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There have been several upper bounds on the quantum capacity of the single-mode Gaussian channels with
thermal noise, such as thermal attenuator and amplifier. We consider a class of attenuator and amplifier with
more general noises, including squeezing or even non-Gaussian noises. We derive upper bounds the energy-
constrained quantum capacity of those channels by using the quantum conditional entropy power inequality.
Also, we obtain lower bounds for the same channels by means of Gaussian optimizer with fixed input entropy.
They give narrow bounds when the transmissivity is near unity and the energy of input state is low.
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I. INTRODUCTION

Quantum technology uses quantum phenomena like non-
locality and entanglement in order to overcome the classical
limitations in many areas such as quantum metrology, quan-
tum computation, and simulation [1]. Quantum communica-
tion is a significant area using quantum technology in which
we expect critical advantages over classical communication
with classical resources [2].

Quantum capacity is a quantity measuring the ability to
transmit quantum information, i.e., qubits, via a given quan-
tum channel. In other words, it is the maximum achievable
rate in the limit of infinitely many channel uses and vanishing
error for the presence of noises in the channel. We need to
investigate the regularization of coherent information, which
quantifies the quantum capacity of the channel [3,4]. How-
ever, this quantity is hard to compute in general, owing to its
nonadditivity [5-7].

Bosonic Gaussian channels have been well studied because
they can be implemented by simple quantum optical elements
[8,9], such as beam splitters, phase shifters, and squeezers. Al-
though the bosonic Gaussian channels are particular kinds of
the generic quantum channels on continuous variables, there
still have interesting nonadditive features for the quantum
capacity called superactivation [10] and activation [11,12].
The pure loss channel, a special kind of general Gaussian
attenuator, can be described by a beam splitter mixing vacuum
state with the input state, whose quantum capacity has been
known precisely, as in the case of quantum-limited amplifier
[13,14]. There exist the thermal attenuator and the amplifier
as more general cases. As their environment, the two channels
use a thermal state instead of the vacuum state. For each of the
channels, the exact value of quantum capacity of the channel
has not been known, but only lower and upper bounds on
the quantum capacity have been known by means of several
methods [15-19].
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Quantum entropy power inequality (QEPI) is one of the
useful tools in quantum information theory, introduced by
Konig and Smith [20,21]. It tells us that the output entropy
power does not decrease via the quantum mixing operation,
e.g., a beam splitter, with two independent input states. QEPI
has been proved recently and extended to the conditional cases
[22-25]. It is directly related with the bound on the minimum
output entropy of given channels, and then we can get the
upper bounds on the classical information capacity. One of
the advantages of using QEPI is that it is only dealing with
the entropy values of quantum states, not details of the state
itself. Consequently, QEPI is applicable to general Gaussian
noises and even non-Gaussian channels for obtaining upper
bounds on the classical capacity of the channels [26,27].

In this work, we apply the conditional quantum entropy
power inequality (CQEPI) to general attenuator and amplifier
channels, in which the environment can be general Gaussian
states or even non-Gaussian states, in order to obtain upper
bounds on the quantum capacity for those channels. Not only
is it an attempt to get a meaningful result on quantum capacity
using QEPI but also it gives us the clue that if more photons
are in the environment of such a channel, then the channel has
higher upper bound on the quantum capacity.

This paper is organized as follows: In Sec. II, we introduce
background necessary to understanding our results, and we
present upper bounds on the quantum capacity for general
attenuator and amplifier in Sec. III. In Sec. IV, we derive
the lower bounds as well and compare them with our upper
bounds. Also, we give specific examples in Sec. V, in order to
present physical relevance. Finally, in Sec. VI, we summarize
our results, and comment on a few topics and open problems.

II. PRELIMINARIES

The Stinespring dilation for a Gaussian quantum channel
@ can be written as

®(pa) = Tre[Us (pa ® pr)UL], (1)
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FIG. 1. A schematic diagram for complementary and weak com-
plementary Gaussian channels. For a mixed state of environment for
a given channel, the purifying system is represented as R.

where Uy is a symplectic unitary transformation on the total
Hilbert space H(L*(R™)) ® H(L*(R" )) with the number of
input mode n4 and environment mode ng, the Hilbert space of
square integrable function H(L*(R")), and pz denotes a pure
Gaussian state (notice that, in Fig. 1, Uy = U, j’g)_) pr)- In this
work, we deal with two important unitary operations given by

- (aTe — e*a):|,

-1 (a'e* — eTa):|, 2)

U, =exp |:arctan

U, =exp |:arctanh

where 7 € [0, 1], « € [1, oo], and a, e are annihilation opera-
tors of input and environment, respectively. These are nothing
but beam splitters with transmissivity t and amplifiers with
gain k.

