
PHYSICAL REVIEW A 99, 052333 (2019)

Optimal quantum subsystem codes in two dimensions

Theodore J. Yoder*

IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA

(Received 28 January 2019; published 22 May 2019)

Given any two classical codes with parameters [n1, k, d1] and [n2, k, d2], we show how to construct a
quantum subsystem code in two dimensions with parameters �N, K, D� satisfying N � 2n1n2, K = k, and
D = min(d1, d2). These quantum codes are in the class of generalized Bacon-Shor codes introduced by Bravyi
[Phys. Rev. A 83, 012320 (2011)]. We note that constructions of good classical codes can be used to construct
quantum codes that saturate Bravyi’s bound KD = O(N) on the code parameters of two-dimensional subsystem
codes. One of these good constructions uses classical expander codes. This construction has the additional
advantage of a linear time quantum decoder based on the classical Sipser-Spielman flip decoder. Finally, while
the subsystem codes we create do not have asymptotic thresholds, we show how they can be gauge fixed to
certain hypergraph product codes that do.

DOI: 10.1103/PhysRevA.99.052333

I. INTRODUCTION

One of the perhaps more surprising facts to come out
of quantum information theory is the close relation between
classical and quantum error-correcting codes. An exemple of
this relation is the Calderbank-Shor-Steane (CSS) construc-
tion [1,2], which maps two classical codes (the first’s dual
is contained in the second) to a quantum code. Important
concepts in classical coding have analogous quantum con-
cepts. For instance, a good family of classical [n, k, d] or
quantum �n, k, d� codes is one that asymptotically achieves
constant rate k/n and constant relative distance d/n. Using the
CSS construction, one can draw on what is known classically
to prove the existence of asymptotically good families of
quantum codes [1] and even construct them [3,4].

Because the classical codes input to the CSS construction
must be related, it is sometimes difficult to use the CSS
construction directly to make quantum codes with desirable
properties. For example, the low-density parity check (LDPC)
property, which can be defined for classical [5] or quantum
[6,7] codes alike, demands that every parity or stabilizer check
involves a constant number of bits or qubits and every bit or
qubit is involved in a constant number of checks. It is pointed
out in Ref. [6] that one needs to use bad (i.e., not good)
classical LDPC codes to make quantum LDPC codes via
the CSS construction, and that bad classical LDPC codes are
uncommon, both because they are not worth studying if one
is solely motivated by classical applications, but also because,
asymptotically, most classical LDPC codes are actually good.

To easily create LDPC quantum codes, another method of
converting classical codes to quantum ones has been devel-
oped. The hypergraph product [7] converts any two classical
codes to a quantum code. Notably, if the constituent classical
codes are LDPC, so is the quantum code. The popular surface

*ted.yoder@ibm.com

code is a special case, the hypergraph product of two classical
repetition codes.

Yet, due to anticipated hardware limitations, it is common
to place even more practical constraints on quantum codes
beyond the LDPC condition. A popular demand is that parity
checks are geometrically local in two dimensions so that it is
unnecessary to interact qubits that are physically far apart in
the plane. Bounds are known on the parameters �N, K, D� of
two-dimensional quantum codes of stabilizer subspace [8] and
subsystem [9] varieties. The subspace bound KD2 = O(N)
is saturated constructively by the surface code [10,11] and
its relatives. The subsystem bound KD = O(N) is known to
be tight [9], but explicit constructions have heretofore been
lacking.

Here, we establish another relation between classical and
quantum codes. We show how to create an �N, K, D� quantum
subsystem code that is local in two dimensions from any
two classical codes with parameters [n1, k, d1] and [n2, k, d2]
and prove that N � 2n1n2, K = k, and D = min(d1, d2). The
quantum code belongs to the class of generalized Bacon-Shor
codes introduced by Bravyi [9], a class we therefore refer
to simply as Bravyi-Bacon-Shor codes. One can recover the
traditional Bacon-Shor code [12,13] from our construction by
starting with two classical repetition codes.

Bravyi-Bacon-Shor codes created this way have two im-
portant properties related to the constituent classical codes.
First, if the classical codes are good, then the Bravyi-Bacon-
Shor codes saturate the two-dimensional subsystem code
bound KD = O(N). Second, decoders for the classical codes
can be used to decode the quantum code. If the classical codes
are LDPC and their decoders take linear time (in the size of
the classical code), then the quantum decoding, including both
data and measurement errors, takes linear time (in the size
of the quantum code). Handling measurement errors in the
quantum setting requires that the classical decoders handle
errors in calculations of the parity checks. Though this is
not a standard model in classical error correction, the Sipser-
Spielman flip decoder for expander codes [14] does apply to

2469-9926/2019/99(5)/052333(17) 052333-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.052333&domain=pdf&date_stamp=2019-05-22
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.99.052333

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

this situation [15]. Interestingly, decoding quantum expander
codes [16], a kind of hypergraph product code, also employs
what is in some sense a quantum version of this classical flip
decoder [17–19].

Finally, we show how to gauge fix Bravyi-Bacon-Shor
codes. This is the process of moving encoded data from a
quantum subsystem code into a related subspace code. For
instance, the Bacon-Shor code can be gauge fixed to the
surface code [20]. Thus, as a generalization of Bacon-Shor
codes, Bravyi-Bacon-Shor codes should gauge fix to a gen-
eralization of the surface code. This is indeed the case. We
show that a Bravyi-Bacon-Shor code can be gauge fixed into
certain hypergraph product codes—the hypergraph product of
a classical repetition code and (either) one of the classical
codes used to build the Bravyi-Bacon-Shor code. This reveals
Bravyi-Bacon-Shor codes as a kind of subsystem hypergraph
product code.

In Sec. II, we review the codes we will be discussing and
establish notation. In Sec. III, we provide our construction of
Bravyi-Bacon-Shor codes from classical codes and show how
to decode them. In Sec. IV, we gauge fix Bravyi-Bacon-Shor
codes to hypergraph product codes. Section V concludes the
paper.

II. CODE BACKGROUND

In this section, we review the codes that play a major role
in the paper. These are (a) classical codes, including transpose
and LDPC codes, (b) quantum subsystem codes, (c) and (d)
two versions of Bravyi-Bacon-Shor codes, and (e) hypergraph
product codes.

A. Classical codes and their transposes

In this paper, we use “classical code” to mean a classical
linear code. A linear code C is a subset of the set of length-n
bit strings C ⊆ Fn

2 and can be defined by a parity check matrix
H ∈ Fm×n

2 by setting C = ker(H). This means that w ∈ C if
and only if Hw = 0. Notice, however, that H itself is not
unique.

The number of encoded bits k = dim C is related to the
rank of H by the rank-nullity theorem

k = n − rank(H). (1)

Gaussian elimination can be used to find a basis for the kernel
of H . This basis can be arranged as the rows of a generating
matrix G ∈ Fk×n

2 satisfying rank(G) = k and HGT = 0. Of
course, any G′ = QG for full-rank matrix Q ∈ Fk×k

2 is an
equally valid generating matrix.

The distance of the code is the minimum (Hamming)
weight of a nonzero vector in C. That is,

d = min{|�w| > 0 : �w ∈ C}. (2)

Code parameters of C are collected in the tuple notation
[n, k, d].

Although not part of traditional classical coding theory,
the “transposes” of a classical code will be important for
defining hypergraph product codes in Sec. II E. A code CT is a
transpose of C provided a parity check matrix H exists so that
C = ker(H) and CT = ker(HT). Let us say that H ∈ FnT ×n

2 ,
where T modifying a scalar (like n) is to be treated as a

superscript (not the transpose). Thus, CT is another linear code
with parameters [nT , kT , dT]. Codewords in CT represent
redundancy (linear dependencies) between parity checks, the
rows of H . Indeed, by the rank-nullity theorem and the fact
that the column rank and row rank of a matrix are equal,

n − k = nT − kT . (3)

If H were full rank (i.e., no check redundancy), nT = n − k
and so kT = 0.

The [n, 1, n] repetition code CR will be used at several
points in this paper. Its parity check matrix (without redun-
dancy) and its generating matrix can be written as

HR =

⎛
⎜⎜⎜⎜⎝

1 1 0 . . . 0 0 0

0 1 1 0 . . . 0 0

. . .
. . .

. . .

0 0 0 . . . 0 1 1

⎞
⎟⎟⎟⎟⎠ ∈ F(n−1)×n

2 , (4)

GR = (1 1 . . . 1) ∈ F1×n
2 . (5)

When we use the repetition code, its length n will be context
appropriate (e.g., so that matrix multiplications can work).

Finally, let us briefly define classical LDPC codes.
Definition 1 (classical LDPC [5]). A classical code C

is (b, c)-LDPC if there is a matrix H ∈ F(n−k)×n
2 such that

ker(H) = C, every column contains at most b 1s, and every
row contains at most c 1s. We call H an LDPC set of parity
checks.

For example, the repetition code is (2,2)-LDPC with HR

being an LDPC set of parity checks for the code.

B. Quantum subsystem codes

Before diving into the description of the quantum subsys-
tem codes in this paper (the subsequent two sections), we
review in this section some of the terminology surrounding
subsystem codes in general.

Quantum subsystem codes [21] are a generalization of
quantum subspace codes [22]. We restrict ourselves to the
stabilizer formalism here in which both types of codes are
specified by a subgroup of the Pauli group on n qubits. For
subspace codes, this is an Abelian subgroup, the stabilizer
group. For subsystem codes, this is an arbitrary subgroup,
the gauge group G. Subsystem codes are a generalization of
subspace in the sense that if G is Abelian, then the subsystem
code is also a subspace code. In the general, possibly non-
Abelian case, we find it convenient to remove global phases
from Pauli operators when defining groups of them.

Starting from the gauge group of a subsystem code, other
important groups are derived.

(1) The bare logical operators L(G): the set of all Paulis
that commute with all elements of G, also known in group
theory as the centralizer of G.

(2) The stabilizers S (G): the intersection of L(G) with G,
also known as the center of G.

(3) The dressed logical operators L̂(G) = G L(G): the
centralizer of S (G).
We point out that G = S (G) if and only if the subsystem code
is also a subspace code.

Code parameters are related to properties of the above
groups. For instance, we denote by K (G) the number of

052333-2

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

encoded qubits, i.e., 4K (G) is the size of L(G) \ S (G), the
group of logical operators modulo stabilizers. By D(G), we
denote the code distance, the weight of the lowest weight
element of L̂(G).

Using a symplectic Gram-Schmidt procedure [23], the
gauge group can always be generated by

G = 〈S (G), X 1, Z1, . . . , X J (G), ZJ (G)〉, (6)

where all generators commute except for pairs X i and Zi.
Thus, a subsystem code is seen to be a subspace code with
stabilizer S (G), but including an additional J (G) logical qubits
that we do not protect. These additional logical qubits are
referred to as gauge qubits. They are unprotected because
error correction proceeds by measuring a generating set of
the gauge group and thus by measuring the gauge qubits. An
advantage afforded by this measurement scheme, compared
to just measuring a generating set of S (G), is that the required
measurements can be much lower weight. In some cases, such
as the Bacon-Shor code and the subsystem codes considered
in this paper, the difference in the weights of stabilizers and
gauge operators can be factor of the code distance.

C. Bravyi-Bacon-Shor codes

Bravyi-Bacon-Shor (BBS) codes are defined entirely by a
binary matrix A ∈ Fn1×n2

2 . Physical qubits of the code placed
on sites (i, j) of a n1 × n2 square lattice L for which Ai j = 1.
If |A| is the number of 1s in A, there are N = |A| qubits in
the code. Let us take a moment to establish notation for Pauli
operators on this lattice.

