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Entanglement through qubit motion and the dynamical Casimir effect
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We explore the interplay between acceleration radiation and the dynamical Casimir effect in the field of
superconducting quantum technologies, analyzing the generation of entanglement between two qubits by means
of the dynamical Casimir effect in several states of qubit motion. We show that the correlated absorption and
emission of photons are crucial for entanglement, which in some cases can be linked to the notion of simultaneity
in special relativity.
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I. INTRODUCTION

Superconducting quantum technologies together with cir-
cuit quantum electrodynamics [1] form one of the most
promising candidates for processing of quantum information
as well as experimentation on the foundations of quantum
mechanics. The advantages of this technology are, on the one
hand, the strong coupling between the superconducting qubits
and the resonant cavities, as well as the ability to widely tune
this coupling and all the parameters of the system, allowing
the investigation of new phenomena [2,3] such as, among
many others, the dynamical Casimir effect (DCE) [4] or the
Unruh effect [5].

The DCE is a member of a large family of effects linked to
the quantum fluctuations of the vacuum, among which are the
Lamb displacement [6], the magnetic moment of the electron,
and the Casimir (static) effect [7–9]. The latter is produced
by a reduction in the density of modes imposed by certain
boundary conditions, which leads to a pressure of radiation
exerted by the vacuum. Its dynamical counterpart shares a
similar origin, except for the fact that boundary conditions
must be time dependent, which can be achieved by means
of SQUIDs [4]. This effect has also been measured by mod-
ulating the effective speed of light [10]. On the other hand,
the DCE can be considered a resource to generate quantum
correlations, including quantum entanglement [11–15]. In this
paper, we focus on this feature.

The Unruh effect is another member of the family of afore-
mentioned phenomena, since it consists in the measurement
of thermal radiation by a detector moving at constant proper
acceleration through the quantum vacuum [16,17]. Unfortu-
nately, this has never been observed since it requires unreach-
able accelerations to generate detectable signals, although it
can be increased by several orders of magnitude when two-
level systems are accelerated through resonant cavities by
means of nonadiabatic boundary conditions [18]. However,
this modification of the original effect is still difficult to
reach experimentally and has not been observed. In this report
we analyze another scenario: it is possible to simulate the

movement of a qubit in a cavity by modulating the qubit-
cavity coupling in the same way the said movement would
[19], leading in general to the excitation of qubit and cavity
from vacuum as in both variants of the effect. In the same way
as with the DCE, this simulation of the Unruh effect can be
used as a mechanism for the generation of entanglement [20],
only this time between a qubit and the photons of a cavity, not
just in the field as in the first effect.

In this paper we consider a scenario where both the DCE
and simulated enhanced Unruh radiation can take place (see
Fig. 1). It consists of two superconducting resonators sharing
a common SQUID and each coupled to a superconducting
qubit. DCE radiation can be generated by means of modu-
lation of the magnetic flux threading the SQUID, while the
coupling of the qubits can be tuned to simulate their motion.
We show that the correlated absorption and re-emission of the
DCE radiation by the qubits are crucial for the generation of
entanglement, as in the case where the qubits are static [13].
If the motion of the qubit preserves the correlated nature of
the absorptions and emissions, entanglement is preserved as
well. However, in general, uncorrelated motion of the qubits
will result in the vanishing of entanglement, even for low
simulated velocities. In the case of equal-length cavities, this
physics can be linked to the notion of simultaneity in special
relativity: breaking down simultaneity in the absorption would
make entanglement vanish.

The rest of the paper is structured as follows. First, in
Sec. II we present the superconducting setup, its Hamiltonian,
and some relevant features. Then in Sec. III, we discuss the
results of, on the one hand, applying perturbation theory to
the calculation of the concurrence and, on the other hand,
calculating this same magnitude by solving the master equa-
tion of the system numerically. Finally, we summarize our
conclusions in Sec. IV.

