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Implementing high-fidelity quantum control and reducing the effect of the coupling between a quantum system
and its environment is a major challenge in developing quantum information technologies. Here, we show that
there exists a geometrical structure hidden within the time-dependent Schrödinger equation that provides a
simple way to view the entire solution space of pulses that suppress noise errors in a system’s evolution. In
this framework, any single-qubit gate that is robust against quasistatic noise to first order corresponds to a closed
three-dimensional space curve, where the driving fields that implement the robust gate can be read off from the
curvature and torsion of the space curve. Gates that are robust to second order are in one-to-one correspondence
with closed curves whose projections onto three mutually orthogonal planes each enclose a vanishing net area.
We use this formalism to derive examples of dynamically corrected gates generated from smooth pulses. We also
show how it can be employed to analyze the noise-cancellation properties of pulses generated from numerical
algorithms such as GRAPE. A similar geometrical framework exists for quantum systems of arbitrary Hilbert
space dimension.
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I. INTRODUCTION

In recent years, novel information technologies based on
the principles of quantum mechanics have attracted growing
interest from both academia and industry. For example, a
quantum computer could enable us to tackle certain problems
exponentially faster than an ordinary classical computer [1].
For decades, people have been striving to overcome one of the
main obstacles to realizing this and other proposed quantum
technologies, namely, the decoherence caused by the coupling
between a qubit and its noisy environment [2,3]. Quantum er-
ror correcting codes provide a way to surmount this problem;
however, it remains a challenging task to raise the fidelity of
qubit control above the error thresholds that determine when
these codes work [4–6], although considerable experimental
progress in recent years has brought this within reach in a
number of physical systems [7–14].

Inspired by the Hahn spin-echo pulse introduced in the
context of nuclear magnetic resonance [15], a wide range
of techniques for implementing dynamical decoupling (DD),
or more generally dynamically corrected gates (DCGs) [16],
have been developed in which deviations in a system’s evo-
lution caused by noise fluctuations or parameter inhomo-
geneities can be corrected by applying carefully designed
driving pulses. Early work in DD mainly made use of in-
stantaneous π pulses (δ pulses) to flip the qubit state one or
more times during the evolution such that the coupling to the
environment is effectively undone [17–21]. In the context of
both DD and DCGs, methods based on square pulses have also
been developed [22–25]. However, in a real experiment, δ-
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function or square wave forms can only be generated approx-
imately since they would require infinite power or arbitrarily
fast electronics to realize exactly. This leads to an imperfect
cancellation of errors and thus diminishes the performance
of such DCG schemes, especially in systems that evolve on
nanosecond timescales. Many DCG schemes are based on
concatenating two or more noisy quantum operations that to-
gether produce the desired gate while their errors cancel up to
some order [16,23,25–34]. While some of these protocols can
work for any choice of the pulse shapes used in the sequences,
they leave open the possibility that more efficient methods
based on the application of single, shaped pulses exist.

Searching for control pulse wave forms that implement
DCGs in a single shot is difficult (aside from a few simple
cases such as δ or square pulses) because the time-dependent
Schrödinger equation cannot be solved analytically in general,
even for a two-level system. Numerical methods have been
shown to be quite effective in many cases [35–37], but using
these to find globally optimal wave forms that respect the
constraints of a given physical system can be challenging,
although there has been some recent progress in this direction
[38–41]. Analytical methods should really be viewed as com-
plementary to numerical techniques, where they can provide
additional insight into why such techniques work or provide
starting pulses that can speed up numerical algorithms. An-
alytical approaches that have been developed to circumvent
the insolubility of the Schrödinger equation include methods
based on Chebyshev polynomial approximations or reverse-
engineering techniques [42–45], however, these approaches
have not yet succeeded in providing pulses that implement
arbitrary DCGs, either because the methods only produce
robust identity operations by design or because the constraint
equations that determine the pulses are too difficult to solve.
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We recently introduced an alternative analytical approach
that works for a U (1) subset of single-qubit DCGs that is
remarkably simple to use [46]. The U (1) subset comprises
rotations about an axis orthogonal to the noise term in the
qubit Hamiltonian. We showed that all pulses which gen-
erate such rotations while canceling the noise to first order
correspond to the set of all closed curves lying in a two-
dimensional plane. The simplicity of the method lies in the
fact that the pulse wave forms are precisely given by the
curvature of these curves, a quantity which is very easy to
compute. Moreover, we showed that plane curves that enclose
zero net area yield pulses that cancel noise up to second order.
Follow-up works showed that this method enables one to find
the fastest possible pulses that implement a desired DCG
within this U (1) subset [47], and that it can be extended to
suppress not only noise transverse to the pulse but also noise
in the pulse amplitude [48]. However, the fact that this method
is restricted to a particular U (1) subset means that it cannot be
used to generate the robust universal gate set needed for most
quantum information applications.

