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Qubit, operator, and gate resources required for the digitization of lattice λφ4 scalar field theories onto
quantum computers are considered, building upon the foundational work by Jordan et al. [Quantum Inf. Comput.
14, 1014 (2014); Science 336, 1130 (2012)], with a focus towards noisy intermediate-scale quantum devices.
The Nyquist-Shannon sampling theorem, introduced in this context by Macridin et al. [Phys. Rev. A 98,
042312 (2018)] building on the work of Somma [Quantum Inf. Comput. 16, 1125 (2016)], provides a guide
with which to evaluate the efficacy of two field-space bases, the eigenstates of the field operator, as used by
Jordan et al., and eigenstates of a harmonic oscillator, to describe (0 + 1)- and (d + 1)-dimensional scalar
field theory. We show how techniques associated with improved actions, which are heavily utilized in lattice
QCD calculations to systematically reduce lattice-spacing artifacts, can be used to reduce the impact of the field
digitization in λφ4, but are found to be inferior to a complete digitization improvement of the Hamiltonian using a
quantum Fourier transform. When the Nyquist-Shannon sampling theorem is satisfied, digitization errors scale as
|log |log |εdig||| ∼ nQ (number of qubits describing the field at a given spatial site) for the low-lying states, leaving
the familiar power-law lattice-spacing and finite-volume effects that scale as |log |εlatt|| ∼ NQ (total number of
qubits in the simulation). For localized (delocalized) field-space wave functions, it is found that nQ ∼ 4(7) qubits
per spatial lattice site are sufficient to reduce theoretical digitization errors below error contributions associated
with approximation of the time-evolution operator and noisy implementation on near-term quantum devices.
Only classical computing resources have been used to obtain the results presented in this work.
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I. INTRODUCTION

While offering the potential to greatly refine calculations
that can be performed through classical computation, quantum
computing also holds the potential to enable calculations
of quantities in quantum field theories and other quantum
many-body systems that are not possible with classical tech-
niques [1–20]. In particular, real-time dynamics, such as the
fragmentation of quarks into hadrons at particle accelera-
tors, the dynamics of nonequilibrium systems, and the nature
of finite-density systems for which sampling with classical
computation is limited by sign problems, are key areas for
which the achievement of a quantum advantage is anticipated.
Quantum devices with a range of underlying qubit architec-
tures without error correction are now becoming available for
domain scientists to seek advancement into these problems
and other important scientific applications and to envisage at-
tributes of quantum devices necessary to outperform classical
computations of scientific significance. The performance of
present-day quantum devices is limited by a number of basic
attributes, including coherence times and the number of gates
(specifically entangling gates) that can be applied prior to
decoherence, the accuracy and precision of applied gates, the
number and interconnectivity of qubits, and the lack of error
correction. While significant effort is being put forth to reduce
or eliminate these deficiencies and remarkable progress is
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being made, these limitations are expected to persist in near-
term quantum devices. This has led Preskill to name the
present and upcoming time period the noisy intermediate-
scale quantum (NISQ) era [21]. While formidable in its
destruction of pure quantum states, quantum noise has been
recently suppressed sufficiently for a number of small quan-
tum simulations of physical systems [22–27], encouraging the
expectation of meaningful scientific applications of NISQ-era
devices.

Scalar field theories are ubiquitous in physics, from de-
scribing densities in condensed matter systems to fundamental
fields in the electroweak sector from which the Higgs boson
emerges after spontaneous symmetry breaking. The quantum
theory describing the dynamics of a self-interacting, real
scalar field represents perhaps the simplest quantum field
theory (QFT) that can be explored through direct digitiza-
tion of the field with a quantum computer. Such studies are
anticipated to provide important insights into how quantum
devices can be used to simulate gauge field theories, such
as quantum electrodynamics and quantum chromodynamics
(QCD), that describe the interactions in electronic systems and
between quarks and gluons responsible for the nuclear forces
and the structure and dynamics of strongly interacting matter.
It is exciting to observe the advances that are being made
in developing [6–9,14,16,18–20,26,28–44] and implementing
[10–13,15,17,22,26,43,45] algorithms for both Abelian and
non-Abelian gauge theories and scalar field theories that may
be useful for QFT calculations with quantum computers.

It is not expected that NISQ-era devices will surpass
the computational capabilities of classical devices for the
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evolution of scalar fields discussed in this paper. While an
advantage may be found in a contrived endeavor for increased
precision in the ground-state energy of a nonlocal spatial wave
function (see Sec. IV C), the more-likely regimes of quantum
advantage in simulation are those highlighted at the beginning
of this introduction. Creating a computational framework
making these systems accessible, taking advantage of super-
positions and interference while remaining robust to quantum
noise, is arduous and has become the focus of many current
avenues of research; porting the knowledge and understanding
of high-performance classical computation will be vital but
insufficient to achieve this goal. As is the case in classical
computing, performance and scaling of quantum devices for
scientific application cannot be completely understood before
computations are implemented at scale on hardware. While
quantum calculations at scale are unreasonable today and the
currently available hardware is likely far from future fault-
tolerant devices, this paper examines scalar quantum field the-
ory calculations on near-term quantum devices in preparation
for a future in which substantial quantum resources allow
exploration of classically unattainable states of matter.

In a series of foundational papers, Jordan, Lee, and Preskill
formulated and analyzed scalar field theories for quantum
computers [6–9] and estimated the resource-requirement scal-
ing of calculations of static properties and of elastic and
inelastic particle scattering processes determined through di-
rect time evolution. A real scalar field φ(x) is discretized
on a spatial lattice using techniques that are standard in
lattice QCD (LQCD) calculations using classical computers.
The spacing between lattice sites along a Cartesian axis is
denoted by a, the extent of each spatial direction is denoted
by L, and φ(x) is subject to, for example, periodic bound-
ary conditions (PBCs) or twisted boundary conditions (see,
e.g., Refs. [46–49]) in each direction. However, in NISQ-era
quantum computations, φ(x) can only assume values from
a modest-size set of possibilities, with extreme values of
|φ(x)| � φmax and a digitization δφ(x). Therefore, the compu-
tational layout of these Jordan-Lee-Preskill (JLP) simulations
is that a number of qubits nQ describe the value of φ(x) at each
position x, with a total number of qubits NQ = nQ(L/a)d for
spatial dimension d . This system is evolved under the action
of the time-evolution operator Û (t ) = e−iĤt , where Ĥ is the
Hamiltonian operator, to evolve isolated wave packets forward
in time to determine scattering amplitudes.

In nice work by Macridin et al. [34,36], focused on
phonon-electron interactions and building upon work by
Somma [50], it was emphasized that the Nyquist-Shannon
(NS) sampling theorem should be considered in the archi-
tecture of a quantum computer, the mapping of φ(x), and
the implementation of the Hamiltonian to achieve the de-
sired accuracies in quantum simulations. The localization of
the φ(x) wave function in φ space and its curvature deter-
mine the extent and interval of sampling in φ space, i.e.,
φmax and δφ(x) (which dictate nQ), required to reproduce the
φ-space wave function with exponential precision, scaling
as |log |log |εdig||| ∼ nQ, where εdig is the error introduced
through digitization, thereby removing inaccuracies due to
field digitization. These studies of the NS sampling theorem
determined the minimum number of qubits per phonon field

FIG. 1. Identifying three distinct sources of error in quantum
simulations of scalar field theory: 1, the error of digitizing and latti-
cizing the continuous field onto qubit degrees of freedom; 2, the error
of simulation due to the use of approximations to the exact digitized
propagator; and 3, the error due to noise in the quantum device’s
implementation of the approximate digitized propagator. The first
two sources of error are independent of the quantum hardware. The
first is the main focus of this paper.

required to accurately describe harmonic oscillator (HO) wave
functions up to a given excitation level of the phonon field
[34,36,50]. The digitization errors make contributions that
are parametrically smaller than spatial lattice-spacing artifacts
and spatial finite-volume effects, which typically scale as
|log |εlatt|| ∼ NQ, where εlatt is the error introduced by the
nonzero spatial lattice spacing.

The use of ε in this paper indicates the precision to
which the ground-state energy of the continuous scalar field
can be reproduced by a Hamiltonian digitized with qubit
degrees of freedom (step 1 of Fig. 1). This is a theoretical
source of systematic error accompanying the formulation of
the Hamiltonian before it is implemented on hardware or
employed in a simulation algorithm. Most importantly, this is
not the ε commonly used in the quantum simulation literature
to express the precision with which properties of a given
Hamiltonian can be extracted on quantum hardware (steps 2
and 3 of Fig. 1). Thus, ε here characterizes the physics of
field digitization necessary to map the system onto a qubit
Hamiltonian and does not include precision reductions enter-
ing from the Hamiltonian simulation (e.g., Trotterization) or
phase estimation that may be implemented to extract features
of this system on quantum hardware. Examples of progress
in bounding these latter sources of error can be found in
Refs. [51–55]. The distinction between these three sources
of error is depicted in Fig. 1. The scalar field begins in a
continuous representation in a formally-infinite-dimensional
Hilbert space. With the reduction in step 1, this infinite-
dimensional Hilbert space is truncated, digitized, and formu-
lated on qubit degrees of freedom. Step 2 designs a quantum
simulation algorithm to approximate the time evolution of the
quantum state, e.g., Trotterization, which introduces errors
scaling polynomially in the temporal digitization step size
δt . Step 3 implements this approximate time evolution on
quantum hardware susceptible to noise and (likely) without
quantum error correction in the NISQ era.

The digitization errors represented in step 1 of Fig. 1
are the only errors considered in the main text of this
paper. The results presented in this work establish the
precision of low-energy calculations that could be obtained
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on an ideal quantum device with exact implementation of the
time-evolution operator based upon formal considerations of
digitizations and discretizations that must be performed when
formulating the field theories onto quantum devices with a
modest number of qubits. These are presented in order to
determine the best-case scenarios for modest-size devices of
the near term and intentionally neglect the errors of steps 2
and 3 necessary to accurately reflect the precision attainable
with realistic NISQ-era devices. Simulations of the effects of
first-order Trotterization (step 2) and simple unitary gate noise
(step 3) can be found in Appendix H. Together, Appendix H
and the main text indicate that digitization errors (step 1)
may be controlled to high precision with a number of qubits
reasonable for the NISQ era, leaving the steps 2 and 3 to
dominate the current scalar simulation error budget.

In this work, we consider implications of the digitization of
scalar fields when mapped to qubit degrees of freedom, with
a focus on the associated limits in accuracy of calculations
on NISQ-era scale devices. In particular, we examine digi-
tizing (0+1)- and (1+1)-dimensional λφ4 scalar field theory
describing a single real scalar field, including estimating qubit
requirements, estimating the number of operators and number
of gates required for such simulations, and extrapolating these
estimates to (d+1)-dimensional simulations.1 As the sign of
the mass-squared term in the Hamiltonian determines whether
the ground state of these theories is localized around φ = 0
or delocalized around two minima of the potential, estimates
are provided for both situations. Making a connection with
classical calculations of lattice QFTs, we discuss Hamiltonian
improvement that can be included to parametrically reduce the
impact of the field digitization by powers of δ2

φ(x). However,
as used in Refs. [6–9] and emphasized in Refs. [34,36,50],
the use of the quantum Fourier transform (QuFoTr) on the
nQ qubits at each spatial site to evaluate the action of
the conjugate-momentum term in the Hamiltonian, as well as
the freedom it provides in applying phases in field conjugate-
momentum space, provides the opportunity to arbitrarily im-
prove the digitized Hamiltonian, removing all polynomials
in δφ(x) and rendering digitization effects to be exponentially
small (once the conditions imposed by the NS sampling
theorem are satisfied). Analogous implementations have been
utilized previously in Monte Carlo calculations of nonrela-
tivistic systems [56,57]. We present the complete operator
structure required to implement simulations with nQ = 3, 4, 5
qubits per spatial site, along with associated quantum circuits
for nQ = 3. As different bases in φ space can be used to span
the Hilbert space at each point in space, we examine the JLP
implementation using the eigenstates of the φ operator and
a basis defined by the eigenstates of a HO that is distinct
from the frameworks developed in Refs. [34,36,50]. From
our analysis, we conclude that the properties and dynamics
of interacting scalar field theories may be simulated with

1The necessary ingredients for this extrapolation are detailed re-
source requirements for implementation of (i) the (0+1)-dimensional
self-interacting scalar field and (ii) the nearest-neighbor finite-
difference gradient operator. We analyze these two pieces in depth
and subsequently discuss the compilation procedure for applying the
analysis to scalar lattices of arbitrary size and dimensionality.

only a modest number of qubits per site required to render
digitization artifacts negligible compared to other expected
systematic errors2 in the NISQ era.

II. LATTICE SCALAR FIELD THEORY WITH QUBITS

The continuum Lagrange density describing the dynamics
of a scalar field with self-interactions, retaining only renor-
malizable terms in 3+1 dimensions, is

L = 1

2
(∂μφ)2 − 1

2
m2φ2 − λ

4!
φ4, (1)

with a Hamiltonian density of

H = 1

2
�2 + 1

2
(∇φ)2 + 1

2
m2φ2 + λ

4!
φ4. (2)

The conjugate-momentum operator �(x) has the standard
equal-time commutation relation with the field operator
[φ(x),�(y)] = iδ3(x − y). Numerical evaluation of observ-
ables resulting from this Hamiltonian density can be accom-
plished by discretizing space with a cubic grid with a distance
between adjacent lattice sites on the Cartesian axes of a (the
lattice spacing) and extent L in each direction, as previously
defined. The number of sites in each spatial direction is L/a.
The discretized Hamiltonian on a d-dimensional spatial lattice
is

H = ad
∑

x

1

2
�2 − 1

2
φ∇2

aφ + 1

2
m2

0φ
2 + λ0

4!
φ4, (3)

where the discretized Laplacian operator is defined as
∇2

aφ(x) = ∑d
j=1[φ(x + aμ̂ j ) + φ(x − aμ̂ j ) − 2φ(x)]/a2,

where μ̂ j is the unit vector in the jth direction. The quantities
m0 and λ0 are bare parameters that are tuned to recover,
for example, correct values of the φ mass Mφ and the 4φ

scattering amplitude. The conjugate momentum is required to
satisfy

[φ(x),�(y)] = i

ad
δd

x,y Î, (4)

where Î is the identity operator in field space. Redefining
the fields, Hamiltonian, and mass as φ̂ = a(d−1)/2φ, �̂ =
a(d+1)/2�, Ĥ = aH , m̂0 = am0, and λ̂0 = a3−dλ0, Eq. (3) can
be written in terms of dimensionless quantities

Ĥ =
∑

x

1

2
�̂2 − 1

2
φ̂∇̂2

a φ̂ + 1

2
m̂2

0φ̂
2 + λ̂0

4!
φ̂4, (5)

with an equal-time commutator of

[φ̂(x), �̂(y)] = iδd
x,y Î. (6)

The eigenstates of the momentum operator |k〉 satisfy K̂|k〉 =
k|k〉, where k is quantized by the boundary conditions, and,
for example, takes the values k = n 2π

L for PBCs, where the
integer triplets n are constrained to lie within the first Brillouin
zone |nx,y,z| < L

2a . The finite-difference operator that is used
to define the latticized K̂ = ∇̂2

a φ̂ has eigenvalues such that
K̂|k〉 = k̂|k〉 with k̂ j = 2

a sin( k j a
2 ).

