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In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled
via tunable couplers based on local control theory, an approach commonly employed to steer chemical reactions.
Local control theory provides an algorithm that only requires a single forward time propagation of the system
wave function to shape an external pulse that monotonically increases the population of a desired final state
of a quantum system given an initial state. The method can serve as a starting point for additional refinements
that lead to new pulses with improved properties. Among others, we propose an algorithm to design pulses
that transfer population in a reversible manner between given initial and final states of coupled fixed-frequency
superconducting qubits.
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I. INTRODUCTION

Methods to shape pulses [1] that control quantum pro-
cesses have allowed important advances in different domains,
ranging from the steering of photochemical processes [2–4]
to the optimization of gate operations in quantum computing
[5,6].

In quantum information, optimal control theory (OCT) is
typically used to generate target unitary operators [5,7–10].
Within the field of superconducting qubits [11] OCT has been
successfully applied to design various qubit gates in different
hardware implementations [6,12–15] as well as to identify op-
timal operating conditions, such as the quasidispersive regime
[16].

In parallel to OCT, local control theory (LCT) has also
emerged as a valuable approach to control the dynamics of
quantum systems by shaping external fields. In particular,
LCT has already been successfully applied to steer photo-
chemical reactions in molecular systems [17–19]. In LCT,
an external field is designed on-the-fly under the constraint
that it monotonically increases the quantum population of a
selected target state when starting from a given initial state
[20,21]. While OCT is based on a computationally intensive
variational approach, which requires computing the full time
evolution of the system at each optimization step, LCT can
generate pulses that produce the desired population transfer
by computing the evolution of the system only once. Although
LCT does not necessarily provide a time-optimal pulse, thanks
to its remarkable computational efficiency and conceptual
simplicity, it can nonetheless become the method of choice
for the design of state-preparation pulses.

In this paper, we focus on the application of LCT
to generate state-preparation pulses for fixed-frequency
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superconducting qubits coupled via tunable couplers. In
Sec. II we introduce LCT and show how to apply it to a setup
made up of fixed-frequency transmon qubits coupled by a
tunable coupler [22,23]. Section III A presents and discusses
the pulses generated by the LCT algorithm. Sections III B–
III D report on a procedure aimed at further optimizing their
properties such as bandwidth, pulse length, and reversibility.

II. METHODS

A. Theoretical background

We consider n fixed-frequency qubits all mutually inter-
acting through a single flux-tunable qubit, called a tunable
coupler (TC) [22]. Such systems combine the long coherence
time of fixed-frequency transmon qubits with the high con-
trollability of flux-tunable coupling elements. The system is
described by the Hamiltonian [23]

Ĥ (t ) =
n∑

i=1

ωiâ
†
i âi − αi(1 − â†

i âi )â
†
i âi

+ ωTC(t )â†
TCâTC − αTC(1 − â†

TCâTC)â†
TCâTC

+
n∑

i=1

gi(â
†
i + âi )(â

†
TC + âTC), (1)

in units of h̄ = 1. The qubit i and TC creation and annihilation
operators are â†

i , âi, â†
TC, and âTC, respectively. Qubit i has

frequency ωi, anharmonicity αi, and couples with strength gi

to the TC. The frequency of the TC, ωTC(t ), is controlled
by a current I (t ) brought close to the TC by a high-speed
flux-bias line; see Fig. 1(a). The resulting flux �(t ) threading
through the TC SQUID loop changes the frequency of the TC
according to

ωTC(t ) = ω0
TC

√
| cos (π�(t )/�0)|, (2)
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FIG. 1. (a) Sketch of two fixed-frequency transmon qubits cou-
pled by using a tunable coupler. (b) Energy levels of the undriven
system for states up to 20 GHz above the ground state. (c) Evolution
of the eigenstates of the full Hamiltonian in Eq. (1) as a function
of δωTC. The labels |010〉 (orange), |100〉 (blue), and |001〉 (green)
refer to the eigenstates of the Hamiltonian when the coupling is set to
zero. (d) The nonadiabatic couplings d1,2 (orange dash-dotted line),
d2,3 (blue dashed line), and d1,3 (green dotted line), as functions of
δωTC.

where �0 is the magnetic flux quantum [24]. The full system
wave function |�(t )〉 then evolves according to the time-
dependent Schrödinger equation

i∂t |�(t )〉 = Ĥ (t ) |�(t )〉 . (3)

