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We generalize a quantum communication protocol introduced by Bartlett et al. [New J. Phys. 11, 063013
(2009)], in which two parties communicating do not share a classical reference frame, to the case where changes
of their reference frames form a one-dimensional noncompact Lie group. Alice sends to Bob the state ρR ⊗ ρS ,
where ρS is the state of the system Alice wishes to communicate and ρR is the state of an ancillary system
serving as a token of her reference frame. Because Bob is ignorant of the relationship between his reference
frame and Alice’s, he will describe the state ρR ⊗ ρS as an average over all possible reference frames. Bob
measures the reference token and applies a correction to the system Alice wished to communicate conditioned
on the outcome of the measurement. The recovered state ρ ′

S is decohered with respect to ρS , the amount of
decoherence depending on the properties of the reference token ρR. We present an example of this protocol when
Alice and Bob do not share a reference frame associated with the one-dimensional translation group and use the
fidelity between ρS and ρ ′

S to quantify the success of the recovery operation.
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I. INTRODUCTION

Most quantum communication protocols assume that the
parties communicating share a classical background reference
frame. For example, suppose Alice wishes to communicate
to Bob the state of a qubit using a teleportation protocol [1].
Alice begins by having the qubit she wishes to communicate
to Bob interact with one half of an entangled pair of qubits
shared by her and Bob. Alice then measures the two qubits
in her possession and picks up the phone and informs Bob of
the measurement result. Bob uses this information to apply an
appropriate gate to his half of the entangled pair to recover the
state Alice wished to send to him.

The success of this protocol depends on Alice’s ability to
classically communicate to Bob which gates he should apply
to his half of the entangled state. This can only be done
if Alice and Bob share a reference frame. As an example,
suppose Alice informs Bob that he needs to apply the Pauli z
operator to the qubit in his possession. If Bob is ignorant of the
orientation of his laboratory with respect to Alice’s, he does
not know in which direction to orient the magnetic field in his
Stern-Gerlach apparatus to implement the Pauli z operator to
recover the state sent by Alice. In this case the teleportation
protocol is unable to be carried out perfectly [2,3].

This motivates the study of quantum communication with-
out a shared reference frame [4]. One way Alice can com-
municate to Bob, despite not sharing a reference frame with
him, is to encode information into degrees of freedom that are
invariant under a change of Alice’s reference frame. Without
knowing his relation to Alice’s reference frame, Bob is able
to extract both classical and quantum information encoded in
these degrees of freedom [5–7]. However, in practice such
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communication schemes may be challenging to implement
since they require highly entangled states of many qubits.

Another possibility for Alice and Bob to communicate
without a shared reference frame is for Alice to send Bob
a quantum system ρR to serve as a token of her reference
frame, together with the state ρS she wishes to communicate
to him. Since Bob does not know the relation between his
reference frame and Alice’s, with respect to his reference
frame he will see the joint state ρR ⊗ ρS averaged over all
possible orientations of his laboratory with respect to Alice’s;
this averaging operation is referred to as the G-twirl and
the averaged state denoted by G[ρR ⊗ ρS]. Bob can apply a
recovery operation to this G-twirled state by measuring the
reference token and applying an appropriate correction to the
system Alice wishes to send to him, allowing him to recover
a state ρ ′

S that is close to ρS . This recovery operation was
first constructed by Bartlett et al. [8], and its success was
found to depend on the size of the reference token, which is
necessarily bounded if the reference token is described by a
finite-dimensional Hilbert space.

However, this communication protocol is based on Bob
assigning the G-twirled state G[ρR ⊗ ρS] to the system and
reference token, and the G-twirl does not yield normalizable
states when the group of reference frames being averaged
over is noncompact [9]. This begs the question: Can an anal-
ogous communication protocol involving a reference token
sent by Alice and a recovery operation implemented by Bob
be constructed given that changes of their reference frames
form a noncompact group? Furthermore, if the Hilbert space
of the reference token is infinite dimensional, for example,
HR � L2(R), what physical aspect of the reference token acts
as its effective size?

The purpose of this article is to examine these questions.
Consideration of noncompact groups within the theory of
quantum reference frames is important if one hopes to apply
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the theory to the physically relevant Galilean and Poincaré
groups, which are both noncompact.