2See processes 2 and 3 of Fig. 1 and Appendix H.
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The construction of the latticized Hamiltonian in Eq. (5) is
such that the long-distance, or low-energy, quantities (com-
pared to π/a) will be faithfully reproduced in numerical
evaluations up to corrections that are polynomial in the lattice
spacing ∼(aE )n or exponential in the volume ∼enMφL (for
spatially localized states). Therefore, such lattice frameworks
should be considered as low-energy effective field theories,
with an ultraviolet cutoff set by the inverse lattice spacing.
Considerable effort by the LQCD community has been put
in to construct improved actions in which additional terms
are added to the Lagrange density that are parametrically
suppressed by powers of the lattice spacing and consistent
with the underlying (hyper)cubic symmetry of the space-time
lattice. The additional terms in the QCD action are termed
the Symanzik action [58,59]. Coefficients of the operators
in the Symanzik action depend upon the lattice spacing and
the discretized action and are determined both by tree-level
matching and nonperturbatively through tuning for higher
precision. As an example, the Wilson discretization of the
light-quark field in LQCD calculations leads to spatial finite-
difference discretization errors that scale linearly with the lat-
tice spacing O(a). By adding one dimension-5 operator to the
lattice action, the Sheikholeslami-Wohlert term [60], and tun-
ing its coefficient, this improved action produces low-energy
and long-distance observables that have errors at O(a2). In
principle, an arbitrary number of operators in the Symanzik
action can be included in numerical computations to improve
the action to high orders. However, the requirements for such
calculations that include, for instance, four-quark operators
make this impractical. We will apply similar considerations
when proposing improvements for the digitization of the
scalar field onto quantum degrees of freedom.

III. IMPLICATIONS OF THE NYQUIST-SHANNON
SAMPLING THEOREM

The work of Macridin et al. [34,36] stressed the importance
of the NS sampling theorem, implicit in the work of Somma
[50], which is central to signal processing, communications,
and data compression, to quantum computations. It is worth
reminding the reader of its main elements and implications.
While the results of this theorem are used implicitly in the
formulation and analysis of LQCD calculations, connections
between the two are typically not dwelt upon.

Consider the reconstruction of a real function C(x) that has
support only between x = 0 and x = xmax in position space
and between k = −kmax and k = +kmax in momentum space,
from discrete sampling. If C(x) is sampled over the interval
x ∈ [0, L] with L > xmax and at intervals of δx < π

kmax
, then the

NS sampling theorem ensures that C(x) can be reconstructed
up to corrections that are exponentially small. The Poisson
resummation formula is at the heart of this result, which is also
used extensively in deriving, for example, finite-volume ef-
fects in LQCD calculations. The implications of this theorem
are clear. As long as the function is sampled in both position
space and momentum space over the entire region where the
function has support, then it can be reconstructed with only
exponentially small errors introduced by the discretization.
In quantum simulations of field theories and in particular
the computation of the low-lying eigenstates and eigenvalues,

this imposes constraints for both the spatial discretization and
the digitization of the field at any given spatial site. From
the viewpoint of lattice calculations, this dictates that the
lattice spacing must be small enough to include all spatial-
momentum states that contribute (to the level of precision to
which the calculation is being performed), and the volume
large enough to contain the eigenstates of interest, in order for
deviations between the calculated eigenstates and eigenvalues
and the true eigenstates and eigenvalues to be exponentially
small. For LQCD calculations, this underpins Lüscher’s finite-
volume analysis of QCD observables [61–63], which is used
extensively to both quantify uncertainties and extract S-matrix
elements.

The NS theorem does not specify how to “cover” the
region of support in position space and momentum space,
i.e., what basis should be used to span the spaces, and some
bases will be better than others for any given function. For
smooth functions that fall exponentially (or as a Gaussian)
at large distances, the plane-wave basis is efficient, defined
over the spatial interval where the function has support and
with a discretization that encompasses its highest-frequency
component. For a more localized function, such as those that
fall as a Gaussian at large distance, eigenstates of the HO that
are approximately tuned to the function can also be efficient.

For quantum computations of a field theory using a given
set of basis functions to define the spatial discretization and
the field digitization, including plane waves or eigenstates of
the HO, this theorem dictates the number of qubits required
to achieve a desired accuracy. The number of qubits and the
number and complexity of operators required to execute the
computation are basis dependent. Identifying the optimal ba-
sis with which to perform the quantum computation requires
examining both the number of qubits and the number of
gates required to perform the computation with the desired
precision.

It is worth commenting that the NS sampling bounds are
likely satisfied in LQCD calculations of localized quantities,
such as hadron masses and nuclear bound states. Therefore,
the eigenvalues and eigenstates obtained in such calculations
would be exponentially close to the values associated with the
lattice Hamiltonian if infinite statistics were accumulated in
the stochastic sampling of the quantum fields. The power-law
deviations that scale as ∼(aE )n result from deviations in the
lattice Hamiltonian from the continuum Hamiltonian and are
not due to undersampling in the NS sense. We are unaware
of the NS theorem being implemented in classical quantum
Monte Carlo calculations and consider the possibility worth
exploring.

IV. (0+1)-DIMENSIONAL SCALAR FIELD THEORY

In order to demonstrate some important features of the
construction presented in the preceding section, we examine a
(0+1)-dimensional noninteracting scalar field theory, which
is simply a HO. After a further field and Hamiltonian re-
definition φ̂ = 1√

m̂0
φ̄, �̂ = √

m̂0�̄, and Ĥ = m̂0H̄ , the HO is
described by the Hamiltonian

H̄ = 1

2
�̄2 + 1

2
φ̄2, (7)

052335-4



DIGITIZATION OF SCALAR FIELDS FOR QUANTUM … PHYSICAL REVIEW A 99, 052335 (2019)

with a commutation relation [φ̄, �̄] = iÎ . It is the digitiza-
tion of this system that was studied by Somma [50] and
by Macridin et al. [34,36] with the identifications φ̄ → X ,
�̄ → P, and H̄ → Hh. Without field digitization, δφ̄ = 0, this
is simply the Hamiltonian describing a HO without self-
interactions, with energy eigenstates |ψn〉 and energy eigen-
values En = n + 1

2 . The conjugate-momentum operator can
be identified with a derivative in field space, �̄ = −i d

dφ̄
, to

satisfy the equal-time commutation relation.

A. Jordan-Lee-Preskill basis

When the field is digitized, φ̄ → φ̃ (using the notation of
Macridin et al.), and sampled at regular intervals δφ̃ �= 0, the
conjugate-momentum operator can be replaced by a finite-
difference operator in field space, in analogy with lattice field
theory spatial discretization. It has a matrix representation in
φ̃ space of

〈φ̃′| �̃2|φ̃〉 = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · −1

−1 2 −1 0 0 · · ·
...

...
...

...
...

...

0 0 · · · −1 2 −1

−1 0 0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

and acts in the space defined by field values −φ̄max,−φ̄max +
δφ̃, . . . ,− δφ̃

2 ,
δφ̃

2 , . . . , φ̄max − δφ̃, φ̄max. For a space spanned by
ns = 2nQ basis states in field space, the field takes values

φ̄ = −φ̄max + δφ̃βφ, δφ̃ = 2φ̄max

ns − 1
, (9)

where βφ = 0, 1, . . . , ns − 1. Note that this formulation
allows the field operator to be decomposed as φ =
φ̄max

ns−1

∑nQ−1
j=0 2 jσ z

j (with qubits labeled right to left in tensor
product spaces) and thus requires only single-qubit Pauli-Z
operators for its implementation. As is familiar from classi-
cal lattice simulations, the momentum modes of this system
satisfying PBCs are

kφ̃ = −kmax
φ̃

+ βkδkφ̃ , kmax
φ̃

= π

δφ̃

, δkφ̃ = 2π

δφ̃ns
, (10)

with βk = 1, 2, . . . , ns. It is interesting to note that this
conjugate-momentum-space basis may not be optimal in
terms of the number of gates in a quantum circuit required
to apply the Hamiltonian to any given state. Satisfying the NS
theorem does not require any particular momentum compo-
nents to be present in the conjugate-momentum-space basis
set and as such there is freedom to shift each momentum state
by the same constant momentum. It is convenient to shift each
basis state in conjugate-momentum space by �kφ̃ = −δkφ̃/2
so that

k�
φ̃

= −kmax
φ̃

+ (
βk − 1

2

)
δkφ̃ , (11)

which is equivalent to imposing twisted boundary conditions
in field space [46–49], resulting in +1’s in the off-diagonal
corners of Eq. (8) and momentum states that are symmetri-
cally distributed within the edges of the first Brillouin zone
between values of ± π

δφ̃

ns−1
ns

. For any choice of basis states

FIG. 2. Precision of the energies of the five lowest states of
the HO in Eq. (7) expected from calculations on an ideal quantum
computer with JLP digitizations over a range of values of φ̄max

for a system digitized on nQ = 3, 4, and 5 qubits (minimized at
φ̄max = 3.1, 4.7, and 6.9, respectively). The vertical gray dashed lines
correspond to saturation of the NS sampling bound.

spanning conjugate-momentum space, the finite-difference
operator has matrix elements

〈k′
φ̃
|�̃2|kφ̃〉 = k̂2

φ̃
δkφ̃ ,k′

φ̃
, k̂2

φ̃
= 4

δ2
φ̃

sin2

(
kφ̃δφ̃

2

)
. (12)

The Hamiltonian resulting from this field digitization is de-
noted by H̄ → H̃ . The precision expected from computations
on an ideal quantum computer for a range of values of φ̄max is
shown in Fig. 2. Encouragingly, this calculation indicates that
a φ̄max of 4.7 for a four-qubit representation of the scalar field
can achieve a precision of better than 10−3% on the energies
of the five lowest eigenstates of the HO with an ideal quantum
simulation. For explicit examples of this field-digitization
implementation with three, four, and five qubits per site, see
Appendix A.

With any finite computing device, classical or quantum,
only a finite representation of a continuous quantity is pos-
sible. In the JLP formulation, |φ| is bounded by φmax and
sampled at intervals dictated by the number of qubits per site.
Focusing on the φmax truncation of the scalar field and allow-
ing an infinite momentum-space coverage, formal quantum
field theory studies [64,65] have shown that the asymptotic
perturbative series becomes convergent. For a sufficiently
large φmax, results for low-lying quantities are exponentially
close to those obtained with unbounded values of the field.

In a quantum simulation of this HO, the JLP framework
using the eigenstates of φ̃ and its conjugate momentum can
be used, as discussed above. By tuning φ̄max to be larger
than the spatial support of the nth state of the HO at some
level of precision, the NS sampling bound will be satisfied for
these levels as long as the largest value of |kφ̃| in Eq. (10)
is greater than the region of support in conjugate-momentum
space of the nth state. The action of the Hamiltonian on this
set of qubits is most easily accomplished in two parts, as
prescribed by Jordan, Lee, and Preskill. First, the φ̃2 operator,
represented by a diagonal matrix in this basis, is directly
evaluated. Second, a QuFoTr is performed to render the matrix
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FIG. 3. Precision of the ground-state energy of the HO in Eq. (7)
for unimproved, improved, and exact conjugate-momentum opera-
tors, over a range of digitizations of φ̄ with different levels of gate
noise. The light green points correspond to implementing the finite-
difference conjugate-momentum operator, the light blue corresponds
to the O(δ2

φ̃
)-improved conjugate-momentum operator, and the pur-

ple points correspond to the exact conjugate-momentum operator.
Gaussian noise with a width σ is added to the diagonal elements of
the eigenvalues of the conjugate-momentum operators (resembling
a simplified version of process 3 in Fig. 1). The maximum value of
the field is fixed to be φ̄max = 5.5, enabling a precision of ∼10−12

for an ideal quantum computer. The vertical light gray dashed lines
correspond to the number of qubits associated with the number of
states, while the darker gray solid line corresponds to the naive
estimate of saturation of the NS sampling bound based upon the
properties of the HO ground-state wave function (the six calculations
cross the latter of these lines from top to bottom in the order of the
legend). For the computational errors anticipated in the NISQ era,
four qubits are seen to be sufficient to eliminate the digitization of
the scalar field as a source of important error.

representation of �̃2 diagonal and thus easily evaluated. The
ability to move back and forth between representations in
which φ̃ or �̃ is diagonal is typically not practical in classical
field theory computations and permits more freedom in choos-
ing the operators that can be applied in either representation.
Using the �̃ operator in momentum space that is conjugate
to the finite-difference operator (12) yields exponentially con-
verged eigenvalues and eigenvectors for the lowest n states (by
the NS sampling theorem). However, these quantities differ
from the corresponding HO quantities by even powers of δφ̃

because of the difference between k̂2
φ̃

and k2
φ̃

in Eq. (12),

as shown in Fig. 3. However, if instead the k2
φ̃

eigenvalues

in �̃2 are used in the quantum computation, corresponding
to using �̄2 and not �̃2, the eigenvalues and eigenvectors
of the lowest n states are exponentially close to the δφ̃ = 0
undigitized HO quantities [34,36,50], as can be observed in
Fig. 3. In performing the quantum simulations discussed in
this paragraph, as the number of qubits is increased from being
insufficient to satisfy the NS sampling bound to exceeding the
bound for a given state, the deviation between the true and
calculated energies will decrease as a polynomial in δ2

φ̃
until

the NS sampling bound is satisfied, from which point on the

gains will become exponentially small. It would appear that
working at this saturation point is an effective way to perform
such computations.

1. Perturbatively improved Hamiltonian

It is interesting to note that terms can be added to the
finite-difference conjugate-momentum operator �̃ in Eq. (8)
to systematically improve it by powers of δ2

φ̃
. Finding the

improvement term is straightforward in conjugate-momentum
space, which can then be transformed into φ̃ space. By includ-
ing appropriate terms to systematically cancel deviations from
the true conjugate-momentum operator,

k̂2
φ̃

= 4

δ2
φ̃

sin2

(
kφ̃δφ̃

2

)
→ k2

φ̃
−

k4
φ̃
δ2
φ̃

12
+ · · · ,

k̂′2
φ̃

= 4

δ2
φ̃

sin2

(
kφ̃δφ̃

2

)
+ 4

3δ2
φ̃

sin4

(
kφ̃δφ̃

2

)

→ k2
φ̃

−
k6
φ̃
δ4
φ̃

90
+ · · · , (13)

and the corresponding effective action can be derived that
is parametrically improved. In φ̃ space, the first term in
this improvement is reproduced by an additional term in the
Hamiltonian of the form

δH̃ = 1
24δ2

φ̃
�̃4. (14)

The quadratic improvement in the energy of the ground state
of the HO due to the inclusion of this improvement term in the
Hamiltonian is shown in Fig. 3. Numerical improvements on
the order of one to two orders of magnitude in the accuracy of
the improved calculations versus the unimproved calculations
are found and that the residual dependence on δφ̃ becomes
O(δ4

φ̃
).