The population 〈P̂φ〉 of any n-qubit target state |φ〉 is governed
by

∂t 〈P̂φ〉 = i〈[Ĥ (t ), P̂φ]〉, (4)

where P̂φ = |φ〉〈φ| is the corresponding projector operator and
〈. . . 〉 denotes the expectation value with respect to |�(t )〉. In
our model, the only free, tunable parameter is the frequency of
the tunable coupler ωTC(t ). We will, thus, employ LCT to in-
crease the population in |φ〉 by shaping ωTC(t ) on the fly. The
TC frequency can be decomposed into a time-independent
and a time-dependent part ωTC(t ) = ωTC + δωTC(t ) [19,21].
This splits the Hamiltonian Ĥ (t ) into a time-dependent term

Ĥ ′(t ) = δωTC(t )â†
TCâTC and a drift term

Ĥd =
n∑

i=1

ωiâ
†
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†
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+ ωTCâ†
TCâTC − αTC(1 − â†

TCâTC)â†
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+
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gi(â
†
i + âi )(â

†
TC + âTC). (5)

The drift ωTC term depends on the constant dc flux bias
applied to the TC [22]. When the target state |φ〉 is an
eigenvector |ψ j〉 of the drift Hamiltonian Ĥd the projector
operator P̂φ commutes with Ĥd and Eq. (4) simplifies to

∂t 〈P̂j〉 = iδωTC(t )〈[â†
TCâTC, P̂j]〉. (6)

LCT induces a monotonic increase of the target-state pop-
ulation by generating a δωTC(t ) pulse that guarantees the
positivity of the right-hand side of Eq. (6). For our setup this
condition is achieved by changing the frequency of the TC
according to

δωTC(t ) = −iλ〈[â†
TCâTC, P̂j]〉∗. (7)

The coupling parameter λ controls the magnitude by which
the control field δωTC(t ) is changed. Its value can be tuned
as long as the resulting pulse δωTC(t ) can be implemented in
realistic experimental setups.

A projector made of an arbitrary linear combination of
drift-Hamiltonian eigenstates does not, in general, commute
with the drift Hamiltonian. Therefore, such a linear combi-
nation of eigenstates cannot be used as a target state in our
formulation of LCT since an equivalent to Eq. (7) cannot be
obtained. Thus the current formulation of the LCT algorithm
can only generate pulses for population transfer between pure
drift Hamiltonian eigenstates.

When some of the (high energy) states do not contribute
to the dynamics, we can simplify the simulation by re-
stricting the action of the LCT algorithm to a subspace of
the full Hilbert space by using the projector operator P̂n′ =∑n′

k=1 |ψk〉〈ψk| over the first n′ eigenvectors (assumed to be
ordered according to their corresponding eigenvalues). Equa-
tion (7) then simplifies to

δωTC(t ) � 2λ Im

(
n′∑
k

〈ψ j |â†
TCâTC|ψk〉〈ψk|�(t )〉〈ψ j |�(t )〉∗

)
.

(8)

Since the TC frequency cannot exceed ω0
TC, see Eq. (2),

δωTC(t ) is confined to the interval [−ω0
TC, 0]. Thus, it is nec-

essary to impose a restriction on the λ factor to avoid reaching
the upper bound of δωTC(t ). This is accomplished by capping
the value of δωTC(t ) to zero (i.e., taking min[δωTC(t ), 0]) and
by constraining the magnitude of λ such as δωTC(t ) > −ω0

TC.
The LCT algorithm can be summarized in two steps: First,

the instantaneous state is propagated for a short time interval
[t, t + δt] under Ĥ (t ). Second, the resulting wave function
|�(t + δt )〉 is used to update the external field following
Eq. (8). These two steps are repeated using the updated
control field until the desired population transfer is achieved.
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A smooth external driving pulse is obtained when δt is made
sufficiently small. For practical purposes, when the target state
|φ〉 does not overlap with the initial system wave function
|�(0)〉, a small fraction η of the target state is added into the
initial wave function,

|� ′(0)〉 = √
η |ψ j〉 +

√
1 − η |�(0)〉 , (9)

to ensure that the LCT algorithm converges. Since LCT pulses
are directly constructed from an evolving wave function, they
are very sensitive to perturbations of the system parameters
and have to be designed for each system individually.