We begin in Sec. II by describing the encoding and recov-
ery operations introduced by Bartlett et al. [8]. In Sec. III we
introduce a G-twirl over a compact subset of a noncompact
group and a complementary recovery operation such that in
the limit when this G-twirl becomes an average over the entire
noncompact group, the composition of the recovery operation
with this G-twirl results in properly normalized states. We
then apply this construction in Sec. IV to the case when
Alice and Bob do not share a reference frame associated with
the one-dimensional translation group, which is relevant for
parties communicating without a shared positional reference
frame. In this case, we identify the inverse of the width in the
position space of the reference token’s state as the effective
size of the reference token and demonstrate that in the limit
when this width goes to zero Alice and Bob are able to
communicate perfectly without a shared reference frame. We
conclude in Sec. V with a summary of our results and an
outlook to future questions.

II. COMMUNICATION WITHOUT A SHARED
CLASSICAL REFERENCE FRAME

Consider two parties, Alice and Bob, each employing their
own classical reference frame to describe the state of a single
quantum system associated with the Hilbert space HS . Sup-
pose that this system transforms via a unitary representation
of the group G when changing the reference frame used to
describe the system; for the time being we will assume G is a
compact Lie group.

Let g ∈ G label the group element which describes the
transformation from Alice’s to Bob’s reference frame. If Alice
prepares the system in the state ρS ∈ S (HS ) with respect to
her reference frame, where S (HS ) is the space of states on
HS and g is completely unknown to Bob, then the state with
respect to his reference frame will be given by a uniform
average over all possible g ∈ G, that is, by the G-twirl

G[ρS] :=
∫

G
dgUS (g)ρSUS (g)†, (1)

where dg denotes the Haar measure associated with G and
US (g) ∈ U (HS ) is the unitary representation of the group
element g ∈ G on HS , with U (HS ) denoting the space of
unitary operators on HS . If instead Bob has some partial
information about the relation between his reference frame
and Alice’s, the uniform average over all possible g ∈ G in
Eq. (1) would be replaced with a weighted average encoding
Bob’s partial information [10,11].

In general, the G-twirl results in decoherence, not from the
system interacting with an environment and information being
lost to the environment, but from Bob’s lack of knowledge
about the relationship between his reference frame and Al-
ice’s.1 To combat this decoherence, Alice may prepare another

1Sometimes a distinction is made between proper and improper
mixtures [12], which are respectively distinguished by supposing
that the reason for assigning a mixed state to a system of interest
is either that we are ignorant of which pure state the system is in

ρS

|e e|

E

G R
ρS

FIG. 1. Communication channel R ◦ E . Alice prepares a state ρS

she wishes to communicate to Bob along with the state |e〉〈e| as a
token of her reference frame. As Bob does not know the relation
between his reference frame and Alice’s, he sees the joint state of the
reference token and system as the encoded state E[ρS] = G[|e〉〈e| ⊗
ρS]. Bob then applies the recovery operation to the encoded state and
recovers the state ρ ′

S = R ◦ E[ρS].

quantum system, described by the Hilbert space HR, to serve
as a token of her reference frame (a good representative of
her reference frame). Suppose Alice prepares the token in the
state |e〉 ∈ HR; then the reference token and system relative to
Bob’s frame will be given by the encoding operation

E[ρS] := G[|e〉〈e| ⊗ ρS]

=
∫

G
dgUR(g)[|e〉〈e|] ⊗ US (g)[ρS], (2)

where Ui(g)[ρ] := Ui(g)ρUi(g)† denotes the adjoint represen-
tation of the action of the group element g ∈ G on ρ ∈ S (Hi )
for i ∈ {R, S}.

Bob’s task is now to best recover the state of the system
ρS given the encoded state E[ρS]. In other words, he must
construct a recovery operation

R : S (HR ⊗ HS ) → S (HS ), (3)

that when applied to E[ρS] results in a state ρ ′
S ∈ S (HS ) that

is as close as possible to ρS . A recovery operation R was
constructed by Bartlett et al. [8] with such properties, and its
action on the encoded state E[ρS] yields

ρ ′
S := R ◦ E[ρS] =

∫
G

dg p(g)US (g)[ρS], (4)

where p(g) ∝ |〈e|UR(g)|e〉|2 with UR(g) ∈ U (HR) being the
unitary representation of g ∈ G on HR. We will explicitly
construct a similar recovery operation in the next section for
the case when G is noncompact (Fig. 1).