By Stinespring dilation, we can naturally define the com-
plementary channel as

®(pa) = Trp[Us(pa ® pp)UL]. 3)

However, if the environment state pg is a mixed state, we
cannot obtain the complementary channel uniquely by this
method. Instead, first we need to purify the environment state,
and then find the corresponding symplectic unitary in the
extended Hilbert space. It can be expressed as

°(pa) = TrplUs ® Tr(pa ® Y)Y |er)Us @ 1r)'],  (4)

where |¥)X¥|gg 1S a quantum purification such that
Trg| Y Xy |Er = pE. Also, we can define the weak complemen-
tary channel ®“° as the case for which a mixed state pg is
inserted in Eq. (3), and ®%° = ®° when pg is pure [28]. In
Fig. 1, we describe the situation in which the environment is
a nonpure state.
The quantum capacity of a channel ® under a constraint
with input mean photon number N is defined by
1.(2®", pn)

lim max ———, 4)
n—>00 E(p,)<nN n

QP N) =

where ®®" is the n independent uses of the channel, E(p,) is
energy of the input state, and p, is any input state in n tensor
product of the original Hilbert space of the input state for the
single channel. The coherent information of a channel ® and
an input state ps € H(L*(R"™)) can be written as

I(®, pa) = S(P(pa)) — S(P(pa)), (6)

where S(0) = — Tr o In ¢ is the von Neumann entropy.

The linear version [20] of QEPI is described as
S(px, B: px,) = t8(0x,) + (1 — )S(px,). (7

where px, and py, are independent input states and B, means
a beam-splitter operation with transmissivity T € [0, 0.5].

III. UPPER BOUNDS ON THE QUANTUM CAPACITY

Now, we can think of a general attenuator @, ,, , in which
the environment can be any Gaussian state or even non-
Gaussian state. Then, we can get an upper bound of this
channel @, ,, as follows:

Q(Prp, N)

1
= lim max —I(®%" |
100 E(py)<nN 1. SR

— i 1 ®n c®n
= lim E&ﬂ‘f‘ém[ (@25 (o)) = S(27, (00) ]

< lim max S(@T . (pn)) — lim min lS(dDCfg’" (on))

n—0o00 P, n—oo p, N TPE
1
< max S(CDWE (p)) hm mln S(dﬁ%’i (on )) )
p

where the last inequality comes from the subadditivity of
entropy. We know the upper bound of the first term of Eq. (8)
from the fact that Gaussian states always have maximal en-
tropies for given first and second moments [29]. Explicitly,
we have

max S(@r,pe (0)) < (TN + (1 — T)NE), ©)
where g(x) := (1 +x)log,(1 +x) —xlog,x and Ng:=
Tr(a"apg) is the mean photon number of the environment,
which can be expressed as (TWE 1)/2 for centered Gaussian
states having the covariance matrix yg. In order to obtain
a bound on the second term, we need to use CQEPI [23]
expressed as

S(ox, Be px,|2122) = ©S(px,Z1) + (1 = ) (px,

Z,),
(10

for all product states px,z, ® px,z,, where the conditional
entropy S(px|2) := S(pxz) — S(pz). In our case, the environ-
ment and output of complementary channel are conditioned
by the purifying system, and the input and environment state is
a product state by the definition of the channel. Consequently,

S(P" (pn)) — nS(pr) = S(PY2"(p,)IR)
> (1= 0)S(pa) + TS(pg"|R)
= (1= 1)S(os) — nTS(px)
> —ntS(p), (11

where the first inequality follows from the CQEPI, the sec-
ond equality comes from independent and identically dis-
tributed (i.i.d.) assumption for environmental noise pg and
S(per) =0, and the last inequality is obtained from the
non-negativity of the entropy. Finally, we get the inequality
as S(®®" (p,)) = n(l — 1)S(pg). Note that if the environ-

T.PE
ment is a Gaussian state, then S(pg) = g(Nw), where Ny, is
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the mean thermal photon number of the environment, i.e.,
>:(v; — 1)/2 for the symplectic eigenvalues v; of a given co-
variance matrix. For general cases, Ny, = g "(S(pg)). Then,
Eq. (8) becomes

(P p, . N) < (TN + (1 = T)Ng) — (1 — 1)S(pE)
= Qu,. 12)

Instead, we can consider the stronger CQEPI than the linear
version, which is the exponential form given in Ref. [24],

SO0 Bepa 22/ 5 £ S 1Z0/n L (] _ 1) SeulZ)/n (13

Then, Eq. (11) can be modified as

1 '
~S(®®"(p)IR) = In (1 — 7)e5e/" 4 75w IR/m)
n sFPE

> In(1 — 7 4 te 50y, (14)

Consequently, we have another upper bound such as
(P, N) < Qpy, where Qp, =g(TN+ (1 —1)Ng)—
In((1 = 7) 4+ re=5")) — S(pp).