In this article, we show that there exists a geometrical struc-
ture hidden within the time-dependent Schrödinger equation
that provides a simple way to identify all pulse wave forms
that implement DCGs spanning the entire SU(2) space of
single-qubit operations subject to quasistatic noise. We show
that any closed three-dimensional space curve corresponds to
a qubit evolution operator in which the leading-order error
vanishes, and that the driving fields which implement this
evolution can be read off from the curve’s curvature and
torsion. A relation between first-order robust evolution and
closed curves is expected based on general Lie-algebraic con-
siderations [25], however, an explicit protocol that yields all
DCGs using this perspective has been lacking. Furthermore,
we show that all pulses which implement dynamical gate cor-
rection up to second order are in one-to-one correspondence
with closed curves whose projections onto three mutually
orthogonal planes each enclose zero net area. We provide
explicit examples to demonstrate how the method works.
We also briefly describe how a similar framework holds for
higher-dimensional Hilbert spaces.

II. QUBIT EVOLUTION AS A CURVE
IN THREE DIMENSIONS

A driven qubit subject to a single source of quasistatic
noise can generally be described by the Hamiltonian

H(t ) = H0(t ) + δH

= �(t ) cos �(t )

2
σx + �(t ) sin �(t )

2
σy + δβσz, (1)

where σx, σy, and σz are Pauli matrices, and �(t ) and �(t )
determine two driving fields that are applied along orthogonal
directions. δH is the quasistatic noise term, which we assume
is weak compared to the driving fields, ‖δH‖ � 1

T

∫ T
0 �(t )dt ,

where T is the duration of the gate. We also assume that
the noise is slow compared to the pulse duration so that δβ

is treated as a constant (but unknown) fluctuation parameter.
While the noise term may lie along any direction depend-
ing on the type of system, it is sufficient to only consider
the case where the noise is transverse to the driving, as

in Eq. (1), because we can always transform to a frame
in which the Hamiltonian takes this form. For exam-
ple, for a Hamiltonian given by H̃(t ) = �̃x (t )

2 σx + �̃z (t )
2 σz +

δβσz, the transformation operator that does this is R(t ) =
diag{e i

2

∫ t
0 �̃z (τ )dt , e− i

2

∫ t
0 �̃z (τ )dt }. Also note that if we start with

a Hamiltonian with driving along all three axes, this can again
be transformed into Eq. (1) using a similar transformation
operator.

It is convenient to transform the Hamiltonian into the
interaction picture, where we have

HI (t ) = U †
0 (t )σzU0(t )δβ, (2)

where U0(t ) is the evolution operator associated with the orig-
inal error-free Hamiltonian H0(t ), which can be generically
parametrized as

U0(t ) =
(

u1(t ) −u∗
2(t )

u2(t ) u∗
1(t )

)
,

u1(t ) = e
1
2 i(θ (t )+φ(t )) cos

(
χ (t )

2

)
, (3)

u2(t ) = −ie
1
2 i(φ(t )−θ (t )) sin

(
χ (t )

2

)
.

Requiring U0(0) = 1 gives the initial conditions χ (0) = 0
and φ(0) = −θ (0). Note that we cannot obtain an explicit
analytical solution for even the error-free evolution U0(t ) in
the case of arbitrary driving fields �(t ) and �(t ) because of
the intractability of the time-dependent Schrödinger equation
[44,49]. Remarkably, this does not prevent us from obtaining
the full solution space of DCGs for this problem, as we will
see.

