bob is a 2(N + k)-mode state, Alice and Bob
should symmetrize this state and measure the last k modes
with heterodyne detection. If the average energy per mode is
below dA for Alice and dB for Bob, the energy test passes and
Alice and Bob apply the CV-QKD to their remaining modes;
otherwise the protocol aborts. The thresholds dA and dB should
be chosen properly to ensure that the energy test passes with
large success probability.

According to the security theorem proved in [6], if we are
given a no-switching CV-QKD protocol acting on a 2N-mode
state shared between Alice and Bob (which is suitably sym-
metrized) such that the protocol is ε-secure against Gaussian
collective attacks, the modified protocol, including an energy
test and an additional privacy amplification step [6], is ε̃-
secure against coherent attacks, with ε̃ = (K4/50)ε, where

K = max{1, N (dA + dB)(1 + 2
√

[( ln(8/ε))/2N]

+ ( ln(8/ε))/N )(1 − 2
√

[( ln(8/ε))/2k])
−1}. (A5)

Thus, the security loss due to the reduction from coherent
attacks to collective attacks scales like O(N4).

Note that in our numerical calculations of finite-size key
rate we do not directly use the covariance matrix shared
between Alice and Bob given by Mab to compute the key
rate. More specifically, we first calculate the matrix Mab and
then estimate the required parameters (T , ξ , and V ) from the
elements of the matrix Mab, and then proceed to compute
the key rate based on the calculations provided in the next
sections.

APPENDIX B: CALCULATION OF I(A : B)

In the entanglement-based scheme of the no-switching CV-
QKD protocol, the initial pure Gaussian entangled state ρAB

with the quadrature variance V is completely described by its
first moment, which is zero, and its covariance matrix

MAB =
[

V I
√

V 2 − 1 Z√
V 2 − 1 Z V I

]
. (B1)

After transmission of mode B through a quantum channel with
transmissivity T and excess noise ξ , the covariance matrix of
the mixed state ρAB1 at the output of the channel is given by

MAB1 =
[

V I
√

T
√

V 2 − 1 Z√
T

√
V 2 − 1 Z [T (V + χline )] I

]
, (B2)

where χline = ξ + 1
T − 1. At the output of the channel, Bob

applies heterodyne detection to mode B1. Bob’s heterodyne
detector, with efficiency η and electronic noise variance υel,
can be modeled by placing a beam splitter of transmissivity η

before an ideal heterodyne detector [22,23]. The heterodyne
detector’s electronic noise can be modeled by a two-mode
squeezed vacuum state ρF0G of quadrature variance υ, where
υ = 1 + 2υel/(1 − η). One input port of the beam splitter is

the received mode B1, and the second input port is fed by
one-half of the entangled state ρF0G, mode F0, while the output
ports are mode B2 (which is measured by the ideal heterodyne
detector) and mode F .

The Shannon mutual information between Alice and Bob,
I (A : B), is given by

I (A : B) = log2

VBhet
2

VB2
het|Ahet

, (B3)

where VBhet
2

is the variance of heterodyne-detected mode B2

and is given by VBhet
2

= ηT (V + χtot )/2, where χtot = χline +
χhet

T and χhet = [1 + (1 − η) + 2υel]/η. The conditional vari-
ance VB2

het |Ahet is the variance of heterodyne-detected mode B2

conditioned on Alice’s heterodyne detection of mode A, which
is given by VB2

het |Ahet = ηT (1 + χtot )/2.

APPENDIX C: CALCULATION OF Ihyb
μ (B : E )

The upper bound on the mutual information between Eve
and Bob in the hybrid attack, Ihyb

μ (B : E ), is given by

Ihyb
μ (B : E ) = Ihyb

μ (B : E ′
1E ′

2E ′′
1 E ′′

2 ) = χμ(BE ′′
1 E ′′

2 :E ′
1E ′

2)

+ Iμ(B:E ′′
1 E ′′

2 ) − χμ(E ′′
1 E ′′

2 :E ′
1E ′

2). (C1)

We now analyze the calculation of the mutual information
terms on the right-hand side of Eq. (C1).