III. RECOVERY OPERATION
FOR NONCOMPACT GROUPS

The action of the G-twirl over a noncompact group on
a state results is a non-normalizable density matrix [9]. For
example, consider the G-twirl over the noncompact group of
translations in one dimension T1 of the state ρ ∈ S (L2(R)).

(proper mixture) or that the system is entangled with an auxiliary
system which is traced over (improper mixture). The G-twirled state
in Eq. (1) should be thought of as a proper mixture resulting from
Bob’s lack of knowledge about the relation between his frame and
Alice’s, which translates into his uncertainty about which state he
should assign to the system S.
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The unitary representation of g ∈ T1 is U (g) = e−iPg, where
P is the momentum operator on L2(R), and the G-twirl over
T1 is

GT1 [ρ] =
∫

dge−igP

(∫
d p d p′ρ(p, p′) |p〉〈p′|

)
eigP

= 2π

∫
d pρ(p, p) |p〉〈p| , (5)

where |p〉 denote the eigenkets of the momentum operator P,
ρ(p, p′) := 〈p′|ρ|p〉, and dg is the Haar measure2 associated
with T1; in going from the first to the second equality we have
used the definition of the Dirac delta function 2πδ(p − p′) :=∫

dgeig(p−p′ ). From Eq. (5) it is clear that GT1 [ρ] /∈ S (H),
which can be verified by computing the norm of GT1 [ρ], which
is infinite.

Given that the codomain of the G-twirl over a noncompact
group does not necessarily correspond to the state space
S (H), it is not clear whether the encoding operation E or
the recovery operation R discussed above are applicable to
reference frames associated with noncompact groups. We
now demonstrate that despite this fact, the composition of
an encoding operation associated with a noncompact group
with a suitably defined recovery operation results in a properly
normalized state.

The approach we will take is to define a compact G-twirl
over a compact subset of the noncompact group G associated
with the reference frame, which corresponds to Bob having
partial information that the relation between his reference
frame and Alice’s is described by g ∈ [−τ, τ ] ⊂ G. This com-
pact G-twirl will be used in an encoding operation analogous
to Eq. (2). We will then construct a complementary recovery
operation, compose it with this encoding operation [similar to
Eq. (4)], and finally take a limit in which the compact G-twirl
corresponds to a uniform average over the entire noncompact
group G. We will show that in this limit the recovered state is
properly normalized and contained in S (HS ).

A. Encoding map

Consider all possible transformations of Alice’s and Bob’s
classical reference frames to form a strongly continuous one-
parameter noncompact Lie group G. Suppose that the unitary
representation of a group element g ∈ G on the Hilbert space
HR describing the reference token is UR(g) ∈ U (HR). By
Stone’s theorem [14], UR(g) = eigAR is generated by a self-
adjoint operator AR, the spectrum of which we denote by
σ (AR) and assume to be continuous.3 For each element of the
spectrum f (aR) ∈ σ (AR) there corresponds an eigenket |aR〉
such that

AR |aR〉 = f (aR) |aR〉 , (6)

2Even though G is a noncompact Lie group, it is still locally
compact and thus possesses a nontrivial left invariant Haar measure
that is unique up to a positive constant [13]. In the case of the
translations group considered here, dg corresponds to the Lebesgue
measure on the real line.

3This is true of the group generated by either the position or mo-
mentum operator on L2(R). We note that the following construction
does not rely on σ (AR) being continuous.

with eigenvalue f (aR) ∈ R. Since σ (AR) is continuous and AR

is self-adjoint, these eigenkets are normalized with the Dirac
δ function

〈aR|a′
R〉 = δ(aR − a′

R). (7)

From the above normalization condition we see that |aR〉 �∈
HR, as these eigenkets are not square integrable and therefore
do not represent physical states.4

Our first step is to construct a well-defined encoding op-
eration analogous to Eq. (2). To do so, we suppose the state
of Alice’s reference token |e〉 ∈ HR, expressed in the basis
furnished by the eigenkets of AR, is

|e〉 :=
∫

daRψR(aR) |aR〉 , (8)

where ψR(aR) := 〈aR|e〉. Next let us introduce the set of states

{|e(g)〉 := UR(g) |e〉 | ∀g ∈ G}, (9)

where each |e(g)〉 corresponds to a different orientation of
Alice’s reference frame. The state of the reference token |e〉
should be chosen such that each |e(g)〉 defined in Eq. (9) is
distinct, that is, the state of the reference token should not be
invariant with respect to G. Furthermore, for the states |e(g)〉
to imitate a classical reference frame, they must be orthogonal
so as to be perfectly distinguishable.

