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Nonclassical correlations beyond entanglement might provide a resource in quantum information tasks, such
as quantum computation or quantum metrology. Quantum discord is a measure of nonclassical correlations
to which entanglement belongs as a subset. Exploring the operational meaning of quantum discord as a
resource in quantum information processing tasks, such as quantum metrology, is of essential importance to
our understanding of nonclassical correlations. In our recent work [Phys. Rev. A 98, 012115 (2018)], we
considered a protocol—which we call the greedy local thermometry protocol—for estimating the temperature
of thermal equilibrium states from local measurements, elucidating the role of diagonal discord in enhancing
the protocol sensitivity in the high-temperature limit. In this paper, we extend our results to a general greedy
local parameter estimation scenario. In particular, we introduce a quantum discord—which we call discord for
local metrology—to quantify the nonclassical correlations induced by the local optimal measurement on the
subsystem. We demonstrate explicitly that discord for local metrology plays a role in sensitivity enhancement
in the high-temperature limit by showing its relation to loss in quantum Fisher information. In particular, it
coincides with diagonal discord for estimating a linear coupling parameter.
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I. INTRODUCTION

Although the ability of entanglement to enhance quantum
metrology has been well explored in ideal scenarios [1,2],
experimental constraints, such as noise, mixed states, and
restriction to local measurements, usually make reaching the
ultimate quantum limit impossible. In this context, a more
general study of the role of nonclassical correlations in quan-
tum metrology is critical as it can lead to more general
measurement schemes, such as quantum illumination [3], that
take advantage of nonclassical properties [4]. Nonclassical
correlations described by the quantum discord are of particu-
lar relevance as they quantify loss of information as a result of
measuring a local subsystem [5,6] and can be applied to mixed
states. The role of discordlike correlations has thus been
recently studied in the context of parameter estimation [7],
such as the geometric discord in phase estimation [8], quan-
tum discord in the global phase estimation with mixed states
[9–12], in local phase estimation assisted by interferometry
[13,14], and the diagonal discord in quantum thermometry
[15].

Most of these works have analyzed the usual scenario for
quantum parameter estimation where a quantum (entangled)
probe evolves under the action of an Hamiltonian that depends
on the external parameter to be measured, before a measure-
ment is performed on the final state [1,2,16]. Although the
optimal measurement does not require global measurements
on the total system for schemes without entanglement [1],
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for the entanglement-enhanced schemes described above, a
global measurement is usually needed to achieve the optimal
performance [17]. Since performing a global measurement
is usually a demanding task, and one has to rely on local
adaptive measurements, it is important to study whether this
restriction degrades the achievable estimation performance
in the case of nonclassical correlations more general than
entanglement. To better focus on this question, we consider
a different metrology scenario where the parameter is not
encoded during the evolution but in the equilibrium state.
We show that, for a local detection protocol, nonclassical
correlations in the state can be detrimental, in contrast to the
dynamic scenario where they help in the estimation. In partic-
ular, we consider a “greedy” local measurement scheme [15]
in which each subsystem is measured sequentially with a local
optimal measurement for estimating a general parameter (see
Fig. 1). This protocol belongs to the class of local operations
and classical communication (LOCC) [18]. In addition, we
focus on systems at thermal equilibrium in the Gibbs state
and consider the high-temperature limit, which is a practical
scenario in various systems, such as a room-temperature NMR
system or biological system, and where only nonclassical
correlations beyond entanglement are typically found. Even
in this regime, we find a precision loss when considering
only local measurements, and we bound it by considering the
discord present in the system.

Hamiltonian parameter estimation at thermal equilibrium
has been considered before by Mehboudi et al. [19] in which
they considered a special Hamiltonian consisting of two
commuting operators to which temperature-independent pa-
rameters are linearly coupled. For this special case, they
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FIG. 1. Global measurement and greedy local measurement
scheme: One first measures a subsystem A with the local optimal
measurement in the sense of the local QFI and then measures the
other subsystem B in order to estimate an unknown parameter ξ .
The constrained QFI is given as FA→B(ξ ) = FA(ξ ) + FB|A(ξ ). We
explore the relation between the quantum discord DA→B(ξ ) and the
precision loss �F (ξ ) = FAB(ξ ) − FA→B(ξ ).

proved that the quantum Fisher information (QFI) for esti-
mating either parameter can be characterized as a curvature
of the Helmholtz free energy at an arbitrary temperature.
However, for a general Hamiltonian Hλ parametrized by a
temperature-independent parameter λ, this is not always the
case because of the noncommutativity of the Hamiltonian and
the generator of parameter λ. Still, in the high-temperature
limit, the QFI can be well approximated by the susceptibility
as discussed in Sec. II, and we can apply the relation provided
in Ref. [19].