1. Calculation of χμ(BE ′′
1 E ′′

2 : E ′
1E ′

2 )

In Eq. (C1) the Holevo mutual information χμ(BE ′′
1 E ′′

2 :
E ′

1E ′
2) is given by

χμ(BE ′′
1 E ′′

2 : E ′
1E ′

2) = S(ρE ′
1E ′

2
) − S(ρE ′

1E ′
2|E ′′

1 E ′′
2 B2 ), (C2)

where S(ρ) is the von Neumann entropy5 of the quantum
state ρ. Note that here we assume Bob’s detection noise is
not accessible to Eve. The first entropy S(ρE ′

1E ′
2
) is calculated

through the symplectic eigenvalues of the covariance matrix
ME ′

1E ′
2
, which is given by

ME ′
1E ′

2
=

[[
τ1VEc

1
+ (1 − τ1)ω1

]
I

√
τ1τ2CEc

1 ,Ec
2
Z√

τ1τ2CEc
1 ,Ec

2
Z

[
τ2VEc

2
+ (1 − τ2)ω2

]
I

]
,

(C3)

where VEc
1

= μVE1 + (1 − μ), VEc
2

= μVE2 + (1 − μ),
and CEc

1 ,Ec
2

= μCE1,E2 . Note that VE1 = T ωE + (1 − T )V ,

VE2 = ωE , and CE1,E2 = √
T

√
ω2

E − 1. The second entropy

we require in order to determine χμ(BE ′′
1 E ′′

2 : E ′
1E ′

2) is
S(ρE ′

1E ′
2|E ′′

1 E ′′
2 B2 ), which is calculated through the symplectic

eigenvalues of the conditional covariance matrix ME ′
1E ′

2|E ′′
1 E ′′

2 B2 .
This conditional covariance matrix is actually the covariance
matrix of the quantum state ρE ′

1E ′
2

conditioned on the
homodyne detection of modes E ′′

1 E ′′
2 and heterodyne detection

of mode B2. Let us recall that the heterodyne detection of

5The von Neumann entropy of an n-mode Gaussian state ρ with
the covariance matrix M is given by S(ρ ) = ∑n

i=1 G( λi−1
2 ), where

λi are the symplectic eigenvalues of the covariance matrix M, and
G(x) = (x + 1)log2(x + 1) − xlog2(x).
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mode B2 is the combination of mode B2 with a vacuum mode in a balanced beam splitter, which outputs mode B3 and mode C,
where the q̂ ( p̂) quadrature is measured on mode B3 (mode C) using a homodyne detector. Hence, the heterodyne detection on
mode B2 is actually a conjugate homodyne detection on modes B3 and C. In this case we have ME ′

1E ′
2|E ′′

1 E ′′
2 B2 = ME ′

1E ′
2|E ′′

1 E ′′
2 B3C ,

where we have

ME ′
1E ′

2|E ′′
1 E ′′

2 B3C = ME ′
1E ′

2
− σE ′

1E ′
2,E

′′
1 E ′′

2 B3C Hhom σT
E ′

1E ′
2,E

′′
1 E ′′

2 B3C . (C4)

In Eq. (C4) the covariance matrix ME ′
1E ′

2
is given by Eq. (C3), and the matrix σE ′

1E ′
2,E

′′
1 E ′′

2 B3C is given by

σE ′
1E ′

2,E
′′
1 E ′′

2 B3C = [
σE ′

1E ′
2,E

′′
1 E ′′

2
σE ′

1E ′
2,B3 σE ′

1E ′
2,C

]
. (C5)

In Eq. (C5) the matrix σE ′
1E ′

2,E
′′
1 E ′′

2
is given by

σE ′
1E ′

2,E
′′
1 E ′′

2
=

⎡
⎢⎢⎢⎢⎣

CqE ′
1
,qE ′′

1
0 CqE ′

1
,qE ′′

2
0

0 CpE ′
1
,pE ′′

1
0 CpE ′

1
,pE ′′

2

CqE ′
2
,qE ′′

1
0 CqE ′

2
,qE ′′

2
0

0 CpE ′
2
,pE ′′

1
0 CpE ′

2
,pE ′′

2

⎤
⎥⎥⎥⎥⎦. (C6)