B. System

We apply LCT to systems composed of n = 2, 3, and
4 qubits; see Eq. (1) and Fig. 1(a). In the two-qubit sys-
tem [22], the qubits, labeled Q1 and Q2, have frequen-
cies ω1/(2π ) = 5.890 GHz and ω2/(2π ) = 5.031 GHz, re-
spectively, and anharmonicities α1/(2π ) = −324 MHz and
α2/(2π ) = −235 MHz, respectively. They are coupled with
strengths g1/(2π ) = 100 MHz and g2/(2π ) = 71 MHz, re-
spectively, to a TC with a maximum frequency ω0

TC/(2π ) =
7.445 GHz. We chose the value of the TC anharmonicity to be
αTC/(2π ) = −280 MHz, consistent with the value reported
in Ref. [23]. The control pulses are designed so that δωTC is
zero at the beginning and end of the simulation. We found
that the system can be accurately described by using only the
first three states of the qubits and of the TC since the higher-
energy states do not affect the population transfer between
the states |0〉 and |1〉 of Q1 and Q2. The eigenvectors of the
drift Hamiltonian in Eq. (5), labeled |q1q2qTC〉, are used to
identify the 27 system states; see Fig. 1(b). Due to the modest
size of the problem, we do not need to introduce projectors as
described in Eq. (8). When δωTC is swept from 0 to −3 GHz,
we observe two avoided-level crossings between the TC state
and the qubit states; see Fig. 1(c). The associated nonadia-
batic coupling terms, obtained with the Hellmann–Feynman
expression1 are shown in Fig. 1(d). The LCT algorithm makes
use of these avoided-level crossings to transfer population
between the two qubits.

In systems composed of n = 3 and n = 4 qubits, the fre-
quencies of qubits Q3 and Q4 were equidistantly interpo-
lated between the Q1 and Q2 frequencies, giving ω3/(2π ) =
5.461 GHz in the three-qubit system, and ω3/(2π ) =
5.317 GHz and ω4/(2π ) = 5.604 GHz in the four-qubit sys-
tem. This ensures that the energies of the single-excited states
of the third and fourth qubits are equidistantly located between
the first energy levels of Q1 and Q2. All corresponding
coupling and anharmonicity values for the third and fourth
qubit are set to the values of g1 and α1. Again, only the first
three lowest states for each qubit and TC prove sufficient to

1The nonadiabatic coupling terms djk between pairs of the full
system eigenstates |ψ j〉 and |ψk〉 [see Eq. (1)] with the correspond-
ing eigenenergies ε j (δωTC) and εk (δωTC) are determined with the
Hellmann–Feynman expression [25]

djk (δωTC) =
〈ψ j (δωTC)| ∂Ĥ (δωTC )

∂δωTC
|ψk (δωTC)〉

ε j (δωTC) − εk (δωTC)
.

accurately model the population transfer between pure single
excited qubit states in n = 3 and n = 4 qubits systems.

III. RESULTS AND DISCUSSION

A. Local control theory pulse

In this section, we design a LCT pulse that transfers
population from the state |100〉 to the state |010〉, i.e., that
brings the excitation from Q1 to Q2 in a n = 2 qubits system.
We assume that the TC is biased at the flux sweet spot �(t =
0) = 0. Since the initial and final states are orthonormal, we
use the state preparation in Eq. (9) with η = 10−6 to initialize
the LCT algorithm.

Figure 2(a) shows a 150-ns-long LCT pulse obtained for
λ = 12 500. This pulse makes the tunable coupler energy level
oscillate between the two avoided level-crossings depicted
in Fig. 1(c). As the TC |001〉 state passes through the first
avoided crossing at −1.56 GHz a fraction of the qubit popu-
lation in |100〉 is transferred to the TC. Part of this population
is then transferred to the second qubit (state |010〉) once the
second avoided crossing at −2.40 GHz is reached. The TC
oscillates with a complicated frequency pattern dominated by
the harmonics of the transition between the two qubits, (ω1 −
ω2)/(2π ) = 859 MHz and by other components below 1 GHz
as shown by the power spectrum of the pulse in Fig. 2(c).
These frequencies populate several higher-energy states, most
notably states |201〉, |021〉, |210〉, and |111〉. However, none of
these states reach a population grater than 10−5 and all rapidly
depopulate below 10−7 by the time the pulse ends. Only about
2 × 10−6 population remains in the |102〉 excited state at the
end of the pulse. As expected from Eqs. (6) and (7), after an
initial delay ton of 160 ns, the population of the target state
|010〉 increases monotonically with time while the populations
of the other states rapidly oscillate. After ∼300 ns the initial
population has been almost entirely transferred to the target
state. Only a population of 2 × 10−6 is left in the initial state,
which, together with the remaining population in the |102〉
state, gives a mismatch 1 − 〈P|010〉〉 of ∼4 × 10−6, where
〈P|010〉〉 is the population of the target state. Increasing the
value of the λ parameter increases the fidelity (see Appendix
A). While very promising, this first “high fidelity” LCT pulse
has a complex spectrum and would require instruments with a
large bandwidth.

