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Ultrafast variational simulation of nontrivial quantum states with long-range interactions
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State preparation protocols ideally require as minimal operations as possible in order to be implemented in
near-term, potentially noisy quantum devices. Motivated by long-range interactions (LRIs) intrinsic to many
present-day experimental platforms (trapped ions, Rydberg atom arrays, etc.), we investigate the efficacy of
variationally simulating nontrivial quantum states using the variational quantum-classical simulation (VQCS)
protocol explored recently [W. W. Ho and T. H. Hsieh, SciPost Phys. 6, 29 (2019)], in the presence of LRIs. We
show that this approach leads to extremely efficient state preparation: for example, Greenberger-Horne-Zeilinger
(GHZ) states can be prepared with O(1) iterations of the protocol, and a quantum critical point of the long-range
transverse-field Ising model (TFIM) can be prepared with >99% fidelity on a 100-qubit system with only one
iteration. Furthermore, we show that VQCS with LRIs is a promising route for exploring generic points in the
phase diagram of the long-range TFIM. Our approach thus provides concrete, ultrafast protocols for quantum
simulators equipped with long-range interactions.
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I. INTRODUCTION

Rapid experimental progress in the control of synthetic
quantum systems, such as trapped ions [1–3], ultracold atoms
[4–6], and superconducting qubits [7,8], has ushered in the
era of so-called noisy intermediate-scale quantum (NISQ)
technology [9], where quantum devices of up to 50–100
qubits can be coherently manipulated. This has unlocked the
potential for quantum computation [8,10], quantum sensing
and metrology [11–14], and also the simulation of quantum
many-body phases of matter [4,15–22]. Such tasks require
the ability to create, with good fidelities, quantum states
containing nontrivial entanglement, such as the Greenberger-
Horne-Zeilinger (GHZ) state, quantum critical states, and
topologically ordered states. A central challenge is therefore
finding efficient state preparation protocols that can be imple-
mented in these noisy, imperfect quantum platforms: ideally,
protocols should have as minimal a circuit depth as possible
to be realistically implemented, in order to suppress the errors
that accumulate during runtime.

Recently, the variational quantum-classical simulation
(VQCS) protocol was proposed as one such candidate [23].
In short, the VQCS protocol is a hybrid quantum-classical
bang-bang protocol which specifically incorporates feedback
and is motivated by the quantum approximate optimization
algorithm (QAOA) [24,25] as well as various variational
quantum eigensolvers [26,27]. It works as follows: After
initializing in an easily prepared state, a set of angles is fed
into the quantum simulator, which specifies the durations for
which time evolution between two different Hamiltonians is
alternated between. Measurements are then performed to esti-
mate the energy of the resulting state with respect to a target
(generally quantum) Hamiltonian. The energy cost function
is subsequently optimized on a classical computer to yield a
new set of angles, and the process is iterated until the cost

function is minimized. With spatially local Hamiltonians and
finite evolution times, the VQCS has been shown to be able to
transform trivial product states into GHZ, quantum critical,
and topologically ordered states, with perfect fidelity and
iteration depths that scale as O(N ), where N is the system’s
linear dimension [23]. Conceptually, the VQCS is an example
of a “shortcut to adiabaticity,” a direction in quantum state
control that is actively being researched [28–32], as its oper-
ating principle is fundamentally different from conventional
adiabatic preparation schemes [33–38].

While an iteration depth scaling as O(N ) is efficient from
a theoretical standpoint—there exist fundamental speed limi-
tations imposed by Lieb-Robinson bounds [39–42] constrain-
ing unitary circuits utilizing spatially local Hamiltonians—it
still presents challenges experimentally, especially in terms
of scalability to a large number of qubits in near-term de-
vices. This motivates the search for alternative ultrafast pro-
tocols. A possible way to overcome these speed limitations
is to utilize long-range interactions (LRIs) that are naturally
present in various experimental quantum simulator platforms,
e.g., trapped-ion systems (Coulomb interactions) and Rydberg
atom arrays (van der Waals interactions) [2,6,43]. With LRIs,
entanglement and correlations can be built up between distant
parts of the system in finite time [44–46], potentially (though
not obviously) allowing for a quick preparation of desired
long-range correlated states.