A Pauli X or Z acting on the qubit at site (i, j) in the lattice
is written Xi j or Zi j . A Pauli operator acting on multiple qubits
is specified by its support:

for S ∈ Fn1×n2
2 , X (S) =

∏
i j

(Xi j)
Si j . (7)

Of course, S should be such that Si j = 1 implies Ai j = 1,
because qubits only exist at those sites. We say S ⊆ A if this is
true. We also use the notation S ∩ A to indicate the pointwise
product of binary matrices S and A: (S ∩ A)i j = Si jAi j for all
i, j. It is always the case that S ∩ A ⊆ A.

Conveniently, multiplication and commutation of Paulis
are equivalent to addition and inner products of the support
matrices,

X (S1)X (S2) = X (S1 + S2), (8)

[X (S1), Z (S2)] = (−1)tr (ST
1 S2)I (9)

where [P, Q] = PQP†Q† is the group commutator and I is the
identity operator.

From A, we can also define two classical codes correspond-
ing to its column space and row space:

C1 = col(A), (10)

C2 = row(A). (11)

These accordingly have generating matrices G1 and G2, parity
check matrices H1 and H2, and code parameters [n1, k, d1] and
[n2, k, d2]. Both C1 and C2 encode the same number of bits
k = rank(A) = rank(G1) = rank(G2) because of the well-
known equivalence of matrix row and column rank.

FIG. 1. A �6, 2, 2� Bravyi-Bacon-Shor code corresponding to

A =
(

1 1 0
1 0 1
0 1 1

)
[9]. In panel (a), we encircle the supports of X -

type (red, square, solid) and Z-type (blue, rounded, dashed) gauge
operators. In panel (b), we show the supports of X - and Z-type logical
operators for the two encoded qubits. We do not show them, but there
are just two stabilizers, X ⊗6 and Z⊗6.

BBS codes are subsystem codes and, as such, are described
by a gauge group of Pauli operators. This gauge group can
be divided into X -type operators and Z-type ones, and so in
this sense BBS codes are CSS subsystem codes. The gauge
group is generated by XX interactions between any two qubits
sharing a column of lattice L and ZZ interactions between any
two qubits sharing a row. We can write the entire gauge groups
of X and Z types like

G (bbs)
X = {X (S) : GRS = 0, S ⊆ A}, (12)

G (bbs)
Z = {Z (S) : SGT

R = 0, S ⊆ A}, (13)

recalling that GR = (1, 1, . . . , 1) is the generating matrix of
the repetition code. Therefore, GRS = 0 implies that columns
of S have even weight and SGT

R = 0 implies its rows have even
weight.

Bare logical operators of a subsystem code commute with
all its gauge operators. In the case of BBS codes, to commute
with all Z-type gauge operators, a bare logical X -type operator
must be supported on entire rows of the lattice. Likewise, to
commute with all X -type gauge operators, a bare logical Z-
type operator must be supported on entire columns. Therefore,

L(bbs)
X = {

X (S ∩ A) : SHT
R = 0

}
, (14)

L(bbs)
Z = {

Z (S ∩ A) : HRS = 0
}
. (15)

An example BBS code is shown in Fig. 1 with the gauge
operators highlighted in Fig. 1(a) and the logical operators in
Fig. 1(b).

When performing error correction with a subsystem code,
a complete generating set of gauge operators is measured.
However, since not all gauge operators commute, the only
reliable information gathered from this process is the eigen-
values of the stabilizers the elements of the gauge group that
do in fact commute with all gauge operators. In other words,
the stabilizer is the intersection of the group of bare logical
operators with the gauge group,

S (bbs)
X = L(bbs)

X ∩ G (bbs)
X (16)

= {
X (S ∩ A) : SHT

R = 0, G1S = 0
}
, (17)

S (bbs)
Z = L(bbs)

Z ∩ G (bbs)
Z (18)

= {
Z (S ∩ A) : HRS = 0, SGT

2 = 0
}
. (19)

052333-3

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

Here G1S = 0 demands that each column of S be a parity
check of code C1 and thus intersect columns of A, which are
codewords of C1, at an even number of places. Thus, S ∩ A
has an even number of 1s in each column and this implies
X (S ∩ A) is in G (bbs)

X . Similar reasoning holds for the Z-type
stabilizers.

The number of encoded qubits K can be determined by
counting the number of bare logical operators that are inequiv-
alent under multiplication by stabilizers. That is, we would
like the size of the quotient group L(bbs)

X /S (bbs)
X :

∣∣L(bbs)
X

/
S (bbs)

X

∣∣ =
∣∣L(bbs)

X

∣∣∣∣S (bbs)
X

∣∣ = 2n1

|ker(G1)| = 2k. (20)

Likewise, |L(bbs)
Z /S (bbs)

Z | = 2k . This implies K = k = rank(A)
encoded qubits.

Dressed logical operators are bare logical operators multi-
plied by any number of gauge operators:

L̂(bbs)
X = G (bbs)

X L(bbs)
X , (21)

L̂(bbs)
Z = G (bbs)

Z L(bbs)
Z . (22)

Equivalently, dressed logical operators are exactly those Pauli
operators that commute with all stabilizers. The distance D of
the BBS code is the minimum nonzero weight of a dressed
logical operator.

To calculate D, imagine first taking X (S ∩ A) ∈ L(bbs)
X and

reducing its weight by multiplying by gauge operators from
G (bbs)

X , which are two-qubit X operators within columns.
Clearly then each column of S ∩ A can at best be reduced to
contain either zero or one 1, depending on the parity of the
number of 1s in that column. We calculate the parity of a col-
umn by taking its dot product with GR = (1, 1, . . . , 1). Thus,

min
g∈G (bbs)

X

|gX (S ∩ A)| = |GR(S ∩ A)|. (23)

Note that SHT
R = 0 if and only if rows of S are codewords of

the classical repetition code, i.e., all 1s or all 0s. Accordingly,
for some �r ∈ Fn1

2 , S ∩ A = diag(�r)A, where diag(�r) is the
square, diagonal matrix with �r along the diagonal. Thus,
|GR(S ∩ A)| = |�rA|, and

DX = min
{|q| > 0 : q ∈ L̂(bbs)

X

}
(24)

= min
{|�rA| > 0 : �r ∈ Fn1

2

}
(25)

= min{|�x| > 0 : �x ∈ row(A)} (26)

= d2, (27)

by definition of the code distance of C2 = row(A). Likewise,

DZ = min
{|q| > 0 : q ∈ L̂(bbs)

Z

}
(28)

= min{|�x| > 0 : �x ∈ col(A)} (29)

= d1. (30)

The overall code distance of the BBS code is D =
min(DZ , DX) = min(d1, d2).

The discussion so far has reproduced Bravyi’s theorem:
Theorem 1 (Bravyi [9]). The Bravyi-Bacon-Shor code

constructed from A ∈ Fn1×n2
2 , denoted BBS(A), is an

�N, K, D� quantum subsystem code with gauge group gener-
ated by 2-qubit operators and

N = |A|, (31)

K = rank(A), (32)

D = min{|�y| > 0 : �y ∈ row(A) ∪ col(A)}. (33)

Assuming without loss of generality that no row or column
of A is all 0s (if there is such a row or column, then it can
be removed without changing the code), it is worth noting the
bounds

D min(n1, n2) � min(DX n1, DZ n2) � |A| � n1n2. (34)

The second inequality is based off the fact that each row
(column) of A needs to contain at least DX (DZ) qubits.

D. Augmented Bravyi-Bacon-Shor codes

In this subsection, we discuss geometric locality of the
BBS codes. In particular, we review the modification that
makes them local in two dimensions.

Definition 2 (quantum LDPC codes). A subsystem code
with gauge group G is (β, γ)-LDPC if, there is a subset
Gldpc ⊆ G such that

(1) Gldpc generates G, i.e., G = 〈Gldpc〉.
(2) Each qubit is in the support of at most β of the g ∈

Gldpc.
(3) The support of each g ∈ Gldpc contains at most γ

qubits.
We refer to Gldpc as an LDPC generating set.

Every BBS code is (4,2)-LDPC. An LDPC generating set
Gldpc contains just the two-qubit gauge operators between
consecutive qubits in a row or column.

Definition 3 (quantum geometric locality). An infinite
family of (β, γ)-LDPC subsystem codes is local in M
dimensions if there is a constant ρ such that all codes in the
family have an LDPC generating set GMd and the qubits of
the code can be arranged on vertices of an M-dimensional
(hyper)cubic lattice in such a way that no two qubits in the
support of the same g ∈ GMd are more than (Manhattan)
distance ρ apart.

To attempt to show that a family of BBS codes is local in
two dimensions, one might try G2d = Gldpc from above. While
this is, of course, an LDPC generating set, it is not necessarily
true that elements of G2d are supported in constant-sized
regions of the two-dimensional lattice. The difficulty is that A
may contain two consecutive 1s in the same row or column
that are separated by many 0s (potentially a number of 0s
that grows with code size) and thus consecutive qubits are far
apart.

To remedy this, Bravyi [9] introduces two more qubits at
every site (i, j) such that Ai j = 0. One qubit participates in the
two-qubit gauge operators of row i and the other in the gauge
operators of column j. Hence, we now say that there are three
types of qubits making up the code: Type-0 qubits reside at
sites where Ai j = 1, whereas type-1 and type-2 qubits reside
at sites where Ai j = 0. These qubit types can be used to define
two lattices: L1 consists of qubits of type 0 and type 1 and L2

consists of qubits of type 0 and type 2. It is important to note

052333-4

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

FIG. 2. Generating sets of (a) X -type and (b) Z-type gauge
operators for the augmented version of the code from Fig. 1. Type-0
qubits are shown as large, filled circles, while type-1 and 2 qubits are
small and unfilled. The generating sets consist entirely of two-qubit
(dark) and single-qubit (light) operators.

that the lattices share the type-0 qubits; i.e., the lattices are
identified at the sites where Ai j = 1.

To distinguish Paulis acting on qubits in lattices L1 or
L2, we use superscripts, e.g., X (L1)

i j or X (L2)
i j for single-qubit

Paulis and X (L1)(S) or X (L2)(S) for Paulis acting on multiple
qubits specified by support S. Of course, due to the identifi-
cation of qubits between L1 and L2, a particular (say, X -type)
Pauli P does not have unique supports S1, S2 such that P =
X (L1)(S1)X (L2)(S2). Indeed, letting 1 be the matrix of all 1s,

X (L1)(S1)X (L2)(S2) = X (L1)(T1)X (L2)(T2) (35)

if and only if S1 ∩ (1 − A) = T1 ∩ (1 − A), S2 ∩ (1 − A) =
T2 ∩ (1 − A), and (S1 ∩ A)+(S2 ∩ A)=(T1 ∩ A)+(T2 ∩ A).

Using this notation, the augmented Bravyi-Bacon-Shor
code (aBBS) has gauge groups

G (abbs)
X = {X (L1)(S)X (L2)(T) : GRS = 0, T ⊆ 1 − A}, (36)

G (abbs)
Z = {

Z (L1)(S)Z (L2)(T) : T GT
R = 0, S ⊆ 1 − A

}
. (37)

Intuition for this gauge group arises by developing a gen-
erating set local in two dimensions. This generating set G2d

can be chosen to be the set of all two-qubit gauge operators
on neighboring qubits in the lattices as well as all one-qubit
gauge operators. That is, with [t] = {1, 2, . . . , t}, we have

G2d = {
X (L1)

i j X (L1)
i+1, j : i ∈ [n1 − 1], j ∈ [n2]

}
(38)

∪{
Z (L2)

i j Z (L2)
i, j+1 : i ∈ [n1], j ∈ [n2 − 1]

}
(39)

∪{
X (L2)

i j : Ai j = 0
}

(40)

∪{
Z (L1)

i j : Ai j = 0
}
. (41)

This set, which has 4n1n2 − (n1 + n2) − 2|A| independent
generators, is clearly local in two dimensions: It consists of
two-qubit X operators between qubits sharing a column in
lattice 1, two-qubit Z operators between qubits sharing a row
in lattice 2, and single-qubit operators on type-1 and type-2
qubits. An example of G2d for a �12, 2, 2� aBBS code is shown
in Fig. 2.