The paper is organized as follow. In Sec. II A, we review
the QFI for estimating a single parameter and discuss the QFI
in the global measurement scheme, namely, global QFI, in
Sec. II B, and the constrained QFI in the greedy local mea-
surement scheme, namely, LOCC QFI, in Sec. II C. Based on
the definition of quantum discord [6], we introduce a quantum
discord induced by local optimal measurements by consider-
ing the greedy local measurement scheme, namely, discord
for local metrology in Sec. III. Then, we show the relation
between the discord for local metrology and precision loss
quantified by the difference between global QFI and LOCC
QFI at high temperatures in Sec. IV and demonstrate that
discord for local metrology coincides with diagonal discord
when the parameter to be estimated is linearly coupled. Before
concluding, we also provide examples to further illustrate our
results.

II. GLOBAL AND GREEDY LOCAL
MEASUREMENT SCHEME

We first review the definition of QFI for estimating a single
parameter and discuss QFI for global and local measurement

schemes. In particular, we devise an optimal measurement
protocol that only exploits local measurements and define an
associated QFI metric to evaluate its performance.

A. QFI for estimating a single parameter

The ultimate precision of parameter estimation is quan-
tified by the QFI. Let ξ be the parameter to be estimated,
which could be a temperature-independent parameter λ in the
Hamiltonian Hλ or the temperature T itself, i.e., ξ ∈ {λ, T }.
Although often ξ is estimated from a state ρξ that arises
after interacting with the external field to be measured for a
given time, here we consider a different scenario, where ρξ

is an equilibrium state that is determined by the parameter-
dependent Hamiltonian. The variance (δξ )2 quantifies the
estimate precision. Its lower bound, which is the ultimate pre-
cision limit achievable, is bounded by the quantum Cramér-
Rao bound (δξ )2 � 1/F (ξ, ρξ ) [20–22]. Here, F (ξ, ρξ ) is
the QFI, defined as F (ξ, ρξ ) = −2 limε→0 ∂2ε F[ρξ , ρξ+ε],
where F[ρ, σ ] denotes the fidelity between states ρ and σ

[23].

B. Global QFI

Consider a finite-dimensional system described by a
Hamiltonian Hλ parametrized by a single temperature-
independent parameter λ at temperature T . We assume the
state to be in a Gibbs state ρξ = e−Hλ/T /Z where we set the
Boltzmann constant to be unit kB = 1, and Z = Tr[e−Hλ/T ] is
the partition function.

We first consider a global measurement scheme for a finite-
dimensional system and derive the relation between the global
QFI, F (ξ, ρξ ) and the entropy of the global system, S(ρξ ) in
the high-temperature limit. We have obtained the following
lemma.

Lemma 1. Consider a finite-dimensional system in
the Gibbs state at temperature T with its Hamiltonian
parametrized by a temperature-independent parameter λ to be
estimated. Then, the global QFI for estimating λ and the total
system entropy S(λ; T ) are related as

∂T (TF (λ; T )) = ∂2
λS(λ; T ) + O(T −3). (1)

The full proof is in Appendix A; here, we explain the
basic idea of the proof. In the high-temperature limit, the
QFI for estimating λ can be quantified by the susceptibility
χ (λ; T ) to leading order: F (λ; T ) = χ (λ; T )/T + O(T −3).
From the relation between the general susceptibility and en-
tropy ∂T χ (λ; T ) = ∂2

λS(λ; T ), we can obtain Eq. (1). Further-
more, let A(λ; T ) be the Helmholtz free energy. Then, from
the relation between the Helmholtz free energy and entropy
∂T A(λ; T ) = −S(λ; T ), we can obtain

F (λ; T ) = − 1

T
∂2
λA(λ; T ) + O(T −3).

This recovers the result of Ref. [19] to leading order, which
demonstrates that, in the high-temperature limit, the QFI can
be characterized as the curvature of the Helmholtz free energy.
If the parameter to be estimated is the temperature ξ = T , the
relation becomes exact:
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Corollary 1. For a system in the Gibbs state, we have

∂T (TF (λ; T )) = ∂2
T S(T ). (2)

In the classical case, Eq. (1) becomes exact as it can also
be derived from properties of the classical Fisher information
in the linear exponential family [24–26].

Let us define the optimal measurement in the high-
temperature limit as the measurement which achieves the ulti-
mate precision up to order O(T −2) of the QFI (for thermom-
etry O(T −4) of the QFI [15]). Different from the thermom-
etry case (ξ = T ), whereas to estimate a generic parameter
λ, the optimal measurement is generally not the projection
measurement onto energy eigenstates, this is instead the case
for thermometry or if λ is linearly coupled to the Hamiltonian.
Formally, we have the following lemma (see Appendix B for
proof):

Lemma 2. Consider a finite-dimensional system in
the Gibbs state at temperature T with its Hamiltonian
parametrized by a temperature-independent parameter λ to be
estimated. If the Hamiltonian depends only linearly on λ, i.e.,
∂2
λHλ = 0, projection measurements on the energy eigenstates

are optimal to estimate λ.
Corollary 2. Since the temperature multiplies the Hamil-

tonian in the Gibbs state, projection on the energy eigenstates
is also optimal for thermometry.