To this end, in this work we explore how efficiently
the VQCS protocol with long-range interactions can prepare
nontrivial quantum states. Specifically, we consider in mind
quantum simulators (digital or analog) that realize long-range
∼ 1/rα Ising interactions with tunable range α, motivated
in large part by trapped-ion experimental setups. We find
that the VQCS protocol with LRIs can prepare GHZ and
quantum critical states with O(1) iterations. In particular, in
the limit of extremely long-range interactions, the GHZ state
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can be prepared with only one (two) iteration(s) for odd (even)
system sizes. Furthermore, the quantum critical point (QCP)
of the Lipkin-Meshkov-Glick model [47] can be prepared
with high fidelity very quickly (e.g., fidelity >0.99 for 100
spins after one iteration). We also analyze how efficiently
the protocol can prepare points within the phase diagram
of the long-range transverse-field Ising model. Our results
thus demonstrate the utility of VQCS protocols with LRIs
for near-term, potentially noisy quantum simulators to realize
nontrivial many-body states of interest.

II. VQCS PROTOCOL

We quickly recapitulate the VQCS protocol [23]. Our aim
is to prepare a target state |ψt 〉 with as high a fidelity as
possible, given resources available in a quantum simulator
(either digital or analog) such as single qubit rotations and
interactions between qubits, which we denote schematically
by H1, H2. Usually, |ψt 〉 will be taken to be the ground state
of some target Hamiltonian Ht which is a linear combination
of H1, H2. Henceforth, in this work we take H1 = −∑

i Xi, a
global transverse field, but this can be relaxed.

The VQCS starts off with an easily prepared initial state,
such as the unentangled ground state |+〉 of the paramagnet
H1. One then time evolves in an alternating fashion between
H1 and the “interaction Hamiltonian” H2, for a total of p
iterations:

|ψ (�γ , �β )〉p =e−iβpH1 e−iγpH2 · · · e−iβ1H1 e−iγ1H2 |+〉, (1)

with evolution times given by angles (�γ , �β ) ≡
(γ1, · · · , γp, β1, · · · , βp). We label this protocol as VQCSp.

As the goal is to closely approximate Ht ’s ground state, one
can seek to find the evolution times (�γ , �β ) which minimize a
given cost function Fp(�γ , �β ), usually taken to be the energy
with respect to the target Hamiltonian Ht :

Fp(�γ , �β ) = p〈ψ (�γ , �β )|Ht |ψ (�γ , �β )〉p. (2)

Obviously, increasing p can only improve the minimal value
F ∗

p , i.e., F ∗
p+1 � F ∗

p .
In practice, such a protocol can be implemented in a

hybrid setup involving a quantum simulator and a classical
computer: one first feeds the quantum simulator an initial
seed of angles, producing a state |ψ (�γ , �β )〉. Then, leveraging
upon the single-site accessibility possible in many present-day
quantum simulators, one measures correlations within the
state and determines the cost function (2), e.g., the global
energy. A classical computer is then used to obtain the next
set of angles (�γ , �β ) to be fed into the quantum simulator, by
means of an optimization algorithm such as gradient descent
or a similar protocol. The entire process is then repeated until
either the global minimum F ∗

p is found, or a desired energy
or fidelity threshold is attained. As a matter of principle, the
VQCS protocol is guaranteed to work in the limit of p → ∞
for any finite size system (there always exists a finite gap),
as an asymptotically slow adiabatic preparation scheme can
always be trotterized to the form (1). However, nontrivial
behavior and an improvement over adiabaticity can arise for
small p, the regime of practical interest for experimental
systems.