Now suppose Alice prepares her reference token in the
state ρR ∈ S (HR) and wishes to send Bob the state ρS ∈
S (HS ) of a system associated with the Hilbert space HS .
If Bob knows the relation between his reference frame and
Alice’s is given by a group element g ∈ [−τ, τ ] ⊂ G, but
within this interval he is completely ignorant of which group
element corresponds to this relation, he will describe the joint
state of the reference token and system by the output of the
encoding operation

Eτ : S (HS ) → S (HR ⊗ HS )

ρS �→ Eτ [ρS] := Gτ [ρR ⊗ ρS], (10)

where the map Gτ is a uniform average of ρS over the compact
interval [−τ, τ ] ⊂ G,

Gτ [ρR ⊗ ρS] := 1

2τ

∫ τ

−τ

dgUR(g)[ρR] ⊗ US (g)[ρS], (11)

where dg is the Haar measure associated with G.

B. Recovery operation

As demonstrated by Bartlett et al. [8], Bob may perform
a recovery operation R by first making a measurement of
the reference token, followed by a reorientation of the system
conditioned on the outcome of the measurement, and then dis-
carding both the reference token and measurement result. We

4More precisely [15], when dealing with operators with a continu-
ous spectrum the theory is defined on a rigged Hilbert space defined
by the triplet � ⊂ HR ⊂ �′, where � is a proper subset dense in HR

and �′ is the dual of �, defined through the inner product on HR.
In our case, � is the Schwarz space of smooth rapidly decreasing
functions on R and �′ is the space of tempered distributions on R.
The eigenkets |aR〉 are in �′.
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follow this procedure in constructing the recovery operation
to be applied to the encoded state Eτ (ρS ).

Bob will make a measurement R of the reference token
described by the positive operator valued measure (POVM)
elements

R := {dgE (g) ∀g ∈ [−τ, τ ] ⊂ G} ∪ {Eτ }, (12)

where

Eτ := IR −
∫ τ

−τ

dgE (g), (13)

dgE (g) is the POVM element associated with outcome g ∈ G,
and IR is the identity operator on HR. We assume5 that these

POVM elements satisfy the covariance relation

UR(g′)[E (g)] = E (g + g′) ∀g ∈ G. (14)

If the outcome of the measurement of R is g ∈ [−τ, τ ],
associated with the POVM element dgE (g), then Bob will
reorient the system by implementing the unitary map US (g−1),
which corresponds to the transformation of the reference
token by an amount indicated by the measurement result
[first term in Eq. (15)]. If the outcome of the measurement is
associated with the operator Eτ , Bob will do nothing [second
term in Eq. (15)]. After this measurement and reorientation,
Bob will discard (trace out) the reference token and measure-
ment result. This entire procedure will constitute the recovery
operation Rτ . The action of the recovery operation Rτ on the
encoded state Eτ [ρS] is given by

ρ ′
S (τ ) = Rτ ◦ Eτ [ρS]

= 1

2τ

∫ τ

−τ

dg′
∫ τ

−τ

dg tr{E (g′)UR(g)[ρR]}US (g′−1) ◦ US (g)[ρS]+ 1

2τ

∫ τ

−τ

dg tr{EτUR(g)[ρR]}US (g)[ρS]. (15)

C. Taking the limit τ → ∞
The limit of Eq. (15) in which τ becomes infinite corre-

sponds to the scenario in which Bob knows nothing about
the orientation of his reference frame with respect to Alice’s:
The G-twirl appearing in the encoding map in Eq. (10) is an
average over the entire group G.

