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Ceren B. Dağ* and L.-M. Duan
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 28 August 2018; published 15 May 2019)

Out-of-time-order correlators (OTOCs), recently at the center of discussion on quantum chaos, are tools
to understand the information scrambling in different phases of quantum many-body systems. We propose a
disordered ladder spin model, the XX ladder, which can be designed in a scalable cold atom setup to detect
OTOCs with a sign reversal protocol alternative to existing approaches for evolution backward in time. We study
both the clean and disordered XX ladder and characterize different phases (ergodic and many-body localized
phases) of the model based on the decay properties of OTOCs. The emergent effective lightcone shows sublinear
behavior, while the butterfly cones drastically differ from the lightcone via demonstrating superlinear behavior.
Based on our results, one can observe how the information scrambling changes in the transition from well-studied
one-dimensional spin models to unexplored two-dimensional spin models in a local setting.
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Information scrambling has drawn much attention in the
last years, not only in gravitational theories to study the infor-
mation properties of black holes [1–4] but also in quantum
many-body physics [5–14]. Even though the initial interest
in scrambling was to study quantum chaos in models with
gravity duals, information scrambling, first, is not limited
to systems with duals and, second, provides an understand-
ing about the dynamics of any generic many-body system.
Besides being a complementary approach to level statistics
[15] in the context of quantum chaos, the way that the
systems scramble information in time can dynamically re-
veal the properties of a Hamiltonian in an experiment. The
tool to measure the information scrambling is a correlation
function, the so-called out-of-time-order correlator (OTOC).
The physics that the OTOC captures is the growth of the
commutator of two operators in time and this growth can be
characterized by

Cβ
i (t ) = − 1

Z
Tr{e−βH [Ai(t ), Bj=0]2} (1)

for a system with a finite inverse temperature β. Here i denotes
a site in the lattice, j = 0 is the first lattice site, Ai(t ) and
Bj=0 are local Hermitian operators for their corresponding
sites, and Z is the partition function. The local observables of
two sites at a distance initially commute, but the interactions
lead the system to become more correlated in time, and the
buildup of the correlations between sites at a distance starts
to be seen in the Heisenberg operators that no longer com-
mute. Therefore, the initially localized operators spread across
the space dimension and become as nonlocal as possible
around the scrambling time. OTOCs are sensitive to conserved
quantities [5,16,17], revealing the (non)integrability of the
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system; they also show the signatures of localized phases
[5–9], equilibrium [18] and dynamical phase transitions [10],
chaotic properties of thermal systems [4,13,19], e.g., exponen-
tial decay in OTOCs, and finally the (non-)locality and infor-
mation transport of the Hamiltonian via emergent lightcones
[11–14]. All these theoretical discoveries on OTOCs call for
experimental proposals and experiments in order to probe and
eventually utilize scrambling.

To date, there have been a number of experimental pro-
posals [13,20–24] and realizations [16,25,26] on scrambling
detection. In this paper, one of our aims is to come up with the
simplest possible cold atom setup that shows a wide range
of diverse scrambling phenomena and could pave the way
to the scalable OTOC measurements of nonintegrable spin
systems. The cold atom setup is a realistic candidate to probe
OTOCs, mainly due to scalability and its weak coupling to
the environment [27,28]. Information scrambling could be
induced by environment effects as well, and therefore it is
important to differentiate the scrambling due to correlation
built up via many-body interactions in an experiment [26].
The scalability of cold atoms could be utilized to increase
the size and hence the duration of transient effects in OTOCs
by delaying the saturation stage. The most crucial step of
OTOC measurement is the evolution backward in time. We
propose a sign reversal mechanism as an alternative to existing
approaches. The conventional solution to reverse the sign of
a cold atom Hamiltonian is to utilize Feshbach resonances
[13,29]. We will show that a sequence of single-spin gates
can be performed via fast laser pulses [30,31] to measure the
OTOCs.

In the first section, we explain our model and its cold atom
setup. Then we systematically study the level statistics and
scrambling properties of XX ladders both with and without
disorder. In the final part, we lay out the scrambling detection
with an experimental initial state preparation.
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I. THE LADDER-XX MODEL

Ladder spin models have been studied to explore their
critical phenomena [32–34] and entanglement properties [35].
They are seen as useful intermediate models to understand
the magnetic properties of materials while increasing the
dimension from d to d + 1 [36]. There are also natural cuprate
compounds that are modeled by ladder spin models at d = 1
[34] and they have been considered as candidate models to
explain high-Tc superconductivity [37]. More recently ladder
spin models are studied in the context of transport [38]. We
set our chaotic ladder model as the ladder-XX model because
of its simplicity in cold atom realization:

H =
∑

j=1,2

L−1∑

i=1

J‖
(
σ x

j,iσ
x
j,i+1 + σ

y
j,iσ

y
j,i+1

)

+
L∑

i=1

J⊥
(
σ x

1,iσ
x
2,i + σ

y
1,iσ

y
2,i

) +
L∑

i=1

hi
(
σ z

1,i + σ z
2,i

)
, (2)

with random disorder hi which is drawn from a uniform
distribution with disorder strength of [−h, h]. σ x,y,z are Pauli
matrices for the spin-1/2 system, J‖ is the intrachain hopping
coefficient, and J⊥ is the rung hopping coefficient. L is the
system size for a single chain and we go up to L = 8 in our
numerical analysis with exact diagonalization.