As an example, consider preparing the ground state of
the one-dimensional nearest-neighbor transverse-field Ising
model (TFIM), a situation considered in Ref. [23]:

HTFIM = −
N∑

i=1

ZiZi+1 − h
N∑

i=1

Xi, (3)

where h parametrizes the field strength and N is the number of
qubits. Given this Ht , a natural choice is H2 = −∑N

i=1 ZiZi+1,
which are interactions (approximately) naturally realizable in,
e.g., trapped ions or Rydberg array simulators. Indeed, in a
previous work, it was shown that such a VQCSp∗ at p∗ = N/2
can target with perfect fidelity the ground states of the model
at h = 0, 1 (GHZ and quantum critical state, respectively)
[23]. It was further conjectured and supported with numerical
evidence that this result generalizes to all points h ∈ R.

III. VQCS WITH LONG-RANGE INTERACTIONS

Despite impressive progress in the coherent control and
manipulation of quantum systems today, such platforms are
inherently noisy, and so it is desirable to have state prepa-
ration protocols that require as few iterations and as short
a runtime as possible. However, there fundamentally exist
speed limits (specifically, Lieb-Robinson bounds) in systems
with local interactions to create a desired quantum state con-
taining long-range entanglement—the time taken is t � O(N )
(as illustrated explicitly in the example above). Intuitively,
this arises from the linear light cone r ∼ vt of information
propagation that limits the speed at which spatially distant
regions entangle.

LRIs have less stringent speed limits [46] and can poten-
tially dramatically speed up state preparation protocols. We
now show in the rest of the paper that the VQCS (1) with
LRIs is a viable method for efficiently targeting nontrivial
quantum states. We consider quantum simulators where long-
range Ising interactions H2 = −∑N

i< j Ji jZiZ j with Ji j = J0
|i− j|α

for some power-law exponent α can be realized, such as
trapped-ion setups or Rydberg atom array setups. Concretely,
together with a readily applicable transverse field H1, we study
the following prototypical, realizable effective Hamiltonians:

Ht = −
N∑

i< j

Ji jZiZ j − Nh
N∑
i

Xi. (4)

In trapped-ion setups, α can vary in principle between 0
and 3, with experiments having been conducted using α

ranging from 0.67 to 1.05 [3], while in Rydberg atom array
setups, α = 6. We have chosen J0 = 1 and normalized (4)
in a standard way [2] so that N = 1

N−1

∑
i< j Ji j . Note that

α → ∞ reduces to the nearest-neighbor TFIM model with
open boundary conditions.

IV. ULTRAFAST STATE PREPARATION USING VQCS
WITH LONG-RANGE INTERACTIONS

We now analyze the small-α regime of Hamiltonian (4)
and show that VQCS protocols (1) using H1, H2 as defined
above, with p = O(1), are sufficient to prepare certain target
ground states. We restrict the VQCS parameter space to
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γi ∈ [−π, π ) and βi ∈ [0, π/2). The former is motivated by
experimental limitations on the evolution time, and the latter
is because e−i(π/2)HX ∝ ∏

i Xi which is conserved throughout
the evolution.

A. GHZ state preparation, α = 0

First consider the case α = 0 of (4), in which the N qubits
interact in an all-to-all fashion. Then, up to an overall multi-
plicative factor and also an inconsequential shift in energy, (4)
is equivalent to the Lipkin-Meshkov-Glick (LMG) model

HLMG = − 2

N
S2

z − 2gSx, (5)

where the total spin operators are Sz = ∑N
i Zi/2 and Sx =∑N

i Xi/2, and g = h/2. As is the case with the nearest-
neighbor TFIM, its ground states are ferromagnetic GHZ
states at g = 0, and a quantum phase transition at g = 1
separates the ferromagnet from the paramagnetic phase.