FIG. 3. The two lattices of qubits that make up a hypergraph
product code.

Bare logical operators and stabilizers of an aBBS code
are derived similarly to those of a BBS code. Rather than go
through those arguments again, we just record the results here:

L(abbs)
X = {

X (L2)(S) : SHT
R = 0

}
, (42)

L(abbs)
Z = {

Z (L1)(S) : HRS = 0
}
, (43)

S (abbs)
X = {

X (L2)(S) : SHT
R = 0, G1S = 0

}
, (44)

S (abbs)
Z = {

Z (L1)(S) : HRS = 0, SGT
2 = 0

}
. (45)

Code parameters K and D are also unchanged. Collecting this
into a theorem, we have the following:

Theorem 2 (Bravyi [9]). The augmented Bravyi-Bacon-
Shor code constructed from A ∈ Fn1×n2

2 , denoted aBBS(A),
is an �N, K, D� quantum subsystem code that is local in two
dimensions, has a gauge group generated by one- or two-qubit
operators, and

N = 2n1n2 − |A|, (46)

K = rank(A), (47)

D = min{|�y| > 0 : �y ∈ row(A) ∪ col(A)}. (48)

E. Hypergraph product codes

Introduced in Ref. [7], the hypergraph product takes two

classical parity check matrices H1 ∈ F
nT

1 ×n1

2 and H2 ∈ F
nT

2 ×n2

2
and produces a quantum code. The code ultimately is of CSS
type (though the traditional CSS construction is not used to
obtain it) and so its stabilizer group can be separated into
stabilizers of Pauli X type and those of Pauli Z type.

Our description of the hypergraph product is a little uncon-
ventional but is in line with how we described BBS and aBBS
codes, making it easier to relate the two later. It is essentially
a description in terms of the “reshaped” matrices used at some
points by Campbell [24].

In our notation, qubits of the hypergraph product code are
placed on the vertices of two square lattices (see Fig. 3). The
first lattice L is n1 × n2. The second lattice l is nT

1 × nT
2 . A

Pauli X or Z acting on the qubit at site (i, j) in lattice L is
denoted X (L)

i j or Z (L)
i j and similarly for Paulis acting in lattice

l . A Pauli operator acting on multiple qubits is specified by its

052333-5

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

support, e.g., X (L)(S) or Z (L)(S), just as for the BBS and aBBS
codes.

On the classical side, we define generating matrices G1

and G2 for the classical codes C1 and C2 corresponding to H1

and H2. We define their code parameters as [n1, k1, d1] and
[n2, k2, d2] and assume without loss of generality k1, k2 > 0.
Similarly, let F1 and F2 be generating matrices for codes CT

1
and CT

2 with code parameters [nT
1 , kT

1 , dT
1] and [nT

2 , kT
2 , dT

2].
Using this notation, the hypergraph product of H1 and H2

is a quantum code HGP(H1, H2) defined by the following sets
of stabilizers, divided into X type and Z type,

S (hgp)
X = {

X (L)(S)X (l)(T) : SHT
2 = HT

1 T,

G1S = 0, T F T
2 = 0

}
, (49)

S (hgp)
Z = {

Z (L)(S)Z (l)(T) : H1S = T H2,

SGT
2 = 0, F1T = 0

}
. (50)

To show these stabilizers commute, let M =
X (L)(S)X (l)(T) ∈ S (hgp)

X and M ′ = Z (L)(S′)Z (l)(T ′) ∈ S (hgp)
Z .

By Eq. (9), we need to show tr(ST S′) + tr(T T T ′) = 0.
Notice that G1S = 0 demands that columns of S are parity
checks for C1. In other words, there exists A such that
S = HT

1 A. Likewise, because T F T
2 = 0, rows of T are parity

checks for CT
2 , or, equivalently, there exists B such that

T = BHT
2 . Finally, the same reasoning holds for S′ and T ′,

showing the existence of A′ and B′ such that S′ = A′H2 and
T ′ = H1B′. Since SHT

2 = HT
1 T and H1S′ = T ′H2, we have

H2AT H1 = H2BT H1 and H1A′H2 = H1B′H2. Putting it all
together, we have

tr(ST S′) = tr(AT H1A′H2) (51)

= tr(BT H1B′H2) = tr(T T T ′), (52)

completing the proof.
In Appendix A, we connect this description of the hyper-

graph product code with the original definition and derive
other relevant properties. We note here that logical operators
for HGP(H1, H2) are

L(hgp)
X = {

X (L)(S)X (l)(T) : SHT
2 = HT

1 T
}
, (53)

L(hgp)
Z = {

Z (L)(S)Z (l)(T) : H1S = T H2
}
, (54)

and it has code parameters �N, K, D� [7]:

N = n1n2 + nT
1 nT

2 , (55)

K = k1k2 + kT
1 kT

2 , (56)

D =
{

min(d1, d2), kT
1 = 0 or kT

2 = 0

min
(
d1, d2, dT

1 , dT
2

)
, otherwise

. (57)

Keep in mind that if one of the classical codes or one of the
transpose codes encodes no logical bits (i.e., is the empty set),
its distance is by definition infinite. Lastly, if H1 is a (b1, c1)-
LDPC set of parity checks and H2 is a (b2, c2)-LDPC set of
parity checks, then HGP(H1, H2) is (β, γ)-LDPC for [7]

β = max(b1 + b2, c1 + c2), (58)

γ = max(c1 + b2, b1 + c2). (59)

III. CONSTRUCTING AND DECODING OPTIMAL
TWO-DIMENSIONAL SUBSYSTEM CODES

In this section, we show how to make BBS codes from two
classical codes. We note that using good classical codes leads
to optimal scaling of the quantum code parameters and show
how classical decoders are used to decode the quantum codes.

A. Bravyi-Bacon-Shor codes from classical codes

In Sec. II C, we noted that an �N, K, D� BBS code specified
by matrix A ∈ Fn1×n2

2 defines two classical codes C1 = col(A)
and C2 = row(A), and that, if those classical codes have
parameters [n1, k, d1] and [n2, k, d2], we have code parameter
relations K = k and D = min(d1, d2). The goal now is to
explore the converse: Given two classical codes C1 and C2,
how should we construct a BBS code with the same relations
in code parameters?

Suppose that the classical codes have generating matri-
ces G1 ∈ Fk×n1

2 and G2 ∈ Fk×n2
2 . We then construct the code

BBS(A) with

A = GT
1 QG2 ∈ Fn1×n2

2 , (60)

where Q is any full-rank k × k matrix representing the
nonuniqueness of the generating matrices. Adjusting Q can
change the number of physical qubits in the code.

Now notice that

col(A) = {
GT

1 QG2�x : �x ∈ Fn2
2

}
(61)

= {
GT

1 Q�y : �y ∈ Fk
2

}
(62)

= {
GT

1�z : �z ∈ Fk
2

}
(63)

= col
(
GT

1

) = row(G1) = C1. (64)

The second equality relies on G2 being full rank and the third
on Q being full rank. Likewise, similar reasoning shows that
row(A) = C2.

Therefore, we have the following theorem.
Theorem 3. For all full-rank Q ∈ Fk×k

2 and every two clas-
sical codes C1, C2 with parameters [n1, k, d1], [n2, k, d2] and
generating matrices G1 ∈ Fk×n1

2 , G2 ∈ Fk×n2
2 , let A = GT

1 QG2.
Then BBS(A) is an �N, K, D� quantum subsystem code and
aBBS(A) an �N2d , K, D� subsystem code local in two dimen-
sions with

min(n1d2, d1n2) � N � n1n2, (65)

n1n2 � N2d � 2n1n2 − min(n1d2, d1n2), (66)

K = k, (67)

D = min(d1, d2). (68)

The lower bound on N and upper bound on N2d are
provided by Eq. (34).

Before discussing the theorem’s implications, let us briefly
present some examples, starting with the Bacon-Shor code.

Example 1. Let C1 = C2 = CR be the [n, 1, n] repetition
code [see Eq. (4)]. Then A = GT

R GR = 1 (the all 1s matrix)
represents a Bravyi-Bacon-Shor with a qubit at every lattice
site, X -type (Z-type) gauge operators between pairs of qubits

052333-6

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

in the same column (row), and X -type (Z-type) stabilizers that
span pairs of rows (columns). That is, we have reconstructed
the Bacon-Shor code [12].

Example 2. The [7,4,3] Hamming code is generated by

G =

⎛
⎜⎜⎜⎝

1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

⎞
⎟⎟⎟⎠,

H =

⎛
⎜⎝

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

⎞
⎟⎠.

Let A = GT QG for full-rank 4×4 matrix Q. Taking Q = I
gives a �25, 4, 3� Bravyi-Bacon-Shor code:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Alternatively, taking Q =
(

0 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

)
minimizes the

number of qubits, giving a �21, 4, 3� Bravyi-Bacon-Shor
code.

In Ref. [9], Bravyi shows that for any family of �N, K, D�
quantum subsystem codes local in two dimensions KD =
O(N). He then provides a nonconstructive argument that fam-
ilies of aBBS codes exist that saturate this bound. Theorem 3
elucidates this existence proof by connecting it to the classical
case. If we have a family of good [n, k, d] classical codes—
i.e., there are constants α, β such that for all n, k � αn and
d � βn—then the aBBS code family created from Theorem 3
satisfies KD = αβn2 � αβN2d/2. So the aBBS codes created
this way saturate Bravyi’s bound.

Moreover, Theorem 3 provides the means to elevate the
aforementioned nonconstructive proof to an explicit construc-
tive proof. One only needs an explicit construction of good
classical codes. Such constructions exist, e.g., expander codes.
We review these classical codes in detail in Appendix B 1.

Finally, we should point out that although Theorem 3
produces BBS and aBBS codes for which K, D = O(

√
N),

it can be used to trade off K and D. Bravyi and Terhal [25]
have shown that D = O(

√
N) for subsystem codes in two

dimensions. So, assume that we would like a code family with
K = αN1−a and D = βNa for some constants a � 1/2, α, and
β. To construct this code family, use Theorem 3 and a good
family of classical codes to make a quantum code family with
K = αNa, D = βNa, and O(N2a) physical qubits. Take N1−2a

copies of this family to make the desired family with K =
αN1−2aNa = αN1−a, D = βNa, and N1−2aO(N2a) = O(N)
physical qubits.

If, for whatever reason, a family with parameters KD =
o(N) is desired (i.e., KD scales strictly less than N), then one

FIG. 4. The region of possible [9,25] two-dimensional subsys-
tem �N, K, D� code families. We can construct families at all these
points by appealing to constructions of good classical codes and
using Theorem 3.

can take a family with K ′D = �(N) and ignore a fraction
1 − K/K ′ of the encoded qubits. See Fig. 4 for a summary
of the last two paragraphs.

B. Decoding BBS codes

Correcting errors on a quantum subsystem code involves
(1) measuring a generating set of gauge operators, (2) recon-
structing the values of the stabilizers from the results, and
(3) applying a Pauli correction. An advantage of the BBS or
aBBS codes is that the generating set of gauge operators in-
cludes only two-qubit operators [see Eq. (38)] despite the sta-
bilizers being high weight. In this section, we identify another
convenient feature—the correction in the third step can be
calculated by decoders for the corresponding classical codes.

Let us begin by making some assumptions about the error
model and codes. While not essential to the main conclusions,
these assumptions simplify the discussion. Regarding the
error model, we assume that each qubit suffers an X error with
probability q and, independently, a Z error with the same prob-
ability q. Two-qubit Pauli measurements (e.g., of the gauge
operators) are assumed to fail with probability q′. Regarding
the codes, we assume that A is an n × n symmetric matrix, so
there is just one [n, k, d] classical code C = row(A) = col(A)
under consideration. We let H and G be the parity check and
generating matrices of this code.