The ladder-XX model could be realized at the hard-core
boson limit of the Bose-Hubbard model [39,40]. At the
hard-core boson limit with U → ∞ and a noninteger fill-
ing factor that implies every site has either zero or one
boson, we end up with a superfluid Hamiltonian HU→∞ =
−t‖

∑
i,i+1 (a†

i ai+1 + H.c.) − ∑
i μia

†
i ai, that can easily be

mapped to the XX chain via mapping the annihilation oper-
ator to the spin lowering operator a → σ− and via mapping
the creation operator to the spin raising operator a† → σ+.
The mapping leads us to have J‖ = 2t‖, J⊥ = 2t⊥ and the
random chemical potential is mapped to random magnetic
field strengths μi = hi via a†

i ai − 1/2 → σ z. Therefore, we
can recover Hamiltonian Eq. (2) with two interacting Bose-
Hubbard chains exposed to random chemical potential in the
hard-core boson limit. The boson state vectors correspond to
either spin down |↓〉 or spin up |↑〉 in the ladder-XX model.
Since the filling factor is fixed in the cold atom scheme, the
corresponding case in our spin model [Eq. (2)] has fixed total
spin Sz. We set the filling factor f = 0.5 and the OTOC of the
system is studied at the subsector Sz = 0.

We utilize superlattices to create random disorder in the
Bose-Hubbard chains [41,42] and to let two chains inter-
act with each other. For the latter, we create a double-well
potential via choosing the laser frequencies as k and 2k
in the y direction with a phase difference between them
φ, e.g., Vy(y) = V1y sin2 (kyy) + V2y sin2 (2kyy + φ), assum-
ing V1y ∼ V2y so that the bosons can be trapped in the
double-well potential. For the random disorder, we inter-
fere two optical fields with incommensurate frequencies,
e.g., Vx(x) = V1x sin2 (k1xx) + V2x sin2 (k2xx), where k1x/k2x ∈
R/Q for both of the chains. When V2x � V1x, the disorder
lattice can simulate the true random potential [41,42]. One
can tune the hopping coefficients J‖ and J⊥ in the ladder-XX
model through the laser amplitudes and frequencies [39] and

thus access different OTOC behaviors with the simulation
time of t ∝ 1/J‖ ∝ 1–10 ms in laboratory. Therefore, the
measurement time of the OTOC is in the limits of cold atom
experiments [43].

II. THE OTOC PROPERTIES AND LEVEL STATISTICS

For a spin system Eq. (1) can be recast to the OTOC, by
first setting the temperature infinite, β → 0, and then noting
that

F ex
i (t ) = 1 − C0

i (t )

2N
, (3)

where C0
i (t ) = ‖[σ z

i (t ), σ z
1 ]‖2

F . Since the Pauli matrices are
Hermitian, norm 2 (the Frobenius norm) could be utilized
to rewrite Eq. (1). N is the dimension of the Hilbert space
and the superscript “ex” stands for the exact value of the
out-of-time-order correlator. Equation (3) is measurable given
that a β = 0 initial state is prepared. In general, calculating
an expectation value with respect to the infinite-temperature
state requires averaging over all eigenstates. However, we can
approximate the OTOC Eq. (3) with smaller number of states:

F∼
i (t ) =

∑

j

〈ψ j |σ z
i (t )σ z

1σ z
i (t )σ z

1 |ψ j〉, (4)

where |ψ j〉 denotes a pure random initial state (or a mixture
of random initial states) drawn from the Haar measure [11].
Haar random states are typically maximally entangled states
within a small error [44]. The error of approximating a β = 0
initial state is exponentially suppressed as the Hilbert space
increases via typicality arguments [45,46]. This procedure is
numerically less expensive compared to other methods for
preparing the initial state at β = 0, even though the Haar
random states are hard to generate experimentally [47]. The
results presented in this paper are based on averaging over
more than one random initial state to obtain the OTOC as
precise as possible (see Appendix B for error bounds).

When a generalized form of Jordan-Wigner transformation
[48] is applied, the XX ladder can be shown to be interacting
in the spinless fermion representation. Therefore we expect to
see ergodic to many-body localized (MBL) phase transition in
this model [49,50]. A common way to determine if a quantum
system is chaotic is via the energy-level statistics [15,49–51].
Energy-level spacings are δn

γ = |En
γ − En−1

γ | where En
γ is the

corresponding energy of the many-body eigenstate n in a
Hamiltonian of disorder realization γ . Each γ represents a dif-
ferent set of random disorder hi drawn from uniform distribu-
tion. Then we can calculate the ratio of adjacent gaps as rn

γ =
min(δn

γ , δn+1
γ )/max(δn

γ , δn+1
γ ) as the indicator of the level

statistics [49,50]: rn
γ ∼ 0.53 and 0.39 are representative of

Wigner-Dyson and Poisson statistics, respectively. If the dis-
tribution of the energy-level spacings follows Wigner-Dyson
statistics through a generalized orthogonal ensemble (GOE)
distribution, the model shows ergodic behavior, whereas Pois-
son statistics imply a localized phase [15,51]. Figure 1 shows
the average ratio values 〈rn

γ 〉
γ ,n

varying between random
field strengths of h = 0 and 10 for different system sizes
ranging between L = 4 and 8 when they are averaged over
5 × 103 to 10 different random samples. The average of rn

γ

over a set of different Hamiltonians Hγ and eigenstates n
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FIG. 1. The average ratio of level spacings 〈rn
γ 〉

γ ,n
with respect to

disorder strength h. Coupling strengths are set to J⊥ = J‖ and 〈rn
γ 〉

γ ,n

is averaged over 5 × 103 to 10 random realizations for single-chain
sizes ranging between L = 4 and 8. Inset: 〈rn

γ 〉
γ ,n

at h = 1 [J||] with
respect to rung interaction strength α where J⊥ = αJ‖ for L = 7.

converges to 〈rn
γ 〉

γ ,n
∼ 0.53 in the presence of small disorder

strength h � 3 [J||], hence implying an ergodic phase. As
h � 9 [J||], we observe 〈rn

γ 〉
γ ,n

∼ 0.39, which indicates a MBL
phase.