We claim a p = O(1) VQCS circuit suffices to produce
the ground state of (5) at g = 0, i.e., the GHZ state. To see
this, we explicitly derive the energy cost function (2) for the
LMG model with VQCSp=1:

Fp=1(γ , β ) = −N − 1

4
(sin(2β )2(1 − cos(4γ )N−2)

+ 2 sin(4β ) sin(2γ ) cos(2γ )N−2)

− gN cos(2γ )N−1 − 1/2 (6)

(see Appendix A for the derivation). From the above, it is
evident that for odd N , the ground-state energy of HLMG|g=0,
namely, E0 = −N/2, can be achieved with angles (γ , β ) =
(π/4, π/4). In other words, the ferromagnetic GHZ state,
a state with macroscopic superposition of entanglement
(1/

√
2)(|0 · · · 0〉 + |1 · · · 1〉), can be created with just two

operations:

|GHZ〉 = e−i(π/4)HX e−i(π/4)HI |+〉. (7)

We note that there exist various preparation schemes that
create macroscopic GHZ states, one of which is the Molmer-
Sorenson (MS) protocol involving time evolution with S2

x
[48,49]. Although the VQCS protocol discussed above some-
what resembles the MS protocol, there are several differences:
MS begins with the (Ising-symmetry-broken) ground state
|0 · · · 0〉 and, for odd system sizes, involves time evolution
with S2

x and Sx, to produce a GHZ state with a relative phase
between the Schrödinger cat states. A single qubit gate, or
alternatively time evolution with Sz, can remove the relative
phase.

The distinction between MS and our protocol is most
manifest for even system sizes, in which we find that the GHZ
state is instead achieved with perfect fidelity with a p = 2
VQCS protocol:

|GHZ〉 = e−i(π/4)HX e−i(π/8)HI e−i(3π/4N )HX e−i(π/4)HI |+〉.
Note that from (6), there is no range of parameters that
give perfect fidelity for p = 1 for even N . We show in
Appendix B the derivation of the above result. These results
already demonstrate the utility of VQCS with LRIs: they
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FIG. 1. Fidelity |〈ψQCP|ψ (�γ , �β )〉p=1|2 in preparation of LMG
critical state as a function of system size N , for VQCS depth p = 1.
Remarkably, even at N = 100, the fidelity is very close to unity
(>99%).

enable ultrafast preparation of a macroscopic GHZ state, with
perfect fidelity.

B. Quantum critical state preparation, α = 0

Besides the GHZ state, we find the approach can target
many other interesting states. One state of particular interest
is the quantum critical point of the LMG model at g = 1,
a highly correlated state |ψQCP〉. By numerically optimizing
for the energy of (5) at g = 1, we find that the p = 1 VQCS
protocol is already sufficient to achieve the critical state with
extremely high fidelity, |〈ψQCP|ψ (�γ , �β )〉p=1|2, even for very
large system sizes (>99% at ∼100 qubits) (see Fig. 1). This is
a remarkably efficient protocol for preparing a critical state.

Note that the gap at the critical point of the LMG model
scales as � ∝ N−1/3 [47], and thus the adiabatic algorithm
requires O(N1/3) time to prepare the GHZ and critical states.
However, in order to make a meaningful comparison of the
VQCS with the adiabatic algorithm, we would need to scale
down the exchange interaction in (5) (i.e., J0) by N , and
thus the total preparation time for the VQCS protocol in
this convention would go as N . Our intention is not to make
this theoretical comparison, but instead to make contact with
existing experiments. In the trapped-ion setups of Ref. [2], the
nearest-neighbor exchange interaction J0 does not necessarily
decrease with system size; for example, it is (0.82, 0.56, 0.38,
0.65) kHz for N = (8 , 12 , 16 , 53), respectively. Hence,
the interactions in (5) are reasonable in near-term trapped-
ion experiments and lead to O(1) preparation time for the
GHZ and critical states. The simplicity and discreteness of
the protocols we have presented may offer advantages over
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FIG. 2. Left: Fidelity in preparation of GHZ state as a function
of system size N , for α = 0.2. The fidelity decreases with increasing
N ; however, this can be compensated by going to higher ps. Right:
Fidelity in preparation of GHZ state as a function of α, for N = 14.
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FIG. 3. Heat map depicting fidelities in the state preparation of the ground state of the long-range TFIM [Eq. (3)] for system sizes N = 11
and 12, for p = 1, 2. Blue (red) demarcates regions of high (low) fidelity. As noted before, there is an odd-even system size distinction near
α ≈ 0, h ≈ 0 for p = 1, but this distinction vanishes at the next level, p = 2.

the adiabatic algorithm with or without counterdiabatic terms
[32,50–52].