What is essential to our conclusions here is the exis-
tence of a decoding algorithm D for the classical code C of
the following form. Decoder D takes as input faulty parity
check information from a faulty codeword�i = H (�w + �e) + �f ,
where �w ∈ C, �e represents data errors, and �f represents errors
in the “measurement” of the parity checks (though a more
appropriate classical terminology might be the “calculation”
of the checks). The decoder’s task is then to find a recovery
�e ′ = D(�i) that is close to �e, and update the classical state from
�w + �e to �w + �e + �e ′. This process is repeated some number
of rounds, alternating the application of random noise �e and �f

052333-7

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

with decoding. Afterward, we imagine “ideal” decoding with
�f = �0 is performed, and if �w is not the final state, then the
error correction has failed. Failure (after the given number of
rounds) occurs with some probability p̄, which is a function
of the probability distribution of errors �e and �f .

Generally, in classical error correction, measurement of
the parity checks is considered perfect, and so decoders with
the required capability of dealing with measurement errors are
seldom created or used. However, expander codes do have
a suitable decoder, the flip decoder, which is discussed in
Appendix B 2.

We discuss the decoding of (symmetric, A = AT) BBS
codes in detail, then in the next section briefly discuss the case
of (symmetric) aBBS codes, which is similar. Our reasoning
hinges on associating the stabilizers of the BBS code with
parity checks of the classical code C and the dressed logical
operators of the BBS code with the codewords of C.

To realize these associations, we rewrite S (bbs)
X from

Eq. (16). Let X (S ∩ A) ∈ S (bbs)
X . Since SHT

R = 0, rows of S
are codewords of CR, either all 1s or all 0s. Because GS = 0,
columns of S are parity checks of C. Therefore, S ∩ A =
diag(�r)A for some �r ∈ row(H). We have

S (bbs)
X = {X (diag(�r)A) : �r ∈ row(H)}. (69)

Similarly, rewrite S (bbs)
Z as

S (bbs)
Z = {Z (Adiag(�c)) : �c ∈ row(H)}. (70)

Thus, the parity checks of the classical code indicate which
sets of rows or columns constitute a stabilizer.

Dressed logical operators L̂(bbs)
X are exactly those X -type

Paulis that commute with all the Z-type stabilizers. But be-
cause Z-type stabilizers are supported on entire columns of
A, they are only sensitive to whether an even or odd number
of Pauli X errors occurred within a column. Indeed, single-
qubit X errors within a column are equivalent up to gauge
operators. Say that a column is odd if it contains an odd
number of X errors. An X -type operator commutes with all
the Z-type stabilizers if and only if it consists of odd columns
corresponding to a codeword �w ∈ C, i.e., column i is odd if
and only if �wi = 1. In other words, the even or oddness of a
column corresponds to the 0 or 1 state of an effective classical
bit of the code C. Symmetry of A dictates that the same
correspondence holds for Z-type dressed logical operators
L̂(bbs)

Z and Z errors in rows.
The upshot of the previous paragraph is that to decode a

BBS(A) code, we may collect X - or Z-type stabilizer infor-
mation �σ , run the classical decoder �e ′ = D(�σ), and apply a
Z- or X -type Pauli correction to a single qubit in each row
or column indicated by �e ′. We call this the decoder induced
by D, or simply the induced decoder for BBS(A). To evaluate
how well the induced decoder works, we just need to map the
quantum errors to the effective classical errors that the decoder
D sees.

The probability that an odd number of X errors occurs
within column i containing ci qubits is

pi =
ci∑

l = 1
l odd

(
ci

l

)
ql (1 − q)ri−l = 1

2
[1 − (1 − 2q)ci]. (71)

By symmetry, this situation is the same for Z errors in the
rows. So, pi is the probability that bit i has flipped in the
classical code.

Similarly, stabilizers of the Bravyi-Bacon-Shor code are
the product of several two-qubit gauge operators. For instance,
there is an Z-type stabilizer Z (A diag(�h j)) for row �h j of H , and
it is made of c′

j = |A diag(�h j)|/2 � n|�h j |/2 two-qubit gauge
measurements. The probability this stabilizer measurement is
incorrect depends only on whether an even or odd number of
its constituent gauge measurements are incorrect:

p′
j =

c′
j∑

l = 1
l odd

(
c′

j

l

)
ql (1 − q′)c′

j−l = 1

2
[1 − (1 − 2q′)c′

j].

(72)

By symmetry, this situation is identical for the X -type stabiliz-
ers. Thus, p′

j is the probability that the parity check calculation
for parity check j is incorrect.

These relations between quantum and classical errors give
us the following lemma.

Lemma 1. Say that using decoder D on the classical error
model in which data errors have probabilities pi and parity
check errors have probabilities p′

j results in a logical error
rate of p̄(pi, p′

j). The induced decoder with respect to D on
an error model in which qubits fail with independent X or Z
errors with probability q and two-qubit Pauli measurements
fail with probability q′ has a logical error rate

q̄(q, q′) � 2 p̄(pi, p′
j), (73)

where pi and p′
j are given by Eqs. (71) and (72).

The factor of two in Eq. (73) results from the X and Z
errors being decoded separately. Independent X , Z noise is,
of course, not critical to the lemma. For depolarizing noise,
for example, in which Pauli X , Y , or Z errors occur with equal
probability q/3, the logical error rate is at most q̄(2q/3, q′)
since 2q/3 is the probability of a Z or X error. On the other
hand, the induced decoder does discount the correlations in X
and Z noise, so is not expected to be optimal in this case.

Also crucial to note is that for small, constant q and q′, pi ≈
ciq and p′

j ≈ c′
jq

′. Because ci, c′
j � d , the effective classical

error rates increase at least proportionally to the code distance.
In the limit of large code size and distance, no classical code
can be expected to correct such noise, and thus this shows the
lack of asymptotic threshold for BBS codes. Nevertheless, the
lemma indicates a close connection between the quantum and
classical error rates. If a classical code has a “useful” (e.g.,
order 10−a for some moderately large a) logical error rate for
pi < p and p′

j < p′, then the quantum code has a useful (i.e.,
order 10−a) logical error rate for q < p/(maxi ci) and q′ < p′/
(max j c′

j).
Lemma 1 indicates two ways to improve the decoding of

BBS codes, even before tailoring to the noise. The first, more
obvious way, is to find better decoders for the constituent
classical codes. This is, of course, subject to the constraint
that these classical decoders can tolerate measurement noise,
which we noted previously is nonstandard but attainable for
expander codes for example.

052333-8

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

The second way to improve decoding is by reducing the
values of ci (the number of qubits in row or column i) and c′

j
(the number of gauge operators making up stabilizer j). This
correlates roughly with minimizing |A|, the number of qubits
in the BBS code, which can be done without change in the
code parameters by appropriate choice of Q in Theorem 3.

Finally, let us discuss the time complexity of an induced
decoder. This can be broken down into two parts: (1) the time
it takes to acquire the stabilizer values that are input to D and
(2) the time it takes to run D twice, once for X stabilizers,
once for Z . A particular stabilizer corresponding to a weight-
w parity check is the sum of O(wn) two-qubit measurements
and therefore takes O(wn) time to compute. If m stabilizer
values are needed as input to the classical decoders, and the
classical decoders run in time at most t , then induced decoding
takes time O(mwn + t). Using BBS codes constructed from
classical expander codes as an example, the flip decoder D
(see Appendix B 2) requires just m = O(n) bits of input from
weight w = O(1) checks and runs in time t = O(n). Thus,
induced decoding takes time O(n2 + n) = O(N), i.e., linear
in the size of the quantum code.

C. Decoding aBBS codes

In this subsection, we briefly discuss the decoding of (sym-
metric, A = AT) aBBS codes assuming we can only measure
operators in G2d , Eq. (38), i.e., two-qubit operators on neigh-
boring qubits and some single-qubit measurements. We still
advocate using the induced decoder of the previous section,
but it is now more difficult to collect the stabilizer values from
this restricted set of gauge operator measurements.

Similar to how we derived Eqs. (69) and (70), we can
rewrite the stabilizers of the aBBS codes to correspond to
classical parity checks (recall, 1 is the matrix of all 1s):

S (aBBS)
X = {

X (L2)(diag(�r)1) : �r ∈ row(H)
}
, (74)

S (aBBS)
Z = {

Z (L1)(1 diag(�c)) : �c ∈ row(H)
}
. (75)

This leads to similar conclusions about errors on the effective
bits of the classical code C. With the recognition that ci = n
for all i, Eq. (71) still represents the probability of error for an
effective classical bit.

As one may expect, because we have restricted what
gauge operators may be measured to those in G2d , aBBS
decoding also differs from BBS decoding in how eigenvalues
of the stabilizers are calculated. If �h j is a row of H and
S = Z (L1)(1 diag(�h j)) is the corresponding stabilizer, then we
should let c′

j be the minimal number of elements of G2d whose
product is S. Since S may include rows that are O(n) distance
apart, c′

j may be as a large as O(n2). With this redefinition of
c′

j however, Eq. (72) again represents the probability of error
for a parity check. Lemma 1 holds given these changes to ci

and c′
j .

Now we discuss the runtime. Because c′
j can be so large,

we may be worried that it takes more time to decode, because
ostensibly stabilizers corresponding to even just constant-
weight parity checks may be the sum of as many as O(n2)
elements of G2d [and note that |G2d | = O(n2)]. However,
a simple application of dynamic programming solves this.

Suppose that we measure all two-body Z-gauge operators and
get values mi j ∈ {0, 1} corresponding to positions (i, j) in
the lattice. We can sweep across the lattice, calculating the
cumulative values across rows,

Mi j =
j∑

l=1

mil , (76)

using just O(n2) = O(N) time. Z-type stabilizers correspond-
ing to constant-weight parity checks are once again the sum of
O(n) of the Mi j as well as O(n) single-qubit measurements.
Symmetry dictates the same is true for X -type stabilizers.
Therefore, for example, the induced decoder with respect to
the flip decoder for aBBS codes constructed from classical
expander codes can still be implemented in linear time.

IV. GAUGE FIXING

In this section, we show that an aBBS code can be gauge
fixed to the corresponding BBS code and to certain hyper-
graph product codes. We begin, however, by defining gauge
fixing in general.

A. Definition

As we discussed in Sec. II B, one way to think about
subsystem codes is that in addition to the logical qubits
encoded in the code, there are additional encoded qubits,
the gauge qubits, which we do not care about protecting. In
fact, the logical operators for these gauge qubits may be very
low weight—they are the gauge operators that we measure to
perform error correction.

The existence of gauge qubits, however, leads us to imag-
ine a family of related codes in which some or all of the
gauge qubits are fixed to some stabilizer state |ψg〉. In these
related codes, called gauge fixings, we have removed some
or all of the gauge degrees of freedom by removing operators
from the gauge group that do not stabilize |ψg〉. Generally,
this makes error correction more difficult—a generating set
for the new gauge group may necessarily contain higher
weight operators—but by reducing the size of the group of
dressed logical operators, the environment has fewer ways
to introduce logical errors to the data. This may even result
in asymptotic error-correction thresholds in the gauge-fixed
codes where none existed in the original subsystem code. A
well-known example is the gauge fixing of the Bacon-Shor
code to the surface code [20].

To discuss gauge fixing in general, we use the following
definition, using the notation from Sec. II B.

Definition 4. We say that G ′ is a gauge fixing of G if
(1) S (G) � S (G ′) � G ′ � G,
(2) K (G) = K (G ′).

Generalizing the language slightly, we also say that a code Q′
is a gauge fixing of a code Q if their gauge groups are related
appropriately.

By the definition, a subsystem code and its gauge fixing
have the same total number of physical qubits and logical
qubits. We can also say something about their code distances.