For systematic errors arising from approximation of the
conjugate-momentum operator with a finite-difference oper-
ator, the exact form of errors introduced into the Hamiltonian
are well known. If the situation were not so fortunate, the
polynomial digitization errors could still be systematically
removed. Through a series of modest-size calculations (in
which φ̄max is chosen large enough) at a range of digitiza-
tion scales, the leading polynomial dependence on the small
parameter δφ̃ may be calculated and removed through the
introduction of additional Hamiltonian terms. While the form
of such terms may be systematically informed perturbatively
or by the simple availability of independent higher-dimension
operators [66], their choice is not unique as the necessity is
only to provide polynomial dependence at the correct order
for cancellation. This follows the procedure of Symanzik
improvement [58,60,67] as discussed at the end of Sec. II
in the context of lattice QCD. Such improvement procedures
are broadly applicable and have been crucial for calculating
observables in lattice gauge theories, modestly increasing the
complexity of the action rather than calculating closer to the
continuum.
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FIG. 4. Precision of calculations of the ground-state energy of the HO in Eq. (7). (a) Expectations for an ideal quantum computer for
different values of φ̄max as a function of the number of states. The vertical gray dashed lines correspond to the location of inflection points
predicted by the NS sampling theorem for the indicated values of φ̄max. A fit to the gray points calculated at the NS saturation point indicates
ε ∼ [1.8(2) × 103] × 2−2.234(4)ns , quantifying the double-exponential scaling between ε and nQ. (b) Expected precision from a device with
noise at the level of σ = 10−5 in the application of the field conjugate-momentum operator (as described in the text). In both panels, the NS
saturation points arise left to right in the top-to-bottom order of the legend.

2. Impact of noise

In the previous sections, we have considered a full non-
perturbative improvement of the field conjugate-momentum
operator implemented in field space through a QuFoTr and
a perturbative improvement that systematically eliminates
increasing orders in the digitization introduced by finite-
difference approximations of derivatives in field space. These
correspond to different matrices for �̄2 acting on the basis
states in field conjugate-momentum space. The exact �̄2

provides exponential precision in the low-lying eigenstates of
the system, but deviations from this matrix may lead to only
polynomial precision, as evidenced from the behavior of the
perturbatively improved Hamiltonians and Fig. 3. Imperfect
gates and decoherence will result in an imperfect application
of �̄2, introducing errors into calculations of observables
and potentially making superfluous, at a practical level, the
exponentially small improvements in digitization errors below
the threshold of quantum noise.

In the presence of noisy gates and decoherence, it re-
mains preferable to work with the exact �̄2 operator, but the
precision of its application is limited. For a given level of
desired precision, the digitization and extent of the field basis
required to ensure that the precision matches that of the noise
can be determined. This would require an iterative tuning
procedure in which multiple measurements are performed,
systematically increasing φ̄max and decreasing δφ̃ until the
results of calculations become stable. These may or may
not correspond to a situation that satisfies the NS sampling
bound, depending upon the magnitude of the noise. In Fig. 3,
the results of calculations are shown with the use of the
unimproved, improved, and exact conjugate-momentum oper-
ator through QuFoTr with the inclusion of different levels of
gate noise. The noise is included as an offset to each diagonal
element of �̄2 after QuFoTr from a Gaussian distribution of
width σ in conjugate-momentum space. The value of φ̄max =
5.5 is chosen to allow for a precision of ∼10−12 for an ideal
quantum computer for digitizations below a critical value of

δφ̃ . For a given gate-noise level, there is a value of δφ̃ below
which smaller digitizations do not improve the precision of the
calculation. The conclusion is that the error associated with
digitization can be reduced below errors from other sources
for an arbitrary number of low-lying energy eigenstates with
only a small number of qubits.

The impact of different sampling ranges in φ̄ space upon
the precision of calculations with an ideal quantum computer
(perfect gates) is shown in Fig. 4(a). The employed value of
φ̄max limits the overall precision of calculations as δφ̃ → 0
(states per site ns → ∞) due to under sampling of the field
at large φ̄, which is suppressed by ∼e−φ2/2 for a HO wave
function. The field truncation also limits the precision of
calculations for large values of δφ̃ due to undersampling of the
field in momentum space. In between these regimes, the NS
saturation point is found, perceived as a simple discontinuity
in the first derivative, where the position-space sample rate
becomes sufficient to capture the structure of momentum-
space. Tracking this saturation point with the gray band of
Fig. 4 shows a precision that increases exponentially in the
number of states and thus double exponentially in the number
of qubits (ns = 2nQ ). The coefficients of this precision scaling
are calculated to be ε ∼ [1.8(2) × 103] × 2−2.234(4)ns , which
serves as a general estimate for qubit requirements to capture
the low-energy Hilbert space of localized scalar fields.

An interesting observation that can be drawn from Fig. 3 is
that, for the parameters of the calculations explored, reducing
the amount of noise in the application of the field conjugate-
momentum operator below ∼10−13 will have little impact on
the precision of the extracted final result. The demonstration
is made more concrete in Fig. 4(b), where the noise level is
fixed and the precision of calculations is determined over a
range of φ̄max. For this noise level, there is no improvement
in precision as φ̄max is increased beyond ∼3.5. These are
simple special cases of a general conclusion that for a given
calculation designed with a set of digitization parameters,
there is a level of noise in the quantum device(s) below
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which the precision of the results will be only minimally
impacted. This general conclusion works in both directions
and emphasizes the importance of matching precision in the
qubit representation to that available from the NISQ hard-
ware. Exceeding precision in either direction would result
in a wasteful use of quantum resources: using extra qubits
and gates to represent the physical system with a precision
beyond the quantum hardware’s capability to resolve or using
a noise-resilient quantum device to probe physics beyond that
represented in the qubit representation of the system.

One plausible scenario in which it may be beneficial
to exceed the precision of the quantum hardware with the
qubit mapping is in the presence of postmeasurement noise-
mitigation techniques as shown for implementations of vari-
ational quantum eigensolvers in [24,26,68]. By extrapolating
in a parameter scaling with the noise of the system (in the
NISQ era, this is conventionally a number increasing with
the number of two-qubit interactions), the precision of a
calculation can be improved beyond the precision capable
for any ensemble measurement with the device at a fixed
noise parameter. In this case, it is the extrapolated precision
of the quantum hardware that needs to be balanced with the
theoretical precision of the qubit mapping in order to optimize
the use of quantum resources.

It can be seen from Figs. 3 and 4 that the simple3 yet
physically motivated noise model implemented here does
not significantly modify the results of calculations above
the effective noise level. As has been shown for the use of
momentum-space phases associated with finite-difference
field-space �̃2 operators in Sec. IV A 1, there exist simple
modifications to the conjugate-momentum-space phases that
modify the precision convergence by introducing polynomial
sources of error. Having now determined that Gaussian ran-
dom noise on conjugate-momentum-space phase gates does
not result in such a dramatic degradation of the calculation’s
precision above the noise tolerance, we proceed with noiseless
calculations, remembering that this property must be moni-
tored as noise models become more accurate and relevant to
specific hardware implementations.

B. Harmonic-oscillator basis

As we have discussed previously, any set of basis states
can be used to digitize the field φ̄ in H̄ in Eq. (7). If the basis
spans the φ̄ space and �̄ space of the lowest-lying eigenstates,
the NS sampling theorem ensures exponential convergence to
those eigenstates and associated eigenvalues. A basis that is
commonly used, beyond the eigenstates of the φ̄ operator, is
formed by a finite set of eigenstates of a HO with angular

3While this structure of quantum noise is acknowledged to be quite
primitive, it is a simple model of issues expected in real quantum
devices (in this case, a Gaussian-distributed over- or underrotation
in the application of phases in conjugate-momentum space) leading
to substantial theoretical considerations. It is expected that current
research on error correction on small quantum devices [69–74] will
allow quantum noise and decoherence to be modeled in a more
accurate, architecture-specific way when designing calculations for
quantum hardware.

frequency ωφ that is tuned to optimize convergence in the
number of states. If ωφ is tuned to ωφ = 1, the basis states
are the eigenstates of H̄ in Eq. (7) and the evolution matrix is
diagonal in the basis, and the number of basis states required
to converge to the lowest N eigenstates is obviously equal to
N . For ωφ �= 1, the basis states are not eigenstates and the
evolution matrix is not diagonal.

It should be emphasized that bases formed from HO eigen-
states, which are explored in this section, are different in na-
ture from those formed from digitized HO eigenstates, which
have been considered previously [34,36,50]. In those works,
the eigenstates of the HO were digitized onto the eigenstates
of the field operator, e.g., 〈φ̄|ψn〉 → 〈φ̄i|ψd

n 〉, reducing each
field-space eigenstate from a continuous function to a dis-
crete set. The properties and time evolution of the |ψd

n 〉 ∼∑
i

ψn(φi)|φi〉 using the JLP framework were examined in

Refs. [34,36,50]. A HO basis was also used in the pioneering
calculations of the deuteron ground-state energy using the
IBM and Rigetti quantum hardware by Dumitrescu et al. [25].
The mapping of the system onto qubits was accomplished
using a second quantization framework, where occupancy of
quantum states is encoded in the orientation of the qubit. In
contrast, we consider a first quantized mapping with HO basis
states mapped directly onto states of the quantum register.

Unlike the situation found with the JLP digitization of φ̄ in
terms of eigenstates of the φ̄ operator, where it is valuable to
QuFoTr into conjugate-momentum space to evaluate the exact
action of �̄2, digitization of the field space is accomplished
explicitly by the HO basis with the coverage in field and
conjugate-momentum spaces determined by the maximum
number of basis states and the value of ωφ . As such, quantum
circuits implementing the action of the Hamiltonian in the HO
basis can be constructed in φ̄ space only. The Hamiltonian and
ladder operators defining the basis states are

Hbasis = 1

2
�̄2 + 1

2
ω2

φφ̄2 = ωφ

(
a†

ωφ
aωφ

+ 1

2

)
,

aωφ
=

√
ωφ

2
φ̄ + i

√
1

2ωφ

�̄, a†
ωφ

=
√

ωφ

2
φ̄ − i

√
1

2ωφ

�̄

(15)

and the Hamiltonian in Eq. (7) can be conveniently written in
terms of the basis operators

H̄ = 1
2�̄2 + 1

2ω2
φφ̄2 + 1

2

(
1 − ω2

φ

)
φ̄2 = Hbasis + δHωφ

. (16)

The eigenvalues and eigenstates of H̄ , in Eq. (7), are
determined by diagonalizing the Hamiltonian matrix formed
from matrix elements of H̄ in a truncated basis of eigenstates
of Hbasis, in Eq. (15). An explicit example of the HO basis
for three qubits per site may be found in Appendix C. Fig-
ure 5 shows the precision of calculations of the ground-state
energy of the HO Hamiltonian in Eq. (7) expected on an
ideal quantum computer as a function of the size of the HO
basis for different values of ωφ . Obviously, when ωφ = 1
the error vanishes. For ωφ tuned to be in the vicinity of
ωφ = 1 the precision obtained with the HO basis is better
than that obtained with field-space digitization discussed in
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FIG. 5. Expected precision of the ground-state energy of the HO
Hamiltonian in Eq. (7) on an ideal quantum computer using a HO
basis defined by ωφ in Eq. (15) as a function of the number of basis
states. The inset shows the scaling for a HO basis of 20 states, which
is a slice of the main figure indicated by a vertical gray dashed line
(the calculations cross this line from top to bottom in the order of
the legend). In the limit of ωφ = 1 the lowest-lying basis state is an
eigenstate, and ε = 0. Tuning ωφ to be in the vicinity of the optimal
value ωφ = 1 outperforms field-space digitization, shown by the gray
JLP curve.

the previous sections. However, poor choices of ωφ lead to
inferior precision compared with field-space digitization.

The time evolution induced by Hbasis is simple, involving
only single phases, and the quantum circuit to implement
it corresponds to only phases applied to each qubit. Since
there are no interactions in this basis, all operators commute
and there is no need for a Trotter decomposition, as the

total phase can be determined and applied in one application.
When detuned away from ωφ = 1, the size of the Trotter
step required to time evolve the system will be determined
by the detuning. In such a detuned scenario, the operator
structure from δHωφ

involves interactions between all qubits,
as evidenced from Eq. (C2).

In Table I, comparisons of the types and numbers of
operations and gates required to time evolve the HO described
by H̄ in Eq. (7) between the field-digitization basis and a tuned
or detuned HO basis are presented. The two-qubit controlled-
NOT (CNOT) gate requirements are distinguished separately
as their presence often represents the largest source of noise
on NISQ-era quantum hardware. The numbers in Table I are
accumulated for a standard implementation of multiple Pauli
gates [75] and do not represent expected reductions of the HO
basis operations through parity calculation or cancellations
that may occur for particular choices of the operator ordering
[76]. From Table I it is clear that a tuned HO basis requires
significantly fewer operations to evolve a free HO than does
the field-digitization basis. This is because the eigenstates of
the system correspond exactly to the basis states. However,
a detuned HO basis involves an exponentially growing num-
ber of multiqubit operations, leading to significantly more
operations than the field-digitization basis. Even when the
eigenbasis is unknown, the JLP digitization has resource
requirements limited to two-body operators. As a detuned
HO basis shares features of a self-interacting system (detailed
subsequently), we conclude that, for this very simple system,
the field-digitization basis examined in detail in the works
of Jordan, Lee, and Preskill is more robust than a generic
HO basis. By this we mean that for the evolution of an
arbitrary a priori unknown system, the field-digitization basis
will typically require fewer quantum computational resources
while possibly requiring fewer qubits, as seen from Fig. 5.

TABLE I. Resource requirements for one step in the Trotterized time evolution of a HO in the field-digitization JLP basis, a tuned HO
basis, and a detuned HO basis. The CNOT counts are based upon a standard multiple-Pauli-operator implementation requiring 2(k − 1) CNOT

gates for each k-body operator. When a QuFoTr is required (JLP basis), the standard CNOT counts of 2
(nQ

2

)
for this operation (and its inverse)

are included. With the expected limitations in the number of gate operations applied in NISQ-era devices, only systems with nQ � 4 may be
practical.