C. GHZ preparation with finite α

In practice, there may be challenges in realizing strictly
all-to-all (α = 0) Ising interactions, and therefore we analyze
how well a finite-α VQCS protocol can prepare the GHZ state.

In the left panel of Fig. 2, we fix α = 0.2 and show the
fidelity with the GHZ state achieved for VQCSp=1,2,3 for even
system sizes. As expected, VQCSp=2 no longer prepares the
state with perfect fidelity unlike the α = 0 case, but this can
be addressed with further iterations of VQCS. In particular,
note the high fidelities achieved by p = 3 for system sizes
up to N = 16. As LRIs establish correlations between spins
separated by a distance r in time O(rα ), which surpasses the
light-cone bound for local interactions [44–46], we expect
that the depth required to prepare the state with some fixed
error in fidelity scales as O(Nα′

), α′ < 1. Also plotted is the
optimal fidelity for different values of α and for fixed system
size N = 14; the results indicate that longer-range interactions
(smaller α) tend to be more effective in targeting the desired
state, and that errors can be effectively reduced using further
VQCS iterations [53].

D. Phase diagram of the long-range TFIM

Finally, we explore how well the VQCS protocol with LRIs
can prepare the ground states at generic points in the phase
diagram of the long-range TFIM model (4). It is known that
the long-range TFIM supports a ferromagnetic-paramagnetic
ground-state quantum phase transition for any value of α,
upon tuning h. In the limit α → 0, the critical field hc = 2,
while in the limit α → ∞, the critical field hc = 1. For inter-
mediate values of α, previous works have attempted to map
out how hc varies (see, e.g., Refs. [54,55], and Refs. [56,57]
for the antiferromagnetic model).

Plotted in Fig. 3 are the fidelities obtained from VQCS
as a function of transverse field h and interaction range α,
for N = 11, 12 and for p = 1, 2. As expected, at the system
sizes considered, the VQCS with LRIs is able to target ground
states within the paramagnetic phase (large h) relatively eas-
ily, while for the ferromagnetic phase (small h) it becomes
more difficult to prepare, especially as the interactions become
more short ranged (larger α). Note that for large α, the region
where state preparation is difficult (red region) is separated
from the region where state preparation is easy (blue region)
by h ≈ 1, which agrees with the critical point hc of the

nearest-neighbor TFIM, which is realized in the asymptotic
limit α → ∞.

As the small-α regime of this model is somewhat chal-
lenging for numerical studies [54], it serves as a venue in
which the quantum-classical hybrid implementation of VQCS
could provide valuable input. Moreover, the small-α window
is precisely the regime in which the VQCS approach requires
only a few iterations.

V. DISCUSSION AND CONCLUSION

We have shown that VQCS-type protocols with long-range
interactions allow for ultrafast state preparation. In particular,
the Ising-symmetric GHZ state can be prepared exactly at
finite depth p = 1 (2) for odd (even) system sizes. We have
also demonstrated that other states of interest, for example, the
quantum critical point of the Lipkin-Meshkov-Glick model,
can also be prepared very efficiently. More broadly, since the
VQCS protocol is very general and not only restricted to the
states considered [see Eq. (1)], our results suggest that VQCS
with LRIs is a promising and viable state preparation protocol
that can be utilized to target other nontrivial states of interest,
potentially also allowing for their efficient preparation.

VQCS with long-range interactions thus provides an op-
portunity for near-term simulators to prepare nontrivial states
with very high fidelity, and to shed light on areas of phase di-
agrams that are challenging for numerics. The simplicity and
efficiency of the protocols make them particularly well suited
for near-term quantum devices endowed with long-range in-
teractions, such as trapped-ion or Rydberg atom arrays.