Lemma 2. If G ′ is a gauge fixing of G, then L̂(G ′) � L̂(G)
and D(G ′) � D(G).

We prove this fact in Appendix C.

052333-9

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

A concept more general than gauge fixing is gauge
switching. If both G ′ and G ′′ are gauge fixings of G, then
one can move encoded logical information from G ′ to G ′′
(or vice versa) while keeping it protected with the stabilizers
S (G ′) ∩ S (G ′′) � S (G) and with code distance at least
D(G). Measuring the gauge group G ′′, applying a correction
based on the values of S (G) using a decoder for G, and
finally projecting onto the +1-eigenspaces of elements of
S (G ′′) − S (G) using the appropriate elements of G achieves
this information transfer.

B. Gauge fixing an aBBS code to a BBS code

To warm up to Definition 4, we show that a BBS code
specified by binary matrix A is a gauge fixing of the aBBS
code specified by the same matrix. Of course, these codes do
not have the same number of physical qubits, so to make the
previous sentence precise we include ancilla qubits to the BBS
code. This will be a common occurrence in our gauge-fixing
theorems, and so we take a moment to discuss it.

Given a quantum code Q, we will consider appending three
types of ancillas: (1) qubits in the |+〉 state, (2) qubits in
the |0〉 state, and (3) bare gauge qubits denoted | ⊥〉. The
new code that includes ancillas is written Q|+m+〉|0m0〉| ⊥mg〉
with the number of each type of ancilla indicated. Appending
ancillas in this way extends the code’s gauge group. Ancillas
|+〉 indicate the inclusion of Paulis Xi into the gauge group for
each ancilla index i. Likewise, |0〉 ancillas indicate inclusion
of Zi. Bare gauge qubits | ⊥〉 indicate inclusion of both Xi

and Zi.
Now we can formally state the relation between BBS(A)

and aBBS(A).
Theorem 4. For all binary matrices A ∈ Fn1×n2

2 , Q′ =
BBS(A)|+n1n2−|A|〉|0n1n2−|A|〉 is a gauge fixing of Q =
aBBS(A).

Proof. We place both codes on the lattices L1 and L2
defined in Sec. II D for the aBBS codes (recall, two n1 × n2
lattices that share qubits wherever Ai j = 1). The gauge group
of Q is defined in Eqs. (36) and (37). For Q′, however, we
should rewrite the gauge group to fit on these two lattices
and to include the ancillas. As one may suspect from their
quantity, the |+〉 ancillas are the type-2 qubits (recall those in
L2 but not in L1) and |0〉 ancillas are the type-1 qubits (those
in L1 but not L2):

G (Q′)
X = {

X (L1)(S)X (L2)(T) : GRS = 0, S ⊆ A T ⊆ 1 − A
}
,

(77)

G (Q′)
Z = {

Z (L1)(S)Z (L2)(T) : T GT
R = 0, T ⊆ A S ⊆ 1 − A

}
.

(78)

Stabilizers of Q′ include not just the stabilizers of BBS(A), but
also single-qubit Pauli X s on type-2 qubits and single-qubit
Pauli Zs on the type-1 qubits. So, we have

S (Q′)
X = {

X (L2)(S + T) : G1S = 0, SHT
R = 0, T ⊆ 1 − A

}
,

(79)

S (Q′)
Z = {

Z (L1)(S + T) : SGT
2 = 0, HRS = 0, T ⊆ 1 − A

}
.

(80)

FIG. 5. Gauge fixing an aBBS code to HGP codes takes place
on four lattices of qubits. Each code involved is supported on two
lattices: aBBS(A) is supported on L1 and L2, HGP(HR, H2) on L1 and
l1, and HGP(H1, HR) on L2 and l2.

Now, it is clear that

G (Q′)
X � G (aBBS)

X , G (Q′)
Z � G (aBBS)

Z , (81)

S (aBBS)
X � S (Q′)

X , S (aBBS)
Z � S (Q′)

Z . (82)

This takes care of part (1) of Definition 4.
Adding ancillas does not change the number of logical

qubits in Q′, and so both Q′ and Q have rank(A) logical
qubits, showing part (2) of Definition 4 holds. �

C. Gauge fixing an aBBS code to hypergraph product codes

In this section, we show that certain hypergraph product
codes are gauge fixings of an aBBS code. Informally, our
main result is that for all A ∈ Fn1×n2

2 both HGP(HR, H2) and
HGP(H1, HR) are gauge fixings of aBBS(A), where we only

require that the rows of H1 ∈ F
nT

1 ×n1

2 and H2 ∈ F
nT

2 ×n2

2 span
ker(AT) and ker(A), respectively.

Just like the case of a BBS code in the last section, to
formalize this gauge fixing we need to define all three of
these codes on the same set of physical qubits. Four lattices
of qubits are involved, which we label L1, L2, l1, and l2. The
code aBBS(A) is supported on the n1 × n2 lattices L1 and L2.
Recall that qubits in L1 and L2 are identified at the positions
where Ai j = 1, so there are 2n1n2 − |A| total qubits in L1 ∪ L2.
The code HGP(HR, H2) is supported on lattices L1 and l1,
thus making l1 a (n1 − 1) × nT

2 lattice. Similarly, the code
HGP(H1, HR) is supported on lattices L2 and l2, and so l2 is a
nT

1 × (n2 − 1) lattice. A schematic of this qubit arrangement
is shown in Fig. 5.

Theorem 5. Let A ∈ Fn1×n2
2 and H1 ∈ F

nT
1 ×n1

2 , H2 ∈ F
nT

2 ×n2

2
be such that row(H1) = ker(AT), row(H2) = ker(A). Then the
codes

Q′ = HGP(HR, H2)|+n1n2−|A|〉∣∣⊥nT
1 (n2−1)

〉
, (83)

Q′′ = HGP(H1, HR)|0n1n2−|A|〉∣∣⊥(n1−1)nT
2
〉

(84)

052333-10

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

are gauge fixings of

Q = aBBS(A)
∣∣⊥nT

1 (n2−1)+(n1−1)nT
2
〉
. (85)

Proof. We just prove that Q′ is a gauge fixing of Q because
proving the same for Q′′ is analogous. To prove this half of
the theorem, we do not need lattice l2 and so omit it when we
write down Pauli operators. Indeed, without l2, code Q′ is a
subspace code—its gauge group is its stabilizer group.

Parity check matrices H1 and H2 define classical codes
C1 = col(A) and C2 = row(A), each encoding k = rank(A)

bits. These codes have some generating matrices G1 and G2

that we will use. Code CT
2 has a generating matrix F2. By the

discussions in Sec. II, we have that both Q′ and Q encode k
qubits, thus verifying part (2) of the gauge-fixing definition,
Definition 4.

Now, let us write down the stabilizers of Q′ and the
gauge group and stabilizers of Q. These follow from the
appropriate equations in Sec. II, but with additions due
to the ancillas: |+〉 ancillas in L2 − L1 for Q′ and | ⊥〉 ancillas
in l1 for Q.

By Eq. (49), S (Q′)
X = {

X (L1)(S1)X (L2)(S2)X (l1)(T) : S1HT
2 = HT

R T, GRS1 = 0, T F T
2 = 0, S2 ⊆ 1 − A

}
, (86)

by Eq. (50), S (Q′)
Z = {

Z (L1)(S)Z (l1)(T) : HRS = T H2, SGT
2 = 0

}
, (87)

by Eq. (36), G (Q)
X = {

X (L1)(S1)X (L2)(S2)X (l1)(T) : GRS1 = 0, S2 ⊆ 1 − A
}
, (88)

by Eq. (37), G (Q)
Z = {

Z (L1)(S1)Z (L2)(S2)Z (l1)(T) : S2GT
R = 0, S1 ⊆ 1 − A

}
, (89)

by Eq. (44), S (Q)
X = {

X (L2)(S) : SHT
R = 0, G1S = 0

}
, (90)

and by Eq. (45), S (Q)
Z = {

Z (L1)(S) : HRS = 0, SGT
2 = 0

}
. (91)

To show part (1) of Definition 4, we have four inclusions to
prove: (a) S (Q′)

X ⊆ G (Q)
X , (b) S (Q)

Z ⊆ S (Q′)
Z , (c) S (Q′)

Z ⊆ G (Q)
Z ,

and (d) S (Q)
X ⊆ S (Q′)

X .
Both inclusions (a) and (b) are obvious, so we fo-

cus on (c) and (d). For (c), let M = Z (L1)(S)Z (l1)(T) ∈
S (Q′)

Z . Set S1 = S ∩ (1 − A) and S2 = S ∩ A, so that M =
Z (L1)(S1)Z (L2)(S2)Z (l1)(T). Now SGT

2 = 0 implies that rows of
S are parity checks of code C2. Since rows of A are codewords
of C2, each row of S2 = S ∩ A contains an even number of 1s.
Thus, S2 = S2GT

R = 0, and so M ∈ G (Q)
Z .

For (d), let M = X (L2)(S) ∈ S (Q)
X . Set S1 = S ∩ A and S2 =

S ∩ (1 − A). Since G1S = 0, columns of S are parity checks
of C1. Columns of A are codewords of C1, and so each column
of S1 contains an even number of 1s, or GRS1 = 0. Similarly,
SHT

R = 0 implies that rows of S are codewords of CR, i.e., all
1s or all 0s. Therefore, row(S1) ⊆ row(A) = C2 and S1HT

2 =
0. This shows M = X (L1)(S1)X (L2)(S2)X (l1)(0) ∈ S (Q′)

X . �
A special case of Theorem 5 is the gauge fix-

ing of the Bacon-Shor code BBS(1) = aBBS(1) (see
Example 1) to the surface code HGP(HR, HR) (see
Example 3 in Appendix A).

Let us conclude this section by briefly discussing the
code HGP(H1, HR) that we just showed is a gauge fixing of
aBBS(A). In particular, we would like to argue that it has
an asymptotic threshold when H1 is chosen appropriately.
Kovalev and Pryadko [26] have shown that any �N, K, D�
quantum code family that is (β, γ)-LDPC for constants β and
γ and has distance scaling at least logarithmically in code
size, i.e., D = 	(log N), possesses an asymptotic threshold.
Say that H1 is a full-rank, (b, c)-LDPC set of parity checks
for code C1 with parameters [n, k, d] and HR represents the
length-n repetition code. Then, HGP(H1, HR) is (γ , γ)-LDPC
for γ = max(b, c) + 2 and has parameters �N, k, d� with N �
2n2. Clearly then, if C1 is an LDPC code family with d
scaling at least logarithmically in n, i.e., d = 	(log n), then

by Ref. [26] the quantum code family HGP(H1, HR) has an
asymptotic threshold.

V. DISCUSSION

We have presented another connection between classical
and quantum error correction and discussed one of its con-
sequences, the construction of Bravyi-Bacon-Shor subsystem
codes that are local in two dimensions and have optimal
parameters. We also showed a somewhat surprising connec-
tion between Bravyi-Bacon-Shor codes and the hypergraph
product codes via the process of gauge fixing.

We briefly point out two somewhat obvious but interest-
ing properties of any gauge fixing Q′ of Bravyi-Bacon-Shor
codes, including, e.g., HGP(H1, HR). First, if the Bravyi-
Bacon-Shor codes are optimal, then Q′ is not local in two di-
mensions. This is necessarily the case because if an �N, K, D�
subsystem code local in two dimensions can be gauge fixed
to a �N, K, D′� subspace code (D′ � D by Lemma 2) local
in two dimensions, then KD′2 = O(N) by [8], implying that
KD < KD2 � O(N), i.e., the subsystem code is suboptimal.
This is also why the two-dimensional “topological” subsystem
codes (see, e.g., Refs. [27–31]), which are defined by having
stabilizer groups that are local in two dimensions, cannot
actually compete, despite being subsystem codes, for the
KD = O(N) bound.