As is clear from Eq. (13), in the limit τ → ∞ the operator
Eτ vanishes and thus the second term in Eq. (15) goes to zero.
Taking this into account, the τ → ∞ limit of Eq. (15) is

ρ ′
S = lim

τ→∞
1

2τ

∫ τ

−τ

dg′
∫ τ

−τ

dg tr[E (g′ − g)ρR]

× US (g − g′)[ρS], (16)

where we have used the covariance property of the POVM
elements expressed in Eq. (14). Changing the integration vari-
ables to u := g′ − g and v := g′, the recovered state becomes

ρ ′
S = lim

τ→∞
1

2τ

∫ τ

−τ

dv

∫ v+τ

v−τ

du tr[E (u)ρR]U†
S (u)[ρS]. (17)

Defining the antiderivative of the above integrand as

F (x) :=
∫ x

0
du tr[E (u)ρR]U†

S (u)[ρS], (18)

Eq. (17) takes the form

ρ ′
S = lim

τ→∞
1

2τ

∫ τ

−τ

dv[F (v + τ ) − F (v − τ )]. (19)

5To the best of the author’s knowledge, the question of whether
such a measurement exists for any G is an open problem, as
suggested by the remarks in Sec. III.4.4 of Ref. [16]. However, it
is suggested in this reference that it seems plausible that such a
measurement can be constructed, although there does not seem to
be an easy general procedure for its construction. Nonetheless, such
measurements exist for physically relevant groups like the translation
group considered in the following section.

Making the substitution h := τ + v and h := τ − v in the
first and second terms, respectively, the recovered state
simplifies to

ρ ′
S = lim

τ→∞
1

2τ

∫ 2τ

0
dh[F (h) − F (−h)]. (20)

Taking the limit by applying l’Hôpital’s rule6 yields

ρ ′
S = 1

2
lim

τ→∞
∂

∂τ

∫ 2τ

0
dh[F (h) − F (−h)]

= lim
τ→∞[F (τ ) − F (−τ )]

=
∫

G
dg tr[E (g)ρR]US (g)[ρS], (21)

where the integration is carried out over the entire group G.
This brings us to our main result: Even though the action of

the G-twirl over a noncompact group yields non-normalizable
states, the composition of the encoding operation, which
makes use of the G-twirl, with the recovery operation applied
to ρS results in a properly normalized state in S (HS ). Explic-
itly,

ρ ′
S = lim

τ→∞Rτ ◦ Eτ [ρS]

=
∫

G
dg p(g)US (g)[ρS] ∈ S (HS ), (22)

where p(g) := tr[E (g)ρR] is a normalized probability distri-
bution on G.

Equation (22) is identical to the expression for the compo-
sition of the recovery and encoding map defined for compact

6Suppose f (x) and g(x) are real differentiable function in
(a, b) ⊂ R, and g′(x) �= 0 for all x ∈ (a, b). Further, suppose that
f ′(x)/g′(x) → A as x → a. Then l’Hôpital’s rule states that if
f (x) → 0 and g(x) → 0 as x → a or if g(x) → ∞ as x → a, then
f (x)/g(x) → A as x → a [17].
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groups given in Eq. (4). From Eq. (22) we see that if p(g)
is highly peaked around the identity group element then the
only unitary that will contribute significantly is the identity
operator, and the state recovered by Bob will be close to the
state sent by Alice, ρ ′

S ≈ ρS . Thus, the success of the recovery
operation, and consequently the quality of the reference token,
can be quantified in terms of the width of p(g), analogous to
the compact case [8].

By expressing ρS in the basis furnished by the eigenkets of
the generator AS of the group G, we find the recovered state
to be

ρ ′
S =

∫
G

dg p(g)
∫

daSda′
SρS (aS, a′

S )

× eiASg |aS〉〈a′
S| e−iASg

=
∫

daSda′
S

[∫
G

dg p(g)eig(aS−a′
S )

]

× ρS (aS, a′
S ) |aS〉〈a′

S|

=
∫

daSda′
S p̃(aS − a′

S )ρS (aS, a′
S ) |aS〉〈a′

S| , (23)

where in the last equality we have defined the Fourier trans-
form of p(g),

p̃(aS − a′
S ) :=

∫
G

dg p(g)eig(aS−a′
S ). (24)

From the definition of the characteristic function p̃(aS − a′
S )

above, we see that if aS = a′
S , then p̃(aS − a′

S ) = 1, and
consequently the diagonal elements of ρS are unaffected by
the action of the communication channel limτ→∞ Rτ ◦ Eτ . On
the other hand, since the characteristic function is bounded,
| p̃(aS − a′

S )| � 1, when aS �= a′
S the off-diagonal elements of

ρ ′
S are equal to those of ρS multiplied by a factor whose

magnitude is less than or equal to unity. From this observation
we see that the decoherence induced by limτ→∞ Rτ ◦ Eτ

occurs in the basis furnished by the eigenkets associated with
the generator AS of the group G.