Note added. Recently, we became aware of related, varia-
tional state preparation works [58,59].
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APPENDIX A: LMG COST FUNCTION FOR p = 1

We evaluate

〈+|eiγ HI eiβHX HLMGe−iβHX e−iγ HI |+〉, (A1)

where

HLMG = − 2

N
S2

z − 2gSx. (A2)

The second piece gives

−g〈+|eiγ HI
∑

i

Xie
−iγ HI |+〉 (A3)

= −g〈+|
∏
j �=i

(cos(γ ) − i sin(γ )ZiZ j )
∑

i

Xi

∏
j �=i

(cos(γ ) + i sin(γ )ZiZ j )|+〉. (A4)

Because any operator aside from identity and X has zero expectation value in |+〉, we get contributions only from cos2(γ ) −
sin2(γ ) for each j. In total, this piece is (−gN )(cos(2γ ))N−1.

The first piece is

−N − 1

2
〈+|eiγ HI eiβHX ZiZ je

−iβHX e−iγ HI |+〉 − 1

2
(A5)

= −N − 1

2
〈+|eiγ HI (cos(2β )Zi − sin(2β )Yi )(cos(2β )Zj − sin(2β )Yj )e

−iγ HI |+〉 − 1

2
. (A6)

Again, we need only consider when the identity and X operators arise. One contribution to the matrix element comes from the
evolution of YiZ j + ZiYj , which gives

− sin(4β )〈+|
∏

k �= j,i

(cos(γ ) − i sin(γ )ZiZk )(cos(γ ) − i sin(γ )ZiZ j ) (A7)

×(YiZ j )(cos(γ ) + i sin(γ )ZiZ j )
∏

k �= j,i

(cos(γ ) + i sin(γ )ZiZk )|+〉 (A8)

= sin(4β ) sin(2γ ) cos(2γ )N−2. (A9)

Another contribution comes from

sin(2β )2〈+|
∏

k �=i, j

(cos(γ ) − i sin(γ )ZiZk )
∏
l �=i, j

(cos(γ ) − i sin(γ )ZjZl )YiYj (A10)

×
∏

k �=i, j

(cos(γ ) + i sin(γ )ZiZk )
∏
l �=i, j

(cos(γ ) + i sin(γ )ZjZl )|+〉. (A11)

The transformation into two X operators requires an odd number of applications of ZiZk and ZjZk; each application comes with a
factor of sin(2γ )2. The terms which do not alter the operator come with factors of cos(2γ )2. Hence, to single out the odd powers,
we take the combination

(1/2)((cos(2γ )2 + sin(2γ )2)N−2 − (cos(2γ )2 − sin(2γ )2)N−2) (A12)

= (1/2)(1 − cos(4γ )N−2). (A13)

In total, the cost function is thus

−N − 1

4
(sin(2β )2(1 − cos(4γ )N−2) + 2 sin(4β ) sin(2γ ) cos(2γ )N−2) − gN (cos(2γ ))N−1 − 1/2. (A14)

APPENDIX B: GHZ PREPARATION FOR EVEN N

We show below that for an even number N of qubits,

|GHZ〉 = exp

(
iπ

4

∑
i

Xi

)
exp

⎛
⎝ iπ

8

∑
i j

ZiZ j

⎞
⎠ exp

(
3iπ

4N

∑
i

Xi

)
exp

⎛
⎝ iπ

4

∑
i j

ZiZ j

⎞
⎠| + · · · +〉. (B1)
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It is sufficient to establish

〈↑ · · · ↑| exp

(
iπ

4

∑
i

Xi

)
exp

⎛
⎝ iπ

8

∑
i j

ZiZ j

⎞
⎠ exp

(
3iπ

4N

∑
i

Xi

)
exp

⎛
⎝ iπ

4

∑
i j

ZiZ j

⎞
⎠| + · · · +〉 = 1√

2
, (B2)

up to a phase. (The Ising symmetry operator is conserved as
∏

X = 1, so the matrix element for 〈↓ · · · ↓| will also be 1√
2
. The

state |↑〉 is such that Zi|↑〉i = +|↑〉i and so |↑ · · · ↑〉 = ∏
i |↑〉i.)