For the amplifiers, the linear and exponential forms of
CQEPI are also given in Ref. [24] as follows:

K
S(ox, By po|2122) 2 53— S(px121)
Kk—1
el

+In(2¢ — 1), and (15)
&SPx By px,12122)/n > weSPx1Z0)/n + (k — l)es(/)xz\zz)/"’ (16)

where H, is the two-mode squeezing operation, which cor-

responds to the amplifying parameter « € [1, oo]. By using

the similar argument for the case of attenuator, we can obtain

an upper bound for quantum capacity of the general amplifier
channel Q(® ,,, N) from the linear CQEPI such as
Q@i N) < gkN + (k — D(Ng + 1))

Kk —1

2k — 1

= 9y, a7

Similarly, we can also get Q"z, which follows from Eq. (16),

+

S(pe) —In(2 — 1)

U, =8N + (k — 1)(Ng + 1))
—In(k — 14+ ke3P — S(pp). (18)

It is worth mentioning that the upper bounds increase as the
environment energy (average photon number Ng) increases.
However, it does not mean actual quantum capacity always
depends on the environment energy, e.g., coherent state envi-
ronment.

IV. LOWER BOUNDS ON THE QUANTUM CAPACITY

Now, we need to consider proper lower bounds on the
quantum capacity for our general attenuators and amplifiers in
order to compare with the upper bounds. We can obtain lower
bounds on those channels by means of Gaussian optimizer
with fixed input entropy [30], in which the thermal state

reaches the minimum output entropy of the given channel. We
can express a lower bound of the quantum capacity for the
general attenuator as

Q(®:,p,. N) = ElgplgNIc(d%,pE, p)

> 8(Prp, () — S(P5,, (o)), (19)

where the second inequality from using a specific thermal
state as an input state, instead of optimizing over all possible
states. In order to obtain a bound on the first term, we recall
D o (PN) = Pi—z pyy (0£) Dy considering the correspond-
ing characteristic functions [20]. Then, by the fact that the
output entropy of the single-mode phase-insensitive Gaussian
channel for a fixed input entropy is minimized by the thermal
state having the same entropy, we can get the inequality [30],

S(qDI,)OE (plh,N )) = S(q>1ff,,0[h>}\/ (pE ))
2 g((I = )N + TN). (20)

For a bound on the second term of Eq. (19), we use the
maximality of Gaussian state again as in Ref. [29], and then

S(@5,, (o)) < S(PYS, (onn)) + S(or)
<8I =N +tNg)+S(pe), (2D

where R is the reference system for purifying environment and
using the fact that @ZCPE = ®y_, ,,. Finally, we get the lower
bound on the quantum capacity for the general attenuator as

Q(Pr s N) = g((1 — T)Npp + TN)
—g((1 — )N + tNg) — S(pE)
=9, (22)

Similarly, a lower bound on the quantum capacity of the
amplifier can be written as

Q(Py - N) > Er(lggNIc(CDK,pE, 0)

> §(ep (o)) — S(BE, (oun)).  (23)

The first term is bounded from below as in Ref. [30], and so
we have

S(q)K,,DE (pth,N)) = S(CDK—I,p[h,N (PE))
2 g((k — DN + k(N + 1)), (24)

and the second term is bounded from above using maximality
of Gaussian state as in Ref. [29], and so we obtain

S(®5,, (Pnw)) < S(PF, (o)) + S(pr)
< gk — DN + k(Ng + 1)) + S(por). (25)

Consequently, we get the lower bound on the quantum capac-
ity of amplifier as follows:

Q(Pe,pps N) = g((k — DN + k(N + 1))
— g((k — DN + k(Ng + 1)) — S(pg)
= Qz. (26)
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FIG. 2. Comparison between our two upper bounds with known
upper bound Qswar [19] for (a) the thermal attenuator with T = 0.99
and (b) the amplifier with x = 1.02. Average photon number of the
thermal environment is Ny = Ny, = 1.