Basis nQ 0-body 1-body 2-body 3-body 4-body 5-body 6-body QFT CNOT gates

JLP 2 1 8 2 � 8
JLP 3 1 14 6 � 24
JLP 4 1 20 12 � 48
JLP 5 1 26 20 � 80
JLP 6 1 32 30 � 120

JLP nQ 1 6nQ − 4 2
(nQ

2

)
� 8

(nQ
2

)
HOω≡1 2 1 2 0
HOω≡1 3 1 3 0
HOω≡1 4 1 4 0
HOω≡1 5 1 5 0
HOω≡1 6 1 6 0

HOω≡1 nQ 1 nQ 0

HOω �=1 2 1 3 1 2
HOω �=1 3 1 4 4 3 20
HOω �=1 4 1 5 5 11 7 96
HOω �=1 5 1 6 6 16 26 15 352
HOω �=1 6 1 7 7 22 42 57 31 1120
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FIG. 6. (a) Expected precision of calculations of the ground-state energy of a one-site λφ4 scalar field theory performed with an ideal
quantum computer for different values of φ̄max as a function of the number of states (the NS saturation points arise left to right in the top-to-
bottom order of the legend). (b) Field and (c) conjugate-momentum-space wave functions for the free (green or lightly shaded) and interacting
(blue or darkly shaded) one-site λφ4 shown at constant φ̄max = 2.5. The introduction of nonzero λ reduces the spatial support of the wave
function while increasing its support in momentum space. The short-dashed green (lightly shaded) and blue (darkly shaded) lines in (c) are
Fourier transforms of Gaussian fits to the wave functions in (b). The vertical gray dashed lines in (c) show the truncations in �̄ for 6 and 18
states, the location of NS saturation for φ̄max = 2.5 as seen in Fig. 4 and (a) here.

It is interesting to consider whether the tuned HO could
be used as a “standard candle” for the calibration of quantum
hardware. Its eigenstates and eigenenergies are known to
infinite precision and thus could be considered not only as
a calibration source but also as a calculation to distinguish
the computational precision capable on classical and quantum
hardware. Using the details above and specifically the infor-
mation of Table I, it can be seen that the tuned HO requires
zero two-qubit gates to implement. As such, it contains no
entanglement and thus no unique signal that could not be
generated with other predetermined rotation gates to quantify
and explore noise in NISQ-era hardware.

C. λφ4 scalar field theory: Comparing bases

After the field and Hamiltonian redefinition of Eq. (7), the
interacting 0+1 scalar field is described by

H̄ = 1

2
�̄2 + 1

2
φ̄2 + λ̄0

4!
φ̄4, (17)

where φ̂ = 1√
m̂0

φ̄, �̂ = √
m̂0�̄, Ĥ = m̂0H̄ , and λ̂0 = m̂0λ̄0.

This system has been numerically studied previously by
Somma [50]. A value of λ̄0 = 32 will be chosen as a represen-

tative case of strong coupling, where the system is no longer
a HO (nor perturbatively close) and the basis selection for the
description of the wave function between JLP digitization and
HO basis functions is relevant within the multidimensional
space of precision, qubits, gate decompositions, and tuning
requirements.

When using the digitization techniques of Jordan, Lee, and
Preskill, introducing additional interactions does not intro-
duce new challenges. The only necessary modifications to the
method are rescalings of the sampling distributions (applying
considerations for both field-space and conjugate-momentum-
space coverage). In the case of λφ4 with λ = 32, introduction
of the self-interaction shrinks the domain over which the wave
function has support, as shown in Fig. 6(b). As a result,
smaller values of φ̄max may be used for precise calculations.
This can be seen in a comparison between Figs. 4 and 6(a).
For a φ̄max of 2.5, the highest precision attainable with λ = 0
and λ = 32 differs by approximately five orders of magnitude.
The precision with φ̄max of 2.5 saturates with 18 states for
λ = 32, but saturates with only six states for λ = 0, indicating
that the value of �̄max has also increased with the introduction
of the self-interaction, requiring a smaller value of δφ̃ in
order to accurately represent the enlarged Fourier space. This
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trade-off can be seen in Fig. 6(c). To capture the Gaussian
structure of the free HO requires only the inclusion of a
small region of �̄ around zero. For six states, the maximum
value of the momentum can be determined by Eq. (10) to be
±2.62. This value is indicated by the vertical gray dashed
lines in Fig. 6. Outside this region, the exponential behavior
turns power law and inclusion of this portion of the wave
function no longer informs the sampling about the physical
momentum space, only about artifacts of the truncation. By
fitting a continuous Gaussian of infinite spatial extent to the
wave function at the left and plotting its Fourier transform on
the right (small-dashed curves), six states are found to lead to a
δφ̃ , and thus a maximum kφ̃ , that captures the Gaussian central
region of the wave function. For λ = 32, this maximum value
in momentum space is no longer sufficient to saturate the
NS sampling limit. There is a significantly larger domain
in momentum space before the wave function transitions to
power-law behavior, not appearing until �̄ values of ∼±10.
Again, with Eq. (10), 18 states per site are seen to be re-
quired for this truncation in momentum space, a value in
agreement with the location of the NS saturation point seen in
Fig. 6(a).

By comparing the gray band in Fig. 4, the scaling of
the NS saturation for the free one-site HO, with the highest
precisions attained in Fig. 6(a), it can be seen that the number
of states (or qubits) required to achieve a particular precision
is relatively stable for this self-interaction. The values of φ̄max

along this band are skewed from those in the free theory,
but the maximum precision attained through distribution of
a fixed number of wave function sample points is not. As
this self-interaction causes a smooth deformation of the wave
function, trading extent in field space for that in conjugate-
momentum space, it is not surprising that the interacting
ground-state wave function achieves similar precision given
similar quantum resources.

When using a basis of HO wave functions, the main
consideration is again ensuring that the chosen representa-
tion of the wave function sufficiently spans both field and
conjugate-momentum space. With a JLP basis, φ̄max is used
to control the domain of support in field space while δφ̃ (or
equivalently the number of states per site) is used to control
the domain of support in momentum space. With the HO basis
functions, the parameters to be tuned are ωφ and the number of
states. Unlike the lattice parameters of the JLP basis functions,
these parameters give correlated modifications to field and
conjugate-momentum space. Increasing ωφ creates basis func-
tions that are more localized in field space while exploring
higher momentum-space truncations. Increasing the number
of states also increases the momentum-space truncation, but
expands the field-space region of support. Because of these
correlations, it is meaningful to compare the JLP dependence
of φ̄max with a combination of nQ and ωφ dictating the extent

of the HO wave-function basis
√

2nQ

ωφ
, reflecting the fact that√

〈φ2〉 ∼ √
2nQ and ∼1/

√
ωφ .

In Fig. 7, the expected precision of the ground-state energy

is shown as a function of φ̄max and
√

2nQ

ωφ
for JLP (dashed)

and HO (solid) bases, respectively. Values on the left of
the minimum of each curve have reduced precision due to

FIG. 7. Exploration of sensitivity in JLP field digitization
(dashed lines) and the HO basis (solid lines) to tuning of digitization
parameters determining the low-energy states in momentum space.
For JLP field digitization, the relevant parameter is φ̄max, while for
the HO basis it is a combination of the frequency defining the basis
ωφ and the number of states ∼√

2nQ/ωφ . The horizontal axes of the
HO curves have been rescaled to 1.4

√
2nQ/ωφ to align them with

the JLP curves. These tuning curve pairs are minimized with smaller
values of ε in the top-to-bottom order of the legend.

insufficient sampling in field space, while to the right of
the minimum, the precision is reduced due to insufficient
sampling in momentum space. Only at the minimum is the
sampling in both spaces optimal. It can be concluded that
for these parameters, values of φ̄max or ωφ can be selected
(for nQ � 3) such that the errors introduced by digitization
are significantly smaller than those expected from computa-
tions on NISQ-era hardware. As such, the digitization of the
scalar field is not expected to limit the accuracy of NISQ-era
computations. For nQ < 3, the field digitization is expected
to provide a limit to the accuracy of NISQ-era computations.
Comparing the basis choices given a fixed number of qubits,
there are values of the HO basis parameters that produce a
higher-precision result in this system than a φ̄max-tuned JLP
wave-function digitization. For a desired precision, the HO
basis offers a larger acceptable window in the basis tuning
parameters than does the JLP field-digitization basis. This
translates, through the circuit descriptions of Figs. 12 and 14,
to reduced sensitivity on the exact angles applied in the Z-axis
rotation gates. This sensitivity will be relevant in the NISQ era
with imperfect gate fidelities and will continue to be relevant
once fault-tolerant quantum computing is available (where
the precision determines the number of T gates4 needed
to decompose any Z-axis rotation with expected scaling of
|log2 |εθ || [77–79]).

4The T gate (1 0
0 eiπ/8 ) is the gate commonly added to the Clifford

group to create universal quantum computation. Its proliferation is
considered a meaningful cost model for many plausible implementa-
tions considered for future fault-tolerant quantum computing.
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TABLE II. Resource requirements for one first-order Trotterized step of time evolution for one-site λφ4 scalar field theory in the field-
digitization JLP basis and HO basis. The CNOT counts are based upon a standard multiple-Pauli-operator implementation requiring 2(k − 1)
CNOT gates for each k-body operator. When the QFT is required (JLP basis), the standard CNOT counts of 2

(nQ
2

)
for this operation (and its

inverse) are included in the penultimate column. The last column contains the required CNOT gates after manual compilation (see Appendix B).
With the expected limitations in the number of gate operations applied in NISQ-era devices, only systems with nQ � 4 may be practical.

Basis nQ 0-body 1-body 2-body 3-body 4-body 5-body 6-body QFT CNOTuncompiled CNOTcompiled

JLP 2 1 8 2 � 8 8
JLP 3 1 14 6 � 24 24
JLP 4 1 20 12 1 � 54 52
JLP 5 1 26 20 5 � 110 96
JLP 6 1 32 30 15 � 210 164

JLP nQ 1 4nQ − 6 2
(nQ

2

) (nQ
4

)
� 8

(nQ
2

) + 6
(nQ

4

)
HO 2 1 3 2 4
HO 3 1 5 9 4 34
HO 4 1 6 16 18 10 164
HO 5 1 7 22 32 44 22 612
HO 6 1 8 29 44 84 98 46 1982

While Fig. 7 shows desirable qualities when using HO
basis functions to digitally describe the wave function, quan-
tum simulations of quantum systems have many resource
requirements to consider beyond qubit number and necessary
precision of rotation angles. Specifically, a large consideration
in the feasibility of successfully implementing a quantum
calculation in the NISQ era is the number and type of gates re-
quired to implement a single Trotter step of the time-evolution
operator. These gate counts are detailed in Table II. For JLP
basis functions, the one-body operators from the QFT and

(n
2

)
two-body operators from the terms quadratic in the field and
its conjugate momentum are still present. The λφ4 interaction
term introduces only

(n
4

)
four-body operators and additional

contributions to the identity and two-body operators. The
latter can be consolidated with the operators previously identi-
fied and thus does not contribute to the gate cost [it does how-
ever necessitate separate operator coefficient structures in field
and conjugate-momentum space, e.g., O0 from Eq. (A3) can
be written as O�̃ and Oφ̃ , which contain the same operators
but with different relative coefficients]. The fact that operators
are limited to interacting between a number of qubits equal
to the highest power of field interaction included in the
Hamiltonian is a feature of the JLP basis not shared by the
HO basis. Here the additional two-qubit CNOT gates required
to implement the QuFoTr for JLP field digitization are quickly
outnumbered by the CNOT gates required to implement the
k-body operators for k limited by the number of qubits in the
site register.

The fact that the scaling of CNOT gates in the JLP basis
is limited to n4

Q is advantageous when considering the noise
landscape of NISQ-era hardware dominated by two-qubit
interactions. In Tables I and II, the CNOT gate counts generally
do not include cancellations that may occur for particular
operator orderings in the Trotterization [76]. In the JLP basis,
we have performed a manual circuit compilation of the λφ4

scalar field theory, eliminating pairs of adjacent CNOT gates,
resulting in the CNOT gate counts shown in the rightmost
column of Table II. While the φ̄2 operator set by itself does
not permit a reduction of the number of gates, in combination
with the φ̄4 operator set, and also among the φ̄4 operators,

redundant CNOT operations in the leading Trotter expansion
can be removed. While a similar reduction can be applied
to the circuits of the HO basis, many changes of Pauli bases
between operations make systematic cancellation difficult. As
was the case with the JLP basis, it is not expected that carrying
out this elimination in the HO basis will change the scaling of
the CNOT-operator accumulation. A discussion of this manual
compilation is given in Appendix B.

Delocalized wave functions: m2 < 0

As mentioned in the Introduction, λφ4 scalar field theory
in 3 + 1 dimensions is a cornerstone of the standard model of
electroweak interactions [80–82], where φ is an electroweak
doublet of complex real scalar fields. At low energies, its po-
tential is such that the vacuum expectation value (VEV) 〈φ〉 �=
0, breaking the electroweak gauge group SU(2)L ⊗ U(1)Y →
U(1)Q down to that of quantum electrodynamics. This min-
imal symmetry-breaking mechanism, the Higgs mechanism,
generates masses for the weak gauge bosons and the fermions
and gives rise to a single physical scalar particle, the Higgs
boson [83–86]. In a (0+1)-dimensional theory, the parameter
regime −μ2 = m2 < 0 produces a potential that contains two

minima located at φ = ±
√

3!μ√
λ

. For any physical value of μ,
the ground-state wave function of the Hamiltonian is symmet-
ric under φ → −φ and nondegenerate and as such respects the
discrete global Z2 symmetry of the Hamiltonian, with a VEV
of 〈φ〉 = 0. However, it is delocalized with maxima near the
two minima of the potential. The wave function of the first
excited state of the system is similar to that of the ground
state, but it is antisymmetric under φ → −φ. As μ becomes
large and the components of both wave functions become
increasingly localized around the minima of the potential,
the energy difference between the ground state and the first
excited state becomes exponentially small, determined by the
barrier-penetration amplitude for transitioning from +φ to
−φ.

It is again relevant to consider alternate digitizations
for representing the distributions in field and conjugate-
momentum space. For large μ2 > 0 (where the quantity μ√

λ
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FIG. 8. Exploration of the sensitivity in JLP field digitization (dashed lines) and the HO basis (solid lines) to tuning of digitization
parameters determining the low-energy states for a (0+1)-dimensional scalar field theory with m2 < 0 and (a) μ = 2 and (b) μ = 5, resulting in
delocalized wave functions. For JLP field digitization, a relevant parameter is φ̄max, while for the HO basis it is a combination of the frequency
defining the HO basis ωφ and the number of states per site. The horizontal axes of the HO curves have been rescaled to (a) 2.9

√
2nQ/ωφ and

(b) 1.8
√

2nQ/ωφ to align them with the JLP curves. The black dashed horizontal line in (a) corresponds to the precision required to distinguish
between the ground state and first excited state for μ = 2. The corresponding line for μ = 5 in (b) lies many orders of magnitude beyond the
range of the figure. In both panels, the tuning curve pairs are minimized with smaller values of ε in the top-to-bottom order of the legend.

is large with respect to the wave function’s natural spatial
extent), the field-space wave function expands toward two
localized and distinct regions of support. This is the case for
the parameter values of μ = 2, 5 and λ = 1 chosen in Figs. 8
and 9. This enlarged field-space coverage demands similarly
large values of φ̄max when working in the JLP digitization, or
smaller values of ωφ in defining the HO basis. Achieving these
requirements can be accomplished in either basis when they
are tuned, as shown in Fig. 8. An additional consideration in
considering the configuration of quantum simulations is that
the first excited state is becoming very close in energy to the
ground state, a feature that is not present in the previously
considered situations. A low-precision calculation, resulting
from the use of a small number of qubits, will be unable
to resolve the ground state from the first excited state, and
the wave functions emerging from such calculations will
likely be arbitrary combinations of the two. Higher-precision
calculations, requiring a larger number of qubits, will be
required to resolve the low-lying states in such systems. For
such delocalized states, in contrast to the results obtained from
a potential with m2 > 0 in Fig. 7, the JLP basis can be tuned

to produce higher precision in the ground-state energy than
the HO basis with the same number of qubits. This outcome
is not surprising: If the wave function is deformed into a
distribution that is far from Gaussian, as seen in Fig. 9, a set
of HO basis functions is no longer expected to offer superior
coverage in the digital sampling. An interesting result of this
demonstration is the degree to which the JLP formulation, in
which the basis is a periodic collection of δ functions agnostic
to the structure of the wave function, is capable of exceeding
the precision of a basis specialized for an alternate symmetry
of the low-lying wave functions. The ability of the JLP basis
to perform with precision when applied to a range of systems,
and thus require little knowledge of the structure of the low-
lying states, will be a desirable feature of quantum simulations
of more sophisticated, strongly interacting field theories.