Here, we note that, for a generic Hamiltonian Hλ, the
susceptibility with respect to λ is given by

χ (λ; T ) =
〈
G2

λ

〉 − 〈Gλ〉2

T
− 〈∂λGλ〉

= (δGλ)2

T
− 〈∂λGλ〉,

where Gλ = ∂λHλ. From Eq. (A1), the QFI becomes

F (λ; T ) = (δGλ)2

T 2
− 〈∂λGλ〉

T
+ O(T −3). (3)

If λ is linearly coupled to the Hamiltonian, i.e., ∂λGλ =
∂2
λHλ = 0, the projection measurements on the energy eigen-

state are optimal since measuring Gλ corresponds to projec-
tion measurements on the energy eigenstates and the sensi-
tivity of measuring Gλ saturates the Fisher information as
follows:

(δλ)2 = (δGλ)2

(∂λ 〈Gλ〉)2
= (δGλ)2

χ (λ; T )2
= T 2

(δGλ)2
≈ 1

F (λ; T )
. (4)

For a general parameter λ, we usually have 〈∂λGλ〉 �= 0, and
from Eq. (3), the projection measurements on the energy
eigenstate are not optimal. However, there still exists a set of
observables that achieves the optimal measurement.

C. LOCC QFI

Global measurements on a composite system are generally
required to achieve the optimal QFI but are usually difficult to
implement. If only local measurements are available, even the
best measurement protocol might not reach optimality. Here,
we consider a local measurement scheme with sequential local
optimal measurements on subsystems that we call the greedy
local measurement scheme [15]. This scheme belongs to the

class of LOCCs, and thus, we call the constrained QFI of this
scheme the LOCC QFI.

Consider an arbitrary bipartite system in state ρAB,ξ . In the
greedy local measurement scheme, we first perform a local
optimal projection measurement �̃A

j on the first subsystem
where we use the notation �̃ in order to emphasize that the
measurement is optimal. After the measurement, the state of
subsystem B is a conditional state based on the measure-
ment result of �̃A

j , ρB|�̃A
j ,ξ

= TrA[(�̃A
j ⊗ 1B)ρAB,ξ (�̃A†

j ⊗
1B)]/p j (ξ ) with p j (ξ ) = Tr[(�̃A

j ⊗ 1B)ρAB,ξ (�̃A†
j ⊗ 1B)] as

the measurement probability. Given the conditional QFI for
outcome j, FB|�̃A

j
(ξ ) = F (ξ, ρB|�̃A

j ,ξ
), the unconditional lo-

cal QFI for subsystem B is given by

FB|A(ξ ) =
∑

j

p j (ξ )FB|�̃A
j
(ξ ).

Note that feedforward is required as the optimal measurement
on B depends on the outcome of �̃A

j . From the additivity of
the Fisher information, the LOCC QFI FA→B(ξ ) is given by

FA→B(ξ ) = FA(ξ ) + FB|A(ξ ),

where FA(ξ ) = F (ξ, ρA,ξ ) is the local QFI for subsystem A
[15,27,28]. Note that the LOCC QFI has been originally pro-
posed by Ref. [27] from an information-theoretic perspective
and by Ref. [28] from a quantum metrology perspective. By
definition, the global QFI FAB(ξ ) always satisfies FAB(ξ ) �
FA→B(ξ ) [15,28]. Here, we are interested in relating the
precision loss,

�F (ξ ) = FAB(ξ ) − FA→B(ξ ),

due to local measurements to the presence of nonclassical
correlations in ρAB,ξ .

III. DISCORD FOR LOCAL METROLOGY

Nonclassical correlations associated with the loss of quan-
tum certainty in local measurements have been quantified by
quantum discord [5,6,29]. For a bipartite system (AB), the
quantum discord [6] upon measuring subsystem A is defined
as

DA→B = −SAB + SA + min
{�A

j }
SB|{�A

j },

where {�A
j }’s are the set of projection measurements on

subsystem A and Si = −Tr[ρi ln ρi] is the entropy of state ρi.
Here, SB|{�A

j } is defined as

SB|{�A
j } =

∑
j

p jSB|�A
j
,

with p j = Tr[(�A
j ⊗ 1B)ρAB(�A†

j ⊗ 1B)] as the probability
associated with the projection measurement �A

j . The mini-
mization over all sets of projection measurements on subsys-
tem A is required in order for quantum discord to be basis
independent and for extracting maximum information about
subsystem B.

In order to connect nonclassical correlations to the preci-
sion loss in metrology, we need to define a related metric, that
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we call discord for local metrology where the minimization is
restricted to projectors achieving optimal estimate of ξ :

Definition 1. Let {�̃A
j } be a set of optimal projection mea-

surements on subsystem A so that there exists an observ-
able �̃A = ∑

j c j�̃
A
j (c j ∈ C), which can achieve the ultimate

precision of estimating ξ , i.e.,

(δξ )2 = (δ�̃A)2

(∂ξ 〈�̃A〉)2
= 1

FA(ξ )
,

where FA(ξ ) is the local QFI for estimating ξ from ρA,ξ . Then,
discord for local metrology D̃A→B(ξ ) is defined as

D̃A→B(ξ ) = −SAB(ξ ) + SA(ξ ) + min
{�̃A

j }
SB|{�̃A

j }(ξ ),

which is minimized over all the possible sets of projection
measurements that are optimal for estimating the parameter ξ .