B. Optimization of local control theory pulses

Limits set by the control instruments make large-
bandwidth pulses impractical. We therefore need a procedure
to refine the LCT pulse, which confines the bandwidth to a
reasonable range. To this end, we apply a high-frequency filter
to the LCT pulse obtained in the previous section and use
it as a “reference” to generate an improved pulse using the
LCT algorithm. This new reference corresponds to the term
δωfilt

TC(t ) in Eq. (10). In practice, we decompose the new LCT
pulse into three different components

ωTC(t ) = ω0
TC + δωfilt

TC(t ) + δωlct,2
TC (t ). (10)

Only the component δωlct,2
TC (t ), initially set to zero, will be

generated on the fly by using the LCT algorithm, while the
first two terms are kept fixed. As in the previous section,
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FIG. 2. (a) LCT pulse designed to transfer population from state |100〉 to state |010〉 (inset shows the full 450 ns pulse). The parameter
λ was set to 12 500. (d) Frequency-filtered pulse δωfilt

TC(t ) used as an initial condition to design the second local control pulse. (g) LCT pulse
designed to transfer population from state |100〉 to state |010〉 when using the pulse in panel (d) as an initial condition. (b), (e), (h) Population
transfer resulting from the pulses in panels (a), (d), and (g), respectively. (c), (f), (i) Fourier transforms of the pulses in panels (a), (d), and (g),
respectively. The dashed lines indicate the harmonics corresponding to frequency differences between the qubits.

the pulse δωlct,2
TC is shaped by using the requirement that the

right-hand side of Eq. (6), ∂t 〈P̂j〉, remains positive.
The filtered pulse δωfilt

TC(t ) in Fig. 2(d) is obtained by
applying a high-frequency cutoff at 0.4 GHz to the pulse
in Fig. 2(a). The corresponding spectra before and after the
application of the filter are shown in Figs. 2(c) and 2(f),
respectively. This operation removes much of the complex
structure of the pulse while preserving its overall shape
[Fig. 2(d)]. As expected, the pulse made up of the first two
components in Eq. (10) fails to transfer the population to
the target qubit [Fig. 2(e)]. However, using LCT we generate
a new time-dependent field, i.e., δωlct,2

TC (t ) in Eq. (10), with
a coupling parameter λ2 to restore the population transfer.
In particular, we are able to design new LCT pulses with a
narrow bandwidth and an error 1 − 〈P|010〉〉 < 10−6 using λ2

values in the interval [100, 1000]; see Figs. 2(g)–2(i). In addi-
tion, the population transfer is now completed in only ∼30 ns
[see Fig. 2(h)] compared with the initial 120 ns obtained with
the first LCT run described in Sec. III A [Fig. 2(b)]. Although
some higher-energy states are excited at the pulse onset, their
population never exceeds 10−5 and returns to values below
10−7 before the end of the pulse. This improvement is due to
the reference pulse, i.e., the sum ω0

TC + δωfilt
TC(t ), forcing the

TC frequency in the energy range that matches the separation
between the two avoided-level crossings shown in Fig. 1(c).
Note that truncating the power spectrum in Fig. 2(i) above 1 or
1.5 GHz without further optimization will reduce the fidelity
to 10−4 and 10−5, respectively.