V. EXAMPLES

In the previous sections, we have investigated our upper
and lower bounds on the quantum capacity for the case in
which environment can be any state in general. Here, we give
specific examples in order to consider the physical meanings
of our results. The first nontrivial example whose quantum
capacity is unknown is the thermal attenuator, in which the
environment is the thermal state. Unfortunately, our upper
bounds cannot improve them (see Fig. 2). Therefore, we
investigate more general Gaussian environment, i.e., squeezed
thermal state, to the non-Gaussian environment.

A. Squeezed thermal environment

We can express the covariance matrix of a centered
squeezed thermal state as

e 0
Ysth = 2N + 1) 0 o) 27)

where Ny, is the mean photon number from the thermal noise
and r € [0, 00) is the squeezing parameter. Then, the mean
photon number Ng of this state can be written as

1 (Trysth ) 1
Ng=-|—— —1)=z[@Nn+ 1)cosh2r —1]. (28)
2\ 2 2

Therefore, we can easily obtain the value of entropy S(pg) =
g(Nw), and Ng for given mean thermal photon Ny, and squeez-
ing parameter r. The squeezed thermal state is the most
general single-mode Gaussian state when its mean is placed at
origin, which can be always removed by the local symplectic
unitary transformation. Consequently, what we are consider-
ing here are general Gaussian attenuator and amplifier. We
plot the upper and lower bounds of the quantum capacity with
respect to input state energy in Fig. 3. Our results give narrow
bounds near the region of 7, x ~ 1, when the input energies
are low.

B. Non-Gaussian environment

As the next examples, we investigate a pure non-Gaussian
environment (e.g., Fock state) and a general mixed state. In
the case of pure environment, S(pg) = Ny, = 0 by definition.
Therefore, the upper and lower bounds have very simple

FIG. 3. Two upper bounds and a lower bound on the quantum
capacity of Gaussian (a) attenuator with 7 = 0.98 and (b) amplifier
with ¥ = 1.02 on the squeezed thermal environment, when Ny, =
0.01 and squeezing parameter r = 0.1, and thus Ny ~ 0.02. N is the
mean photon number of input state, and Q is the quantum capacity
(bits). Note that the two upper bounds are very close; thus, they are
overlapped in both cases.

forms such as

Qu, = Qu, = g(tN + (1 — 1)Ng),
Qr =g(tN) — g((1 — T)N + tNg),
v, = Qu, = 8N + (k — D)(Ng + 1)) — In(2c — 1),
7 =8k N + 1)) — g((k = DN + k(Ng + 1)). (29)

In Fig. 4, we plot the upper and lower bounds for these
channels.

For the last example, we consider a more noisy non-
Gaussian environment, in a sense that the mean photon num-
ber and entropy are relatively high. We can figure out that our
bounds are not so tight in this case and the two upper bounds
split (Fig. 5).

VI. DISCUSSIONS

We have investigated upper and lower bounds on the
energy-constrained quantum capacity for general attenuator
and amplifier. Our primary method is CQEPI, which can
be used for obtaining bounds on the output entropy of the
complementary channel. Although our results do not give
tighter bounds over known results for thermal attenuator and
amplifier, it is applicable to a more general environment,
regardless of whether it is Gaussian. Moreover, we have
shown that our bounds become tight ones when the channel
transmissivity is near unity and the input energy is low.

Qs

FIG. 4. Upper and lower bounds on the quantum capacity of
general (a) attenuator with T = 0.98 and (b) amplifier with k = 1.02.
The mean photon number of the environment is Ny = 0.2.
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Qs

FIG. 5. Upper and lower bounds on the quantum capacity of
general (a) attenuator with T = 0.98 and (b) amplifier with x = 1.02.
Entropy of the environment is S(pg) ~ 2.75, thus Ny, = 2, and we
set Np = 3.

Since the general attenuator and amplifier cannot cover all
single-mode Gaussian channels, one of the most important
works is finding an equivalent class of all single-mode Gaus-
sian channels having the same quantum capacity. Further-
more, there is still a possibility for finding a tighter bound on

the quantum capacity of the amplifier, as can be seen from our
results [Figs. 3(b) and 4(b)]. Even for the thermal amplifier,
the known upper bound is not that tight [18] compared with
the thermal attenuator, so we have not observed any activation
of the quantum capacity, which was investigated in Ref. [12].
With these considerations, we expect that our work could
extend the knowledge of the quantum capacity, which is still
far from being fully understood.
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