The minimization indicates that discord for local metrol-
ogy is independent of the choice of the optimum basis for esti-
mating ξ . Because the measurement basis is chosen according
to the optimal parameter estimation, discord for local metrol-
ogy is an upper bound of the discord, i.e., D̃A→B(ξ ) � DA→B.
Also, the minimization is required to avoid the ambiguity
when multiple projection bases are optimal. Note that the
discord for local metrology is a function of a state and a
parameter; therefore, it is not a typical correlation measure
for the state. Discord for local metrology has the following
properties:

(1) D̃A→B � 0 (non-negative);
(2) D̃A→B �= D̃B→A (asymmetric);
(3) If the total system is in the product state, i.e., ρAB =

ρA ⊗ ρB, then D̃A→B = 0. If D̃A→B = 0, then the total system
is in a classical-quantum state, i.e., ρAB = ∑

j p j | j〉 〈 j| ⊗
ρ

( j)
B , for some set of orthonormal basis vectors {| j〉}, proba-

bility distribution {p j} and states {ρ ( j)
B }.

(4) D̃A→B is invariant under local unitary operations.
Properties (1) and (2) are trivial. The first half of Property

(3) is straightforward, and the second part follows from the
fact that D̃A→B(ξ ) � DA→B; thus D̃A→B(ξ ) = 0 leads to zero
discord, and the state must be classical quantum. Property (4)
is due to the state dependence of the local measurement basis,
which makes the quantity only a function of the state and
parameter choice. Local unitary operations change the state,
but the optimal basis also changes accordingly, thus leaving
invariant the discord for local metrology. Note that one does
not expect invariance under more general local operations
since discord can increase under local noise [30]. Property (4)
distinguishes our metric from the family of basis-dependent
discord [31–33] with which it otherwise shares many com-
monalities.

Since discord for local metrology satisfies the conditions of
non-negativity and invariance under local unitary operations,
we can regard it as a good measure of correlations [34]. Al-
though it can be nonzero for some specific classical-quantum
state, an unpleasant property for a discord metric, it is a
practical quantity to measure correlations in terms of local
optimal measurement for metrology.

For a general bipartite system, it is a demanding task to find
{�̃A

j }. However, when ξ = T or ξ = λ is a linear coupling
parameter for a Gibbs state in the high-temperature limit,

�̃A
j becomes the eigenbasis of ρA, i.e., ρA = ∑

j r j�̃
A
j , as

shown in Sec. II B. Therefore, D̃A→B(ξ ) becomes the so-called
diagonal discord DA→B(ξ ) [35].

IV. QUANTIFYING �F (ξ; T ) VIA D̃A→B(ξ; T )

In this section, we prove our main result Theorem 1 stating
the relation between the discord for local metrology and the
precision loss quantified by the difference between global QFI
and LOCC QFI.

Theorem 1. Consider a finite-dimensional system in a
Gibbs state with its Hamiltonian Hλ parametrized by a
temperature-independent parameter λ at temperature T . Let
ξ ∈ {λ, T } denote an unknown parameter to be estimated. If
FAB(ξ ; T ) is the global QFI and FA→B(ξ ; T ) is the LOCC QFI
for estimating ξ , in the high-temperature limit, we have

−∂2
ξ D̃A→B(ξ ; T ) = ∂T (T �F (ξ ; T )) + O(T −αξ ), (5)

where αλ = 3 and αT = 5. Particularly, for thermometry (ξ =
T ), D̃A→B(T ) becomes the diagonal discord DA→B(T ), which
obeys

−∂2
TDA→B(T ) = ∂T (T �F (T )) + O(T −5), (6)

Proof. First, let us prove the case for ξ = λ. For a general
finite-dimensional system in the high-temperature limit, the
state of the total system ρAB,λ can be written as

ρAB,λ = 1

dAB

[
1AB − 1

T

(
Hλ − Tr[Hλ]

dAB

)]
+ O(T −2),

where dAB is the dimension of the system. The reduced
state of subsystem A is given by ρA,λ = TrB[ρAB,λ],
and within the same approximation, we have ρA,λ ∝
1A − 1

T (HA,λ + �A,λ) + O(T −2), where �A,λ = const +
1

dB

∑
k〈E (B)

k |HAB,λ|E (B)
k 〉, which is independent of temperature.