II. SETUP: DCE AND SIMULATED QUBIT MOTION

We consider a system composed of two superconducting
qubits—in particular, modifications of the usual design of a
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FIG. 1. (a) Scheme of the setup, consisting of two qubits, two
resonators, and a SQUID. (b) Scheme of the tunable-coupling trans-
mons. (c) Scheme of the circuit. The qubits (in red) are defined
by their characteristic frequencies ωq1,2 and their coupling to the
resonators g1,2(t ). In blue are indicated the transmission line res-
onators or cavities, of which only one mode is considered. Their
fundamental parameters are their characteristic frequencies ωc1,2 as
well as the coupling between them g12(t ) due to the SQUID that
couples them (in green). The capacitive coupling between cavities
and qubits mentioned above is also indicated in red.

transmon qubit [21]—whose coupling to the electromagnetic
field can be controlled by the magnetic flux threading the
SQUIDs that compose them, which offers the opportunity to
simulate the generation of acceleration radiation in the cavity-
enhanced Unruh effect. In addition, each of these qubits will
interact directly with only one of the modes of only one of
the two cavities or transmission line resonators of the system.
These resonators interact in turn with each other by means of
another SQUID, which allows us to produce time-dependent
boundary conditions in the resonators, giving rise to the DCE.
An outline of this system is shown in Fig 1.

The Hamiltonian is

H = h̄
2∑

i=1

[
ωci

(
a†

i ai + 1

2

)
+ ωqi

2
σ z

i

]

+ h̄
2∑

i=1

gi cos(kixqi (t ))σ x
i (a†

i + ai )

+ h̄g1,2(t )(a†
1 + a1)(a†

2 + a2), (1)

where the sum runs over both cavities and both qubits. The
first line contains the static Hamiltonian, where ωci is the
frequency of cavity 1 or 2, depending on the subscript, and
ωqi is that of the qubits. On the other hand, a†

i and ai are
the creation and annihilation operators of the corresponding
cavity and σ z

i is the third Pauli operator of each qubit. The
second line of the equation contains the interaction of the
qubits with their cavities, where ki is the wave vector of
the cavity, gi the maximum intensity of its coupling, σ x

i the
first Pauli operator of the qubit, and xqi (t ) the simulated
trajectory of qubit motion. Experimentally, the product kixqi (t )
is actually f = φ(t )/φ0, with φ0 the quantum of magnetic
flux and φ(t ) the flux through the SQUID [19,20], which

may be controlled from the outside with a typical nanosecond
resolution. The third line contains the interaction between the
cavities, g1,2(t ) being the time-dependent coupling assuming
that the boundary conditions produced by the SQUID do not
destroy the structure of normal field modes or make reso-
nances of new modes with the qubits. This is the case when
g1,2(t ) = g0 cos(ωdt ) with ωd = ωc1 + ωc2 matching the sum
of the cavity mode frequencies. Moreover, in this case the
interaction Hamiltonian can be approximated by a two-mode
squeezing Hamiltonian [13]:

g1,2(t )(a†
1 + a1)(a†

2 + a2) → g0/2(a†
1a†

2 + a1a2). (2)

So, finally,

H = h̄
2∑

i=1

[
ωci

(
a†

i ai + 1

2

)
+ ωqi

2
σ z

i

]

+ h̄
2∑

i=1

gi cos(kixqi (t ))σ x
i (a†

i + ai )

+ h̄g0/2(a†
1a†

2eiωd t + a1a2e−iωd t ). (3)

Previous work [19] has shown that, even for moder-
ate values of the coupling, the modulation of the coupling
strength might resonate with the counterrotating terms of the
Hamiltonian. Therefore, we do not perform the rotating wave
approximation.

Finally, note that if either or both of the trajectories xi(t ) are
changed by Li − xi(t ) and the relevant coupling constant gi →
−gi is inverted, then the Hamiltonian does not undergo any
change, which is quickly deduced using the expression of the
cosine of the sum and substituting ki = π/Li. This symmetry
can be interpreted as a mechanism by which a path xqi (t ) that
passes between the two ends of the cavity in a finite time can
be extended beyond that time, reflecting it with respect to the
center of the cavity. That is, if for a time τ we have xi(τ ) = Li

and at a later time x(τ + δt ) exceeds Li, then the path can
be modified as x′

i (τ + δt ) = Li − xi(δt ), producing the same
Hamiltonian which governed the evolution up to τ , except for
the sign of gi. In other words, this symmetry offers a natural
bounce condition to continue trajectories that reach the ends
of the cavities, so natural that it proves useful throughout the
work.