In these types of systems, and others, with near-degenerate
low-lying states, the impact of noise in the quantum device
upon correctly identifying the ground-state wave function is
expected to be significant. As discussed in Appendix H, the
noise levels (from either the propagator approximation of step
2 or the intrinsic gate implementation noise of step 3 in Fig. 1)
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FIG. 9. (a) Potentials and (b) and (c) wave functions of the ground states (solid curves) and first excited states (dashed curves) for systems
with m2 < 0. (b) shows the spatial wave functions for λ = 1 and μ = 1, 2, while (c) shows the corresponding momentum-space wave functions.
These wave functions result from using the JLP basis with φmax = 9 and nQ = 7 qubits. [The vertical dashed gray lines in (c) indicate the
number of states at which the NS bound is saturated and thus an increase in φ̄max would be profitable over an increase in quantum states.]
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present in calculations with multiple degenerate extrema in the
potential producing delocalized low-lying states will limit the
systems that can be reliably explored as energy splittings are
buried below the software (step 2) and hardware (step 3) noise
levels.

V. (1+1)-DIMENSIONAL λφ4 SCALAR FIELD THEORY

The detailed analysis of 0 + 1 scalar field theory pre-
sented in the previous sections provides a solid foundation
with which to consider scalar field theory in higher spatial
dimensions with NISQ-era quantum computers. In Sec. II,
the Hamiltonian for scalar field theory in d + 1 dimensions
was presented, along with its naive layout on a spatial lat-
tice. The operator structure for multiple spatial sites is the
same as for one spatial site except for the presence of the
φ∇2φ operator, which includes contributions from particle
motion into the Hamiltonian. The naive representation of this
operator as φ∇2

aφ introduces terms that couple the fields at
two adjacent spatial sites. In general, smearing the fields to
tame high-energy quantum fluctuations while preserving low-
energy observables will introduce couplings beyond adjacent
spatial sites, but these can be implemented with operations on
two sites also.

In the situation with d > 0, the textbook way to construct
field theory calculations is to work with HOs for each spatial-
momentum mode, i.e., define fields in terms of quanta with
well-defined spatial momentum. In perturbative calculations
that can be performed by hand, this method is extremely
efficient. In numerical computations of nonperturbative field
theories, such as LQCD, the system is typically defined with
regard to fields in position space, while components of calcu-
lations involve determining eigenvectors of the Dirac operator
in the presence of a particular configuration of gauge fields. In
the study of systems with few sites in each spatial direction,
it is likely the case that calculating with the momentum-
space modes is efficient [42]. The first implementation of
this quantization procedure on quantum devices has been
completed by Yeter-Aydeniz et al. [87]. However, as argued
by Jordan, Lee, and Preskill [6–9], as the interactions that are
local in position space, such as λφ4, become nonlocal5 in mo-
mentum space (distant momentum oscillators are capable of
producing momentum-conserving contributions to the Hamil-
tonian), time evolving the system to a given state defined in
momentum space will become increasingly inefficient with
increasing system size relative to a state defined in position
space [6–9,91]. For the remaining discussion, we will limit
ourselves to states and operations defined in position space.

Application of the (d + 1)-dimensional λφ4 Hamiltonian
time-evolution operator to a position-space state can be ac-
complished site by site and involves at most d neighboring
two-site interactions at each site. Therefore, for a system

5For discussions of the implementation of nonlocal quantum in-
teractions dominating the cost of quantum chemistry systems, see
Refs. [88–93], where alternate choices of qubit mappings or quantum
simulation methods are explored to increase the locality of quantum
operations.

FIG. 10. Ground-state and first-excited-state wave functions for
two-site λφ4 scalar field theory with λ = 0 (top) and λ = 32 (bot-
tom). The first excited state shows positive correlation between the
oscillations at the two spatial sites (φ̄0, φ̄1).

with (L/a)d spatial lattice sites, this will require (L/a)d

such applications. This being the case, study of the two-site
(1 + 1)-dimensional λφ4 theory provides a complete inven-
tory of the operations and gate counts required to perform a
(d + 1)-dimensional λφ4 calculation, and we have performed
such estimates and numerical calculations in this two-site
theory. Given this two-site locality and quantum hardware
capable of parallelizing the implementation of gates acting
in separate tensor product spaces, application of the Hamil-
tonian to a position-space state can be accomplished with
a circuit of constant depth with increasing lattice size [1].
The field-space wave functions associated with the ground
state and first excited state of the two-site (1 + 1)-dimensional
theory are shown in Fig. 10, with the wave function at
site 0 denoted by φ̄0 and at site 1 by φ̄1. A large value
of the self-interaction coupling λ focuses this correlation
in (φ̄0, φ̄1).

As shown in Fig. 11, the two-site λφ4 theory experi-
ences double-exponential convergence in nQ to the undigitized
value. However, just as the use of a finite-difference operator
in the field-space implementation of �̄2 introduced polyno-
mial deviations in δφ̄ (see results from local and improved
operators in Fig. 3), the finite-difference implementation of
φ∇2

aφ in position space introduces analogous polynomial de-
viations in a from the continuum limit. These lattice-spacing
errors are not shown in Fig. 11. Thus, this method converges
to the continuum value with lattice-spacing errors that scale as
ε ∼ 2NQ . Of course, with a large quantum computer, it could
become possible to remove these polynomial lattice-spacing
artifacts through use of the QuFoTr and subsequent imple-
mentation of the exact lattice phases in Fourier space to create
a smeared, nonlocal gradient operator (exactly as was done
in field space). Rather than requiring a QuFoTr to be applied
on each of the modest-size qubit registers associated with

052335-14



DIGITIZATION OF SCALAR FIELDS FOR QUANTUM … PHYSICAL REVIEW A 99, 052335 (2019)

nQ � 2
nQ � 3
nQ � 4
nQ � 5

0 2 4 6 8

10�17

10�12

10�7

0.01

1000.00

1.4
2nQ

or max

pr
ec
is
io
n
(%
)

2�site ( � 32)

FIG. 11. Precision of the calculated ground-state energy for the
two-site lattice λφ4 scalar field theory with λ = 32 performed with
an ideal quantum computer for different numbers of qubits as a
function of support in field space. For the JLP basis, the relevant
parameter is φ̄max, while for the HO basis it is a combination of
the frequency defining the HO basis ωφ and the number of states
per site. The shown precision does not include deviations of this
two-site (1 + 1)-dimensional theory from the continuum limit of the
(1 + 1)-dimensional theory for which the number of spatial sites
approaches infinity for a fixed spatial extent. The horizontal axes of
the HO curves have been rescaled to 1.4

√
2nQ/ωφ to align them with

the JLP curves. These tuning curve pairs are minimized with smaller
values of ε in the top-to-bottom order of the legend.

individual lattice sites, this proposal would require a QuFoTr
across the entire lattice: an entangling operation among all
NQ qubits. At least in the NISQ era, it is expected that such
global operations will be prohibitive in both gate fidelity and
coherence time. For this reason, the finite-difference form
of the gradient operator, demanding only local interactions
between the qubit registers at neighboring sites, appears to be
optimal [6–9].

When implementing the gradient operator as a finite dif-
ference, there is only one set of operators φ̄(x)φ̄(x + 1)
acting between the spatial sites that needs to be additionally

considered. Table III shows the nature and number of Pauli
terms associated with these additional operators in the (1+1)-
dimensional Hamiltonian.6 In this (1+1)-dimensional system,
the coefficient of the mass term in field space is modified
by two of the terms in the φ∇2

aφ operator, but the operator
structure is unaltered. As mentioned above, the quantum
resources calculated in this paper may be easily combined to
determine the requirements for larger lattices in d dimensions;
for example,

CNOTlattice(nQ, d, L/a) = Ld a−d CNOT1-site(nQ)

+ dLd a−d CNOTφ̄(x)φ̄(x+1)(nQ) (18)

expresses the total number of CNOT gates required to evolve
the field across a lattice with CNOT1-site(nQ) extracted from
Table I or II for the free or self-interacting fields, respectively,
CNOTφ̄(x)φ̄(x+1)(nQ) extracted from Table III, nQ the number
of qubits used to digitize the field at each site, d the dimen-
sionality of space, L the spatial extent in each dimension,
and a the lattice spacing in each dimension. The nearest-
neighbor interactions between sites in the JLP digitization
requires all n2

Q two-body operators that can be created between
the two site registers. This is contrasted with the HO basis
where operators between the two site registers are not limited
to two-body qubit interactions, but require tensor product
Pauli operators acting on up to all 2nQ qubits. Because of
this dramatic difference in the structure of necessary op-
erators, even for the smallest number of qubits per spatial
site, the JLP basis requires fewer resources to implement the
φ∇2

aφ operator, emphasizing the importance of an applica-
tion’s physical representation onto qubit degrees of freedom
in quantification of its required quantum resources.

VI. SUMMARY AND OUTLOOK

Quantum computing and quantum information science is
anticipated to provide disruptive changes to scientific comput-
ing and to the ways that we think about addressing scientific

6These gate counts are in addition to those resulting from action on
the individual sites that have been determined in previous sections of
this paper.

TABLE III. Operators associated with the additional φ̄(x)φ̄(x + 1) operator resulting from the finite-difference spatial gradient operator
φ∇2

a φ for time evolution of two-site lattice λφ4 scalar field theory in the JLP and HO field-digitization bases. The CNOT counts are based upon
a standard multiple-Pauli-operator implementation requiring 2(k − 1) CNOT gates for each k-body operator.

Basis nQ 2-body 3-body 4-body 5-body 6-body 7-body 8-body 9-body 10-body 11-body 12-body CNOT

JLP 2 4 8
JLP 3 9 18
JLP 4 16 32
JLP 5 25 50
JLP 6 36 72

JLP nQ n2
Q 2n2

Q

HO 2 1 6 9 80
HO 3 1 8 30 56 49 1152
HO 4 1 10 47 140 271 330 225 11 264
HO 5 1 12 68 244 630 1204 1668 1612 961 89 600
HO 6 1 14 93 392 1186 2772 5154 7560 8541 7182 3969 626 688
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challenges. The prospect of being able to explore quantities
in quantum many-body systems, including quantum gauge
field theories such as quantum chromodynamics, that require
exponentially large classical computing resources, such as
for dense matter or in the time evolution of nonequilibrium
systems, is truly exciting. In this work, we have built upon
foundational works by Jordan, Lee, and Preskill [6–9] on
how to formulate scalar field theory on quantum computers
to determine properties of the scalar particle and interactions,
both elastic and inelastic, between particles. In an attempt
to understand the magnitude of resources required for even
modest quantum computations in a simple field theory, our
work has focused on the digitization of scalar field theories
with only a small number of qubits per spatial lattice site.
The recent work by Macridin et al. [34,36], which, building
upon the work of Somma [50], emphasized the utility of
the Nyquist-Shannon sampling theorem, is a theme for our
work as it provides an important guide for tuning digitiza-
tion parameters in quantum field theories for the accurate
representation of field and conjugate-momentum spaces on
quantum devices (and may also have implications for classical
calculations).

In addition to an in-depth exploration of the requirements
for a basis of eigenstates of the field operator, as introduced by
Jordan, Lee, and Preskill, we have introduced and explored the
resources required for, and the utility of, a basis of harmonic
oscillator eigenstates. We have performed operator decom-
positions of the Hamiltonians for a small number of qubits
in (0 + 1)- and (1 + 1)-dimensional systems. As tunings are
required in both bases for an optimal computation on an ideal
quantum device, we find that both bases are effective, but
that the JLP basis appears to be more robust for systems that
are delocalized in field space or not smooth in either field
or conjugate-momentum space. We considered the impact
of noise on calculations in such systems and found that
parameters defining the field theory should be tuned given the
limits in precision imposed by the quantum device in order
to optimize the scientific productivity of the calculation. In
either basis, when tuned, a quantum device with nQ = 3 or
nQ = 4 qubits used to define the field at each spatial lattice
site is found to be able to provide a precision of better than
∼10−6 for a given lattice spacing for a potential with m2 > 0.
Separating the spatial lattice-spacing systematic error from
the digitization systematic error in field space, the digitization
error in the space of low-lying energy eigenstates εdig is found
to scale as |log |log |εdig||| ∼ nQ for nQ qubits per site, while
the lattice-spacing error εlatt scales as |log |εlatt|| ∼ NQ, where
NQ is the total number of qubits in the simulation.

The lessons learned from studying the digitization of a
scalar field onto qubit degrees of freedom have been numer-
ous. The following is an itemized summarization of those
lessons appearing in (0+1)-dimensional field theory, before
the additional complications of a lattice spacing and spatial
momentum are introduced in Sec. V.

(1) The scalar-field-digitization techniques of Jordan,
Preskill, and Lee [6–9,34,36,50], a momentum-space mode
expansion [42] and a harmonic oscillator basis, are rele-
vant for NISQ-era hardware implementations. The number
of qubits per site needed to reduce the digitization and dis-
cretization systematic errors below near-term hardware noise

levels is nQ ∼ 4 for potentials with m2 > 0 and nQ � 6 for
potentials with m2 < 0. These qubit requirements are consis-
tent with those of Refs. [34,36,50] and extend these modest
requirements to delocalized field-space wave functions.

(2) When the Nyquist-Shannon sampling bound, intro-
duced in this context by Macridin et al. [34,36], building
on work by Somma [50], is saturated, field and conjugate-
momentum space are described to comparable accuracy and
the ground-state energy can be reproduced with a precision
scaling with the number of qubits in the site register as
|log |log |ε||| ∼ nQ. For a free theory in 0+1 dimensions, the
coefficients of this relationship are calculated to be ε(%) =
[1.8(2) × 103] × 2−2.234(4)ns . This rapid convergence is re-
sponsible for item 1.

