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Photonic quantum memory, such as an atomic frequency comb (AFC), is essential to make photonic quantum
computation and long distance quantum communication scalable and feasible. In standard AFC the frequency
of different atoms must be stable relative to each other which presents difficulties in realizing the quantum
memory. Here we propose a quantum memory using an intra-atomic frequency comb which does not require
frequency stabilization. We show that the transitions between two degenerate energy levels of a single atom can
be used to construct the frequency comb. The spacing between the teeth of the comb is controlled by applying an
external magnetic field. Since the frequency comb is constructed from individual atoms, these atoms can be used
alone or in ensembles to realize the quantum memory. Furthermore, the ensemble based quantum memory with
intra-AFC is robust against Doppler broadening which makes it useful for high-temperature quantum memory.
As an example, we numerically show the intra-AFC in cesium atoms and demonstrate a photon echo which is
essential for quantum memory.
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I. INTRODUCTION

Single photons are essential for long-distance quantum
communication and linear optical quantum computation
[1–10]. The probabilistic nature inherent in conventional
single-photon sources hamper the scalable implementation of
such protocols [11–16]. Quantum memory, a device which
can store and reemit single photons on demand, can help
overcome this problem and allows efficient photonic quantum
technologies [17–20].

The basic idea behind a quantum memory is the light-
matter interaction which allows the controlled reversible
transfer of the quantum information between the photonic
and the matter systems. Several protocols have been used
to store single photons in atomic, condensed matter and
superconducting systems [21–27]. Electromagnetically in-
duced transparency [4,28,29], controlled reversible inhomo-
geneous broadening [23,30–32], and the atomic frequency
comb (AFC) [33–39] are the most used quantum memories
in the atomic ensembles. In all these quantum memories the
incoming photon interacts with a carefully designed spectrum
of the atomic ensemble. By controlling the shape and the
characteristics of the spectrum one can store and retrieve
photons from the ensemble.

Implementing AFC in an ensemble (in the usual way) relies
on the frequencies of different atoms being stable relative to
each other. This can be achieved in solids to some reason-
able approximation at sufficiently low temperature. However,
in gases Doppler broadening is a major limiting factor. To
overcome this problem, in this paper we propose an intra-
atomic frequency comb (I-AFC). We show that a frequency
comb (FC) can be constructed by putting together multiple
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transitions between the hyperfine levels of a single atom.
The spacing between the different transition frequencies is
controlled by an external magnetic field. In order to show that
such systems can be used for photonic quantum memories first
we show the photon echo from an ensemble of such atoms. To
achieve long storage time one can transfer the excitation from
the excited state space to spin state space by applying a π

pulse. As an example we numerically show the FC in cesium
(Cs) atoms. We show that an ensemble of Cs atoms with this
FC results in a prominent photon echo which is robust against
the Doppler broadening.

The I-AFC can be used alone or in ensemble to realize
efficient quantum memories. Since the FC is constructed
from different transitions of individual atoms, the I-AFC in
ensemble is also robust against environmental effects such
as Doppler broadening, which makes it useful for high-
temperature quantum memory. Another important advantage
of the proposed scheme is that the spacing between different
teeth of the FC is controlled by the external magnetic field.
Therefore, the finesse of the comb can be controlled by
varying the magnetic field which can influence the efficiency
and the photon-echo time of the quantum memory.

We have organized the article as follows: in Sec. II we
present the details of atomic frequency combs based quantum
memory. Section III contains our model of I-AFC. We present
a toy model of I-AFC in Sec. III A, generalization of this
model for realistic atoms in Sec. III B, and calculations for
I-AFC in Cs atoms in Sec. III C. In Sec. IV we study the effect
of Doppler broadening on the I-AFC. We conclude in Sec. V.

II. ATOMIC FREQUENCY COMB: AN INTRODUCTION

We start by introducing the conventional AFC. The AFCs
typically consist of rare-earth ions doped in crystals that have
optical transition between the ground state |g〉 and the excited
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FIG. 1. (a) Electric field output from an AFC. Here the first peak at time t = 0 shows the probability (intensity) of the unabsorbed light.
We observe photon echo at time interval of 2π/�. In the inset we show the spectrum of the AFC. The teeth in the AFC have width γ and are
separated by �. Here � = N� is the width of the comb for N number of teeth, δ is the detuning, and τ is the temporal width of the input laser
pulse. (b) An atom with a single ground state and multiple degenerate excited states. The degeneracy between the excited states is lifted by
applying an external magnetic field. ωL is the mean transition frequency between the ground and the excited states and � � ωL is the spacing
between different transitions. Each of the transitions has a natural linewidth γ . Hence, the transition spectrum of this atom forms an AFC.
(c) Here we consider multiple ground and excited states with different allowed transitions. The mean transition frequency is ωL; however, the
spacing between different transitions need not be the same. Therefore, the spectrum forms a nonuniform AFC.

state |e〉 [33–39]. This transition has a narrow homogeneous
bandwidth γ and a large inhomogeneous bandwidth �in

(�in � γ ). The transition |g〉-|e〉 is spectrally shaped such that
the atomic density function consists of a series of equispaced
narrow peaks (teeth), with spacing �, resulting in a comblike
structure in frequency modes, Fig. 1(a).