In the high-temperature limit, ρA,λ can be approximated
by a Gibbs state ρA,λ 
 Z−1

A,λe−H eff
A,λ/T with the effective

Hamiltonian H eff
A,λ = HA,λ + �A,λ and the normalization

factor ZA,λ = Tr[e−H eff
A,λ/T ]. Then, the local QFI follows

Eq. (1), i.e.,

∂T (TFA(λ; T )) = ∂2
λSA(λ; T ) + O(T −3). (7)

Suppose that projectors �̃A
j are the local optimal projection

measurements for estimating λ from state ρA,λ. Then, the
conditional state ρB|�̃A

j ,λ
after measuring subsystem A can also

be approximated as a Gibbs state in the high-temperature limit
with the effective Hamiltonian HB|�̃A

j ,λ
= HB,λ + �B|�̃A

j ,λ
,

where �B|�̃A
j ,λ

= const + Tr[HAB,λ�̃
A
j ]. Then, the local QFI

obeys Lemma 1, i.e.,

∂T (TFB|�̃A
j
(λ; T )) = ∂2

λSB|�̃A
j
(λ; T ) + O(T −3). (8)

Let us select �̃A
j∗ such that

∑
j∗ p j∗(λ; T )SB|�̃A

j∗
(λ; T ) =

min{�̃A
j }

∑
j p j (λ; T )SB|�̃A

j
(λ; T ). Then,

∂2
λD̃A→B(λ; T ) =

(
∂2
λSA +

∑
j∗

p j∗∂2
λSB|�̃A

j∗
− SAB

)

+
∑

j∗

(
∂2
λ p j∗SB|�̃A

j∗
+ 2 ∂λ p j∗∂λSB|�̃A

j∗

)
.
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From Eqs. (1), (7), and (8), we can obtain

−∂2
λD̃A→B(λ; T ) = ∂T (T �F (λ; T ))

−
∑

j∗

(
∂2
λ p j∗SB|�̃A

j∗
+ 2 ∂λ p j∗∂λSB|�̃A

j∗

)
.

In the high-temperature limit, the entropy has the or-
der of SB|�̃A

j∗
(λ; T ) = ln(dB) + O(T −2), and the measurement

probability is

p j∗(λ; T ) = Tr
[(

�̃A
j∗ ⊗ 1B

)
ρAB,λ

(
�̃

A†
j∗ ⊗ 1B

)]

= 1

dA
+ O(T −1). (9)

In the high-temperature limit, we have

∂2
λSB|�̃A

j∗
(λ; T ) = O(T −2).

By using the fact that
∑

j∗ p j∗(λ; T ) = 1, we can write∑
j∗

∂2
λ p j∗(λ; T )SB|�̃A

j∗
(λ; T ) = O(T −1)O(T −2)

= O(T −3)∑
j∗

∂λ p j∗(λ; T )∂λSB|�̃A
j∗

(λ; T ) = O(T −1)O(T −2)

= O(T −3).

Therefore, we can write

−∂2
λD̃A→B(λ; T ) = ∂T (T �F (λ; T )) + O(T −3).

Second, for thermometry, from Lemma 2 and Definition
1, the optimal measurement basis is the diagonal basis of
ρA,T . Therefore, discord for local metrology D̃A→B(T ) be-
comes diagonal discord DA→B(T ). From our previous result
in Ref. [15] since we have already known that

− 1

T
∂TDA→B(T ) = �F (T ) + O(T −5),

we can obtain

−∂2
TDA→B(T ) = ∂T (T �F (T )) + O(T −5),

�
Therefore, for any parameter ξ , in the high-temperature

limit, we can approximately write

∂2
ξ D̃A→B(ξ ; T ) 
 −∂T (T �F (ξ ; T )), (10)

which demonstrates that ∂T (T �F (λ; T )) is the curvature
of D̃A→B. Even if the curvature of the discord for local
metrology is not directly related to the amount of nonclassical
correlations, Eq. (10) still describes the role of nonclassical
correlations in the greedy local measurement scheme in the
LOCC regime. Although we derived Theorem 1 for a bipar-
tite system, the results in the high-temperature limit can be
extended to the case of multipartite systems (see Appendix D).

When the parameter λ is linearly coupled in the Hamilto-
nian, discord for local metrology becomes diagonal discord.
From Theorem 1 and Lemma 2, we can obtain the following
corollary:

Corollary 3. Consider a finite-dimensional system in
a Gibbs state at temperature T with its Hamiltonian
parametrized by a temperature-independent parameter λ.

When λ is linearly coupled to the Hamiltonian Hλ, i.e.,
∂2
λHλ = 0, we have

∂2
λDA→B(λ; T ) = −∂T (T �F (λ; T )) + O(T −3), (11)

where DA→B(λ; T ) is the diagonal discord.
In addition, let us note the case of estimating a parameter

linearly coupled to the single-body term. For this case, we can
obtain the following corollary (see Appendix C for proof):

Corollary 4. For a finite-dimensional system in a Gibbs
state at temperature T , when λ is a parameter linearly coupled
to the single-body term as

Hλ = λHA + λHB + HAB,

where HA and HB are the system Hamiltonians and HAB is the
interaction Hamiltonian, then, we have

−∂2
λDA→B(λ; T ) = O(T −3)

∂T (T �F (λ; T )) = O(T −3). (12)

To this order, the local measurements are optimal. Here,
note that the leading term that Theorem 1 cares about is
O(T −2) and this is 0 in this case.

In the following section, we show some examples that
verify Theorem 1, Corollaries 3, and 4.