Second, Q′ does not have constant rate. Indeed, simply
rearranging the subsystem bound we get K/N = O(1/D),
which vanishes provided the code family has growing dis-
tance. Thus, it is impossible to gauge fix Bravyi-Bacon-Shor
codes to hypergraph product codes with constant rate, which
is interesting because obtaining constant rate quantum codes
is one of the most notable properties of the general-case
hypergraph product construction [7]. Instead, we necessarily
ended up gauge fixing to a special case HGP(H1, HR) without
constant rate.

052333-11

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

On the other hand, one of the interesting consequences
of our results is the ability to gauge switch between several
hypergraph product codes. For example, one can switch be-
tween HGP(HR, H2) and HGP(H1, HR) for any H1 and H2

or between HGP(H1, HR) and HGP(H ′
1, HR), where H1 and

H ′
1 are different parity-check matrices for the same classical

code. In the process, encoded data is protected by the under-
lying augmented Bravyi-Bacon-Shor code (see Theorem 5),
which has the same code distance as the hypergraph product
codes in question although it lacks an asymptotic threshold.
Nonetheless, generalizing this gauge-switching idea to more
hypergraph product codes would be an interesting extension
of our work here.

ACKNOWLEDGMENTS

The author gratefully acknowledges helpful discussions
with Sergey Bravyi, Ken Brown, Chris Chamberland, and
Andrew Cross. Partial support for this project was generously
provided by the IBM Research Frontiers Institute.

APPENDIX A: HYPERGRAPH PRODUCT CODES

In this Appendix, we review the original presentation of
hypergraph product codes [7] and verify that our description
in Sec. II E is equivalent. We also review the derivation of the
hypergraph product code parameters. Mainly, our arguments
are similar to those in Refs. [7] and [24].

Recall that the input to the construction is two parity-

check matrices H1 ∈ F
nT

1 ×n1

2 and H2 ∈ F
nT

2 ×n2

2 . These have
corresponding full-rank generating matrices G1 ∈ Fk1×n1

2 and
G2 ∈ Fk2×n2

2 for the classical codes C1 and C2. Without loss
of generality, we assume k1, k2 > 0. Additionally, there are

full-rank generating matrices F1 ∈ F
kT

1 ×nT
1

2 and F2 ∈ F
kT

2 ×nT
2

2 for
the transpose classical codes CT

1 and CT
2 .

In the original description, the supports of Pauli operators
are specified by vectors from FN

2 with N = n1n2 + nT
1 nT

2 .
Generating sets of X - and Z-type stabilizers are presented as
rows of matrices:

SX = (
H1 ⊗ In2 InT

1
⊗ HT

2

)
, (A1)

SZ = (
In1 ⊗ H2 HT

1 ⊗ InT
2

)
, (A2)

where In is the n × n identity matrix. That is, if X �v = ∏N
i=1 X �vi

i
and we wanted to write out the entire sets of Pauli stabilizers,
we would have

SX = {X �v : �v ∈ row(SX)}, (A3)

SZ = {Z�u : �u ∈ row(SZ)}. (A4)

It is easy to see that these stabilizers commute, because
SX ST

Z = 0. Moreover, from the generating sets in Eqs. (A1)
and (A2), we note that using classical LDPC parity checks H1

and H2 leads to a quantum LDPC code with the appropriate
parameters from Eqs. (58) and (59).

We can calculate the number of encoded qubits by finding
the number of independent stabilizer generators rank(SX) +
rank(SZ) and subtracting that from N . Basic linear algebra

says

rank(SX) = rank
(
ST

X

) = nT
1 n2 − dim

[
ker

(
ST

X

)]
. (A5)

Since

ST
X =

(
H1 ⊗ In2

InT
1

⊗ HT
2

)
(A6)

has kernel

ker
(
ST

X

) = {
x ⊗ y : x ∈ C1, y ∈ CT

2

}
, (A7)

we see that dim[ker(ST
X)] = dim(C1) dim(CT

2) = k1kT
2 . A sim-

ilar argument holds for SZ . Thus, we have

rank(SX) = nT
1 n2 − k1kT

2 , (A8)

rank(SZ) = n1nT
2 − kT

1 k2. (A9)

Accordingly, the hypergraph product code encodes

K = N − (
nT

1 n2 − k1kT
2

) − (
n1nT

2 − kT
1 k2

)
(A10)

= (
n1 − nT

1

)(
n2 − nT

2

) + k1kT
2 + kT

1 k2 (A11)

= (
k1 − kT

1

)(
k2 − kT

2

) + k1kT
2 + kT

1 k2 (A12)

= k1k2 + kT
1 kT

2 (A13)

qubits. For the third equality, we used Eq. (3). This verifies
Eq. (56).

Let us create a generating set of logical operators for these
qubits. We notice that

LX =

⎛
⎜⎝

H1 ⊗ In2 InT
1

⊗ HT
2

In1 ⊗ G2 0

0 F1 ⊗ InT
2

⎞
⎟⎠, (A14)

LZ =

⎛
⎜⎝

In1 ⊗ H2 HT
1 ⊗ InT

2

G1 ⊗ In2 0

0 InT
1

⊗ F2

⎞
⎟⎠, (A15)

do in fact provide sets of logical operators because SZLT
X = 0

and SX LT
Z = 0 demonstrate the appropriate commutation.

To show that these are indeed complete sets of logical
operators, we can calculate the rank of C = LX LT

Z , which
encodes how the X - and Z-type logical operators commute.
There should be K independent, anticommuting pairs of logi-
cal operators, so the rank of C should be K . Since

C =

⎛
⎜⎝

0 0 0

0 GT
1 ⊗ G2 0

0 0 F1 ⊗ F T
2

⎞
⎟⎠, (A16)

we do have

rank(C) = rank(G1)rank(G2) + rank(F1)rank(F2) (A17)

= k1k2 + kT
1 kT

2 = K. (A18)

We also point out that the last rows of LX and LZ (those
involving F1 and F2) only contain nontrivial logical operators
if both F1 and F2 are nontrivial matrices (i.e. both kT

1 and kT
2

are greater than zero).
Now consider “reshaping” [24] the vectors that represent

Paulis into matrices. Let êi be the unit vector (êi) j = δi j . A

052333-12

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

vector �s ∈ Fn1n2
2 can be decomposed as

�s =
n1∑

i=1

n2∑
j=1

Si j êi ⊗ ê j, (A19)

where S is the matrix corresponding to �s and the support of
Pauli X�s once we have placed it on the n1 × n2 lattice L. We
previously wrote this Pauli as X (L)(S). Likewise, vectors �t ∈
F

nT
1 nT

2
2 are reshaped to represent Paulis on the nT

1 × nT
2 lattice l .

Linear transformations of �s correspond to matrix multipli-
cations on S. By Eq. (A19),

(U ⊗ V)�s �−→ USV T . (A20)

Likewise, with transformations on �t .
At this point, we can justify our presentation of the stabi-

lizers and logical operators, Eqs. (49) and (50) and Eqs. (53)
and (54) in the main text. We can characterize elements of
row(SX) by the fact that they commute with all rows of LZ :(�s

�t
)

∈ row(SX) iff LZ

(�s
�t
)

= �0. (A21)

Reshaping the linear equations on the right using Eq. (A20)
gives the equations

SHT
2 = HT

1 T, G1S = 0, T F T
2 = 0, (A22)

which are exactly the conditions on S and T in S (hgp)
X , Eq. (49).

Similarly, elements of row(SZ) are characterized by com-
mutation with rows of LX , elements of row(LX) by commu-
tation with rows of SZ , and elements of row(LZ) by commu-
tation with rows of SX . After reshaping the appropriate linear
equations, one can confirm Eqs. (50), (53), and (54).

Finally, we prove that the hypergraph product code has the
claimed distance from Eq. (57). We begin by bounding the
weight of nontrivial X -type logical operators, those elements
of L(hgp)

X − S (hgp)
X . If M = X (L)(S)X (l)(T), then SHT

2 = HT
1 T

and there is an M ′ ∈ L(hgp)
Z − S (hgp)

Z that anticommutes with
M. In fact, given the basis in LZ , we know something about
the form of M ′—it corresponds either to a row of G1 ⊗ In2

(case (1)) or, if kT
1 , kT

2 > 0, to a row of InT
1

⊗ F2 (case (2)).
In case 1, we can take M ′ = X (L)(S′) where S′ is an outer

product S′ = �c êT
j for some �c ∈ C1 and some j. As M and M ′

anticommute,

1 = tr(ST S′) = êT
j ST �c (A23)

and clearly ST �c �= �0. Now, H2ST �c = T T H1�c = 0 and thus ST �c
is a nonzero vector in ker(H2) = C2. Therefore, |M| � |S| =
|ST | � |ST �c| � d2.

In case (2), which is relevant only if kT
1 , kT

2 > 0, the
argument is analogous. Take M ′ = X (l)(T ′), where T ′ is the
outer product T ′ = êi

�bT for some �b ∈ CT
2 and some i. As M

and M ′ anticommute,

1 = tr(T T T ′) = �bT T T êi (A24)

and clearly �bT T T �= �0. Also, �bT T T H1 = �bT H2ST = �0T and so
T �b is a nonzero vector in ker(HT

1) = CT
1 . Thus, |M| � |T | �

|T �b| � dT
1 .

FIG. 6. The surface code (a) with boundary and (b) on the torus
drawn on the L (filled qubits) and l (unfilled qubits) lattices of the
hypergraph product. Some example X - (red, solid) and Z-type (blue,
dashed) stabilizers are shown. These example stabilizers correspond
to select rows of the matrices SX and SZ of the appropriate hypergraph
products.

From these two cases, we conclude

|M| �
{

d2, kT
1 = 0 or kT

2 = 0
min

(
dT

1 , d2
)
, otherwise

. (A25)

If we go through the analogous argument for nontrivial Z-type
logical operators, we would find their weight bounded below
by d1 in the case that one of CT

1 or CT
2 is trivial and min(d1, dT

2)
otherwise. Thus, the code distance of the hypergraph product
code is

D �
{

min(d1, d2), kT
1 = 0 or kT

2 = 0
min

(
d1, d2, dT

1 , dT
2

)
, otherwise

. (A26)

By looking at LX and LZ , Eqs. (A25) and (A26), we see that
there are indeed logical operators saturating this inequality,
and so we have verified Eq. (57).

We conclude this Appendix by reviewing the surface code
as a special case of the hypergraph product. In fact, there are
two versions of the surface code that can be made: the one
with boundary [10] and the one on a torus [11].

Example 3. The surface code with boundary [10] is an
�n2 + (n − 1)2, 1, n� code. These parameters match those of
HGP(HR, HR). Indeed, we draw some of the stabilizers indi-
cated by rows of SX and SZ in Fig. 6(a), in which one can
recognize the surface code.

Example 4. The surface code on a torus [11] is a
�2n2, 2, n� code, matching the parameters of HGP(H ′

R, H ′
R)

for

H ′
R =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0 0 0

0 1 1 0 . . . 0 0

. . .
. . .

. . .

0 0 0 . . . 0 1 1

1 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A27)

This is an overcomplete parity check matrix for the [n, 1, n]
classical repetition code—the sum of all rows is �0. Notice the
transpose code is also the [n, 1, n] repetition code. We draw
some of the stabilizers corresponding to rows of SX and SZ in
Fig. 6(b) in which one can recognize the surface code on the
torus.

052333-13

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

APPENDIX B: EXPANDER CODES

Constructions of good families of classical LDPC codes
based on expander graphs are known. In this section, we
review the segment of expander theory that is needed to prove
the goodness of these codes and therefore the goodness of
Bravyi-Bacon-Shor codes constructed from them. All of this
section is classical and we expect to do no more than inform
any uninitiated readers of what is already known.