Figure 2 shows how the OTOC of σ z
1 and σ z

7 for the L = 7
chain changes with respect to the rung interaction strength.
At the limit of α = J⊥/J‖ → 0, the system converges to
two independent XX chains with random disorder, whereas
the opposite limit of α → ∞ implies a dimer phase as an-
other integrable limit of the XX ladder. In both cases, the
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FIG. 2. The OTOC of the ladder-XX model at h = 1 [J||] between
two distant operators σ z

1 and σ z
7 in the first chain with respect to α

for L = 7. α ∼ 1 corresponds to the interacting limit, whereas the
cases α � 1 and α � 1 are integrable limits of the ladder-XX model.
The OTOC is averaged over 100 different random samples. The plot
shows the mean values (see Appendix A for the error bars on the
curves).
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FIG. 3. (a) The exponential and (b) power-law decay of OTOCs
for σ z

1 with σ z
5 (blue triangles), σ z

6 (red pentagrams), σ z
7 (orange

diamonds), and σ z
8 (purple circles) observables in a system size of

L = 8. The inset in (b) shows the Lyapunov-like exponent extracted
from exponential fitting for both L = 7 (black asterisks) and L =
8 (red triangles). (c) No disorder case: Only power-law decay of
OTOCs for σ z

1 with σ z
5 (orange diamonds), σ z

6 (red pentagrams), and
σ z

7 (blue triangles) observables when L = 7 and h = 0. (d) Crossover
region with h = 5 [J||] (red pentagrams) and MBL with h = 10 (blue
triangles) for observables σ z

1 − σ z
7 with L = 7.

corresponding fermion representation becomes noninteract-
ing, and hence points to single-particle dynamics with An-
derson localization [5,9]. We see a permanent revival after
a decay and larger oscillations in the OTOC as observed
in integrable systems [16,19]. In addition, the average level
spacing ratio 〈rn

γ 〉
γ ,n

decreases from ∼0.53 to ∼0.39, thus
demonstrating level statistics for integrable systems (see inset
of Fig. 1). We note that the OTOC for α → ∞ scrambles
less than the OTOC for α → 0 with a small initial decay,
since the model also becomes weakly coupled throughout the
x dimension in this limit. The OTOC decays rapidly in the
interacting limit around α ∼ 1 and saturates at F (t → ∞) ∼
0 while showing GOE distribution with 〈rn

γ 〉
γ ,n

∼ 0.53 and
hence quantum chaos in its energy levels. We set α = 1 for
the rest of our paper and study the interacting limit.

The chaotic regime of the ladder-XX model (h = 1 [J||])
demonstrates a brief interval of exponential decay in early-
time dynamics [Fig. 3(a)], followed by power-law tails
[Fig. 3(b)] before entering into the saturation regime. The in-
set in Fig. 3(b) shows the Lyapunov-like exponents extracted
from the data both for L = 8 and 7 (Appendix C) when we fit
Re(F ) = a exp(−λt ) to the data, where a is a constant. Quan-
tum chaotic models are expected to scramble the information
fast and hence show exponential decay of the OTOC [4]
before the saturation. Exponential decay is a transient feature
of systems with finite size and bounded operators [52], a result
we observe in Fig. 3(a). The Bose-Hubbard model [13] and
time-dependent systems [5,53] were shown to decay exponen-
tially, whereas it is numerically hard to show the exponential
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decay in time-independent quantum chaotic spin chains, e.g.,
the disordered Heisenberg model [5]. In fact, the transient
exponential decay turns into power-law decay Re(F ) = at−b

in Fig. 3(b) for the ladder-XX model, thus reminding us of
the quasiexponential generic form put forward by [14]. When
there is no disorder, Fig. 3(c), a decay with power-law trend
is observed. There are significantly larger oscillations around
the saturation value in the clean limit, however in both clean
and disordered cases the scrambling time is approximately the
same. For a comparison, the power-law exponents for disor-
dered and clean cases are b = 2.65 and 2.76, respectively, for
the observables σ z

1 − σ z
7 in a system with L = 7. The ladder-

XX model has energy and spin conservation, similar to the
Heisenberg model where the OTOC has been observed to be
sensitive to conserved quantities and show power-law decay
[5]. In addition to that, the XX ladder has invariant subspaces
that show ballistic transport but are not associated with local
conserved quantities at the same time, hence the energy levels
still show quantum chaos [38]. When random disorder is
introduced, these invariant subspaces can support Anderson
localized eigenstates regardless of the disorder strength [54].
We first conclude that the invariant subspaces do not change
the power-law decay, however they affect the saturation value
of the OTOC. Figures 3(b) and 3(c) show that the satura-
tion value is much higher both in disordered F (t → ∞) >

10−2 and clean F (t → ∞) > 10−3 limits, compared to other
models such as Heisenberg and transverse-field Ising models
of similar sizes F (t → ∞) ∼ 10−5 [5]. Further, we notice
that the saturation value of the OTOC becomes even larger
when the disorder is introduced. Even though the disorder
clearly resolves the degeneracies caused by symmetries, the
disordered system scrambles less than the clean system. Thus,
we point to Griffiths rare-region effects [55] that might also be
responsible for turning exponential decay in early time into a
power law later in time.

The decay becomes even slower as we increase the disorder
strength h, Fig. 3(d). The system shows no scrambling for
a time interval of t ∼ 10[1/J||] when h = 10 [J||] and differs
from the OTOC at h = 5 [J||] that is at the crossover region
in Fig. 1. Even though for short times it looks like Anderson
localization, simulation over long times reveals an MBL-like
decay by showing a clear signature of logarithmic decay
at intermediate times for both h = 5 and 10. By slightly
modifying the general form given in Ref. [7] for logarithmic
MBL decays, we find that the decay profiles in Fig. 3(d) could
be fitted to Re(F ) = 1 − a exp (−btc), where the parameter a
determines the saturation value, and c < 0 for the OTOC to
decay as t → ∞ and F = 1 as t → 0. Similarly this form re-
duces to logarithmic decay, Re(F ) ∼ 1 − a

e + a×c
e log (b1/ct )

for b1/ct ∼ 1. The fit parameters read a = 0.725, b = 5.727,
c = −0.812 for h = 5 and a = 0.154, b = 8.661, c = −0.519
for h = 10 [J||]. Therefore, the logarithmic decay is valid
around t ∼ 10 [1/J||] and t = 102 [1/J||] for h = 5 [J||] and
10 [J||], respectively. One can further see that Anderson lo-
calization lies in the limit |c| → 0, which implies logarithmic
decay should happen when t → ∞, meaning that the OTOC
does not decay at all. As a result, we demonstrate that there
could be intermediate cases where the OTOC does not decay
to zero, but to finite nonzero values in the MBL phase, which
is possibly related to atypical eigenstates in XX ladders [54].