V. EXAMPLES

In this section, we verify the relation in Eqs. (5), (6)
and (11), (12) by providing several examples of two-qubit
Heisenberg interaction, whose Hamiltonian can be written as

H = B1

2
ZA + B2

2
ZB + Jx

2
XAXB + Jy

2
YAYB + Jz

2
ZAZB,

where Xj,Yj , and Zj ( j = A, B) are the Pauli matrices acting
on the jth spin.

A. Thermometry

First, let us discuss the case of thermometry. From our
recent result [15], we have

�F (T ) = J2
x + J2

y

4T 4
+ O(T −5) − 1

T
∂TDA→B(T )

= J2
x + J2

y

4T 4
+ O(T −5),

which directly yields

∂T (T �F (T )) = −3
(
J2

x + J2
y

)
4T 4

+ O(T −5)

−∂2
TDA→B(T ) = −3

(
J2

x + J2
y

)
4T 4

+ O(T −5).

Therefore, Eq. (6) is valid.

B. Coupling strength

Next, let us consider the case of estimating the coupling
strength J when Jx = Jy = J . Then, we have

�F (J; T ) = 1

2T 2
+ O(T −3)

DA→B(J; T ) = J2

4T 2
+ O(T −3),
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which directly yields

∂T (T �F (J; T )) = − 1

2T 2
+ O(T −3)

−∂2
J DA→B(J; T ) = − 1

2T 2
+ O(T −3),

Therefore, Eq. (11) is valid.

C. Magnetometry

Finally, let us consider magnetometry, which demonstrates
Eq. (12). We consider the case of B1 = B2 = B, where B is the
parameter to be estimated. In this case, we can find that

∂T (T �F (B; T )) = − (Jx − Jy)2

8T 4
+ O(T −5),

−∂2
BDA→B(B; T ) = −J2

x + JxJy + J2
y

24T 4
+ O(T −5).

From Eq. (12), the leading term should be O(T −3); therefore,
we can say that Eq. (12) is valid, but the term to the corre-
sponding order O(T −3) is 0.

VI. CONCLUSION

In conclusion, we introduced a metric for nonclassical
correlations, the discord for local metrology, which is de-
fined as a quantum discord in the greedy local measure-
ment scheme, and we derived a relation between the discord
for local metrology and the difference between the QFI of
the global optimal scheme and the greedy local measure-
ment scheme in the high-temperature limit. We demonstrated
that the curvature of the discord for local metrology quantifies
the precision loss in the estimation of a general parameter
due to availability of local measurements only (Theorem 1).
This also indicates that variations in nonclassical correlations
at thermal equilibrium, quantified by discord for local metrol-
ogy, are related to the ability of the greedy local measurement
scheme to achieve the ultimate estimation precision limit,
quantified by the global QFI. We also showed that discord
for local metrology coincides with diagonal discord when one
estimates a linear coupling parameter (Corollaries 3 and 4).

Although we focused on finite-dimensional systems in
the high-temperature limit, it would be interesting to
extend the relation between the discord for local metrology
and the QFI for more general Gibbs states, especially in the
low-temperature limit where one could search for connections
to phase-transition phenomena or for infinite-dimensional sys-
tems, such as bosonic gases [36,37].

The relation between the curvature of the discord for local
metrology and the difference in the QFI explicitly demon-
strates the role of nonclassical correlations in quantum metrol-
ogy based on the original definition of quantum discord. This
provides insight on the role of nonclassicality in quantum
metrology and motivates further exploration in more general
settings, which can potentially inspire experimentalists to
design measurement and control protocols to utilize quantum
discord as a resource to achieve precise sensing and imaging,
e.g., in the context of room-temperature nuclear magnetic
resonance or bioimaging with defect spins [38–41].
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APPENDIX A: PROOF OF LEMMA 1

First, let us prove the case of ξ = λ.
Let ε be an error in our estimation. Then, the Hamiltonian

with the error becomes

Hλ+ε = Hλ + εGλ + O(ε2),

where

Gλ = ∂λHλ.

The fidelity between ρλ and ρλ+ε is defined as

F[ρλ, ρλ+ε] = (
Tr[

√
ρ

1/2
λ ρλ+ερ

1/2
λ ]

)2
.

Since

e−(Hλ/2T )e−(Hλ+εGλ )/T e−(Hλ/2T ) = e−(2Hλ+εGλ )/T +O(T −3 ),

we can write

F[ρλ, ρλ+ε] = 1

ZλZλ+ε

(Tr[e−[Hλ+(ε/2)Gλ]/T +O(T −3 )])2

= 1

ZλZλ+ε

(Tr[e−[Hλ+(ε/2)Gλ]/T ])2 + O(T −3).

In the high-temperature limit, the fidelity between ρλ and
ρλ+ε becomes

F[ρλ, ρλ+ε] = Z2
λ+(ε/2)

ZλZλ+ε

+ O(T −3),

where Zλ+(ε/2) = Tr[e−Hλ+(ε/2)/T ] and from the definition of
the QFI, we can obtain

F (λ; T ) = Zλ∂
2
λZλ − (∂λZλ)2

Z2
λ

+ O(T −3).