C. Reverse processes

So far, our LCT pulses accomplish a well-defined popula-
tion transfer from a given initial state to a final state. There-
fore, we do not expect that applying the same pulse to the final
state reverses the process and transfers the population back to
the initial state. For instance, applying the pulse in Fig. 2(a)
(generated to transfer population from |100〉 to |010〉) to the
reverse process (from |010〉 back to |100〉) only achieves an
imperfect transfer that leaves 3% of the population in the
TC. Interestingly, we found that the amount of population
trapped in the TC is particularly sensitive to the value of
λ2. Therefore, the LCT pulse can be further optimized to
increase the efficiency of the reverse transfer by tuning λ2.
Changes to λ2 do not affect the success of the population
transfer from |100〉 to |010〉, since the initial and final states
and the reference pulse δωTC(t ) are unchanged. They also
do not affect the population of the high-energy states. We
exploit these facts in an iterative procedure we developed
that optimizes both the direct and reverse population transfers
between the states |100〉 and |010〉. The initial pulse is the
bandwidth-optimized pulse derived in Sec. III B. For an initial
choice of λ2, we derive a first LCT pulse for the direct process
(|100〉 to |010〉) and then test it for the reverse transfer (|010〉
to |100〉). If this fails to transfer the population back to the
initial state |100〉 with an error 1 − 〈P|100〉〉 less than 10−6

we update the parameter λ2 and recompute the pulse by
using the LCT algorithm. This procedure is repeated until the
reverse population transfer fidelity reaches a maximum. The
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FIG. 3. Flow chart showing the iterative procedure used to obtain
pulses with a smaller bandwidth and capable of transferring popula-
tion when the initial and target states are exchanged. A new LCT
calculation is performed each time the parameter λ2 is updated or
when a new frequency cutoff is applied.

Nelder–Mead algorithm [26] is used to optimize λ2. In some
cases, we noticed that maximizing the population transferred
during the reverse process required changing the frequency
cutoff for δωfilt

TC(t ). A flow chart of the algorithm used to obtain
a narrow-bandwidth pulse able to transfer the qubit population
in both directions is shown in Fig. 3. For the setup in Fig. 1 and
the parameter discussed in Sec. II B, the produced LCT pulse
is given in Fig. 4(a) together with the population dynamics
for the direct and reverse processes respectively shown in
Figs. 4(b) and 4(c). The final LCT pulse in Fig. 4(a) can
further be used to inspire a new class of fully analytical and
ultrashort pulses that can be used for state preparation (see
Appendix C).

D. Pulse truncation

The pulses obtained by using the algorithm shown in Fig. 3
still have a long tail in the time domain that is inherited from
the original, fixed λ, LCT calculation (Sec. III A). Since the
tail does not contribute to the population transfer, see e.g.,
Fig. 2(h), the pulses can be shortened by imposing a Gaussian
decay after a critical time τ using the half-Gaussian function
α exp{−(t − τ )2/(2σ 2)} for t � τ shown in Fig. 4(a). The op-
timal value of τ is obtained by including it in the optimization
process shown in Fig. 3, while its initial value is selected as the
time required by the original pulse in Fig. 4(a) to reach 99%
of population transfer for the reverse process in Fig. 4(c). For
a chosen σ value, this leads to an optimized pulse capable of
transferring population in both directions with both fidelities
less than 10−6. The α parameter is always chosen to guarantee
continuity at the transition point.

τ

(a)

(b)

(c)

FIG. 4. (a) Final pulse generated by the algorithm depicted in
Fig. 3 (final frequency cut-off at 0.45 GHz, λ2 = 437.4). The inset
shows the tail of the pulse (after the time τ ), which can be substituted
with the half-Gaussian function (dashed red line). (b) Evolution of
the system when all the population is initially in Q1. (c) Evolution of
the system when all the population is initially in Q2. The populations
shown in panels (b) and (c) are calculated by using the pulse with the
shortened tail.

E. Local control theory in three- and four-qubit systems

We applied LCT to systems with three and four qubits cou-
pled to the TC. LCT pulses were constructed for direct pop-
ulation transfers between neighboring and non-neighboring
states with one excitation. The envelope of all the obtained
pulses are similar to the envelope of the LCT pulse de-
signed for the two-qubit system. However, the spectrum of
the pulses is different and is dominated by the energy differ-
ence between the initial and final states. Because the third
and fourth qubit frequencies were positioned between the
frequencies of Q1 and Q2, the energy separation between
all the single-excited states is reduced. Consequentially, the
nonadiabatic coupling terms are increased, especially between
non-neighboring states (see an example of a fixed-frequency
four-qubit system in Appendix B). As the TC frequency
oscillates between the energy of Q1 and Q2, larger population
deposits are made into the states neighboring the target state.
This reduces the fidelity of the pulse. In the three-qubit sys-
tem, where the single-excited states are mutually separated by
∼0.43 GHz, fidelities of the order 10−5, expressed as 1 − 〈Pj〉
where 〈Pj〉 is the final population of the target eigenstate,
are achieved. In the four-qubit system, population transfers