III. RESULTS

We use two methods to analyze entanglement genera-
tion in the setup discussed in the previous section, namely,
perturbation theory to obtain an approximate expression of
the concurrence and then numerical simulations to integrate
the master equation governing the system by means of the
Python package QuTiP [22]. These two methods make up the
following two subsections. In the final subsection, dissipation
and temperature are addressed.

A. Perturbative results

The global state |�(t )〉 under Hamiltonian (3) is expanded
up to third order in the couplings g1, g2, and g0 from the
ground state |00gg〉, where |0〉, |1〉, and so on are the Fock-
number states of each cavity and |g〉 and |e〉 are the ground
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and excited states of each qubit. We aim to compute the
entanglement dynamics of the qubits, so it is necessary to trace
over the cavity field states, which leads to the density matrix

ρ
(3)
qubits =

⎛
⎜⎝

0 0 0 ρ14

0 0 0 0
0 0 0 0

ρ41 0 0 1

⎞
⎟⎠, (4)

where ρ14 is the matrix element 〈ee|ρ|gg〉 and the nonzero
entry on the diagonal corresponds to 〈gg|ρ|gg〉. For a more
detailed derivation refer to the Appendix. Then, using the
concurrence C(ρ) [23] as an entanglement measurement, we
find

C(ρ) = 2|ρ14| = 2|〈ee|ρ|gg〉| = 2|〈00ee|ρtotal|00gg〉|

= g1g2g0

∣∣∣∣
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 cos( f1(t1))

× cos( f2(t2))eiωd t3

+
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 cos( f1(t2))

× cos( f2(t1))eiωd t3

∣∣∣∣, (5)

where fi = kixi(t ). It should be noted that in this system the
concurrence can be interpreted in a very intuitive fashion: it is
proportional to the probability that two photons are emitted,
one in each cavity, and that each qubit absorbs one. At first
sight, Eq. (5) seems to conclude that the qubit motion will
only reduce concurrence, since integrating cosines will not
provide any further contribution. However, these can cause
a resonance, either with each other or with the term due to
the emission. In the following paragraphs, we study these
resonances produced by different trajectories, paying attention
to the conditions that must be fulfilled for their existence.

1. Static qubits

If the qubits are static, Eq. (5) further simplifies, since
the cosine functions are all constant. By performing the
first integration, we get

∫ t2
0 dt3eiωd t3 = (eiωd t2 − 1)/iωd and the

constant term will eventually give rise to

Crest = g0g1g2

ωd
t2 + O(t ). (6)

This quadratic behavior of the concurrence seems to be in
agreement with [13] for the moderate values of time where the
perturbative approach is valid; the perturbative approximation
will eventually break down, as we see in detail below.

2. Constant velocity

Particularizing Eq. (5) for the case of qubits moving at
constant velocities vi with initial positions at x = 0, we get

Cv const = g1g2g0

4ωd

∣∣∣∣
∫ t

0
dt1

∫ t1

0
dt2(eik1v1t1 + e−ik1v1t1 )

× (eik2v2t2 + e−ik2v2t2 )(eiωd t2 − 1)

+
∫ t

0
dt1

∫ t1

0
dt2(eik1v1t2 + e−ik1v1t2 )

× (eik2v2t1 + e−ik2v2t1 )(eiωd t2 − 1).

∣∣∣∣ (7)

By inspection of Eq. (7), we find that resonances will appear
if either or both of the following conditions are verified:

ωd = ki|vi|,
k1|v1| = k2|v2|. (8)

Note that ωd = ω1 + ω2, so the above conditions become

c/L1 + c/L2 = |vi|/Li,

|v1|/L1 = |v2|/L2. (9)

The first one implies a superluminal velocity of at least
one of the qubits and was found in [24]. It is related to
the emission of Ginzburg radiation at superluminal constant
velocities. The second one—since both qubits start in the
same position—means that the distance of the qubits to x = 0,
in units of the corresponding cavity length, is always the same
for both qubits, x1/L1 = −x2/L2. Then the Hamiltonians of
both qubits are equivalent at any time, entailing that the
absorption and re-emission of DCE photons are perfectly
correlated. In particular, if the lengths of the cavities are equal
L1 = L2, then the distances are exactly the same, which means
that absorptions and emissions always occur simultaneously.
This suggests an interesting link between the generation of
entanglement in a quantum setup and a key notion of special
relativity, such as simultaneity.