Here, for the Gibbs state, 〈Gλ〉 = Tr[Gλρλ] is always

〈Gλ〉 = −T ∂λ ln Zλ.

Then, the susceptibility with respect to a temperature-
independent parameter λ can be defined as

χ (λ; T ) = −∂λ〈Gλ〉.
so that we have

F (λ; T ) = χ (λ; T )

T
+ O(T −3). (A1)

Since the entropy of the bipartite system S(λ; T ) =
−Tr[ρλ ln ρλ] satisfies the following relation:

∂T 〈Gλ〉 = −∂λS(λ; T ), (A2)

from Eqs. (A1) and (A2), we can obtain

∂T (TF (λ; T )) = ∂2
λS(λ; T ) + O(T −3).
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Second, for the thermometry case ξ = T , the global QFI
is F (T ) = C(T )/T 2 [42] for finite temperature, where C(T )
is the heat capacity so that C(T ) = T ∂T S(T ). Therefore, we
can obtain an exact relation,

∂2
T S(T ) = ∂T (TF (T )).

Therefore, Lemma 1 is valid.

APPENDIX B: PROOF OF LEMMA 2

First, let us prove the case ξ = λ. When ∂λGλ = 0, the QFI
becomes

F (λ, T ) = (δGλ)2

T 2
+ O(T −3). (B1)

Let Ek (λ) be the eigenvalues of the Hamiltonian Hλ.
Then, Hλ can be diagonalized as Hλ = PλKλP†

λ , where
Pλ is a unitary operator P†

λ Pλ = PλP†
λ = 1 and Kλ =

diag[E1(λ), E2(λ), . . . , Ed (λ)] = ∑d
k=1 Ek (λ)|k〉〈k| and |k〉’s

form a complete basis independent of λ, and d is the dimen-
sion of the system. Thus,

∂λKλ =
d∑

k=1

∂λEk (λ)|k〉〈k|.

Then, the Gibbs state becomes

ρλ = 1

Zλ

Pλe−Kλ/T P†
λ = 1

Zλ

d∑
k=1

e−Ek (λ)/T Pλ|k〉〈k|P†
λ .

Let us calculate the expectation value of Gλ = ∂λHλ. Since

Gλ = ∂λPλKλP†
λ + Pλ∂λKλP†

λ + PλKλ∂λ(P†
λ ),

we have

〈Gλ〉 = Tr[ρλGλ]

= 1

Zλ

Tr{(Pλe−Kλ/T P†
λ )[∂λPλKλP†

λ + Pλ∂λKλP†
λ

+ PλKλ∂λ(P†
λ )]}

= Tr

[
e−Kλ/T

Zλ

∂λKλ

]
+ 1

Zλ

Tr{Kλe−Kλ/T (P†
λ ∂λPλ)

+ [∂λ(P†
λ )Pλ]e−Kλ/T Kλ}

= Tr

[
e−Kλ/T

Zλ

∂λKλ

]
+ 1

Zλ

Tr[e−Kλ/T Kλ∂λ(P†
λ Pλ)]

= Tr

[
e−Kλ/T

Zλ

∂λKλ

]
= Tr[ρλPλ∂λKλP†

λ ],

where we used the cyclic property of trace operation and the
fact that [e−Kλ/T , Kλ] = 0. Therefore,

〈Gλ〉 = 〈Pλ∂λKλP†
λ 〉,

and Pλ∂λKλP†
λ has same diagonal basis of ρλ, which is

{Pλ|k〉〈k|P†
λ }d

k=1. This means that the optimal measurement
for estimating the linear coupling parameter is the projection
measurement to the diagonal basis of ρλ.

Second, for the case of ξ = T , the QFI is given as

F (T ) = C(T )

T 2
,

where C(T ) is the heat capacity [42]. Because of
C(T ) = ∂T 〈Hλ〉 = (δHλ)2/T 2, the temperature variance
(δT )2 becomes

(δT )2 = (δHλ)2

(∂T 〈Hλ〉)2
= T 2

C(T )
= 1

F (T )
.

Therefore, for thermometry, the projection measurements on
a diagonal basis are optimal.

APPENDIX C: PROOF OF COROLLARY 4

Let us consider the following Hamiltonian:

Hλ = λHA + λHB + HAB,

where HA and HB are the system Hamiltonians, i.e.,
[HA, HB] = 0 and HAB is the interaction Hamiltonian and
generally [HA + HB, HAB] �= 0. Here, λ is the parameter to
be estimated. In this case, Hλ+ε = Hλ + εGλ + O(ε2), where
Gλ = HA + HB, which is independent of ξ = {λ, T }. Here,
we just simply write Gλ as G in order to emphasize its
independence of λ.

We already know that for the Gibbs state, we have 〈G〉 =
−T ∂λ ln Zλ. In this case, we can immediately obtain

〈G〉 = 〈HA〉 + 〈HB〉 = O(T −1)

because the entropy is SAB(λ; T ) = ln(dAB) + O(T −2) and the
relation between the entropy and 〈G〉 is

∂T 〈G〉 = −∂λSAB(λ; T ) = O(T −2).