1. Construction

The objects used to construct good classical LDPC codes
are called lossless expanders [32], though we will refer to
them simply as expanders. Mathematically, these expanders
are undirected, bipartite graphs, which we will represent by a
tuple (L, R, E) of left nodes, right nodes, and edges. A node
v has a degree, the number of edges incident to it, which we
denote deg v. Given a set of nodes V ⊆ L ∪ R, we can talk
about its set of neighbors

�(V) = {u : ∃v ∈ V such that (u, v) ∈ E}. (B1)

Expanders attempt to maximize the size of �(S) for all S ⊆ L
sufficiently small.

Definition 5 (Expanders). A (n, m, b, δ, ε) expander is a
bipartite graph (L, R, E) satisfying

Size: |L| = n, |R| = m,
Degree: ∀v ∈ L, deg(v) = b, ∀w ∈ R, deg(w) = c =

nb/m,
Expansion: ∀S ⊆ L such that |S|� (1 − δ)n, (1 − ε)b|S|

� |�(S)| � b|S|.
In particular, expanders with smaller δ and ε are better than

those with larger values. The expansion property is trivial if
δ > 1 − 2/n, for instance. Moreover, if δ � 1 − 2/n and ε =
0, only the graph with m = nb right nodes and n connected
components suffices to meet the definition. Finally, b = 1 or
c = nb/m = 1 leads to similar trivialities. Thus, we take δ �
1 − 2/n, ε > 0, and b, c > 1 throughout.

From the definition, one can prove other facts about ex-
panders. One very useful fact for us concerns the size of the
set of “unique” neighbors of V ⊆ L,

�1(V) = {u ∈ �(V) : |�({u}) ∩ V | = 1}. (B2)

Elements of �1(V) are the elements of �(V) that have just one
neighbor in V .

Lemma 3. Suppose the bipartite graph (L, R, E) is an
(n, m, b, δ, ε) expander and S ⊆ L satisfies |S| � (1 − δ)n.
Then,

�1(S) � (1 − 2ε)b|S|. (B3)

Proof. The number of edges leaving S is b|S|. This is the
same as the number of edges entering S from �(S). The nodes
in �1(S) ⊆ �(S) have exactly one such edge, while those in
��2(S) = �(S) − �1(S) have at least two such edges. Thus,

b|S| � 2|��2(S)| + |�1(S)| (B4)

= |��2(S)| + |�(S)| (B5)

= 2|�(S)| − |�1(S)| (B6)

� 2(1 − ε)b|S| − |�1(S)|, (B7)

where the last inequality uses the expansion property. �

To create a classical code from an expander, we will use
(the simplest version of) Tanner’s construction [33]. This
prescribes that we view the left nodes L as a set of code bits
and each right node as specifying a parity check on the bits
that are its neighbors. More precisely, define the incidence
matrix ∈ F|L|×|R|

2 of a bipartite graph G = (L, R, E) as

uv =
{

0, (u, v) �∈ E

1, (u, v) ∈ E
. (B8)

Then, H = T takes the role of a parity check matrix to define
the Tanner code of G, CG = ker(H).

If G is an expander, we call CG an expander code. In this
case, we can place useful bounds on its code parameters.

Lemma 4. Suppose G = (L, R, E) is an (n, m, b, δ, ε) ex-
pander with ε < 1/2. Then CG is a [n, k, d] code with k �
n − m and d � 2(1 − ε)�(1 − δ)n�.

Proof. The parity check matrix H of CG has m rows, and
thus its kernel is at least n − m dimensional. So, k � n − m.

Let �s ∈ Fn
2 be a bit string and S = {v : �sv = 1} ⊆ L be its

support. We show that if |�s| = |S| < 2(1 − ε)�(1 − δ)n�, then
there must be a parity check unsatisfied by �s, and so �s is not a
codeword. To do this, it is sufficient to show that �1(S) is not
empty—any w ∈ �1(S) cannot be a satisfied check as only a
single bit in the check is 1.

Suppose first that |S| � (1 − δ)n. Then by Lemma 3, we
have |�1(S)| � (1 − 2ε)b|S| > 0, using the assumption ε <

1/2.
Now suppose (1 − δ)n < |S| < 2(1 − ε)�, where � =

�(1 − δ)n�. Let T ⊆ S satisfy |T | = �. So,

�1(T) � (1 − 2ε)b� (B9)

by Lemma 3. At the same time |S − T | = |S| − |T | <

(1 − 2ε)� < � implies

|�(S − T)| < (1 − 2ε)b�, (B10)

because nodes in S − T are degree b. A check w is in �1(S)
if w ∈ �1(T) and w �∈ �(S − T). Since |�1(T)| > |�(S − T)|
by Eqs. (B9) and (B10), we have |�1(S)| > 0. �

It is worth noting when a family of expander codes [n, k, d]
is good, i.e., k = �(n) and d = �(n). Using Lemma 4, it is
sufficient that ε, δ are constant (independent of n) and that
m/n = b/c is constant. It is typical to construct families in
which b (the degree of nodes on the left) and c (the degree of
nodes on the right) are both constant individually. This makes
the code a low-density parity check code and also enables the
efficient decoder discussed in the next section.

Lemma 4 assumes ε < 1/2, which means it is only suf-
ficient for analyzing expander codes constructed from ex-
panders with sufficiently large expansion. For a long time,
although expanders of arbitrarily large size with ε < 1/2 were
known to exist by counting, it was not known how to construct
them. However, the zigzag construction [32] eventually solved
this problem. For our purposes, a suitable distillation of their
result is the following.

Theorem 6 (Hoory et al. [34], Theroem 10.4). For every
ε > 0 and α ∈ (0, 1), there exist constants γ , σ and an explicit
family of (n, m, b, δ, ε) expanders with m = αn,

b �
(

1

εα

)γ

, (B11)

δ � 1 − σ (εα)γ+1. (B12)

052333-14

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

Using Lemma 4, the corresponding expander codes have
parameters [n, k, d] with

k � (1 − α)n, (B13)

d � 2(1 − ε)�σ (εα)γ+1n�. (B14)

Theorem 6 is a theoretically important result—it provides a
construction of a good family of classical codes, and moreover
the parity checks involve only constant numbers of bits. How-
ever, the constants involved may not be the most practical,
and random instances of bipartite graphs, like those analyzed
in the Appendix of Ref. [14] or in Theorem 8.7 of Ref. [35],
may be less cumbersome to work with.

2. Decoding

Sipser and Spielman [14] analyzed a decoder for classical
expander codes that operates in greedy fashion by flipping
any bits that overall reduce the number of unsatisfied parity
checks. We will refer to this as the flip decoder. They show
that for expanders with sufficiently large expansion (ε < 1/4)
the flip decoder corrects any number of errors within a con-
stant fraction of the code distance and does so in time pro-
portional to the code size, i.e., in linear time. Later, Spielman
[15] analyzed the flip decoder in the scenario that the parity
checks are noisy in addition to the bits. It is this latter scenario
that is most relevant to the quantum case where we may
only noisily measure parity checks and not the data qubits
themselves. We provide a somewhat generalized presentation
of Spielman’s analysis here. In particular, we show that for
expanders with larger expansion (smaller ε) the flip decoder
deals with measurement errors better.

Let êi denote the vector with elements (êi) j = δi j . Here, it
represents a flip of the ith bit. The flip decoder is defined as
follows.

Definition 6 (Sipser-Spielman flip decoder [14,15]). Given
an expander code C with parity check matrix H ∈ Fm×n

2 and
a vector indicating unsatisfied checks �u ∈ Fm

2 , return a set of
corrections �e′ ∈ Fn

2 by doing the following:
(1) Initialize �e′ = 0n and �u′ = �u.
(2) Repeat:

(a) Find i ∈ {1, 2 . . . , n} such that |�u′| > |Hêi − �u′|. If
none exists, return �e′.

(b) Let �e′ ← �e′ + êi and �u′ ← Hêi − �u′.
Steps (2a) and (2b) constitute a decoding “round.”

Since the number of unsatisfied checks |�u′| decreases each
round and there are O(n) checks in a [n, k, d] expander code,
it is somewhat reasonable to believe that this decoder takes
linear time.

Lemma 5 (Sipser and Spielman [14]). Let C be an [n, k, d]
expander code based on an (n, m, b, δ, ε) expander graph with
b and m/n constant. The flip decoder for C runs in time O(n).

Proof. Proving this simply requires a suitable data struc-
ture. We assume that the adjacency matrix of the expander (or
equivalently the check matrix of the code) is given in a sparse
matrix representation, so it takes constant time to obtain a list
of neighbors of a bit or check in the expander graph.

Recall �u ∈ Fm
2 is given as the value of the m parity checks.

At the beginning of the decoding, we calculate for each bit
i the number vi of unsatisfied checks that it is involved in.

This takes O(bn) = O(n) total time. We construct b + 1 linked
lists, one for each possible value of vi, and place each i in
the corresponding list. That is, for each i ∈ {1, 2, . . . , n}, we
store {i, vi, pi, ni}, where pi, ni ∈ {1, 2, . . . , n} point to the
previous and next elements in the linked list (or are null if i
is at the head or tail). Variables hv ∈ {1, 2, . . . , n} for every
v ∈ {0, 1, . . . , b} point to the linked list heads (or null if the
list is empty). The initial setup of pi, ni, and hv values takes
O(n) time. It is also important to note that removing from and
attaching to the front of linked lists take O(1) time.

The main body of the flip decoding algorithm is the itera-
tion in step 2 of Definition 6. Since the number of unsatisfied
clauses strictly decreases during each round, there are at most
O(m) = O(n) rounds. Moreover, each round can be made to
take constant time, as we now show.

Every round the algorithm begins by finding the non-null
hv with largest v. This takes O(b) time. If 0 � v � b/2, then
there is no bit to flip to reduce the number of unsatisfied
clauses and the algorithm returns. If v > b/2, then flip bit
hv . This causes b = O(1) checks j to flip and we update the
values u j accordingly. Within each of the flipped checks are
c = O(1) bits i which now participate in either one more
or one fewer unsatisfied check. The values vi should be
updated accordingly and the linked list element {i, vi, pi, ni}
removed from its current linked list and inserted at the head
of list hvi , which takes O(1) time. Thus, the entire round
takes O(1) time. �

Presently, we concern ourselves with how well the decoder
corrects errors. The main result is that the number of errors on
the data can be reduced to a constant fraction of the number
of errors on the checks.

Theorem 7 (Spielman [15]). Let C be an expander code
constructed from a (n, m, b, δ, ε) expander with ε < 1

4 − r
b for

1 � r < b/4. Given input �u = H (�s0 + �e) + �f for �s0 ∈ C and
provided

|�e| + 2

b
| �f | � (1 − 2ε)�(1 − δ)n�, (B15)

the noisy flip decoder returns �e ′ such that |�e ′ − �e| < | �f |/r.
Proof. Let E = {i : �ei + �e ′

i = 1} be the set of corrupted
message bits and U = { j : �u ′

j = 1} be the set of unsatisfied
checks at any point during execution of the algorithm. Let S =
�(E) − U be the satisfied checks in the neighborhood of E .
Provided |E | = |�e ′ − �e| � (1 − δ)n, the expansion property
implies

|U | + |S| � |�(E)| � (1 − ε)b|E |. (B16)

This gives a lower bound on |U | and |S|.
We can get an upper bound on these by a counting ar-

gument. Imagine we add m additional nodes to the left side
of the bipartite expander graph and connect these new nodes
pairwise to the corresponding m check nodes on the right side.
These new nodes represent the presence (if set to 1) or absence
(if set to 0) of an error on the check bit. So, of these new
nodes, | �f | are set to 1, those in the set F = { j + n : �f j = 1}.
Now every check in U is connected to at least one node in
E ∪ F and every check in S is connected to at least two nodes
in E ∪ F . Since there are b|E | + | �f | edges leaving E ∪ F , we

052333-15

THEODORE J. YODER PHYSICAL REVIEW A 99, 052333 (2019)

have

b|E | + | �f | � |U | + 2|S|. (B17)

We combine Eqs. (B16) and (B17) to get

(1 − ε)b|E | − |U | � |S| � 1
2 (b|E | + | �f | − |U |), (B18)

or, removing |S| entirely and using ε < 1
4 − r

b ,(
1
2 b + 2r

)|E | < (1 − 2ε)b|E | � | �f | + |U |. (B19)

Thus, if | �f |/r � |E | � (1 − δ)n, then

|U | > 1
2 b|E | + | �f |. (B20)

If ux = |�(x) ∩ U | for x ∈ E is the number of unsatisfied
checks that x participates in, then clearly

| �f | +
∑
x∈E

ux � |U | >
1

2
b|E | + | �f |, (B21)

or, simply,

1

|E |
∑
x∈E

ux >
1

2
b, (B22)

implying that there exists y ∈ E such that uy > b/2. Thus,
there is always a bit to flip in step 2a provided | �f |/r � |E | �
(1 − δ)n.