In Eq. (C6) we have CqE ′
1
,qE ′′

1
= CpE ′

1
,pE ′′

2
= (CEi

1,E
′
1
− CEi

2,E
′
1
)/

√
2, CpE ′

1
,pE ′′

1
= CqE ′

1
,qE ′′

2
= (CEi

1,E
′
1
+ CEi

2,E
′
1
)/

√
2, CqE ′

2
,qE ′′

2
=

−CpE ′
2
,pE ′′

1
= (CEi

1,E
′
2
+ CEi

2,E
′
2
)/

√
2, and CpE ′

2
,pE ′′

2
= −CqE ′

2
,qE ′′

1
= (−CEi

1,E
′
2
+ CEi

2,E
′
2
)/

√
2, and where

CEi
1,E

′
1
=

√
τ1(1 − μ)μ(1 − VE1 ),

CEi
2,E

′
1
= −

√
τ1(1 − μ)μCE1,E2 ,

(C7)
CEi

1,E
′
2
= −

√
τ2(1 − μ)μCE1,E2 ,

CEi
2,E

′
2
=

√
τ2(1 − μ)μ(1 − VE2 ).

In Eq. (C5) the matrices σE ′
1E ′

2,B3 and σE ′
1E ′

2,C are given by σE ′
1E ′

2,B3 = −σE ′
1E ′

2,C = 1√
2
σE ′

1E ′
2,B2 , where we have

σE ′
1E ′

2,B2 =
⎡
⎣

√
τ1μ(1 − T )T η(ωE − V )I

√
τ2μ(1 − T )η

√
ω2

E − 1Z

⎤
⎦. (C8)

In Eq. (C4) the matrix Hhom is given by Hhom = (XME ′′
1 E ′′

2 B3CX)MP, where X = diag(1, 0, 0, 1, 1, 0, 0, 1), MP stands for the
Moore-Penrose pseudoinverse of a matrix, and the covariance matrix ME ′′

1 E ′′
2 B3C is given by

ME ′′
1 E ′′

2 B3C =

⎡
⎢⎣

ME ′′
1 E ′′

2
σT

B3,E ′′
1 E ′′

2
σT

C,E ′′
1 E ′′

2

σB3,E ′′
1 E ′′

2
MB3 σT

C,B3

σC,E ′′
1 E ′′

2
σC,B3 MC

⎤
⎥⎦. (C9)

In Eq. (C9) the covariance matrix ME ′′
1 E ′′

2
is given by

ME ′′
1 E ′′

2
=

⎡
⎢⎢⎢⎢⎣

VqE ′′
1

0 CqE ′′
1
,qE ′′

2
0

0 VpE ′′
1

0 CpE ′′
1
,pE ′′

2

CqE ′′
1
,qE ′′

2
0 VqE ′′

2
0

0 CpE ′′
1
,pE ′′

2
0 VpE ′′

2

⎤
⎥⎥⎥⎥⎦, (C10)

where VqE ′′
1

= VpE ′′
2

= (VEi
1
+ VEi

2
)/2 − CEi

1,E
i
2
, VpE ′′

1
= VqE ′′

2
= (VEi

1
+ VEi

2
)/2 + CEi

1,E
i
2
, and CqE ′′

1
,qE ′′

2
= CpE ′′

1
,pE ′′

2
= (VEi

1
− VEi

2
)/2,

and where

VEi
1
= (1 − μ)VE1 + μ, VEi

2
= (1 − μ)VE2 + μ,

(C11)
CEi

1,E
i
2
= (1 − μ)CE1,E2 .