(3) In order to enjoy the double-exponential convergence
of item 2, the conjugate-momentum operator must be con-
structed with exact phases in momentum space, leading to
a highly nonlocal operator in field space. This is possible
through use of the quantum Fourier transform as an effi-
cient entangling operation among all qubits in the register
[34,36,50]. Note that for spatial dimensions greater than zero,
the size of the qubit register that undergoes the QuFoTr grows
with precision of the scalar-field digitization, and not the size
of the spatial lattice. Given the qubit estimates of item 1,
global entanglement within this register is a reasonable goal
for NISQ-era hardware.

(4) The implementation of exact phases required in item
3 does not supersede the effects of noise. Under a generic
noise model on phases in conjugate-momentum space, the
double-exponential convergence stated in item 2 is only seen
up to a precision barrier set by the magnitude of the noise.
In spite of this physical limitation, the use of exact phases
is still recommended as it minimizes the number of states
needed in the quantum system and is no more costly than
implementation of conjugate-momentum operators local in
field space. As an additional feature, using exact phases in
momentum space yields symmetry between the gates required
in field and conjugate-momentum space. This analysis, shown
in Figs. 3 and 4, informs a balancing between the noise level of
the quantum system and the precision with which the quantum
field theory is mapped onto qubits. It is naturally expected
that there will be advantages in “matching” the precision of
a calculation to the noise level in a given quantum device or
vice versa.

(5) While the relative precision attainable with the JLP and
HO bases depends on the structure of the low-energy wave
functions, the comparatively burdensome operator structure
of the HO basis may be a deciding factor in the NISQ era.
While JLP Pauli operators are limited to one-, two-, and
m-body qubit interactions for λφm, the HO basis includes all
k-body operators up to k = nQ. These operators necessitate
larger numbers of CNOT gates, the two-qubit entangling gates
dominating the error contribution for many instances of near-
term hardware.

(6) Gate decompositions can be sensitive to symmetries
that may be broken through classically inconsequential trun-
cation artifacts. When truncating spaces to contain states that
have interactions beyond the truncated space (e.g., in the HO
basis), it is preferable to truncate after construction of the
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Hamiltonian in an enlarged space to remove edge effects in
the interactions. When deciding upon boundary conditions
(e.g., in the JLP basis), it is beneficial to consider alternatives
(such as twisted boundary conditions) that symmetrize the
distribution of wave-function samples in Fourier space.

(7) For the near term, including and beyond the NISQ era,
digitization and discretization of the field onto qubits need
not limit the accuracy obtained in simulations of scalar field
theory. Rather, the software approximation of the propagator
(e.g., through Trotterization) and hardware gate-error rates
(currently above 10−4 in the simple model of Appendix H)
are expected to be the dominant limitations to simulations of
the scalar field.

The content of this paper has provided information to make
a hardware-specific, informed decision on the parameters
chosen to implement a scalar field on quantum devices. For
example, imagine a future in which the application of CNOT

gates becomes relatively inexpensive,7 rotation gates contain
small but non-negligible errors in their rotation angle, and a
hypothetical goal is to simulate a (0+1)-dimensional scalar
field with quartic self-interaction to at least 10−11% precision.
Both the JLP and HO bases are capable of achieving this goal,
as seen in Fig. 7. However, given the wider range of tuning
parameters allowable in the HO basis, making the precision
more robust to noise in the rotation gates’ angles, an informed
choice might be to work with a HO basis. Imagine, as a
modification to this scenario, that gates are expensive (either
due to short coherence times or to their imperfect fidelity) but
qubits are cheap. In this case, the contents of Table II raise
concerns over the 612 entangling gates required to implement
the Trotterized circuit in the HO basis. Instead, it may be
logical to use JLP digitization, add one qubit to increase the
range of the tuning parameter φ̄max capable of satisfying the
above precision requirement, and as a result require only one-
third of the previous number of CNOT gates for each Trotter
step, a number also more amenable to the NISQ era. It is
further found that small calculations of λφ4 scalar field the-
ories can be performed with a modest number of qubits. For
example, an ideal ∼60-qubit device could be used to describe
such a system with up to ∼20 spatial lattice sites (with three
qubits per site defining the field digitization), arranged in a
number of dimensions, at the 10−6 level. Observing that this
error is below that expected for digital gate implementation
on NISQ-era devices of this size indicates that properties
of a scalar field independent of digitization artifacts will be
accessible to quantum devices with fewer than 100 qubits.
Beyond the digitization errors (step 1 of Fig. 1) that have here
been demonstrated to be controllable with qubit requirements
appropriate for the NISQ era, the quantum simulation errors
arising from necessary approximation of the time-evolution
operator (step 2 of Fig. 1) and imperfect implementation on
noisy hardware (step 3 of Fig. 1) now remain as the dominant
sources of uncontrolled error in calculations of the scalar field
implemented on quantum hardware.

Analyses like the one we have presented in this work are
expected to play a role in optimizing the output of quan-

7This is the case for many models of fault-tolerant quantum
computing.

tum devices in any scientific application domain. Their use
in tuning digitization parameters to match the precision of
calculations to specific hardware will become increasingly
important to make the best use of available hardware at
any given time, as is the case in classical high-performance
computing. With rapid development of quantum hardware in
the NISQ era, it is likely that the optimal layout of a quantum
system onto qubit degrees of freedom will have significant
variability, both with choice of quantum architecture and with
time. Having a detailed map of the resource landscape is
thus critical for creating informed decisions for implementing
calculations across a range of quantum architectures.
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APPENDIX A: JORDAN-LEE-PRESKILL BASIS EXAMPLE
USING THREE QUBITS

In order to provide explicit examples to reinforce the
generalities described in the main text, quantum computations
of the HO in Eq. (7) performed with three qubits nQ = 3 (with
ns = 8 quantum states) are considered in detail. With eight
states, φ̄ is sampled at the field and conjugate-momentum
values

φ̃i =
{
±1,±5

7
,±3

7
,±1

7

}
φ̄max,

kφ̃ =
{
±7

8
,±5

8
,±3

8
,±1

8

}
π

δφ̃

, (A1)

δφ̃ = 2φ̄max

7
,

where we have dropped the � superscript on k�
φ̃

in Eq. (11).
The operator decomposition of the Hamiltonian for this

system is straightforward. It is useful to extend the ba-
sis of Pauli operators to include the identity matrix σ̄ =
(σ x, σ y, σ z, I2) and to define the general tensor product of nQ

operators T i jk = σ̄ i ⊗ σ̄ j ⊗ σ̄ k ,

T i jk = σ̄ i ⊗ σ̄ j ⊗ σ̄ k, Tr[T i jkT i′ j′k′
] = 8δii′δ j j′δkk′

, (A2)

where the orthogonality of the T i jk is helpful in decomposing
the Hamiltonian into qubit operators. Projecting against the
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T i jk , it is straightforward to show that

φ̃2 = 4

49
φ̄2

maxO
(nQ=3)
0 , �̃2 = 49π2

64φ̄2
max

O(nQ=3)
0 ,

O(nQ=3)
0 = 4σ z ⊗ σ z ⊗ I2 + 2σ z ⊗ I2 ⊗ σ z + I2 ⊗ σ z ⊗ σ z + 21

4
I = O(nQ=3)

03 + 21

4
I, (A3)

where I2 is the identity operator acting on a single qubit and where the operator has been split into an overall identity and
nonidentity terms. As expected from the JLP explicit construction, the decomposition of the digitized HO Hamiltonian into
Pauli operators acting on individual qubits is quite simple and easily extended to larger numbers of qubits. The analogous
decomposition for a four-qubit system is

φ̃2
nQ=4 = 4

225
φ̄2

maxO
(nQ=4)
0 , �̃2

nQ=4 = 225π2

256φ̄2
max

O(nQ=4)
0 ,

O(nQ=4)
0 = 16σ z ⊗ σ z ⊗ I2 ⊗ I2 + 8σ z ⊗ I2 ⊗ σ z ⊗ I2 + 4σ z ⊗ I2 ⊗ I2 ⊗ σ z + 4I2 ⊗ σ z ⊗ σ z ⊗ I2

+ 2I2 ⊗ σ z ⊗ I2 ⊗ σ z + I2 ⊗ I2 ⊗ σ z ⊗ σ z + 85

4
I, (A4)

while for the nQ = 5 system

φ̃2
nQ=5 = 4

961
φ̄2

maxO
(nQ=5)
0 , �̃2

nQ=5 = 961π2

1024φ̄2
max

O(nQ=5)
0 ,

O(nQ=5)
0 = 64σ z ⊗ σ z ⊗ I2 ⊗ I2 ⊗ I2 + 32σ z ⊗ I2 ⊗ σ z ⊗ I2 ⊗ I2 + 16σ z ⊗ I2 ⊗ I2 ⊗ σ z ⊗ I2

+ 8σ z ⊗ I2 ⊗ I2 ⊗ I2 ⊗ σ z + 16I2 ⊗ σ z ⊗ σ z ⊗ I2 ⊗ I2 + 8I2 ⊗ σ z ⊗ I2 ⊗ σ z ⊗ I2

+ 4I2 ⊗ σ z ⊗ I2 ⊗ I2 ⊗ σ z + 4I2 ⊗ I2 ⊗ σ z ⊗ σ z ⊗ I2 + 2I2 ⊗ I2 ⊗ σ z ⊗ I2 ⊗ σ z

+ I2 ⊗ I2 ⊗ I2 ⊗ σ z ⊗ σ z + 341

4
I. (A5)

The structure of the operators, as well as their extensions to
larger systems, is interesting. The only nontrivial operators
that appear involve operations on two qubits only, with-
out the appearance of higher-qubit operators, such as those
involving three, four, or five qubits. This simple operator
structure extends to larger systems. If instead of applying
the exact conjugate-momentum operator the finite-difference
conjugate-momentum operator is applied, the resulting op-
erator structure is more complicated, involving higher-qubit
operators beyond two qubits. For instance, in the case of nQ =
4 there is a contribution to �̃2 of the form σ z ⊗ σ z ⊗ σ z ⊗ σ z

from the operator in Eq. (8), which is absent in the operator
decomposition of kφ̃ in Eq. (11). For the nQ = 6 qubit system,
there are all combinations of operators involving two σ z’s,
four σ z’s, and one six-qubit operator of the form ⊗6σ z. As the
resource costs of applying circuits to implement higher-qubit
operators are significantly more than those for two-qubit op-
erators, significantly more resources are required to simulate
the finite-difference Hamiltonian (with power-law deviations
from exact results) than to simulate the exact Hamiltonian
(which provides results that are exponentially close to the
exact result on an ideal quantum computer). It is amusing
to note that most of the resources required to simulate the
finite-difference Hamiltonian would be expended to determine
polynomial deviations from the exact result.

Quantum circuits to implement the action of the operator(s)
in Eq. (A3), in particular for the action of the evolution
operator e−iH̃t for an arbitrary number of qubits, have been

presented by Macridin et al. [34,36] in terms of controlled-
rotation gates. In terms of CNOT gates and single-qubit phase
rotations, the quantum circuit implementing the exponentiated
action of the nonidentity operators in Eq. (A3), O(nQ=3)

03 ,

�3(θ ) = e−iθO(nQ=3)

03 , (A6)

is given in the top panel in Fig. 12. Because the three
operators contributing to O(nQ=3)

03 commute, the operations
can be performed in any order. One application of �3(θ )
to the (nQ = 3)-qubit system requires six CNOT gates and
three single-qubit phase operations. One application of the
(simplest) Trotterized time-evolution operator associated with
H̃ in Eq. (7), over a time step �t = t

M , is accomplished by

acting with �3(θ ) with θ = 2
49 φ̄2

max�t to evolve with e−iφ̃2/2,
followed by a symmetric QuFoTr, followed by acting with
�3(θ ′) with θ ′ = 49π2

128φ̄2
max

�t to evolve with e−i�̃2/2, followed
by the inverse symmetric QuFoTr. This sequence is shown in
the bottom panel of Fig. 12. Appendix D provides circuits and
the associated discussion for a symmetric QuFoTr (which is
similar to the permuted QuFoTr introduced by Somma [50]
for the same purpose on a different conjugate-momentum-
space basis). The total gate counts for one application of the
(unimproved) Trotterized evolution operator associated with
H̃ in Eq. (7) on nQ = 3 qubits, including those from the
symmetric QuFoTr(s), are 24 CNOT gates, 6 Hadamard gates,
and 24 single-qubit phase rotations.
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FIG. 12. Quantum circuit required to perform Trotterized time evolution of the HO Hamiltonian in Eq. (7), digitized with nQ = 3 qubits
in JLP digitization, denoted by H̃3. The upper circuit implements the operator �3(θ ) defined in Eq. (A6), with an arbitrary angle θ , while
the lower circuit implements that circuit in both φ̃ and �̃ space, making use of a symmetric QuFoTr and its inverse, to achieve Trotterized
Hamiltonian evolution of the system defined by H̃3. These circuits are equivalent to controlled-rotation gate circuits appearing in [34,36].

APPENDIX B: JORDAN-LEE-PRESKILL CIRCUIT
COMPILATION

Constructing optimal quantum circuits for implementing
desired quantum operations is an optimization problem often
inhibited by large dimensionality [76–79,94,95]. Similar to
the work of Ref. [76], it is possible to eliminate neighboring
CNOT operators from the naive, uncompiled estimates in the
tables in the main text. Because all operators implemented
between QuFoTr operations are diagonal in the JLP basis, this
cancellation may be accomplished systematically. Without the
λφ̄4 operators, the mass term is introduced with all possible
two-body operators, which contain identical CNOT gates only
separated by single-qubit rotations. Thus, there is no can-
cellation of CNOT operators before the field self-interaction
term is introduced. Note that a similar argument indicates
an absence of CNOT cancellations for implementation of the
finite-difference gradient operator as φ̄(x)φ̄(x + 1) introduces

only two-body operators, extended between qubit registers for
neighboring sites of the lattice. Thus, for the JLP basis, the
only regime in which CNOT cancellation is expected to occur
is in the position-space implementation of an interacting field.