052316-5



M. MALIŠ et al. PHYSICAL REVIEW A 99, 052316 (2019)

FIG. 5. Fidelities (expressed as 1 − 〈Pj〉 where j is the target
state) of LCT pulses for population transfers between single-excited
states in a four-qubit system (see definition of states in Appendix
B) generated for a variety of λ parameters. The frequencies of the
qubits are 5.890, 5.031, 5.317, and 5.604 GHz for qubits Q1–Q4,
respectively. Only points corresponding to λ parameters that gave
acceptable LCT pulses are shown.

between single-excited states with higher frequencies achieve
fidelities between 10−3 and 10−4, while population transfers
between single-excited states with lower frequencies achieve
fidelities between 10−5 and 10−6 (see Fig. 5). The observed
trend shows how the increased nonadiabatic couplings caused
by frequency crowding affect the pulses generated using LCT.
During our research, we observed that using the optimization
procedure shown in Fig. 3 does not improve the fidelities
in either the three- or four-qubit systems. Running the LCT
algorithm more than once does not materially improve the
pulse fidelity.

IV. CONCLUSION

In this work we use LCT to manipulate qubit populations in
an architecture where fixed-frequency superconducting qubits
are coupled by using tunable couplers. Given an initial state
and a target state, LCT constructs a pulse on the fly by com-
puting the time evolution once. The only tunable parameter
is the intensity of the applied pulse. λ influences the shape
and length of the resulting LCT pulse, giving the possibility
to shorten the transfer time below 50 ns while keeping fidelity
above 0.9999.

The LCT algorithm was extended to design pulses that
can achieve a complete population transfer in both directions
between the initial and target states. This extension of the
LCT algorithm comprises an additional optimization step over
the parameter λ. LCT can also serve as a starting point for a
deterministic procedure to further reduce the complexity of
the pulse; see Appendix C. This may open a new avenue of
research to design efficient gates for different applications
of quantum computing [27–29].

LCT experiences difficulties with certain transitions in
frequency-crowded systems, e.g., three- and four-qubits cou-
pled to one TC, due to population leakage into neighboring
states around the initial and target states. Further work will
investigate ways to mitigate these issues.

(a)

(b)

FIG. 6. (a) Dependency of the LCT pulse-onset time on the λ

parameter in the two-qubit system. (b) LCT pulse fidelity 1 − 〈P|010〉〉
(blue hollow circles) as function of the λ parameter. The total
occupation of all the states above |001〉 (see Fig. 1) is shown by
hollow orange squares.

ACKNOWLEDGMENTS

The authors acknowledge stimulating discussions with
Marco Roth and Nikolaj Moll. We also acknowledge gen-
erous computational time from the Croatian National Grid
Infrastructure (CRO-NGI) and the Irish Centre for High–
End Computing (ICHEC). This work received funding from
the European Union’s Horizon 2020 research and innovation
program under the Grant Agreement No. 676531 (Project
E-CAM).

APPENDIX A: DEPENDENCY OF LOCAL CONTROL
THEORY PULSE-ONSET TIME AND FIDELITY ON THE λ

PARAMETER

The two-qubit system evolution was propagated up to
500 ns after which the pulse fidelity was calculated as 1 −
〈P|010〉〉, where 〈P|010〉〉 is the final population in the target state.
The pulse-onset time ton is defined as the time at which LCT
creates a sudden increase in the pulse amplitude and the rate
at which population is transferred to the target state. Larger
λ-parameter values give proportionally larger transfer rates
and decrease ton [see Fig. 6(a)]. Shorter ton times result in
shorter pulses with less population remaining in the TC (|001〉
state), therefore giving better population transfer fidelities [see
Fig. 6(b)]. However, the pulse fidelity also depends on the total
population remaining in the states above |001〉. This popula-
tion does not depend on the λ parameter. For λ parameters
greater than 25 000, LCT produces pulses with a sudden rise
in amplitude that approaches or exceeds the −ω0