When both conditions in Eq. (9) are met at the same time,
namely, |v1|/L1 = |v2|/L2 = c/L1 + c/L2, then we find

Cv const, 1 = g0g1g2

ω2
d

| sin(ωdt )|t + O(t0), (10)

while if only the first condition is met, |v1|/L1 = c/L1 +
c/L2 �= |v2|/L2 = kv/π , then

Cv const, 2 = g0g1g2

2ωd kv
| sin(kvt )|t + O(t0). (11)

In the latter case, it is the velocity of the nonresonant qubit
and not the mirror frequency that modulates the generation of
concurrence. Even if we assume kv ≈ ωd , then the concur-
rence in Eq. (11) is reduced by a factor of 1/2 with respect
to the concurrence in Eq. (10), which again highlights the
importance of the correlations among the absorptions and
emissions of photons.

Interestingly, we can use the symmetry of the Hamiltonian
described at the end of Sec. I, which in this type of trajectory
translates into an inversion of the speed of the qubits when
they try to leave the cavities. The full symmetry would change
the sign of the relevant coupling, but these signs can be
canceled if both trajectories arrive at the ends of the cavities
simultaneously and their speeds are then inverted. With these
bounces, trajectories of constant velocity can be extended in
time. The concurrence, (7), inherits this Hamiltonian symme-
try: after n bounces the generated entanglement is n times
the entanglement after the first bounce. We see that in this
case the simultaneity in the bounce plays a crucial role by
simplifying the calculation of the concurrence and extending
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FIG. 2. Trajectories of the qubits, in units of the lengths of their
cavities and of the total flight time, for Eq. (12) and n = 1, 2, 5, 10,
and 100, from higher to lower in the x1/L1 subplot.

their relevance. Finally, if the second condition in Eq. (9) is
met, but not the first, it is not possible to obtain a closed
analytical expression of the concurrence. However, we present
numerical results in the next section.

3. Other trajectories

A convenient family of qubit trajectories would be given
by

x1(t ) = L1

π
arccos

(
2

(
t

τ

)n

− 1

)
,

x2(t ) = −L2

π
arccos

(
2

(
t

τ

)n

− 1

)
, (12)

τ being the flight time of the qubits, namely, the time that it
takes for each qubit to traverse its cavity. These trajectories
are shown in Fig. 2. They exhibit divergencies in the velocity
and the acceleration when the time gets close to the flight time
and, also, at t = 0 for the particular case n = 1.

We find the following concurrence:

Carccos = 4g0g1g2

ωd (n + 1)2

v2n

L2n
t2n+2 + O(t2n). (13)

Therefore, with these trajectories we are able to produce
resonances with arbitrary powers of time. Of course, all
the above is restricted by the perturbative approximations
adopted, which will eventually break down. We now proceed
to show results obtained by a numerical integration of the
master equation of the system, which enables exploration of
the long-time dynamics.

B. Numerical results

1. Static qubits and constant velocities

We consider four trajectories (see Fig. 3). The first is the
case where the qubits are static, discussed in [13]. Then we
consider the trajectory analyzed perturbatively in the previous
section, where the qubits start at x = 0 and move at opposite

FIG. 3. Qubit trajectories in units of Li. Dark-blue left-facing
triangles: static qubits. Green downward-facing triangles: initial
positions xi(0) = 0 and opposite velocities 0.0001(ω1 + ω2). Red
right-facing triangles: same velocities as in green but different initial
positions, x1(0) = 0 and x2(0) = L2/2. Cyan upward-facing trian-
gles: same velocities but initial positons x1(0) = 0 and x2(0) = L2

velocities, giving rise to correlated—simultaneous for equal
cavities—absorption and emission of photons. The third case
is related to the second by the symmetry relation discussed
throughout this work, since one qubit starts at the other end of
its cavity. Finally, we consider a trajectory which breaks the
correlations among the absorptions and emissions of photons,
since one qubit starts out at the center of its cavity while the
other starts at 0.