γ

FIG. 4. The dynamical exponent γ with respect to the OTOC
contour values η extracted from analyzing data sets for L = 6 with
observables from σ z

2 to σ z
6 (light blue circles), with observables from

σ z
4 to σ z

6 (dark blue stars), L = 7 from σ z
4 to σ z

7 (green squares), and
L = 8 from σ z

4 to σ z
8 (red triangles) for a random disorder strength of

h = 1. We averaged the data over 2 × 102, 1 × 102, 1 × 102, and 1 ×
101 times for the first two L = 6, 7, and 8 system sizes, respectively.
Inset: The rates of the sublinear, linear, and superlinear wavefronts
for a system size of L = 7. The markers are the data points, while the
lines are the differentiations of the wavefront curves.

In a lightcone figure (Fig. 5), each point has a set of discrete
space x and time t coordinates, where the space dimension is
emergent due to the nearest-neighbor couplings and defined
as the distances between lattice sites in the lower leg of the
ladder. The value of a point is the OTOC, denoted as η. If
we follow the OTOC contours composed of the same η value,
we obtain a series of space-time coordinates that give us a
wavefront [11,12,56,57]. A couple of wavefronts associated
with different η values ranging between η = 1 and 10−2 are
shown in Fig. 5. These wavefronts are expected to present how
the correlations spread in the system over time. The outermost
wavefront η ∼ 1 corresponds to the lightcone, while η ∼ 0
corresponds to the butterfly cone in the literature [58]. The
wavefronts that we extracted follow the power law: x ∼ tγ

where γ is dubbed as the dynamical exponent. Figure 4 shows
a range of γ changing from the low end of ∼0.5 to the high
end of ∼1.5 with respect to η for different system sizes. It
is not clear if γ would have a maximum in Fig. 4 due to the
limitations in the data. We find a sublinear lightcone with γ <

1 where the spread is sub-ballistic. This observation aligns
with the rare-region effects [55]. On the other hand, as the
system scrambles, we observe that the wavefronts first become
linear γ = 1 and then pass to a superlinear region γ > 1 in
Fig. 4(a). Therefore, the butterfly cones at η ∼ 0 seem to
differ significantly from the lightcone at η ∼ 1. The wavefront
structures that demonstrate the superlinear butterfly cones can
be seen in Fig. 5(a). We plot the rates of the wavefronts in the
inset of Fig. 4 where the sublinear lightcone (η = 0.99) ini-
tially bounds the rest. Towards the scrambling time, the linear
wavefront (η = 1) seems to be the new bound on the wave-
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FIG. 5. A demonstration of wavefronts for a system size of
(a) L = 8 and (b) L = 6, where the x axis and y axis are the
distance and time, respectively. (a) The fitted wavefronts change from
sublinear to superlinear in time between the displacements �x = 3
and 7 units. (b) Only the sublinear wavefronts are fitted between
�x = 1 and 5 units (dotted lines), while the solid lines show irregular
wavefronts appearing later in time.

front rates. A range of sublinear wavefronts were detected
in the disordered Heisenberg chain before [11], implying the
lightcone still differs from the butterfly cones in the dynamical
exponent. Superballistic spread of correlations (γ > 1) has
been previously observed in one-dimensional (1D) spin chains
with power-law decaying long-range interactions [12,56,57].
The ladder models can always be mapped to a path that passes
through all the sites, e.g., zigzag or meander paths, so that
1D Jordan-Wigner transformation can be applied [59]. Such
mappings bring long-range interactions due to the Jordan-
Wigner strings, which could explain the super-ballistic spread
appearing later in time. We note that its rate remains insignifi-
cant compared to the faster wavefronts. It is an interesting di-
rection to see if other ladder models present similar wavefront
structures. Finally, we demonstrate the irregular wavefronts
appearing in the spatial region [60] when the displacement
is �x = 1–2 in Fig. 5(b). The only fitted wavefronts are the
sublinear wavefronts shown in Fig. 5(b) as dotted white lines,
because the wavefronts start to exhibit irregularities later in
time (solid white lines). The irregularity appears between
the origin and two sites away from it, as we observe that it
takes significantly greater time for the information to spread
�x = 2 units compared to �x = 1 unit in the time interval
of t ∼ 0.5 [1/J||] to t ∼ 2 [1/J||]. Hence it seems that the
information spread slows down locally and temporarily [the
jump feature in Fig. 5(b)] before showing a sub-ballistic trend
for �x > 2. Furthermore, after t ∼ 2 [1/J||] the jump feature
is replaced by a constant line between �x = 1 and 2 units,
which points to a locally scrambled region in the ladder while
the information still spreads in the rest of the system at a fi-
nite rate. This unusual region-restricted scrambling continues
until the whole ladder completely scrambles. Therefore, we
conclude that different rare-region effects are at play in the
ladder XX, which calls for a more systematic future study.

III. OTOC DETECTION PROTOCOLS

The scrambling in the ladder-XX model can be detected via
the interference measurement scheme on many-body states
in optical lattices [61,62] or the interferometric measurement
scheme [20]. We detail both measurement schemes in the
following subsections and elaborate on their advantages and
disadvantages. Since both schemes need an experimental

initial state preparation, we first focus on how to design an
initial state that would sufficiently approximate an infinite-
temperature state.