TC value. Such
unphysical pulses were discarded. Similar effects are observed
in the three- and four-qubit systems.
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(a)

(b)

FIG. 7. (a) Frequency of the single-excited eigenstates of the
fixed-frequency four-qubit Hamiltonian, see Eq. (1), as a function
of δωTC. Within the |q1q2q3q4qTC〉 state nomenclature, colors and
line styles (see legend) indicate states with characters |10000〉
(blue), |01000〉 (orange), |00100〉 (red), |00010〉 (violet), and |00001〉
(green). Note the change of state characters at the avoided crossings.
(b) The nonadiabatic couplings between all pairs of states depicted
in panel (a). Dotted lines indicate nonadiabatic couplings between
neighboring pairs of states ( j, j + 1), while dashed and full lines do
the same between j, j + 2 and j, j + 3 pairs of states, respectively.

APPENDIX B: STATE ENERGIES AND NONADIABATIC
COUPLINGS OF A FIXED-FREQUENCY FOUR-QUBIT

SYSTEM

Adding Q3 and Q4 to the two-qubit system does not signifi-
cantly perturb the single-excited states of Q1 and Q2 [compare
Fig. 7(a) with Fig. 1(c)]. However, the nonadiabatic coupling
terms between non-neighboring states ( j, j + 2 and j, j + 3)
significantly increase [compare Fig. 7(b) with Fig. 1(d)],
resulting in population leakage during the LCT pulses to states
in the vicinity of the initial and target states.

APPENDIX C: ANALYTIC STATE-PREPARATION PULSE

Larger nonadiabatic coupling terms enable a faster popu-
lation transfer. We exploit this to construct a shorter analytic
pulse for the two-qubit system. This pulse drives the TC into
regions where the nonadiabatic coupling is large. Inspired by
the numerical pulse shown in Fig. 4(a), we construct a new

(a)

τ1 τ2 τ3

σ1 σ3

α3

α1

(b)

FIG. 8. (a) Time-optimal pulse shape obtained from Eq. (C1) ac-
complishing the |010〉 → |100〉 transfer by using the TC |001〉. The
optimal parameter values are α1 = −2.449 GHz, α3 = −1.590 GHz,
τ1 = 5.0 ns, τ2 = 7.62 ns, τ3 = 9.36 ns, σ1 = 1.47 ns, σ2 = 0.17 ns,
σ3 = 1.25 ns. (b) Evolution of the populations during the pulse
shown in panel (a).

pulse

δωTC(t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α1 exp
[− 1

2

( t−τ1
σ1

)2]
, t < τ1

1
2 (α3 + α1)

+ 1
2 (α3 − α1) tanh

( t−τ2
σ2

)
, τ1 � t � τ3

α3 exp
[− 1

2

( t−τ3
σ3

)2]
, t > τ3

(C1)

that reduces the duration of the state preparation. Here αi are
the amplitudes and σ1 and σ3 are the decay times of two half-
Gaussian pulse envelopes connected by a switching function
with a slope controlled by σ2; see Fig. 8(a). The values of these
parameters were obtained by using an optimization-with-
bounds procedure from the sequential least square program-
ming algorithm [30], which enforces a complete population
transfer from |010〉 to |100〉. For the initial conditions, the
values of α1 and α3 were set equal to the energies of the
second and first avoided crossings, respectively, while τ2 − τ1

and τ3 − τ1 were set to the times needed by a LCT designed
pulse to transfer the population from |010〉 → |001〉 [see
Fig. 4(c)] and |100〉 → |010〉 [see Fig. 4(b)], respectively. In
our simulations, τ1, chosen arbitrarily, was set to 5 ns. Initial
σi parameters were set close to zero and relaxed during a
second optimization step once the α and τ values were fully
determined. This yields a smooth pulse, shown in Fig. 8(b),
which sequentially transfers the population from Q2 to TC
and finally to Q1 with a total fidelity 1 − 〈P|100〉〉 < 10−6. The
reverse population transfer (from Q1 to Q2 via the TC) is
achieved by inverting the pulse in the time domain. This pulse
is similar to the case where frequency-tunable elements are
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used to shuttle population to and from different elements in
a larger quantum system [31]. Interestingly, the final pulse

duration is short (∼14 ns) compared with the coherence times
in state-of-the-art experiments.
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