In Eq. (C9) the matrices σB3,E ′′
1 E ′′

2
and σC,E ′′

1 E ′′
2

are given by σB3,E ′′
1 E ′′

2
= −σC,E ′′

1 E ′′
2

= 1√
2
σB2,E ′′

1 E ′′
2
, where

σB2,E ′′
1 E ′′

2
=

[
CqB2 ,qE ′′

1
0 CqB2 ,qE ′′

2
0

0 CpB2 ,pE ′′
1

0 CpB2 ,pE ′′
2

]
. (C12)
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In Eq. (C12) we have CqB2 ,qE ′′
1

= CpB2 ,pE ′′
2

= (CB2,Ei
1
− CB2,Ei

2
)/

√
2 and CpB2 ,pE ′′

1
= CqB2 ,qE ′′

2
= (CB2,Ei

1
+ CB2,Ei

2
)/

√
2, and where

CB2,Ei
1
= √

(1 − μ)(1 − T )T η(V − ωE ),

CB2,Ei
2
= −√

(1 − μ)(1 − T )η
√

ω2
E − 1.

(C13)

In Eq. (C9) we have MB3 = MC = 0.5(VB2 + 1)I and σC,B3 = 0.5(1 − VB2 )I, where VB2 = ηT (V + χt ) and where χt = χline +
χD

T , and where χD = [(1 − η) + 2υel]/η.

2. Calculation of Iμ(B : E ′′
1 E ′′

2 )

In Eq. (C1) the Shannon mutual information Iμ(B : E ′′
1 E ′′

2 ) is given by

Iμ(B : E ′′
1 E ′′

2 ) = 1

2
log2

VBhet
2

VqBhet
2

|qE ′′
1

+ 1

2
log2

VBhet
2

VpBhet
2

|pE ′′
2

, (C14)

where VqBhet
2

|qE ′′
1

is the variance of the q̂ quadrature of heterodyne-detected mode B2 conditioned on Eve’s homodyne detection

of the q̂ quadrature of mode E ′′
1 and is given by VqBhet

2
|qE ′′

1
= (VqB2 |qE ′′

1
+1)/2, and similarly for the p̂ quadrature we have

VpBhet
2

|pE ′′
2

= (VpB2 |pE ′′
2
+1)/2. The symmetry of Eve’s information on q̂B2 and p̂B2 imposes that VqB2 |qE ′′

1
= VpB2 |pE ′′

2
. Note that

VqB2 |qE ′′
1

= VqB2
−CqB2 ,qE ′′

1
/VqE ′′

1
, where VqB2

= ηT (V + χt ). Note also that VBhet
2

, CqB2 ,qE ′′
1
, and VqE ′′

1
have been already calculated

and provided in the previous sections.

3. Calculation of χμ(E ′′
1 E ′′

2 : E ′
1E ′

2 )

In Eq. (C1) the Holevo information χμ(E ′′
1 E ′′

2 : E ′
1E ′

2) is given by

χμ(E ′′
1 E ′′

2 : E ′
1E ′

2) = S
(
ρE ′

1E ′
2

) − S
(
ρE ′

1E ′
2|E ′′

1 E ′′
2

)
. (C15)

The conditional entropy S(ρE ′
1E ′

2|E ′′
1 E ′′

2
) is calculated through the symplectic eigenvalues of the conditional covariance matrix

ME ′
1E ′

2|E ′′
1 E ′′

2
. This conditional covariance matrix is given by

ME ′
1E ′

2|E ′′
1 E ′′

2
= ME ′

1E ′
2
− σE ′

1E ′
2,E

′′
1 E ′′

2
Hi

hom σT
E ′

1E ′
2,E

′′
1 E ′′

2
. (C16)

The matrix Hi
hom is given by Hi

hom = (XiME ′′
1 E ′′

2
Xi )MP, where Xi = diag(1, 0, 0, 1). Note that the matrices ME ′

1E ′
2
, σE ′

1E ′
2,E

′′
1 E ′′

2
, and

ME ′′
1 E ′′

2
are given by Eqs. (C3), (C6), and (C10), respectively.
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