A. Initial-state preparation

One can ideally use the whole set of Fock states to create
a β = 0 initial state. However, given that this process would
be lengthy, we ask if using a few (M � N ) randomly chosen
Fock states would sufficiently mimic β = 0 initial state I ∼∑M

j=1 |ψ j〉〈ψ j |, where |ψ j〉 = {|(1...

0...

)〉, ..., |(0...

1...

)〉} are Fock
states for the ladder and they span the Hilbert space at
half filling. We find out that initiating an experiment with a
randomly set Fock state for ∼10 or ∼102 times mimics the
β = 0 state up to a mean error of ∼7 × 10−3 or 2 × 10−3,
respectively, for a system size of L = 6 [Fig. 6(e)]. We study
how the mean error scales with the sampling ratio M/N
in Figs. 6(a) and 6(b) for different system sizes. Here the
mean of the error is calculated for the data points when the
error signal ε1(t ) = |F ex(t ) − 1

M

∑
j Fj (t )| saturates in time.

The sampling ratio M/N has bounds 0 < M/N < 1 and we
observe when M/N � 0 the scaling is exponential and the
data for all simulated system sizes could be collapsed to a
single decay exponent b ∼ −2.5 in ε1(t ) ∝ a exp(−bM/N )
[see Fig. 6(a)]. Note that when M/N = 1, meaning that all
Fock states are used, the error is zero up to machine precision
and the OTOC is exact, and the point M/N = 0 is not well
defined. Except for small sizes, e.g., L = 3, the observed
exponential scaling in Fig. 6(a) is not experimentally practical
due to the increasing number of randomly sampled Fock
states. Therefore, we study the limit M/N → 0 separately
where we obtain power-law scaling in M/N [see Fig. 6(b)]
with b ∼ −0.5 in ε1(t ) ∝ a(M/N )b for system sizes L = 4–7.

Remarkably, it is possible to bound the error of approx-
imation to ∼10−2 with only one Fock state for L = 7. In
fact the error decreases as a power law with the increasing
system size when only one Fock state is used to mimic
the infinite-temperature state [Fig. 6(c)]. Figure 6(c) shows
nine different realizations of using only one randomly set
Fock state and a single power-law curve fitted to all with
b ∼ −2.26 in ε1(t ) ∝ (2L)b (Appendix D). This observation
is not utterly surprising, because a Fock state has a broad
eigenstate occupation number (EON) distribution [Fig. 6(d)
and Appendix D]. An EON distribution |cβ |2 can be de-
fined as the overlap of the initial state with the eigenbasis
of the time-evolving Hamiltonian: |ψ (0)〉 = ∑

β cβ |ψβ〉 →
|cβ |2, where ψβ are the eigenstates and |ψ (0)〉 is the initial
Fock state. For instance, an infinite-temperature state has a
uniform EON distribution: |cβ |2 = 1/N . To be more precise,
we can calculate the so-called effective dimension of the
initial state, de = (

∑
β |cβ |4)−1 [63,64], and study the scaling

of the effective dimension with the dimension of the Hilbert
space. For an infinite-temperature state, de = aNξ with an
exponent of ξ = 1 and a = 1, which should be compared
with the scaling exponent for the effective dimension of a
randomly set Fock state. Figure 6(d) shows the data collapse
on the effective dimensions of ten different randomly set Fock
states for each system size. The fit parameters de ∼ 0.3N
show that a randomly set Fock state also gives an exponent
ξ = 1, which more accurately demonstrates the broadness
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FIG. 6. Initial-state preparation at h = 1 [J||]. (a) The scaling of
the mean error ε1(t ) with respect to M/N sampling ratio, where M
and N are the number of randomly sampled states and the dimension
of the Hilbert space, respectively. The blue triangles, red pentagrams,
orange diamonds, and purple circles stand for a single-chain size
of L = 3 to 6, where all have an exponent of b ∼ −2.5 in the
fit ∝ a exp(−bM/N ). (b) The scaling of the mean error for small
M/N ratio has power-law scaling ∝a(M/N )b with b ∼ −0.5 for
all system sizes of L = 4 (blue triangles), L = 5 (red pentagrams),
L = 6 (orange diamonds), and L = 7 (purple circles). (c) The data
collapse applied to the scaling of the mean of the error ε1(t ) with
respect to the system size for only one randomly sampled Fock state.
Each data point is a random realization where the fitted curve gives
an exponent of b ∼ −2.26 in ε1(t ) ∝ (2L)b. (d) The scaling of the
effective dimension de with the Hilbert-space size, N , gives linear
scaling de = 0.3N , mimicking an infinite-temperature state. (e) The
error signal ε1(t ) with respect to time, for an average of M = 7 (blue
dashed), M = 36 (red dash dotted), M = 133 (green dotted), M =
178 (black solid), and M = 748 (pink circles) randomly sampled
Fock states. (f) The error signal ε2(t ) = ||F ex(t )|2 − 1

M

∑M
j |Fj (t )|2|

with respect to time, for an average of M = 7 (blue dashed), M = 36
(red dash dotted), M = 133 (orange dotted), M = 178 (purple solid),
and M = 461 (green circles) randomly sampled Fock states. Both (e)
and (f) have a system size of L = 6.

of the EON distribution. The coefficient in front is bounded
for effective dimension scalings, a � 1, and we see that a
randomly set Fock state has a ∼ 0.3. This reflects the fact
that the Fock state does not show uniform distribution in the
eigenbasis of the Hamiltonian, and hence we have a nonzero
error signal ε1(t ).