Determining the possible elimination of CNOT pairs re-
quires understanding the combinatorics of available operators
and ordering them to maximize the number of qubits shared
by neighboring operators in leading-order Trotterization.
Upon implementation, a convenient way to organize these
orderings is through connected “strings,” maximal sets of
operators that may be connected through CNOT cancellation.
An example of such a string may be seen in Fig. 13 where
the leading-order Trotterization of the first six four-body
operators is implemented. The string begins with a two-body
operator that, due to cancellation, is implemented without an
increase in the CNOT cost. Dashed boxes around pairs of CNOT

gates indicate where cancellations occur and are removed in

e−i(H̄ +H̄ )δt =

• • • • • • • •
• • • • • •

• • • • • •

• • • • • •
• • • • • •

• • • •
• •

· · ·

=

• •
• • • • • •

• • • • • •
• • • •

• •
· · ·

FIG. 13. Partial circuit for one first-order Trotterized step of time evolution for a single site of the interacting scalar field φ̄2 and φ̄4 terms
with nQ = 6 in the JLP basis. Boxes indicate CNOT pairs that can be eliminated, resulting in the reduced circuit in the second expression.
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e−iH t =

RZ(−2ω t)

RZ(−ω t)

RZ −ω
2 t

RZ (θ) = e−iθZ

e−i(H +δH )t = lim
M→∞

RZ cZII
t

M • •

RZ cIZI
t

M H RZ cIXI
t

M RZ cZXI
t

M

RZ cIIZ
t

M

H • • H S† H • •

• • RZ cXXI
t

M H S† H RZ cY Y I
t

M

RZ cIXZ
t

M

• • H S H • •
• • H S H • •

RZ cY Y Z
t

M RZ cXXZ
t

M

H • •
• • H

RZ cZXZ
t

M

M

FIG. 14. Quantum circuits required to perform time evolution of the HO Hamiltonian in Eq. (7) using a HO basis with nQ = 3. The upper
circuit is applied when the HO basis can be precisely tuned to the HO being simulated. When detuned, the lower circuit is necessary with
coefficients ci jk attained from the corresponding operators in Eq. (C2).

the reduced circuit of the third line. This string implements
all six four-body operators that contain both the first and
second qubits. As a result, the entanglement between these
two qubits needs only to be established once at the beginning
and finally removed at the end. A similar argument is made
for the second pair of qubits in the operators, matching with
the second and third qubits for the first three operators and
the second and fourth qubits for the next two operators. To
complete the 15 four-body operators for nQ = 6, it can be
shown that two other strings are necessary, beginning with a
two-body operator either between qubits 3 and 4 or between
qubits 4 and 5 containing five and four operators, respectively.

The resulting gate counts after elimination of redundant
CNOT gates may be found in the last column of Table II
in the main text. It is important to note that the cancel-
lation demonstrated here does not reduce the naive scal-

ing of CNOT gate cost as was found in Ref. [76], where
the CNOT cost for implementing four-orbital operators in
quantum chemistry is reduced by one polynomial power in
the number of orbitals used to describe a molecule. The
scaling improvement of Ref. [76] was found by reducing
the cost of a Jordan-Wigner (JW) string (the collections of
sequential CNOT gates used to enforce fermionic statistics on
a register of qubits) from linear in the number of orbitals
to constant. Because the scalar field is bosonic, there are
no JW strings and it remains expected that gate costs will
scale with the fourth power (for the four-qubit operators
of λφ̄4) of the number of qubits per lattice site. While the
gate compilation of the HO basis is significantly more cum-
bersome due to abundant changes in bases truncating the
possible operator strings, a similar lack of modified scaling is
expected.
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APPENDIX C: HARMONIC-OSCILLATOR BASIS EXAMPLE USING THREE QUBITS

The gate decomposition for a basis of eight states distributed on nQ = 3, of the matrices8 Hbasis =
1
2ωφdiag(1, 3, 5, 7, 9, 11, 13, 15) and

δHωφ
= 1 − ω2

φ

ωφ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 1

2
√

2
0 0 0 0 0

0 3
4 0

√
3
2

2 0 0 0 0
1

2
√

2
0 5

4 0
√

3
2 0 0 0

0
√

3
2

2 0 7
4 0

√
5

2 0 0

0 0
√

3
2 0 9

4 0
√

15
2

2 0

0 0 0
√

5
2 0 11

4 0
√

21
2

2

0 0 0 0
√

15
2

2 0 13
4 0

0 0 0 0 0
√

21
2

2 0 15
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

is

Hbasis = ωφ

(
4I − 2σ z ⊗ I2 ⊗ I2 − I2 ⊗ σ z ⊗ I2 − 1

2
I2 ⊗ I2 ⊗ σ z

)
,

δHωφ
= 1 − ω2

φ

ωφ

(√
3 − √

5

8
σ x ⊗ σ x ⊗ σ z +

√
3 + √

5

8
σ x ⊗ σ x ⊗ I2 +

√
3 − √

5

8
σ y ⊗ σ y ⊗ σ z +

√
3 + √

5

8
σ y ⊗ σ y ⊗ I2

+ 1 − √
3 + √

21 − √
15

8
√

2
σ z ⊗ σ x ⊗ σ z + 1 + √

3−√
21 − √

15

8
√

2
σ z ⊗ σ x ⊗ I2 + 1−√

3 − √
21 + √

15

8
√

2
I2 ⊗ σ x ⊗ σ z

+ 1 + √
3 + √

21 + √
15

8
√

2
I2 ⊗ σ x ⊗ I2 − σ z ⊗ I2 ⊗ I2 − 1

2
I2 ⊗ σ z ⊗ I2 − 1

4
I2 ⊗ I2 ⊗ σ z + 2I

)
. (C2)

For Hbasis, there are only three nontrivial commuting single-qubit operators and an identity operator. However, for δHφ , there are
three three-qubit operators, four two-qubit operators, and four single-qubit operators. Circuit representations of the propagators
for both the tuned and detuned HO can be seen in Fig. 14.

As an example, in a situation considered by Macridin et al., electron-phonon interactions can be described via a linear coupling
to the field-space coordinate of a HO. For such a system, mapped onto three qubits, the operator decomposition of the φ̄ operator
contains seven three-qubit operators, four two-qubit operators, and one single-qubit operator:

φ̄ = 1√
ωφ

(√
2 − √

6 − √
10 + √

14

8
σ z ⊗ σ z ⊗ σ x + 2 − 2

√
3

8
σ z ⊗ σ y ⊗ σ y + 2 − 2

√
3

8
σ z ⊗ σ x ⊗ σ x + 1

2
√

2
σ y ⊗ σ y ⊗ σ x

+ 1

2
√

2
σ y ⊗ σ x ⊗ σ y − 1

2
√

2
σ x ⊗ σ y ⊗ σ y + 1

2
√

2
σ x ⊗ σ x ⊗ σ x +

√
2 + √

6 − √
10 − √

14

8
σ z ⊗ I2 ⊗ σ x

+
√

2 − √
6 + √

10 − √
14

8
I2 ⊗ σ z ⊗ σ x + 2 + 2

√
3

8
I2 ⊗ σ y ⊗ σ y

+ 2 + 2
√

3

8
I2 ⊗ σ x ⊗ σ x +

√
2 + √

6 + √
10 + √

14

8
I2 ⊗ I2 ⊗ σ x

)
. (C3)

Notice that the three-body operators present in this interaction term are not repeated versions of the three-body operators already
present and thus increase gate requirements. Decompositions of the φ̄ interactions in Eq. (C3) for larger nQ look similar, in terms
of the quantum resources of Table I, to those of the detuned HO with only a single one-qubit operator and double the number
of nQ-qubit operators. Therefore, while the free HO evolution is computationally inexpensive when using a basis of tuned HO
eigenstates, an interaction requires many multiqubit interactions.

8There is one subtlety in forming the operator decomposition that has to do with defining the truncated operator matrices. If the operator basis
is restricted to 2nQ from the outset, prior to performing all matrix multiplications, operations that move the states out of and then back into the
truncated space are absent. In contrast, such operations are included if they are performed in a larger space with the truncation imposed as the
final step. Initial truncations produce matrix structures with reduced symmetry compared to those where the truncation is performed last and
as a result give rise to more complex operator structures than those given in, for example, Eq. (C2).
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APPENDIX D: SYMMETRIC QUANTUM FOURIER TRANSFORM

Small modifications to the symmetry properties of operators can impact the gate decomposition necessary for implementation
on quantum hardware. As discussed by Somma [50], who presented a circuit for the permuted QuFoTr, a different choice of
conjugate-momentum eigenstates requires a different circuit to accomplish a QuFoTr. In this Appendix, a circuit is provided
for the symmetric QuFoTr that is used in the time evolution of the systems considered in this work. By acting with a set of
single-qubit phase gates before the standard QuFoTr, the states in momentum space may be distributed symmetrically between
±π , avoiding both edges of the first Brillouin zone. Because this structure now resembles that of field space, distributed around
zero between ±φ̄max, the gate decompositions within these two conjugate spaces are identical (differing only in rotation angles)
for a free theory.

For a position-space register written in binary form

|x〉 = |xn−1xn−2 · · · x0〉 =
∣∣∣∣∣

n−1∑
i=0

xi2
i

〉
, (D1)

the symmetric QuFoTr implements the transformation

|x〉 = 1√
2n

(2n−1)/2∑
k=−(2n−1)/2

e2π ixk/2n |k〉. (D2)

This differs from the standard QuFoTr only in the introduction of an additional k-independent phase

exp

⎡
⎣2π i

1

2n+1

⎛
⎝−

n−1∑
j=0

2 j

⎞
⎠(

n−1∑
i=0

xi2
i

)⎤
⎦, (D3)

determined only by the value of the x register. This dependence suggests that it should be applied prior to the transformation to
Fourier space. Indeed, this phase can be implemented with a single layer of single-qubit phase gates. With the usual definition

of R(θ ) = (1 0
0 eiπθ

) and defining M = ∑n−1
j=0 2 j , the symmetric QuFoTr may be written as

QFTsym
i j = 1√

ns
ei2πxik j/ns , x = {0, . . . , ns − 1}, k =

{
−ns − 1

2
, . . . ,

ns − 1

2

}
, (D4)

QFT sym
nq=3 =

R −M
2

)
H R 1

2

)
R 1

4

)

R −M
4

) • H R 1
2

)

R −M
8

) • • H

, (D5)

QFT sym =

R −M
2

QFT
R −M

4

)

...

R − M
2nQ

. (D6)

Note that the SWAP network conventionally required to reverse the qubit orderings in Fourier space is neglected as written
here. This reversal (and the one appearing in the inverse symmetric QuFoTr returning the calculation to position space) will be
implemented instead by simply reading the qubits backward when applying the �̄2 operator in momentum space. This reading
inversion is notated by crossing qubit lines so that, e.g., the first qubit is associated with the last input to the momentum phase gate
as shown in Fig. 12. In this way, two depth-nQ SWAP networks (per lattice site and per Trotter step), each containing � nQ

2 �� nQ

2 � +
� nQ−1

2 �� nQ

2 � SWAP gates, can be removed from the quantum circuit with an addition of negligible classical preprocessing.
In application to scalar field theory, where the φ̃ and �̃ operators (in position and conjugate-momentum space, respectively)

can be written as tensor products of single-qubit operators leading to only two-qubit operators in the free Hamiltonian, the
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advantage of the symmetric QuFoTr is dominantly aesthetic (and potentially experimentally convenient) as the operator structure
applied in position and momentum space is identical, as shown in Sec. IV A 2 for a free HO. Had the standard QuFoTr been used,
single-qubit diagonal gates would also be present in the Fourier-space implementation of �̃2, a factor of 2 fewer single-qubit
rotations than needed to symmetrize the QuFoTr and its inverse. However, when all k-body operators with k � n are required to
implement phases in Fourier space (as is the case when a finite-difference or polynomially corrected operator is chosen for �̃),
use of the symmetric QuFoTr results in removal of all operators with odd values of k, or roughly a factor of 2 reduction in the
exponential (in nQ) number of operators required for a Pauli decomposition of the necessary phases.

APPENDIX E: FIELD CONJUGATE-MOMENTUM OPERATORS

In this Appendix, we show explicitly the finite-difference, δ2
φ̄
-corrected, and exact conjugate-momentum operators in position

space and show that the structure of the finite-difference operator is increasingly smeared to form the exact lattice �̄2 operator.
Having the capability of implementing these operators directly as diagonal operators in Fourier space is an advantage of working
in a qubit formulation.

In the case of PBCs imposed on the field space spanned by nQ = 3 qubits, with momentum eigenvalues k =
π
δφ̄

(− 3
4 ,− 1

2 ,− 1
4 , 0, 1

4 , 1
2 , 3

4 , 1), the finite-difference, δ2
φ̄
-corrected, and exact conjugate-momentum operators in position space

are

�̃2
finite-difference = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E1)

�̃2
δ2
φ̄

-improved = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.5 −1.3 0.083 0 0 0 0.083 −1.3
−1.3 2.5 −1.3 0.083 0 0 0 0.083
0.083 −1.3 2.5 −1.3 0.083 0 0 0

0 0.083 −1.3 2.5 −1.3 0.083 0 0
0 0 0.083 −1.3 2.5 −1.3 0.083 0
0 0 0 0.083 −1.3 2.5 −1.3 0.083

0.083 0 0 0 0.083 −1.3 2.5 −1.3
−1.3 0.083 0 0 0 0.083 −1.3 2.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E2)

�̄2
exact = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.39 −2.11 0.617 −0.361 0.308 −0.361 0.617 −2.11
−2.11 3.39 −2.11 0.617 −0.361 0.308 −0.361 0.617
0.617 −2.11 3.39 −2.11 0.617 −0.361 0.308 −0.361

−0.361 0.617 −2.11 3.39 −2.11 0.617 −0.361 0.308
0.308 −0.361 0.617 −2.11 3.39 −2.11 0.617 −0.361

−0.361 0.308 −0.361 0.617 −2.11 3.39 −2.11 0.617
0.617 −0.361 0.308 −0.361 0.617 −2.11 3.39 −2.11
−2.11 0.617 −0.361 0.308 −0.361 0.617 −2.11 3.39

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E3)

Heat maps of the entries in each of the previous operators are shown in Fig. 15.
Twisted BCs are used for the calculations performed in this work. For the nQ = 3 system, as defined in Eq. (11).

with momentum eigenvalues k = π
δφ̄

(− 7
8 ,− 5

8 ,− 3
8 ,− 1

8 , 1
8 , 3

8 , 5
8 , 7

8 ), the finite-difference, δ2
φ̄
-corrected, and exact conjugate-

momentum operators in field space are

�̃2
finite-difference = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 1
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
1 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E4)
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FIG. 15. Visual representations of Eqs. (E1)–(E3). From left to right, the finite-difference, δ2
φ̄
-improved, and exact field conjugate-

momentum operators obtained from PBCs show increasing nonlocality in field space.

�̃2
δ2
φ̄

-improved = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.5 −1.3 0.083 0 0 0 −0.083 1.3
−1.3 2.5 −1.3 0.083 0 0 0 −0.083
0.083 −1.3 2.5 −1.3 0.083 0 0 0

0 0.083 −1.3 2.5 −1.3 0.083 0 0
0 0 0.083 −1.3 2.5 −1.3 0.083 0
0 0 0 0.083 −1.3 2.5 −1.3 0.083

−0.083 0 0 0 0.083 −1.3 2.5 −1.3
1.3 −0.083 0 0 0 0.083 −1.3 2.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E5)

�̄2
exact = 1

δ2
φ̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.24 −1.95 0.436 −0.138 0 0.138 −0.436 1.95
−1.95 3.24 −1.95 0.436 −0.138 0 0.138 −0.436
0.436 −1.95 3.24 −1.95 0.436 −0.138 0 0.138

−0.138 0.436 −1.95 3.24 −1.95 0.436 −0.138 0
0 −0.138 0.436 −1.95 3.24 −1.95 0.436 −0.138

0.138 0 −0.138 0.436 −1.95 3.24 −1.95 0.436
−0.436 0.138 0 −0.138 0.436 −1.95 3.24 −1.95

1.95 −0.436 0.138 0 −0.138 0.436 −1.95 3.24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E6)

The corresponding heat maps of the entries in each of the twisted operators are shown in Fig. 16.