By defining a general susceptibility with respect to λ as

χ (λ; T ) = −∂λ〈G〉 = O(T −1),

the QFI can be given as

FAB(λ; T ) = − 1

T
∂λ〈HA〉 − 1

T
∂λ〈HB〉 = O(T −2). (C1)

Now, let us consider the subsystem A. The effective Hamil-
tonian H eff

A,λ can be written as H eff
A,λ = λ(HA + const) + �A.

Therefore,

FA(λ; T ) = − 1

T
∂λ〈HA〉 + O(T −3).

Similarly, for ρB|�̃A
j∗,ξ

, we have

FB|�̃A
j∗

(λ; T ) = − 1

T
∂λ〈HB〉 + O(T −3).

Therefore, by using Eq. (9), we have

FA→B(λ; T ) = − 1

T
(∂λ〈HA〉 + ∂λ〈HB〉) + O(T −3).

From Eqs. (C1) and (11), we can obtain

−∂2
λDA→B(λ; T ) = O(T −3)

∂T (T �F (λ; T )) = O(T −3).

APPENDIX D: GENERALIZATION TO THE
MULTIPARTITE CASE

Let us consider a finite-dimensional system composed
of N subsystems indexed by integers 1 � k � N . In the
multipartite case, each subsystem is measured with local
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optimal measurement sequentially, and we demonstrate that
the difference in global QFI and LOCC QFI can be quantified
via the curvature of the discord for local metrology in the
high-temperature limit, in parallel to Ref. [15].

We denote the order of measurement in a greedy local
measurement scheme by σ1:N ≡ (σ1, σ2, . . . , σN ), where σk =
{1, 2, . . . , N}. Let us write H(σk ) as the Hilbert space of the
system on which we perform local optimal measurement �̃σk

and H(σk+1:N ) as the Hilbert space of the rest of system on
which we perform the local optimal measurement �̃σk+1:N .
Therefore, the total system can be decomposed sequentially
into

H(σ1:N ) = H(σ1) ⊗ H(σ2:N )

= H(σ1) ⊗ H(σ2) ⊗ H(σ3:N )

...

= H(σ1) ⊗ H(σ2) ⊗ · · · ⊗ H(σk ) ⊗ H(σk+1:N ),

where 2 � k � N − 1.
In the first step (k = 1), we first perform the local optimal

measurement �̃σ1 . Then conditioned on the measurement
result of �̃σ1 , we perform the other local optimal measurement
�̃σ2:N on the rest of system. Let us write the global QFI as Fσ1:N

and LOCC QFI as Fσ1→σ2:N . Then, in the high-temperature
limit, from Eq. (10), we have

∂T (T (Fσ1:N − Fσ1→σ2:N )) 
 −∂2
ξ D̃σ1→σ2:N .

For the 2 � k � N − 1 steps, the measurement �̃σk is condi-
tioned on the results of the previous sequence of local optimal
measurements �̃1:k−1 ≡ (�̃σ1 , �̃σ2 , . . . , �̃σk−1 ). We treat the
rest of system as a bipartite system composed of H(σk ) and

H(σk+1:N ). Then, from Eq. (10), we have ∂T (T (Fσk:N |�̃σ1:k−1
−

Fσk→σk+1:N |�̃σ1:k−1
)) 
 −∂2

ξ D̃σk→σk+1:N |�̃σ1:k−1
. Here, we have

Fσk→σk+1:N |�̃σ1:k−1
= Fσk |�̃σ1:k−1

+ Fσk+1:N |�̃σ1:k
.

The unconditional QFI is given by the average over mea-
surement outcome distribution p(�̃σ1:k−1 ) as

Fσk→σk+1:N |σ1:k−1 ≡
∑

�̃σ1:k−1

p(�̃σ1:k−1 )Fσk→σk+1:N |�̃σ1:k−1
.

Then, one can define an unconditional version of discord,

D̃σk→σk+1:N |σ1:k−1 =
∑

�̃σ1:k−1

p(�̃σ1:k−1 )D̃σk→σk+1:N |�̃σ1:k−1
,

which is related to the average measurement precision differ-
ence,

∂T (T (Fσk:N |σ1:k−1 − Fσk→σk+1|σ1:k−1 )) 
 −∂2
ξ D̃σk→σk+1:N |σ1:k−1,

where Fσk→σk+1|σ1:k−1 = Fσk |σ1:k−1 + Fσk+1:N |σ1:k . Therefore, by
adding the equation above from k = 1 and k = N , the differ-
ence in the QFI can be written as

�Fσ1:N = Fσ1:N −
N∑

k=1

Fσσk |σ1:k−1

so that we can obtain

∂T (T �Fσ1:N ) 
 −∂2
ξ D̃σ1:N , (D1)

where

D̃σ1:N =
N∑

k=1

D̃σk→σk+1:N |σ1:k−1 .

Equation (D1) is the generalization of Eq. (10) for the
multipartite case.
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