To quantify the success of the recovery operation, how
close the recovered state ρ ′

S is to the initial state ρS , we will
make use of the fidelity F (ρ ′

S, ρS ) between the recovered
state ρ ′

S and the state ρS = |ψS〉〈ψS| ∈ S (HR) that Alice sent,
which we will take to be pure,

|ψS〉 =
∫

daSψS (aS ) |aS〉 , (25)

where ψS (aS ) := 〈aS|e〉. The fidelity F (ρ ′
S, ρS ) is then

given by

F (ρ ′
S, ρS ) := 〈ψS|ρ ′

S|ψS〉

=
∫

G
dg p(g)|〈ψS|US (g)|ψS〉|2

=
∫

daSda′
S p̃(aS − a′

S )|ψS (aS )|2|ψS (a′
S )|2. (26)

IV. REFERENCE FRAMES ASSOCIATED
WITH THE TRANSLATION GROUP

We now examine the recovered state ρ ′
S = limτ→∞ Rτ ◦

Eτ [ρS] when the relevant reference frame is associated with

the one-dimensional translation group. Consider Alice and
Bob being completely ignorant of the relation between the
spatial origins of their laboratories, i.e., the relation be-
tween their positional reference frames. The group formed
by all possible changes of Alice’s reference frame is the
one-dimensional translation group T1. The unitary represen-
tation of the group element g ∈ T1 on the system is US (g) ∈
US (HS ) and on the reference token is UR(g) ∈ UR(HR). These
representations are generated by their respective momentum
operators AS = PS and AR = PR.

Suppose as a token of Alice’s reference frame she prepares
the state |eσ 〉 ∈ HR � L2(R), which we take to be a Gaussian
state

|eσ 〉 = 1

π1/4
√

σ

∫
dxRe−x2

R/2σ 2 |xR〉 , (27)

where we have expressed |eσ 〉 in the basis furnished by
the eigenkets |xR〉 of the position operator XR on HR and
σ > 0 is the spread of this state with respect to this ba-
sis. Note that the different orientations of this token state
|eσ (g)〉 := U (g) |eσ 〉 are orthogonal in the limit that σ van-
ishes, limσ→0 〈eσ (g)|eσ (g′)〉 = δg,g′ , imitating a classical ref-
erence frame as discussed in the preceding section. In this
limit token states corresponding to different positional refer-
ence frames are completely distinguishable from each other.

We must now construct the recovery measurement R for
which the associated set of POVM elements satisfy the covari-
ance relation in Eq. (14) with respect to the translation group
T1. One such set is given by the projection valued measure
elements associated with the position operator XR, namely,
E (x) := |xR〉〈xR| for all xR ∈ R � T1, where |xR〉 denotes the
eigenket of XR associated with the eigenvalue xR. This follows
from the fact that the position and momentum operators acting
on HR satisfy the canonical commutation relation [XR, PR] =
i, which implies that PR generates translations of the operator
XR, or equivalently UR(g) |xR〉 = |xR + g〉. However, there is a
more general set of POVM elements corresponding to unsharp
measurements of the position operator constructed by the
convolution of E (x) with some confidence measure μ,

Eμ(x) :=
∫

dμ(q)E (x + q). (28)

Direct substitution of Eμ(x) into Eq. (14) shows that indeed
these unsharp POVM elements are covariant with respect to
the translation group. In what follows we consider the family
of unsharp POVM elements Eμ

δ (x) defined by choosing a
Gaussian measure parametrized by δ > 0,

Eμ
δ (x) :=

∫
dq

e−q2/δ2

√
πδ

E (x + q). (29)

In the limit δ → 0, we have Eμ
δ (x) → E (x).

Given that Alice prepared the reference token in the state
ρR = |eσ 〉〈eσ | ∈ S (HR), the probability distribution p(g) ap-
pearing in Eq. (22) is

p(g) := tr[Eμ
δ (g)ρR] = e−g2/(σ 2+δ2 )

√
π

√
σ 2 + δ2

. (30)

We note that p(g) is peaked around g = 0 with a width of√
σ 2 + δ2. From Eq. (22), and the discussion that immediately
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FIG. 2. Fidelity F (ρ ′
S, ρS ) between the state sent by Alice ρS and

the state recovered by Bob ρ ′
S as a function of

√
σ 2 + δ2, where σ

is the width of the reference token in position space and δ quantifies
the accuracy of Bob’s measurement of the reference token. It is seen
that for a fixed

√
σ 2 + δ2, states less localized in the position basis

(larger 
) are better recovered by Bob.

follows, we see that the parameter
√

σ 2 + δ2 determines the
quality of the recovery operation: The smaller σ and δ are, the
more peaked p(g) is around the identity element and the closer
Bob’s recovered state will be to the state sent by Alice.