We break the matrix element in half and first evaluate the left-hand side. First,

exp

(
−iπ

4

∑
i

Xi

)
|↑ · · · ↑〉 = 1√

2N

(∏
i

(1 − iXi )

)
|↑ · · · ↑〉 (B3)

= 1√
2N

∑
s

(−i)(N−∑
i zi )/2|z〉, (B4)

where z = {z1, . . . , zN } labels a spin configuration.
Applying exp( −iπ

8

∑
i j ZiZ j ) and neglecting the overall phase then gives

1√
2N

∑
z

exp

⎛
⎝−iπ/8

∑
i j

ziz j

⎞
⎠i

∑
i zi/2|z〉 (B5)

= 1√
2N

∑
z

exp

(
iπ

16

( − z2
t + 4zt

))|z〉, (B6)

where we have defined zt ≡ ∑
i zi.

The right-hand side is

exp

(
3iπ

4N

∑
i

Xi

)
exp

⎛
⎝ iπ

4

∑
i j

ZiZ j

⎞
⎠| + · · · +〉 (B7)

= 1√
2N

exp

(
3iπ

4N

∑
i

Xi

)∑
z

exp

⎛
⎝ iπ

4

∑
i j

ziz j

⎞
⎠|z〉 (B8)

= 1√
2N

∏
i

(c + isXi )
∑

z

exp

(
iπ

4

∑
i j

ziz j

)
|z〉, (B9)

where c ≡ cos(3π/4N ), s ≡ sin(3π/4N ).
Consider the contributions to the coefficient of a given spin configuration |z〉. Each contribution involves partitioning the N

spins into two sets A and B of sizes a and N − a, respectively, and flipping the spins in set A. The resulting coefficient from this
given flip is

cN−a(is)a exp

⎛
⎝ iπ

4

∑
i j

ziz j

⎞
⎠ exp

⎛
⎝ iπ

4

∑
i∈A, j∈B

(z̄i − zi )z j

⎞
⎠, (B10)

where z̄i ≡ −zi.
We now show that this factor only depends on the parity of a (and the particular configuration z) and, once this is fixed, the

factor is independent of the partition. The final phase factor above can be written as

exp

(−iπ

2
zA(zt − zA)

)
, (B11)

where zA ≡ ∑
i∈A zi. Because N is even, zt is even. If a is even, the za is even and thus the phase factor is 1. Moreover, it is

straightforward to check that either changing the partition (keeping partition size fixed) or changing the partition size by 2 does
not change the above phase. Hence, the case of a odd can be reduced to choosing A to be the first spin. The wave function
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becomes

1√
2N

∑
z

exp

⎛
⎝ iπ

4

∑
i j

ziz j

⎞
⎠( ∑

even a

(
N

a

)
cN−a(is)a +

∑
odd a

(
N

a

)
cN−a(is)a exp

(−iπ

2
z1(zt − z1)

))
|z〉

= 1√
2N

∑
z

exp

⎛
⎝ iπ

4

∑
i j

ziz j

⎞
⎠(

cos(3π/4) + i sin(3π/4) exp

(−iπ

2
z1(zt − z1)

))
|z〉.

Dropping overall phases, we get

1√
2N+1

∑
z

exp

(
iπ

8
z2

t

)(
1 − i exp

(−iπ

2
z1(zt − z1)

))
|z〉. (B12)

The matrix element between left- and right-hand sides is thus

1

2N
√

2

∑
z

exp

(
iπ

16

(
3z2

t − 4zt
))(

1 − i exp

(−iπ

2
z1(zt − z1

))
. (B13)

Due to the last piece, any configuration with zt ≡ 2(mod 4) does not contribute and the matrix element reduces to

1

2N
√

2

∑
z|zt ≡0(mod 4)

2 exp

(
iπ

16

(
3z2

t − 4zt
)) = 1√

2
. (B14)
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