In Fig. 4 we show the numerical results for the con-
currences at long times. We reproduce the results for the

FIG. 4. Concurrences for the trajectories of Fig. 3. The rest of
the relevant parameters are ω1/2π = 4 GHz and ω2/2π = 5 GHz for
the qubits and cavity modes, with coupling strengths g0 = 0.001ω1

and g1 = g2 = 0.04ω2. The maximum values of the concurrence are
0.844, 0.904, 0.461, and 0.904, attained at 108.4, 119.0, 155.6, and
119.0 ns, respectively.
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FIG. 5. Qubit trajectories. The bottom plot shows x1(t ) for all
cases, as given in (14) for n = 100. In the top plot (in green), x2(t ) is
given as well by (14). In the second plot (in red), x2(t + 0.1τ ); and
in the third plot (in cyan), x2(t + τ/2).

static case in [13] up to the point of maximum concurrence,
where they propose to switch off the coupling in order to
optimize the entanglement generation. We show that in the
two trajectories which preserve the correlated absorptions and
emissions the high concurrence is indeed preserved, achiev-
ing even larger maximum values. Finally, in the asymmetric
case, the concurrence is significantly reduced, as expected.
Interestingly, this effect occurs already at low nonrelativistic
velocities, which highlights the role of the correlation and
simultaneity in the generation of entanglement in this setup.
In order to achieve the regime of high velocities, it is conve-
nient to use trajectories similar to the ones in Sec. III A 1. We
explore them in the next subsection.

2. Other trajectories

In this case, we have considered the following trajectories
(see Fig. 5). We first use trajectories similar to those in
Eq. (12), but extended by means of the bounce symmetry:

fn(x) = 1

π
arccos(2xn − 1),

x1(t ) = −L1 fn

(
t

τ
−

⌊
t

τ

⌋)
if

⌊
t

τ

⌋
even,

= −L1 + L1 fn

(
t

τ
−

⌊
t

τ

⌋)
if

⌊
t

τ

⌋
odd,

x2(t ) = L2 fn

(
t

τ
−

⌊
t

τ

⌋)
if

⌊
t

τ

⌋
even,

= L2 − L2 fn

(
t

τ
−

⌊
t

τ

⌋)
if

⌊
t

τ

⌋
odd, (14)

τ = v1/L1 = v2/L2 again being the time of flight that it takes
the qubits to traverse their cavities and �x	 being the floor
function. In this case, as shown in Fig. 5, the trajectories are
synchronized in such a way that the absorption and emission
of photons is correlated.

FIG. 6. Concurrences for the trajectories in Fig. 5, using the
same color code, but with downward-facing triangles for green,
right-facing for red, and upward-facing for cyan. As a reference, we
plot the static case in dark blue with left-facing triangles.

Another case that we consider is obtained by replacing
x2(t ) with x2(t + τ/2) in Eq. (14), which preserves the sym-
metry between the qubits. Finally, instead making the replace-
ment with, for instance, x2(t + 0.1τ ), then the qubits are out
of phase. We show the concurrences for these trajectories in
Fig. 6, which again shows that the correlations and simul-
taneity between the qubits are crucial to understanding the
magnitude of entanglement generation. In order to further
illuminate this point, it is interesting to discuss the population
in the Bell basis. In the static case and all the cases where
the qubit positions are correlated in the way discussed above,
photons are emitted and absorbed in pairs, and therefore it is
expected that all the population is in the Bell states |φ±〉 =
1/

√
2(|gg〉 ± |ee〉). However, if the positions of the qubits are

uncorrelated, it is possible that one of the qubits emits or
absorbs a photon, while the other does not. This enables the
population of the other Bell states, |ψ±〉 = 1/

√
2(|ge〉 ± |eg〉).

In Fig. 7 we confirm that this is indeed the case: only in the
low-concurrence case does a significant population eventually
appear in |ψ±〉. Comparing Figs. 6 and 7, we see that jumps
in the population of |ψ±〉 are correlated with falls in the value
of the concurrence, as expected.