To obtain robust qubit operations, we need to require the
evolution operator in the interaction picture to be the identity
at the end of the evolution, UI (T ) = 1. This in turn implies
that the evolution in the laboratory frame will equal the target
gate we want to perform. We can impose this constraint order
by order using a Magnus expansion for UI (T ). The first two
orders of the expansion involve the integrals

A1(t ) = 1

δβ

∫ t

0
HI (t1)dt1,

A2(t ) = 1

2δβ2

∫ t

0
dt1

∫ t1

0
dt2[HI (t1),HI (t2)]. (4)

If we impose A1(T ) = 0 and A2(T ) = 0, then the first- and
second-order errors in the evolution vanish, respectively. The
problem is then to find the driving fields �(t ) and �(t ) that
satisfy these conditions and thus generate DCGs.

We tackle this problem by introducing the following geo-
metrical framework. First, decompose A1(t ) into Pauli matri-
ces,

A1(t ) = r(t ) · σ̂ = x(t )σx + y(t )σy + z(t )σz. (5)

Here, r(t ) = [x(t ), y(t ), z(t )] parametrizes a curve in three-
dimensional Euclidean space that starts at the origin at time
t = 0: r(0) = (0, 0, 0). Noticing from Eqs. (2) and (4) that
[Ȧ1(t )]2 = 1, it follows that ‖ṙ(t )‖2 = 1, and thus r(t ) is the
natural arc-length parametrization of the curve. This can also
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be seen by plugging Eq. (4) into the definition of A1(t ) from
Eq. (4), yielding

ṙ(t ) = [− sin χ (t ) sin φ(t ), sin χ (t ) cos φ(t ), cos χ (t )], (6)

which is clearly a vector of unit length. Although we can
parametrize a space curve in infinitely many ways, r(t ) is
special because for this parametrization, the length of the
curve equals the evolution time.

It is clear from the definition of r(t ) [Eq. (5)] that it
measures the size of the first-order error in the evolution. We
now show that it actually contains all the information about
the evolution, not just the first-order error. To see this, first
consider the second-order derivative of A1,

Ä1(t ) = r̈(t ) · σ̂ = 1

δβ
ḢI (t ) = i

δβ
U †

0 (t )[H0(t ), δH]U0(t ).

(7)
Plugging Eq. (1) into this result, we obtain

‖Ä1(t )‖F = ‖r̈(t )‖ = ‖[H0(t ), δH]‖F

δβ
= �(t ), (8)

where ‖ · ‖F is the Frobenius norm, scaled by the inverse of
the square root of the dimension of the matrix. We have just
shown that �(t ) is precisely equal to the curvature of the
curve ‖r̈(t )‖, which is consistent with our earlier plane curve
construction [46]. Thus, given a space curve, we can readily
extract the corresponding driving field �(t ) by computing the
curvature.

To see how we can obtain the rest of the control Hamilto-
nian, namely, �(t ), consider now the third-order derivative of
A1(t ). Differentiating Eq. (7), we obtain

...
A1(t ) = ...

r (t ) · σ̂ = − 1

δβ
U †

0 (t )H0(t )[H0(t ), δH]U0(t )

+ i

δβ
U †

0 (t )[Ḣ0(t ), δH]U0(t )

+ 1

δβ
U †

0 (t )[H0(t ), δH]H0(t )U0(t ). (9)

From this and the analogous expressions for Ȧ1(t ) and Ä1(t ),
it is straightforward to verify that the following formula holds,

−2i
Tr{Ȧ1(t )Ä1(t )

...
A1(t )}

‖[Ȧ1(t ), Ä1(t )]‖2
F

= �̇. (10)

Using the fact that Tr{Ȧ1(t )Ä1(t )
...
A1(t )} = 1

2 Tr{[Ȧ1(t ), Ä1(t )]
...
A1(t )}, in combination with the Pauli operator identities
Tr{(a · σ̂ )(b · σ̂ )} = 2a · b and [a · σ̂ , b · σ̂ ] = 2i(a × b) · σ̂ ,
we find that Eq. (10) becomes the formula for the torsion τ (t )
of the curve,