As a concrete example, suppose Alice wishes to send
Bob the state ρS = |ψS〉〈ψS|, where |ψS〉 ∈ HS � L2(R) is a
Gaussian state

|ψS〉 = 1

π1/4
√




∫
dxSeiμpxe−(xS−μx )2/2
2 |xS〉 , (31)

with 
 the width of the Gaussian state in the position basis
|xS〉 for HS , and μx and μp its average position and momen-
tum, respectively. Using Eq. (26), the fidelity between ρS and
the state recovered by Bob ρ ′

S is

F (ρ ′
S, ρS ) = 
√


2 + 1
2 (σ 2 + δ2)

. (32)

As might be expected, in the limit where σ and δ vanish the
fidelity F (ρ ′

S, ρS ) is equal to unity and the recovered state
is exactly equal to the state Alice wished to send to Bob,
ρ ′

S = ρS . This limit corresponds different orientations of the
reference token described by Eq. (9) being orthogonal, thus
imitating a classical reference frame, and the measurement of
the token’s position being carried out perfectly.

From Eq. (32) we also observe that states less localized
in the position basis (larger 
) are better recovered by Bob,
as illustrated in Fig. 2, in which the fidelity is plotted as a
function of

√
σ 2 + δ2 for different 
. Note that the expression

for the fidelity is independent of μx and μp, implying that
for Gaussian states the success of the recovery operation is
independent of where the state is localized in phase space.

As a second example, suppose Alice prepares her token in
a superposition of two Gaussian wave packets

|e〉 = 1√
N

[|ψ (x̄, p̄, σ )〉 + |ψ (−x̄,−p̄, σ )〉] ∈ HR, (33)

FIG. 3. For a reference token prepared in a superposition of two
Gaussian states described by Eq. (33), the maximum fidelity Fmax :=
max[F (ρ ′

S, ρS ) | x̄, p̄, σ > 0] and the size of the superposition in
momentum space p̄max/σ that realizes this maximum is plotted as a
function of the width of the in position space 
/σ of the state Alice
sent to Bob as given in Eq. (31). For all values of 
/σ the size of
the superposition in momentum space which realizes the maximum
fidelity is x̄maxσ = 0.

where N is an appropriate normalization constant and
|ψ (x̄, p̄, σ )〉 denotes the state of a Gaussian wave packet of
width σ in position space with average position and mo-
mentum x̄ and p̄, respectively. As they appear in Eq. (33),
x̄ and p̄ quantify the size of the superposition in position
and momentum space, respectively. Further, suppose that Bob
is able to make a perfect measurement of the position of
the reference token as described by the POVM elements
limδ→0 Eμ

δ (x). Again, suppose Alice wishes to communicate
the Gaussian state given in Eq. (31).

Given the above, the fidelity expressed in Eq. (26) yields

F (ρ ′
S, ρS ) = β

eβ2 x̄2/σ 2 + e−β2 p̄2σ 2

ex̄2/σ 2 + e−p̄2σ 2 , (34)

where β := 
/
√


2 + σ 2/2; note that β ∈ (0, 1) and is equal
to Eq. (32) when δ → 0. Further, β takes its maximum
(minimum) value when 
 � σ (
 � σ ). Observe that the
fidelity in Eq. (34) is independent of μx and μp appearing in
Eq. (31), implying that the success of the recovery operation
is independent of where |ψS〉 is localized in phase space.