In conclusion, we see that the exact shape of the EON
distribution is insignificant as L → ∞, as long as it is a broad

FIG. 7. (a) The schematic that illustrates the circuit for OTOC
measurement with the spin operators σ z

1 and σ z
i . The circuit utilizes

interference measurements providing Tr{|ψ f 1〉〈ψ f 1 | ψ f 2〉〈ψ f 2|} =
|Fj (τ )|2. (b) Schematic for Hamiltonian sign-reversal protocol for
evolution backwards in time: red and blue spheres stand for spin-
up and -down states, respectively. We simultaneously perform
Rz(π )Rx (π ) gates for the odd-numbered spins in the first leg and
even-numbered spins in the second leg, while only one gate Rx (π )
is applied to the rest of the spins. Rz(π ) and Rx (π ) are denoted by
green and purple wiggly lines, meaning that the single-spin gates
for cold atom systems could be realized via laser pulses [31,66] or
microwaves [67].

distribution in the eigenbasis. Therefore, only one Fock state
could approximate the infinite-temperature OTOC reasonably
well. We note that our analysis is valid for h = 1 [J||] disorder
strength. The observation that a single Fock state could exhibit
ξ = 1 exponent in its effective dimension scaling is possibly
related to the extended eigenstates existing throughout the
spectrum in the chaotic regime. Hence, whether the found
power-law scaling in system size for a single Fock state as
well as the exponential and power-law scalings of the error in
the sampling ratio M/N depend on the disorder strength is an
interesting question for future studies and experiments. Our
results also show that a few randomly sampled Fock states
could be used as an alternative approach to Haar-distributed
random states in numerics to calculate the OTOC with a β = 0
initial state at the chaotic regime of a model.

B. The interference measurement

|F (t )|2 is the quantity to measure in the interference
measurement scheme [61]. We see that Im[F (t )] ∼ 0 and
Re[F (t )] � 0 throughout the simulation time with the param-
eters used in the paper, thus rendering |F (t )|2 a good quantity
to measure. The interference measurement scheme has been
proposed to probe scrambling in the Bose-Hubbard model
previously [13,65], however note that the implementation of
the interference measurement further simplifies for the hard-
core boson limit [61] which we utilize in the cold atom setup
of our model. The steps of the interference detection protocol
are as follows [Fig. 7(a)].

(i) Generate two copies of the same randomly sampled
Fock state |ψ j〉: We can first set a two-dimensional (2D)
lattice to Mott-insulator phase with unit filling factor and
then adiabatically ramp the lattice potential to a double-well
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potential at each site in the y direction. This would produce
a (|10〉 + |01〉)/

√
2 state for a double well, and via sup-

pressing the tunneling between wells in the double wells one
can generate randomly sampled Fock states in 2D lattice at
half filling. To make two copies of the initial state, we can
introduce another lattice layer in the z direction and apply
the same operations of the lattice potential simultaneously for
both planes.

(ii) Apply the σ z
1,1 gate on the first spin in the lower leg in

the first copy.
(iii) Apply to both copies U (τ )σ z

1,i, where U (τ ) is evolu-
tion forward in time for τ and the σ z

i gate is applied to any
spin i further away from the first spin in the lower leg.

(iv) Hamiltonian sign reversal protocol: As illustrated in
Fig. 7(b), we apply a set of gates to the lattice sites simul-
taneously to change the overall sign of the Hamiltonian so
that we can evolve the many-body state with −H . Given that
we shine either laser pulses [31,66] or microwaves [67] to
implement single-spin rotations, our protocol of Hamiltonian
sign reversal could be related to nuclear magnetic resonance
Hamiltonian engineering [16,23], though with a difference
of site-resolving pulses in the cold atom setup. Remem-
bering R†

z (θ )σ xRz(θ ) → cos θσ x − sin θσ y, R†
z (θ )σ yRz(θ ) →

cos θσ y + sin θσ x, we can create sign difference in the X and
Y coupling terms if we apply the Rz(π ) pulse alternating on
the sites, e.g., odd-numbered and even-numbered spins in the
first and second legs, respectively. In order to change the sign
of the random disorder term, we apply the Rx(π ) gate to each
of the spins via utilizing R†

x (θ )σ yRx(θ ) → cos θσ y − sin θσ z.
Then the gate sequence that we apply to both copies becomes

�i:oddRz
1,iR

x
1,iR

x
1,i+1Rz

2,i+1Rx
2,iR

x
2,i+1(π ), (5)

where 1 and 2 denote the leg numbers. Equation (5) could
be realized via a programmable acousto-optic modulator with
multiple laser outputs the frequency differences of which are
negligible [68] and high-resolution imaging devices that can
provide single-site addressability [67,69].

(v) Apply the σ z
1,1 gate on the first spin in the second copy.

(vi) Make an interference measurement between fi-
nal copies |ψ f 1〉 = U (−τ )σ z

1,iU (τ )σ z
1,1|ψ j〉 and |ψ f 2〉 =

σ z
1,1U (−τ )σ z

1,iU (τ )|ψ j〉 in the hard-core boson limit [61,62].
By measuring the swap operator on both copies [61], we can
obtain Tr{ρ f 1ρ f 2} = |Fj (τ )|2 for each |ψ j〉 initial state where
ρ f 1 = |ψ f 1〉〈ψ f 1|. The same measurement could be applied
to the copies of the initial state to check if they are identical,
Tr{ρ2

j } = 1. The interference measurement scheme has been
applied to measure entanglement entropy [62].

(vii) Repeat the measurement protocol for M times with
randomly chosen |ψ j〉 initial states to obtain 1

M

∑
j |Fj (τ )|2

which is equal to |F ex(t )|2 up to an error �10−2 and ∼10−4 in
decay and saturation regimes, respectively, for M ∼ 102 Fock
states. Figure 6(f) shows the difference between the square of
the exact OTOC [Eq. (3)] and 1

M

∑M
j |Fj (τ )|2 for M randomly

chosen Fock states for a system size L = 6.