τ (t ) = [ṙ(t ) × r̈(t )] · ...
r (t )

‖ṙ(t ) × r̈(t )‖2
= �̇(t ). (11)

Therefore, we can obtain the full control Hamiltonian H0(t )
from the space curve by computing its curvature and torsion.
It should be noted that the integration constant we get by
integrating Eq. (11) to obtain �(t ) fixes the initial phases
in the target evolution operator, H0(t ) = iU̇0(t )U †

0 (t ) ⇒
�(0)e−i�(0) = eiθ (0)χ̇ (0) ⇒ �(0) = −θ (0) = φ(0). The key
point here is that since we can extract H0(t ) from the space

curve, it follows that the space curve determines the full qubit
evolution, not just its leading-order error. This is essentially
due to the fact that the Schrödinger equation for a two-level
system is exactly an SU(2) representation of the Frenet-Serret
equation for space curves [50].

III. FIRST-ORDER ERROR CANCELLATION

The fact that the space curves encode information about
both the ideal evolution and the error is a powerful result in
our effort to design DCGs. To ensure that the leading-order
error vanishes at the end of the evolution, we simply impose
r(T ) = 0, i.e., the space curve must form a closed loop. Once
we choose a closed curve, we can read off the control fields
that perform the noise cancellation from its curvature and
torsion. The only question that remains is whether we can
simultaneously fix U0(T ) to the desired target gate. Again,
at first glance it would seem that one would need to solve
the time-dependent Schrödinger equation to do this, however,
this is not necessary. From Eq. (6), it is apparent that φ(T )
and χ (T ) are determined by the tangent vector of the curve
at the final time ṙ(T ). The remaining angle in the target
evolution can be determined from the total torsion (the integral
of torsion along the curve),

θ (T ) − θ (0) = −
∫ T

0
τ (t )dt − arg[−iẍ(t )ẏ(t )

+ iẋ(t )ÿ(t ) + z̈(t )]|T0 . (12)

This expression can be obtained by equating the arguments
of the off-diagonal components of the matrices H0(t ) and
iU̇0(t )U †

0 (t ). The resulting equation is seen to be equivalent
to Eq. (12) if one rewrites the derivatives of the Cartesian
coordinates in the latter in terms of φ and χ using Eq. (6).
We also note that since the Hamiltonian only depends on local
properties of the curve (namely, its curvature and torsion), it
follows that the corresponding evolution operator will remain
invariant under rigid rotations and translations of the curve.
Thus, it is really the orientation of the final tangent vector
relative to the initial one that determines the final evolution
operator (along with the total torsion), and not its orientation
with respect to fixed coordinate axes.

As a first example of how this geometrical structure can
be exploited to design DCGs, let us take the target gate
operation to be one of the Clifford gates, U0(T ) = R(−x̂ +
ŷ + ẑ, 2π/3), i.e., a rotation about the axis −x̂ + ŷ + ẑ by
angle 2π/3. To obtain a pulse that generates this gate while
canceling first-order errors, we construct a closed curve that
has the appropriate slope as it returns to the origin, as shown
in Fig. 1(a). The control fields extracted from the curvature
and torsion are shown in Fig. 1(b). A plot of the infidelity of
the resulting gate as a function of the noise strength is shown
in Fig. 1(c), where for comparison, we also show the result for
a square pulse of the same duration. The infidelity is defined
in accordance with Ref. [51]. It is evident that the noise-
suppressing pulse makes the operation orders of magnitude
more robust than a naive square pulse, and the slope of the
log-log infidelity plot shows that indeed the first-order error is
canceled.
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FIG. 1. Dynamically corrected Clifford gate R(−x̂ + ŷ + ẑ,
2π/3). (a) Closed space curve. Here, the curve is constructed
as r(l ) = (1 − l )r1(l ) + lr2(l ), where r1(l ) = √

2 sin(π l )[0, sin2

( π l
2 ), cos2 ( π l

2 )] and r2(l ) = √
2 sin(π l )[sin2 ( π l

2 ), cos2 ( π l
2 ), 0] ·

Rz(q), and where l ranges from 0 to 1. Here, Rz(q) is the rotation
matrix around the z axis for angle q. Changing q deforms the
curve but does not alter the relative orientation of the initial and
final tangent vectors, and thus does not alter the final values of
χ and φ. Tuning q does, however, alter the final value of θ . We
have determined numerically that q = 1.6054 achieves the desired
value in this example. (b) The pulse shape. Here, �x = � cos �,
�y = � sin �. (c) Comparison of the log-log infidelity between the
shaped pulse and naive square pulse.