C. Dissipation and temperature

As a final remark on this analysis, dissipation and tem-
perature must be taken into acount. The typical temperature
in superconducting circuit experiments is of the order of
10–50 mK, giving a thermal photon number of 10−9 − 10−2.
This is clearly neglectable and has not been considered in
the calculations. Simulations analogous to those presented in
this paper have been run considering relaxation and dephasing
times up to 104 ns and resonator decoherence times of 105 ns,
values within experimental reach using superconducting cir-
cuit technology [25], as are the values of the rest of the
parameters such as characteristic frequencies and couplings.
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FIG. 7. Expectation value of the Bell-state projectors |φ+〉 (blue;
upper plot) and |ψ+〉 (green; lower plot). The other Bell states |φ−〉
and |ψ−〉 have been omitted given that they take the same values, but
with a nanosecond phase difference. Note the remarkable similarity
between the dynamics of the concurrence and the Bell-state projector
over |ψ+〉 in this low-concurrence case.

This dissipation proved to be irrelevant in the dynamics of the
system, as initially supposed.

IV. CONCLUSIONS

We have analyzed the entanglement dynamics between two
qubits in a system where each one interacts with a resonant
cavity with tunable coupling, which allows us to simulate
their motion. The cavities interact in turn with each other
through a SQUID, which implements a boundary condition
that can be modulated by the magnetic flow threading it.
This results in a two-mode squeezing Hamiltonian which is
the source of entanglement. We show that a high degree of
entanglement can be generated both in the case where the
qubits are static—discussed in [13]—and in the cases where
the motion preserves the fact that photons are absorbed and
re-emitted in pairs—one by each qubit—populating only the
Bell states |φ±〉. Otherwise, if the motion of the qubits is
such that photons can be emitted or absorbed by only one
qubit, we find that the states |ψ±〉 are also populated and
the concurrence is dramatically reduced. If the cavities are
equal in length, this means that high-concurrence trajectories
are characterized by simultaneous absorption and emission of
photons, which suggests an interesting link with the notion of
simultaneity in special relativity.

These results pave the way for the exploration of spe-
cial relativistic effects in a quantum setup. For instance, we
envision the quantum simulation of the gedanken textbook
experiments where trains moving at relativistic speeds are
used to illustrate the relativity of simultaneity. In our setup,
the magnitude of entanglement could be used, in principle, as
a witness of simultaneity, and vice versa. Our results are fully
within reach with the current technology.
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APPENDIX

As pointed out at the beginning of Sec. III A,
the global state of both qubits and resonator modes
is expanded up to third order in the couplings,
which gives nonzero projections onto the states:
{|00gg〉, |11gg〉, |10ge〉, |01eg〉, |00ee〉, |22gg〉, |21ge〉, |12eg〉,
|33gg〉}. When perfoming the partial trace over the fields
many of these states (those with the qubits in the same state)
will mix, leading to a density matrix with the expression

ρqubits =

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 0 0
0 0 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎠, (A1)

where the notation for subscripts is the same as in Eq. (4).
The expression of these matrix elements in terms of the
perturbative coefficients of |�〉 are

ρ11 = 〈ee|ρ|ee〉 = ∣∣c(3)
00ee

∣∣2
,

ρ22 = 〈eg|ρ|eg〉 = ∣∣c(2)
01eg

∣∣2 + ∣∣c(3)
12eg

∣∣2
,

ρ33 = 〈ge|ρ|ge〉 = ∣∣c(2)
10ge

∣∣2 + ∣∣c(3)
21ge

∣∣2
,

ρ44 = 〈gg|ρ|gg〉 = ∣∣c(0,2)
00gg

∣∣2 + ∣∣c(1,3)
11gg

∣∣2 + ∣∣c(3)
22gg

∣∣2
,

ρ14 = 〈ee|ρ|gg〉 = c(3)∗
00eec(0,2)

00gg ,

where the superscripts indicate the order in the perturbative
expansion at which the coefficient appears—or, in the case
of multiple indices, the orders at which new contributions
must be taken into account. Notie that since |�〉 has been
expanded up to third order, any term in the matrix elements
with a greater power in the couplings (that is, adding their
superscripts) must be considered neglectable. With this in
mind, the qubits’ densisty matrix reads

ρqubits =

⎛
⎜⎜⎝

0 0 0 c(3)∗
00ee

0 0 0 0
0 0 0 0

c(3)
00ee 0 0 1

⎞
⎟⎟⎠, (A2)

which proves Eq. (4).
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