C. The interferometric scheme

We can measure F (t ) with the interferometric approach
[20], because the measurement of the control spin either in x
or y basis provides the real and imaginary parts of the OTOC,

FIG. 8. The measurement circuit for the interferometric ap-
proach [20] on the ladder-XX model with local spin observables σ z

1

and σ z
i by using an auxiliary spin |ψc〉 to measure only the real part

of the OTOC.

respectively. Figure 8 demonstrates the measurement circuit
where the control spin needs to be coupled only to the first
spin in the ladder. The protocol is as follows.

(i) Initialize the control spin in a superposition state of
|ψc〉 = (|0〉c + |1〉c)/

√
2 to prepare the many-body state

1√
2

[(
σ z

1,1σ
z
1,i(t )|ψ j〉

)|0〉c + (
σ z

1,i(t )σ z
1,1|ψ j〉

)|1〉c
]
,

where the ladder-XX model is simultaneously initiated in a
randomly sampled Fock state |ψ j〉.

(ii) Apply controlled-σ z
1 operation to the first spin in the

lower leg: (|0〉c〈0| ⊗ I1 + |1〉c〈1| ⊗ Rz
1,1(π )) ⊗ I⊗2L−1.

(iii) Evolve the ladder-XX model forward in time and apply
σ z

i rotation to the spin i: Ic ⊗ U (τ )(I⊗i−1 ⊗ σ z
1,i ⊗ I⊗2L−i ).

(iv) Apply Eq. (5) to the ladder-XX model and evolve the
many-body state with −H as Ic ⊗ U (−τ ).

(v) Apply the σ x
c gate to the control spin be-

fore another controlled-σ z
1 operation, so that we have

(|0〉〈0|c ⊗ Rz
1,1(π ) + |1〉〈1|c ⊗ I1) ⊗ I⊗2L−1. Further apply

another σ x
c gate to the control spin.

(vi) Make a measurement on the control spin in the x
basis to obtain the real part of the OTOC, Re[Fj (t )] = 〈σ x

c 〉 =
〈ψ j (t )|σ x

c |ψ j (t )〉.
(vii) Repeat the measurement protocol for M times with

randomly chosen |ψ j〉 initial states to obtain 1
M

∑
j Fj (τ )

which is equal to F ex(t ) up to an error shown in Fig. 6.

D. Outlook

The interference measurement scheme requires two copies
of the same randomly sampled initial Fock state, which is
challenging but doable. On the other hand, the interferometric
approach could be realized with only one copy. However, in
this measurement scheme we need to couple an auxiliary spin
to the first spin and implement controlled-spin gates [70,71],
which is challenging in the current technology. Therefore
both approaches have certain (dis-)advantages. Important dif-
ferences that we observe in two measurement schemes are
the error bounds due to the measurement output, |F ex(t )|2 =
1
M

∑M
j |Fj (t )|2 and F ex(t ) = 1

M

∑
j Fj (t ) for interference and

interferometric, respectively. The error bounds are stable
throughout the evolution in the interferometric approach,
while they are significantly lower in the saturation regime (by
a factor of ∼102) and slightly higher in the decay regime of an
interference measurement. Therefore, in the case of measuring
only the saturation values of the OTOC, the interference
measurement seems to be more advantageous.
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FIG. 9. Error bars of the out-of-time-order correlators with dis-
order strength of h = 1 [J||] between two distant operators σ z

1 and σ z
7

with respect to different rung interaction strengths α where J⊥ = αJ‖
for L = 7. The OTOC is averaged over 100 different random sam-
ples. The curves are α = 0.01 (blue solid), α = 0.1 (orange dashed),
α = 0.5 (yellow dotted), α = 1 (purple solid), α = 1.5 (green solid),
α = 2 (pink dashed), α = 10 (crimson dotted), and α = 100 (black
dotted).

IV. CONCLUSIONS

The ladder-XX model’s OTOC decay profiles and infor-
mation spread show a variety of phenomena ranging from
quantum chaos to MBL phase and possibly rare-region effects
in the ergodic phase that we leave as a future study. We
further discussed a Hamiltonian sign reversal protocol that is
an alternative to existing approaches in cold atoms and how
to apply both interference and interferometric measurements
in the scrambling detection with experimental random state
preparation. Our results demonstrate that the experiments
could utilize only one randomly set Fock state for sufficiently
big many-body systems to reproduce infinite-temperature
OTOCs up to a bounded error in the chaotic regime. The XX
ladder has a more convenient experimental cold atom setup
compared to the Heisenberg chain, since it lacks Z-coupling
terms, while it is still interacting due to its quasi-1D nature.
Thus, it can be more easily implemented in the laboratory to
further investigate scrambling and understand how scrambling
changes in the transition from the 1D to 2D case.
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APPENDIX A: ERROR BARS ON OUT-OF-TIME-ORDER
CORRELATORS FOR THE DISORDERED XX LADDER

Figure 9 shows the out-of-time-order correlators for dif-
ferent rung couplings with error bars in the case of h =
1 [J||] random disorder strength. The error bars are significant

0 5 10 15
10-6

10-4

10-2

FIG. 10. The difference |F ex
i=6(t ) − F∼

i=6(t )| for only one Haar-
distributed random state (blue dashed), averaged over 40 random
states (red dash dotted), 80 states (green dotted), and 100 states
(black solid). Only the real part of F∼

i (t ) is taken since the imaginary
part is practically zero.

for smaller rung couplings where the integrable limit of the
ladder-XX model resides. As the rung coupling becomes equal
to intraleg couplings, the error bars become smaller. There-
fore, the scrambling that we observe in the chaotic limit is
robust to different configurations with the random disorder
strength of h ∼ 1 [J||]. The error bars are more pronounced
in the decay compared to unity and saturation regimes. When
we study the opposite regime of the dimer phase where rung
coupling is much bigger than the intraleg coupling α → ∞,
the error bars do not grow significantly.