The fidelity in Eq. (34) is a monotonically decreasing
function of x̄, which implies that Alice should prepare the size
of the superposition in position space to be as small as possible
(i.e., small x̄) in order to maximize the fidelity. A second
observation can be made by inspection of Fig. 3, which is a
plot of both the maximum fidelity Fmax := max[F (ρ ′

S, ρS ) |
x̄, p̄, σ > 0] and the value p̄max/σ which realizes this maxi-
mum as a function of the width 
/σ of the state |ψS〉 Alice
wishes to send to Bob; since the fidelity is monotonically
decreasing in x̄σ , this maximum occurs when x̄σ = 0. From
Fig. 3 we see that, depending on the value of 
/σ , Alice
can adjust the state of the reference token by choosing the
size of the superposition in momentum space p̄/σ so that
the fidelity is maximized. That is, having the ability to create
different sizes of superposition in momentum space can act as
a resource to improve the communication channel specific to
the state Alice wishes to send to Bob.
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V. CONCLUSION AND OUTLOOK

We began by introducing a communication protocol be-
tween two parties, Alice and Bob, that do not share a reference
frame associated with a compact group. Alice sends to Bob a
token of her reference frame along with a system she wishes
to communicate to him and then Bob performs an appropriate
recovery operation that enables him to recover a state close to
the one Alice wished to communicate.

In Sec. III we showed that this communication protocol
can be applied when Alice’s and Bob’s reference frames are
associated with a noncompact group, even though averag-
ing states over the entire group leads to non-normalizable
states. Furthermore, we demonstrated that this communica-
tion channel induces decoherence in the basis furnished by
the eigenkets of the generator of the group. In Sec. IV we
applied this result to the study of communication between
two parties who do not share a reference frame associated
with the translation group. We introduced a sequence of
Gaussian states |eσ 〉 of the reference token with spatial width
σ and saw that in the limit σ → 0, |eσ 〉 imitates a classical
reference frame. This suggests that the parameter 1/σ acts
as the effective size of the reference token, since as 1/σ

becomes large the two parties are able to communicate per-
fectly (assuming Bob is able to measure the reference token
perfectly, δ → 0). We also demonstrated that for finite-size
reference tokens, i.e., when 1/σ is finite, states less localized
in the position basis are better communicated to Bob and
examined the case when the reference token is prepared in a
superposition.

We note that the group of time translations generated by
a Hamiltonian is a strongly continuous one-dimensional non-
compact Lie group. Thus, provided a covariant measurement
of the reference token corresponding to a time observable can
be constructed [16], the above communication scheme can be
employed. This will be fruitful for communication between
parties who do not share a temporal reference frame, that
is, their clocks are not synchronized. Furthermore, it will be
interesting to see how the above construction can be applied
to noncompact Lie groups of higher dimension, such as the
Euclidean group in two and three dimensions, the Galilean
group, and ultimately the Poincaré group.

It is anticipated that the communication protocol presented
above can be generalized in a straightforward manner to
situations in which the parties communicating have some
prior knowledge of the relation between their reference
frames, as considered in Refs. [10,11]. Such a generalization
is of practical importance because it is often the case that the
parties communicating have some knowledge of their relation
to one another (e.g., communication between a satellite

and ground station). In such a situation, a lower bound on
the fidelity between the state sent by Alice and the state
recovered by Bob would be given by the fidelity computed in
Eq. (26) because having prior knowledge can only improve
the communication channel.

An intended application of the results in this article, as
well as one of the primary motivations for this investigation,
is to study the act of changing quantum reference frames.7

Palmer et al. [21] have constructed an operational protocol for
changing quantum reference frames associated with compact
groups. They used the state G[ρA ⊗ ρS] as a relational descrip-
tion of the state ρS with respect to a quantum reference frame
ρA and then considered the operation of changing the quantum
reference frame from the state ρA to ρB. They found that this
operation could not be done perfectly and that the best one
could do is

G[ρA ⊗ ρS] → G[ρB ⊗ ρ ′
S], (35)

where ρ ′
S = R ◦ E[ρS]. In other words, one is not able to

change quantum reference frames without affecting the state
of the system described with respect to the reference frame:
ρS changes to ρ ′

S when the reference frame is changed. This
results in a fundamental decoherence mechanism associated
with the act of changing quantum reference frames. This
is in stark contrast to the classical case, in which the act
of changing reference frames does not affect the system
being described with respect to the reference frames. This
decoherence is described by the composition of the encod-
ing and recovery operations R ◦ E discussed in this article.
Having generalized the operation R ◦ E to reference frames
associated with noncompact groups, we hope to study the
effect of changing quantum reference frames associated with
the Galilean and Poincaré groups. Understanding the process
of changing quantum reference frames is an essential step
in the construction of a relational quantum theory, in which
all objects, including reference frames, are treated quantum
mechanically.
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