In many experimental setups, there is only one control
field in the Hamiltonian, say, along σx, while there is a
constant detuning or drift parameter which is noisy, so that
the Hamiltonian has the form H(t ) = �(t )σx + (� + δβ )σz.
In this case, if we want to cancel the noise errors, we need
to find closed curves that have constant torsion. The search
for such curves is an active research area in differential ge-
ometry [52–55]. Here, we provide a simple, explicit example
of a robust identity operation obtained from such a curve
using the recipe provided in Ref. [52]. Let α be a closed
curve lying on a unit sphere which can be parametrized as

FIG. 2. Single-qubit identity gate for Hamiltonian H(t ) =
�(t )σx + (� + δβ )σz that is robust to first order.

α(λ) = [xα (λ), yα (λ), zα (λ)], where

xα (λ) = 1

4
[
√

2 cos(2λ) − 2 cos(λ)],

yα (λ) = 1

4
[−

√
2 sin(2λ) − 2 sin(λ)],

zα (λ) = 1

2

√√
2 cos(3λ) + 5

2
, (13)

and where λ ∈ [0, 2π ). A closed curve with constant tor-
sion is given by γ (λ) = ∫

α(μ) × α′(μ)dμ. The space curve
parametrized by γ and its associated pulse shape are shown
in Fig. 2. It is worth mentioning that the curve α is an
example of the spherical curve formulation introduced in
Ref. [45] to treat the DCG problem for Hamiltonians with
a constant detuning parameter. More generally, the curves in
that formulation correspond to what is known as the binormal
indicatrix of a three-dimensional space curve γ . Thus, the two
formulations are equivalent in the case of constant torsion,
although unlike the methods of Ref. [45], the present space
curve approach provides a simple geometrical interpretation
of the error-cancellation condition, and it works not only for
first-order cancellation but also second order, as we explain
next.

IV. SECOND-ORDER ERROR CANCELLATION AND
CURVES AS A DIAGNOSTIC TOOL

We now show that second-order DCGs correspond to
closed curves with vanishing-area planar projections. For
second-order error cancellation, we need to impose A2(T ) =
0. To find the curves (and hence pulses) that achieve this,
we first rewrite A2 as A2(t ) = −iR2(t ) · σ̂ , where R2(t ) =∫ t

0 r(t1) × ṙ(t1)dt1, as readily follows from Eqs. (4) and (5).
The constraint on error cancellation then becomes
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FIG. 3. Single-qubit identity gate robust against errors up to
second order. (a) The curve (blue) and its projections onto the xy, yz,
and xz planes (gray). All three projected curves have zero enclosed
area. (b) The pulses obtained from the curvature and torsion of the
curve in (a). Here, �x = � cos �, �y = � sin �.

R2(T ) = [R2x(T ), R2y(T ), R2z(T )] = 0. When the first-order
error-cancellation constraint is satisfied [r(T ) = 0], R2x(T ),
R2y(T ), and R2z(T ) are proportional to the areas enclosed by
the closed curve projected onto the yz, zx, and xy planes. The
sign of the area is determined by the direction of the winding
of the curve.

Noticing that the curve α defined in Eq. (13) already
satisfies the constraint R2(T ) = 0, we can use this curve
itself to generate an example of a driving pulse that cancels
second-order error. The curve α and its projections onto
the xy, xz, and yz planes are shown in Fig. 3(a). All three
projected plane curves have zero enclosed area. The pulse
shape extracted from this curve [Fig. 3(b)] performs a robust
identity operation.