APPENDIX B: ERROR BOUNDS ON
HAAR-DISTRIBUTED INITIAL STATES

We present the error bounds on the OTOC when Haar
random states are used to mimic the β = 0 initial state in
Fig. 10. Figure 10 shows the difference |F ex

i (t ) − F∼
i (t )| for

L = 6 system size at h = 1 random disorder strength with
only one random field configuration when i = 6 is set. The
blue line stands for the case where we take only one random
initial state, whereas the black line shows the case where we
average over 100 such initial states. The difference is slightly
more than an order of magnitude. However, as seen from the
other curves, the mixture of a couple of them is quite close to
the case with M = 100. While using only one random state
approximates the OTOC with an error up to 10−2, one can
improve the error bound via averaging over only a few states.
The results are obtained in this paper with an average of 100
random states.

APPENDIX C: THE EXPONENTIAL AND
POWER-LAW FITTING PARAMETERS

Here we present the additional figures and fitting
data that show the exponential and power-law decays.
Figures 11(a) and 11(b) are for L = 7 system size.
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FIG. 11. (a) Semilogarithmic plot for σ z
1 with σ z

5 (blue pen-
tagrams), σ z

6 (red circles), and σ z
7 (orange diamonds) observables

in a system size of L = 7. The Lyapunov-like exponents follow
as 1.4342 (R2 = 0.9989), 1.2507 (R2 = 0.9996), and 1.1767 (R2 =
0.9994) for σ z

5 –σ z
7 with dashed, solid, and dotted lines, respectively.

(b) Logarithmic plot for σ z
1 with σ z

5 (blue pentagrams), σ z
6 (red

circles), and σ z
7 (orange diamonds) observables in a system size of

L = 7. The power-law exponents follow as 2.4335 (R2 = 0.9999),
2.6165 (R2 = 0.9991), and 2.6565 (R2 = 0.9997) for σ z

5 –σ z
7 with

dashed, solid, and dotted lines, respectively. The data are averaged
over 100 different realizations of the Hamiltonian at h = 1 [J||] for
both subfigures.

The Lyapunov-like exponents for L = 8 are 1.362 (R2 =
0.9986), 1.229 (R2 = 0.9992), 1.09 (R2 = 0.9997), and 1.015
(R2 = 0.9996) for σ z

5 –σ z
8 , respectively (the figure is shown in

the main text). The power-law exponents are 2.1865 (R2 =
0.9996), 2.5506 (R2 = 0.9981), 2.5751 (R2 = 0.9976), and
2.7636 (R2 = 0.9995) for σ z

5 –σ z
8 , respectively. The data are

averaged over ten different random samples all at h = 1. We
also note that the interval of data used for exponential fitting
when L = 8 is from the time when the OTOC starts to deviate
from unity through t ∼ 2 [1/J||], t ∼ 3 [1/J], t ∼ 4 [1/J||], and
t ∼ 4 [1/J||] for σ z

5 , σ z
6 , σ z

7 , and σ z
8 , respectively. The power-

law fitting is applied to data seen in Fig. 2(b) (in main text)
until t ∼ 5 [1/J||], t ∼ 5 [1/J||], t ∼ 6 [1/J||], and t ∼ 6 [1/J||]
for σ z

5 , σ z
6 , σ z

7 , and σ z
8 , respectively. Similarly, the data used for

the power-law in the clean limit, h = 0, are shown in Fig. 2(c)
in the main text (until t ∼ 10 [1/J||] for all operators). The
MBL decay form is applied to all data as seen in Fig. 2(d) in
the main text.

APPENDIX D: DETAILS ON THE EXPERIMENTAL
INITIAL-STATE PREPARATION

We give the plot that shows EON distribution, |cβ |2, for
L = 6 and 7 in Fig. 12(a) for a randomly set initial Fock
state. These distributions should be contrasted with a uniform

-20 0 20
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0.015

0.02

(a)

6 8 10 12 14
-0.1
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0.1

0.2
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(b)

FIG. 12. (a) The EON (eigenstate occupation number) distribu-
tions |cβ |2 with respect to eigenenergies Eβ for L = 6 (blue) and
L = 7 (orange) sizes when only one Fock state is randomly set.
(b) The scaling of the mean of the error |F ex(t ) − 1

M

∑
j Fj (t )| with

the system size when we use only one randomly sampled Fock state.
Different curves are different random realizations with the legend
showing the exponent of the corresponding power-law decay. The
error bars stand for 1σ standard deviation around the mean of the
error signal.

distribution of an infinite-temperature initial state. Even
though they are not uniform, they are still broad distributions,
which helps the approximation error to be bounded. As a
result, we state that as long as the initial state has a broad dis-
tribution in the eigenbasis the exact shape of the distribution
is not significant. Hence such an initial state could be used to
sufficiently approximate an infinite-temperature OTOC.

Figure 12(b) shows that the error ε1 scales as a power law in
the system size when only one Fock state is randomly set. This
figure focuses on five realizations that were given in the main
text in logarithmic scale. Here we plot the data in linear scale
to also demonstrate the error bars. The error bars stand for 1σ

deviation around the mean of the error signal in time. Note that
the error bars increasingly become smaller as the system size
increases, meaning that our initial-state approximation works
better not only on average but also throughout the simulation
time.

Finally we provide the exact fitting expressions for the
exponential and power-law scalings of the mean error in the
sampling ratio M/N . The exponential scaling parameters are
a = 0.1218, R2 = 0.9134 (N = 3); a = 0.043, R2 = 0.933
(N = 4); a = 0.0132, R2 = 0.884 (N = 5); and a = 0.004,
R2 = 0.962 (N = 6) with very close exponents b ∼ −2.5. The
power-law scaling parameters are a = 0.0112, R2 = 0.984
(N = 3); a = 0.0037, R2 = 0.991 (N = 4); a = 8 × 10−4,
R2 = 0.945 (N = 5); and a = 3.4 × 10−4, R2 = 0.981 (N =
6) with very close exponents b ∼ −0.5.
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