We complete the proof by showing that |E | � (1 − δ)n
always holds and therefore the flip algorithm only finishes if
|E | = |�e ′ − �e| < | �f |/r.

The noisy flip algorithm flips one bit at a time and |E | <

�(1 − δ)n� at the beginning of the algorithm, so if |E | > (1 −
δ)n at some time, then there is a prior time at which |E | =
�(1 − δ)n�. Then, we can apply Eq. (B19) to find

|U | � (1 − 2ε)b�(1 − δ)n� − | �f |. (B23)

Let U0 denote U at the very start of the algorithm (i.e., when
�e ′ = 0n and |E | = |�e|). By Eq. (B17), we see

|U0| � b|�e| + | �f |. (B24)

Moreover, the intermediate rounds of the algorithm always
decrease the size of U . So, |U0| > |U | and hence

b|�e| + 2| �f | > (1 − 2ε)b�(1 − δ)n�. (B25)

However, this is in contradiction with Eq. (B15). �
We briefly remark that although (1 − 2ε)�(1 − δ)n� < d/2

by Lemma 4, it is not much less than the lower bound on
d/2 from that lemma. The difference is the factor (1 − 2ε)/
(1 − ε), which is constant and near unity when ε is constant
and small. Also, since |�e| + | �f | � |�e| + 2

b | �f |, the assumption

|�e| + | �f | � (1 − 2ε)�(1 − δ)n� (B26)

is a weaker replacement for Eq. (B15), but one that makes the
total number of errors |�e| + | �f | more prominent.

This theorem implies that errors can be kept at a manage-
able level over time. A simple model of data storage is one in
which we periodically error correct based on noisy readout of
the parity checks, and noise on the data occurs in between
these corrections. Suppose at most |�e| errors occur on the
data between corrections and during correction at most | �f |
parity checks are misread. Then, after correction, Theorem 7
guarantees at most | �f |/r errors remaining on the data. These
errors combine with the |�e| data errors in the next step. Thus,
a steady state is achieved—following any correction the data
has at most | �f |/r errors provided that

|�e| + 1

r
| �f | + 2

b
| �f | � (1 − 2ε)�(1 − δ)n�. (B27)

It is sufficient (though weaker) for

|�e| + 2| �f | � (1 − 2ε)�(1 − δ)n�. (B28)

In this classical scenario, assuming constant error rates, |�e|
and | �f | both scale linearly with n and so this condition is
realistically achievable, even asymptotically.

APPENDIX C: PROOF OF LEMMA 2

A subsystem code’s distance is the minimum weight of a
dressed logical operator. Thus, to show D(G ′) � D(G), we just
need to show L̂(G ′) � L̂(G). As G ′ is a gauge fixing of G, we
have that S (G) � S (G ′) � G ′ � G and K (G) = K (G ′).

Notice first that L(G) � L(G ′) because anything that com-
mutes with all elements of G also commutes with all elements
of G ′ � G. Second, elements of S (G ′) − S (G) are not in L(G),
and so the quotient groups L(G)/S (G) and L(G)/S (G ′) are
isomorphic. Thus, combine these two observations to get

L(G)/S (G) = L(G)/S (G ′) � L(G ′)/S (G ′). (C1)

However, K (G) = K (G ′) dictates that |L(G)/S (G)| =
|L(G ′)/G ′| so

L(G)/S (G) = L(G ′)/S (G ′). (C2)

Because S (G) � G and S (G ′) � G ′,

L̂(G) = G L(G) = G(L(G)/S (G)), (C3)

L̂(G ′) = G ′ L(G ′) = G ′(L(G ′)/S (G ′)). (C4)

Using Eq. (C2) and the fact that G ′ � G, we get L̂(G ′) �
L̂(G), completing the proof. �

[1] A. R. Calderbank and P. W. Shor, Good quantum
error-correcting codes exist, Phys. Rev. A 54, 1098
(1996).

[2] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[3] A. Ashikhmin, S. Litsyn, and M. A. Tsfasman, Asymptotically
good quantum codes, Phys. Rev. A 63, 032311 (2001).

[4] H. Chen, Some good quantum error-correcting codes from
algebraic-geometric codes, IEEE Trans. Inf. Theory 47, 2059
(2001).

052333-16

https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevA.63.032311
https://doi.org/10.1103/PhysRevA.63.032311
https://doi.org/10.1103/PhysRevA.63.032311
https://doi.org/10.1103/PhysRevA.63.032311
https://doi.org/10.1109/18.930942
https://doi.org/10.1109/18.930942
https://doi.org/10.1109/18.930942
https://doi.org/10.1109/18.930942

OPTIMAL QUANTUM SUBSYSTEM CODES IN TWO … PHYSICAL REVIEW A 99, 052333 (2019)

[5] R. Gallager, Low-density parity-check codes, IRE Trans. Inf.
Theory 8, 21 (1962).

[6] D. J. C. MacKay, G. Mitchison, and P. L. McFadden, Sparse-
graph codes for quantum error correction, IEEE Trans. Inf.
Theory 50, 2315 (2004).

[7] J.-P. Tillich and G. Zémor, Quantum LDPC codes with positive
rate and minimum distance proportional to the square root of
the block length, IEEE Trans. Inf. Theory 60, 1193 (2014).

[8] S. Bravyi, D. Poulin, and B. Terhal, Tradeoffs for Reliable
Quantum Information Storage in 2D Systems, Phys. Rev. Lett.
104, 050503 (2010).

[9] S. Bravyi, Subsystem codes with spatially local generators,
Phys. Rev. A 83, 012320 (2011).

[10] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with
boundary, arXiv:quant-ph/9811052.

[11] A. Y. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[12] D. Bacon, Operator quantum error-correcting subsystems for
self-correcting quantum memories, Phys. Rev. A 73, 012340
(2006).

[13] P. Aliferis and A. W. Cross, Subsystem Fault Tolerance with the
Bacon-Shor Code, Phys. Rev. Lett. 98, 220502 (2007).

[14] M. Sipser and D. A. Spielman, Expander codes, IEEE Trans.
Inf. Theory 42, 1710 (1996).

[15] D. A. Spielman, Linear-time encodable and decodable error-
correcting codes, IEEE Trans. Inf. Theory 42, 1723 (1996).

[16] A. Leverrier, J.-P. Tillich, and G. Zémor, Quantum expander
codes, in Proceedings of the 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science (FOCS) (IEEE,
Piscataway, NJ, 2015), pp. 810–824.

[17] O. Fawzi, A. Grospellier, and A. Leverrier, Efficient decoding
of random errors for quantum expander codes, in Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (ACM Press, New York, 2018), p. 521.

[18] O. Fawzi, A. Grospellier, and A. Leverrier, Constant over-
head quantum fault-tolerance with quantum expander codes,
in Proceedings of the 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS) (IEEE, Piscataway,
NJ, 2018), p. 743.

[19] A. Grospellier and A. Krishna, Numerical study of hypergraph
product codes, arXiv:1810.03681.

[20] M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, 2-D
compass codes, arXiv:1809.01193.

[21] D. Poulin, Stabilizer Formalism for Operator Quantum Error
Correction, Phys. Rev. Lett. 95, 230504 (2005).

[22] D. Gottesman, Stabilizer codes and quantum error correction,
Ph.D. thesis, California Institute of Technology, Pasadena, CA,
1997.

[23] M. M. Wilde, Logical operators of quantum codes, Phys. Rev.
A 79, 062322 (2009).

[24] E. Campbell, A theory of single-shot error correction for adver-
sarial noise, Quantum Sci. Technol. 4, 025006 (2019).

[25] S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional
self-correcting quantum memory based on stabilizer codes,
New J. Phys. 11, 043029 (2009).

[26] A. A. Kovalev and L. P. Pryadko, Fault tolerance of quantum
low-density parity check codes with sublinear distance scaling,
Phys. Rev. A 87, 020304(R) (2013).

[27] H. Bombín, Topological subsystem codes, Phys. Rev. A 81,
032301 (2010).

[28] M. Suchara, S. Bravyi, and B. Terhal, Constructions and noise
threshold of topological subsystem codes, J. Phys. A: Math.
Theor. 44, 155301 (2011).

[29] R. S. Andrist, H. Bombin, H. G. Katzgraber, and M. A. Martin-
Delgado, Optimal error correction in topological subsystem
codes, Phys. Rev. A 85, 050302(R) (2012).

[30] P. Sarvepalli and K. R Brown, Topological subsystem codes
from graphs and hypergraphs, Phys. Rev. A 86, 042336
(2012).

[31] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,
Subsystem surface codes with three-qubit check operators,
Quantum Inf. Comput. 13, 963 (2013).

[32] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, Ran-
domness conductors and constant-degree lossless expanders, in
Proceedings of the Thirty-fourth Annual ACM Symposium on
Theory of Computing (ACM Press, New York, 2002), p. 659.

[33] R. Tanner, A recursive approach to low complexity codes,
IEEE Trans. Inf. Theory 27, 533 (1981).

[34] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and
their applications, Bull. Am. Math. Soc. 43, 439 (2006).

[35] T. Richardson and R. Urbanke, Modern Coding Theory
(Cambridge University Press, Cambridge, UK, 2008).

052333-17

https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevA.83.012320
http://arxiv.org/abs/arXiv:quant-ph/9811052
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevLett.98.220502
https://doi.org/10.1103/PhysRevLett.98.220502
https://doi.org/10.1103/PhysRevLett.98.220502
https://doi.org/10.1103/PhysRevLett.98.220502
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/18.556668
http://arxiv.org/abs/arXiv:1810.03681
http://arxiv.org/abs/arXiv:1809.01193
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevA.79.062322
https://doi.org/10.1103/PhysRevA.79.062322
https://doi.org/10.1103/PhysRevA.79.062322
https://doi.org/10.1103/PhysRevA.79.062322
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.1088/1367-2630/11/4/043029
https://doi.org/10.1088/1367-2630/11/4/043029
https://doi.org/10.1088/1367-2630/11/4/043029
https://doi.org/10.1088/1367-2630/11/4/043029
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.87.020304
https://doi.org/10.1103/PhysRevA.81.032301
https://doi.org/10.1103/PhysRevA.81.032301
https://doi.org/10.1103/PhysRevA.81.032301
https://doi.org/10.1103/PhysRevA.81.032301
https://doi.org/10.1088/1751-8113/44/15/155301
https://doi.org/10.1088/1751-8113/44/15/155301
https://doi.org/10.1088/1751-8113/44/15/155301
https://doi.org/10.1088/1751-8113/44/15/155301
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.85.050302
https://doi.org/10.1103/PhysRevA.86.042336
https://doi.org/10.1103/PhysRevA.86.042336
https://doi.org/10.1103/PhysRevA.86.042336
https://doi.org/10.1103/PhysRevA.86.042336
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8