FIG. 16. Visual representations of Eqs. (E4)–(E6). From left to right, the finite-difference, δ2
φ̄
-improved, and exact field conjugate-

momentum operators obtained from twisted boundary conditions show increasing nonlocality in field space.
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APPENDIX F: BASIC CIRCUIT CONSTRUCTION

In the art and science of quantum circuit development, improvements to generic circuits can often be found when considering
the structure of the problem of interest. The techniques presented in this Appendix are well known and exist in standard literature,
e.g., Ref. [75]. Because the intended audience of this paper is diverse and a number of considerations for the digitization of the
scalar field are made with the following circuit construction in mind, it will be useful to explicitly describe the basic methods
for applying unitary operators of the form eiθσ j⊗σ k⊗··· on NISQ-era quantum hardware capable of implementing z-axis rotations
eiθσ z

. For the Trotterized time evolution of a Pauli-decomposed Hamiltonian, there are two degrees of freedom needed to modify
this operation: increasing the number of qubits in the exponentiated tensor product of Pauli operators and changing the z-axis
rotation to x- or y-axis rotations. In order to increase the number of qubits in the tensor product, a string of CNOT operators
on either side of a single-qubit rotation may be applied. This computes (and subsequently uncomputes) the parity of the qubit
register down into the last qubit,

e .iθ σz⊗σz⊗σz⊗σz

=

• •
• •

• •
eiθσz

(F1)

To change the axis of rotation for any qubit, the following unitary transformations may be used:

X = H Z H , .Y = S† H Z H S (F2)

Because applying these transformations in the exponential is equivalent to applying them to the unitary operator itself, these
basis-change operations can be implemented as multiplicative unitaries

eiθσx

= H eiθσz
H , .eiθσy

= S† H eiθσz
H S (F3)

Combining these two degrees of freedom, the exponent of any tensor product of Pauli operators can be created from the single-
qubit z-axis rotation through use of a CNOT-distributed parity calculation and a change of Pauli bases at the beginning and end
of the circuit,

eiθ σx⊗σy⊗σx⊗σz⊗σy

=

H • • H

S† H • • H S

H • • H

• •
S† H eiθσz

H S

. (F4)

Before considering cancellations that usually occur when sequentially implementing operators for Trotterization in this way
[76], these basic circuits lead to a CNOT contribution of 2(k − 1) for the implementation of each unitary with a k-body Pauli
operator in the exponent. This is the counting used for the resource estimates shown in Tables I–III.

APPENDIX G: LOWEST-LYING ENERGY EIGENVALUES

The ground-state and first excited-state energies of the
systems studied in this work are given in Table IV.

APPENDIX H: NOISY SIMULATIONS

In this Appendix, we show that in a simple model of
quantum noise (step 3 of Fig. 1) representative of near-term
quantum hardware and using first-order Trotterized time evo-
lution (step 2 of Fig. 1), simulation errors exceed the theoret-
ical systematic errors of digitization (step 1 of Fig. 1). This
identifies the simulation errors (steps 2 and 3) as the dominant
source of uncertainty. This focuses future improvements on

bolstering the system against simulation errors to have the
greatest impact on the exploration of scalar fields on near-term
quantum devices.

The first quantity to examine in assessing the error land-
scape specific to the scalar field is the Schatten 1-norm of
the time-evolution operator evolved to final time Tf = 1 as
shown in Fig. 17. The system studied in this and the following
figures is the one-site free scalar field digitized onto three
qubits (the minimum number identified in the main text nec-
essary to achieve ∼1% errors on the low-energy eigenvalues).
Referencing Fig. 2, the tuning of the JLP basis that places
the calculation at the NS saturation point and thus opti-
mizes the balance between field-space and momentum-space
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TABLE IV. Values of the ground-state and first-excited-state energies for the one-site and two-site systems studied in this work. The
eigenvalues of the one-site theory with λ = 0 and m = 1 (HO) are known exactly. All other ground-state values are displayed with a number
of digits sufficient to produce the tuning and precision plots that appear in the main text.

System Ground-state energy First-excited-state energy

0 + 1, λ = 0, m = 1 1
2

3
2

0 + 1, λ = 32, m = 1 0.859 742 690 445 509 019 355 96 2.949 363 767 009 968 902 29
0 + 1, λ = 1, μ = 2 −22.596 382 373 935 095 119 775 874 −22.596 382 373 935 095 118 634 895
0 + 1, λ = 1, μ = 5 −933.966 134 532 634 985 047 797 739 −933.966 134 532 634 985 047 797 739
1 + 1, λ = 32, m = 1 2.124 233 123 438 790 185 081 206 39 4.141 788 964 874 434 527 967 370 80

representations of the wave function may be chosen leading
to a field-space truncation of φ̄max = 3.0. In Fig. 17, Utrue is
the exact, eight-dimensional, digitized propagator described
in the qubit system after step 1 in Fig. 1. The Schatten 1-norm
of this propagator with the Trotterized propagator UTrot (after
step 2 in Fig. 1) scales linearly with the Trotter step size δt
and is degenerate in this figure with the minimum-error data
defined by σCNOT = 10−8. The noisy Trotterized propagator
ŨTrot (after step 3 in Fig. 1) deviates from this linear scaling
at low values of δt where the errors of Tf /δt noisy Trotter
steps have accumulated, effectively smearing the evolution.
This type of accumulation of fluctuations in gate implementa-
tions may be easily visualized in the single-qubit case where
the uncertainty in the final quantum state eventually wraps
around a significant portion of the Bloch sphere’s surface.
For long evolution, the accumulation of these errors leads to a
constant O(1) operator norm (as can be seen at δt ∼ 3 × 10−3

with σCNOT = 10−3). As the noise model implemented here
is unitary, containing no effects of decoherence or amplitude
damping modeling quantum decoherence of the qubit hard-
ware, this saturation indicates that the system has surpassed a
software coherence time, a limit encountered due to imperfect

FIG. 17. Distance measure (Schatten 1-norm) between the nois-
ily Trotterized and exactly digitized time-evolution operator (after
steps 3 and 1 of Fig. 1, respectively) as a function of the Trotter step
size δt for an integrated evolution time of Tf = 1. The noisy first-
order Trotterized propagator ŨTrot is implemented with sampled error
rates on one- and two-qubit gates set by σθ and σCNOT, respectively.
The digitization scheme is defined by nQ = 3 and φ̄max = 3.0. From
right to left, the calculations deviate from the ideal result in the
top-to-bottom order of the legend with the last calculation at σCNOT =
10−8 maintaining visual agreement for the entire plotted domain.

gates (even if implemented on ideal qubits isolated from
their environment). Of course, when the gate error rate is
reduced, the software coherence time is increased and a longer
circuit (smaller δt for a fixed Tf = 1) may be implemented
before saturation of the propagator’s Schatten 1-norm with the
ideal Trotterized propagator. It is a hardware-specific question
for future investigation whether NISQ-era digital quantum
simulations will be limited by hardware or software coherence
times.

The noise model simulated in this Appendix is that of local
unitary errors correlated with the presence of computational
operations. For each m-qubit gate, an SU(2)⊗m operator is
applied before and after its application with Euler angles
sampled from a normal distribution centered at zero with a
standard deviation of σθ and σCNOT for m = 1 and m = 2,
respectively. All operators with m > 2 are decomposed into
one- and two-qubit gates as demonstrated in the main text
before implementing this noise model. While this procedure
neglects the possible nonunitary, non-Markovian, nonlocal
quantum fluctuations that may plague the calculations imple-
mented on NISQ-era hardware, examining its effects proves
enlightening to the limitations imposed by even this simple
form of quantum noise. Note that this formulation includes,
and is more general than, the noise model used in the creation
of Fig. 3, where Gaussian noise was implemented only on
the phases applied in conjugate-momentum space. For the
simulations of this Appendix, σCNOT is chosen to be one order
of magnitude larger than σθ to express the dominance of
two-qubit errors anticipated in the NISQ era. The error shown
in Fig. 17 represent the standard deviation of the Schatten
1-norm propagated through sampling of the noisy, Trotterized
time-evolution operator. While the Schatten 1-norm is a suc-
cinct distance measure to quantify the effects of Trotterization
and successive noisy implementation of the time-evolution
operator, it remains unclear, beyond perhaps placing loose
bounds, how these errors propagate to physical observables
likely to be extracted from the quantum calculation. To ad-
dress quantities of direct relevance to the calculation results,
two additional properties are examined: the ground-state per-
sistence and the evolution of the expectation value of the
field 〈φ〉(t ). Figure 18 shows the decomposition of the time-
evolved ground state across the t = 0 eigenbasis after a total
evolution time of Tf = 10 as a function of the Trotter step
size δt . The star-shaped points are noiseless Trotterizations
of the digitized propagator (after step 2 in Fig. 1) and show
that the ground state persists for sufficiently small δt as UTrot

becomes exact. When δt is sufficiently large, the ground-state
persistence diminishes due to errors that are polynomial in δt
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FIG. 18. Ground-state persistence of a one-site free scalar field propagated to time Tf = 10 that has been digitized with nQ = 3 with
φ̄max = 3.0 as a function of Trotter step size δt for two error rates. The star-shaped points are calculated from a first-order Trotterized propagator
without quantum noise and become exact in the limit δt → 0. Points joined by colored lines are sampled with the noise model described in
the text at error rates of (a) σCNOT = 10−3 and (b) σCNOT = 10−2 and σθ one order of magnitude smaller in each case. Eigenvector indices n are
indicated at the right of each panel.

affecting both the energies and eigenvalues of the Trotterized
propagator. Moving through step 3 of Fig. 1, the joined points
indicate that the ground-state persistence falls also at small δt
where, as was the case with the Schatten 1-norm, noise in the
propagator has accumulated. Figure 18(a) is calculated with
σCNOT = 10−3, while Fig. 18(b) is calculated with larger fluctu-
ations in the gate errors, σCNOT = 10−2. The notable difference
in the ground-state persistence between these error rates (both
being relevant to NISQ-era hardware) is that the former is
capable, for specific but existing choice of δt , of retaining the
ground-state content at the 1% level, while the latter is not
capable of achieving this for any choice of δt . Note that matrix
elements to eigenstates 1, 3, 5, and 6 are not excited in the
Trotterization and remain of negligible excitation in the noisy
Trotterization. This feature dramatically limits the Hilbert-
space mixing available to the noisy evolution by effectively
decoupling half of the Hilbert space. Even with this structural
advantage, the persistence of low-energy eigenstates is seen to
be a significant obstacle at noise levels expected in the NISQ
era.

For studying the time dependence of the expectation value
of the field 〈φ〉(t ), we choose to initialize the system in a
state |ψi〉 that is the ground state of the system rotated by
one site in φ space. In this state, the expectation value of
the field is 〈φ〉 = 0.8567, a value dictated dominantly by
the φ-space lattice spacing δφ = 2φ̄max

2nQ −1 = 6
7 , with deviations

due to the effects of the periodic boundary conditions. This
state is in the low-energy sector of the Hilbert space, with
the projections |〈ψn|ψi〉|2 into the lowest three eigenstates
n = 0, 1, and 2 of 69%, 25%, and 5%. Consequently, this
evolution is particularly sensitive to the mixing of low-energy
eigenstates. The inaccuracies in the time evolution of 〈φ〉 for
the highest error rate of σCNOT = 10−2 are substantial, as can
be seen in Figs. 19(d) and 19(g). To isolate the noise in this
observable (step 3 of Fig. 1), the deviation (light blue curves)
between the full noisy expectation value (dark red curves) and
that calculated from the noiseless Trotterized propagator [gold
curve in Fig. 19(a)] is shown in Figs. 19(e)–19(g), with gate
errors increasing from left to right. Figure 19 indicates that the
errors stemming from step 3 alone result in O(1) deviations

for this observable with σCNOT = 10−3. It is only when the
error rate is decreased to σCNOT = 10−4 and σθ = 10−5 that
〈φ〉 can be determined with ∼10−2 precision with respect to
the ideal Trotterization, as emphasized by the black dashed
reference line in Figs. 19(e)–19(g). This level of precision
is presently unavailable on NISQ-era hardware, indicating
that non-negligible error mitigation is required for extracting
observables in even small space-time volumes on quantum
devices. This situation is expected to persist for an extended
period.

We conclude that the digitization errors depicted in step 1
of Fig. 1 can be made a subdominant error source for NISQ-
era applications through the tuning procedures described in
the main text. The remaining simulation errors of the noisy
implementation of a Trotterized time-evolution operator de-
picted in steps 2 and 3 of Fig. 1 are found, under reason-
able assumptions, to be significant barriers to implementing
even the smallest representation of scalar field theory. While
higher-order Trotterizations that would reduce the error in
step 2 are known, the implementation of these improved
temporal digitizations can require a significantly increased
number of quantum gates, necessarily increasing the error
in step 3 of Fig. 1. The results of this Appendix emphasize
that further study is needed in the directions of algorithmic
improvements and error mitigation strategies before the errors
of steps 2 and 3 can be systematically controlled in the same
way as in the main text of this paper for the digitization
step 1.

It is important to remember that the desired precision of a
calculation need not be achieved with a single set of simula-
tion parameters (δt , σθ,CNOT, etc.). While properties of a single
parameter set were analyzed here, it is also possible (and
likely essential in the NISQ era) to implement a collection
of biased or lower-precision calculations and extrapolate to
the unbiased or zero-error limit. Such an extrapolation in
the regime of two-qubit gate errors has been shown to be
vital to digitally calculate, e.g., the deuteron binding energy
[25] and the dynamics of pair production in the Schwinger
model [26]. In this way, it is possible to achieve precision in
an observable beyond the noise levels of available quantum
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FIG. 19. Time evolution of the expectation value of the field operator for a state initialized to the ground state rotated by a single site in φ

space. (a) The evolution (gold curve) is the noiseless first-order Trotterization (after step 2 in Fig. 1) with δt = 0.3. (b)–(d) The gate-error rate
σCNOT increases to the right with σθ an order of magnitude smaller in each case. The deviation shown in (e)–(g) is with respect to the noiseless
Trotterization and represents only the errors arising from step 3 of Fig. 1.

hardware. A thorough investigation for designing collections
of quantum simulations ranging in computational expense
allowing extrapolations of the effects of noise in NISQ-era
devices is now, in the context of controllable digitization
errors, a leading avenue for future algorithmic progress to-
wards implementation of scalar fields on NISQ-era quantum

devices. Of course, such a program of planning the distri-
butions of resources is not unique to quantum computation
and has been essential in optimizing scientific productivity in
high-performance (classical) computing projects, such as the
lattice QCD production campaigns in high-energy and nuclear
physics.
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