In addition to facilitating the design of globally optimal
control pulses, our geometrical framework can also be used
to extract information about the noise-cancellation properties
of pulses obtained via other means, for example, by using
numerical algorithms such as gradient ascent pulse engineer-
ing (GRAPE) [56]. To exemplify this, we analyze pulses that
were recently designed to implement high-fidelity single-
qubit gates on silicon quantum dot spin qubits using GRAPE

[37]. Figure 4 shows the space curves for four such pulses,
which perform four different single-qubit gates, including
an identity operation (I), a π/2 rotation about x (X/2), a
π/2 rotation about z (Z/2), and a Hadamard operation (H).
The GRAPE algorithm is implemented with gate fidelity as
the cost function and with a noise level corresponding to√

〈δβ2〉 = 16.7 kHz, which was attributed to nuclear spin
noise in Ref. [37]. Constraints are also imposed on the pulse
bandwidth through filtering, where the pulses are strongly
smoothed out and forced to approach zero at the beginning
and end of the gate. We have included arrows along the space
curves to indicate the value of the evolution operator phase
θ (t ) as the system evolves. The value of this phase at the
final time θ (T ) distinguishes between some of the gates, for
example, the I and Z/2 gates. Note that if we were to include a
third driving field �z(t ), then this would provide direct control
over the phase θ (t ).
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FIG. 4. Using space curves to analyze pulses obtained from GRAPE. (a)–(d) The space curves and their projections onto the xy, yz, and xz
planes corresponding to four different microwave pulses (e)–(h) designed to implement four different single-qubit gates [identity, π/2 rotation
about x (X/2), π/2 rotation about z (Z/2), and Hadamard gate (H )] while canceling noise in a silicon quantum dot spin qubit [37]. Arrows
on the curves represent the phase θ (t ) in the evolution operator. For example, the I gate in (a) has θ (T ) = 0, while the Z/2 gate in (c) has
θ (T ) = π/2. In (e)–(h), the dashed orange and green curves are �x (t )/2 and �y(t )/2, while the solid blue curve is the total magnitude of the
pulse envelope, as in previous figures.
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From the figure, it is evident that in each case, the cor-
responding space curve is (almost) closed, showing that the
first-order error-cancellation constraint is almost perfectly
satisfied. Moreover, the two-dimensional projections of the
curves form figure-eight shapes in most cases, showing that
the second-order cancellation constraint is nearly satisfied as
well. Interestingly, it was found that these pulses needed to be
four to five times longer than the typical timescale of a π pulse
(1.75 μs for the parameters used in Ref. [37]); the reason for
this is apparent from the space curve, where the bandwidth
constraints require pulse durations on the order of 8 μs in
order for the planar projections of the curves to complete their
respective figure eights and thus suppress second-order noise.
It is clear from these results that experimental limitations on
pulse amplitude or bandwidth are fully compatible with the
space curve formalism, and that realistic pulses correspond to
smooth curves that respect the geometrical noise-cancellation
conditions.

While here we have focused on two-dimensional Hilbert
spaces, the idea can in principle be generalized to higher-
dimensional systems. This can be done by decomposing A1(t )
into tensor products of Pauli matrices. For example, for a
two-qubit system, this will lead to a mapping between robust
pulses and closed curves in a 15-dimensional space. The
higher-dimensional form of the Frenet-Serret equations can
relate the generalizations of curvature and torsion for these
curves to driving fields in the two-qubit Hamiltonian.

V. CONCLUSIONS

In conclusion, we uncovered a general geometrical frame-
work hidden within the Schrödinger equation that yields the
entire solution space of pulses that implement dynamically
corrected single-qubit gates in the presence of quasistatic
noise. Pulses that cancel first-order noise errors can be ob-
tained from closed space curves in three dimensions, while
curves that have the additional property that their planar
projections have vanishing enclosed area guarantee the can-
cellation of second-order errors as well. We demonstrated
these findings with explicit examples of closed curves and the
pulses they correspond to and showed that a similar frame-
work holds for higher-dimensional Hilbert spaces as well. Our
findings open up the possibility of obtaining globally optimal
control fields for a wide range of physical systems and types
of noise.
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