A single photon with spectral width τ−1 = ω̄ � � is
absorbed in the AFC system at time t = 0, which is stored
as a collective excitation delocalized over all the teeth in the
system. Formally, the state of the AFC, after absorbing a
single photon, can be written as

|	〉AFC =
M∑

j=1

⎛
⎝c je

iδ j t |{e j}〉
∏
k �= j

|{gk}〉
⎞
⎠. (1)

Here |{gj}〉 ≡ |g1 g2 · · · gNj 〉 j
and |{e j}〉 ≡ ∑

n αn|g1 · · ·
en · · · gNj 〉 j

represent the ground and collective single-
excitation state of all the atoms with detuning δ j , respectively,
and the c j’s represent the absorption coefficient of each tooth
in the comb. The coefficients αn characterize the absorption
by individual atoms.

The photon emission probability P(t ) from this setup is
proportional to

P(t ) ∝ |〈G|S−|	〉AFC|2, (2)

where S− = ∑
j |{g j}〉〈{e j}| is the step down operator and

|G〉 = ∏
k |{gk}〉 is the collective ground state of the ensemble.

Here the sum is over all the teeth. It can be seen from the state
(1) and the expression for the photon emission probability
P(t ) (2) that the probability is maximum at times t which are
integer multiples of 2π/� [Fig. 1(a)]. The unabsorbed light
comes out at t = 0, whereas at time 2nπ/� we get the nth
photon echo.

The efficiency η of the quantum memory in this protocol is
defined as the ratio of the total amount of light coming out in
the first echo (at time t = 2π/�) and the total input intensity,

i.e.,

η =
∫ 3π/�

π/�
|Eout(t )|2 dt∫ |Ein(t )|2 dt

. (3)

Theoretically, the maximum efficiency that can be achieved
in this manner is 54% [33,34]. To store the excitation for a
long time the excitation is transferred to a long-lived spin state
by applying a π pulse. This excitation can be retrieved at a
later time by applying another π pulse which transfers the
excitation from the spin state to the excited state from where
we can observe a photon echo at time 2π/�. The application
of two π pulses impart an overall negative phase in the system
which causes the photon to emit in the backward direction. In
this scenario the efficiency of the photon echo can approach
100% [33,34].

As mentioned earlier, the usual ways of implementing AFC
require the frequencies of different atoms in the ensemble
to be stable relative to each other which is often difficult to
achieve in a gaseous ensemble. In the following we present
a model where the FC is constructed from individual atoms
which do not have the above said problems.

III. INTRA-ATOMIC FREQUENCY COMB

In this section we introduce the concept of I-AFC. We first
present a toy model in Sec. III A where the atom has only a
single ground state and multiple excited states. By allowing
the transitions only between the excited and the ground states
we show that each such atom is capable of producing a
photon echo, exactly like the one in AFC. We generalize this
result for more realistic systems in Sec. III B. In Sec. III C
we consider the cesium atom as an example and numerically
show a photon echo.

A. I-AFC: A toy model

Consider an atom with a single ground state and N the
number of degenerate excited states [Fig. 1(b)]. We lift the
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degeneracy in the excited state space by applying an external
magnetic field (Zeeman effect). The excited states are chosen
such that the transition is possible only between the ground
state and the excited states. The mean transition frequency is
ωL, and the spacing between different transitions is �; hence,
the transition spectrum for this atom will resemble an AFC.
The question is whether a photon echo can be observed in this
atom in order to be eligible for quantum memory.

The Hamiltonian (in the interaction picture) for this
atom in the presence of an electromagnetic field reads (see
Appendix A for details)

H =
N∑

n=1

h̄δn|n〉〈n| − E (z, t ) d

2

N∑
n=1

(|n〉〈0| + |0〉〈n|), (4)

where δn is the detuning between the mean frequency ωL of
light and the frequency of the nth excited state |n〉, |0〉 is
the ground state, and d is the magnitude of the transition
dipole operator which we have taken to be same for all the
transitions. E (z, t ) represents the amplitude of the electric
field.

If the state of the atom at time t is given as the superpo-
sition of all the states, i.e., |ψ (t )〉 = ∑N

n=0 cn(t )|n〉, then the
dynamical equation in terms of the coefficients cn(t ) reads

ċn = id

2h̄
E (z, t )c0 − iδncn, ċ0 = id

2h̄
E (z, t )

N∑
n=1

cn(t ). (5)

The interaction between the photon and the atom is weak.
Hence, the probability of finding the atom in the ground state
is almost unity, i.e., |c0|2 	 1. Therefore,

cn(t ) = id

2h̄
e−iδnt

∫ t

−∞
eiδnt ′E (z, t ′) dt ′. (6)

For a Gaussian input, i.e., electric field of the form E (z, t ) =
E0 exp(−t2/2τ 2) with the temporal width τ � t , Eq. (6)
yields

cn(t ) = i

2

√
π

ω̄
exp[−(δnτ )2/2 − iδnt],

where  = dE0
h̄ .

Since we have assumed equispaced excited states, we
can write δn = δ0 + n� for some constant δ0. The photon
emission probability P(t ) (for forward propagation) for this
atomic system can be redefined as

P(t ) = |〈0|s−|ψ (t )〉|2 =
∣∣∣∣∣ i

2

√
π

ω̄

N∑
n=1

e−int�

∣∣∣∣∣
2

, (7)

where s− = ∑
n |0〉〈n| and the sum is over all the states in

the excited level. Here we have assumed that ω̄ = τ−1 � �

which implies that exp[−(n�)2/2ω̄2] → 1. Clearly Eq. (7)
results in a photon echo at t = 2π/� when the probability of
the photon emission is maximum. More detailed calculations
can be found in Appendix A.

This calculation confirms that an ideal I-AFC is capable
of demonstrating photon echo, which can ultimately be used
as a quantum memory. However, in a real atom the situation
can be slightly different. Generally, atoms have a number of
degenerate states in both the ground and the excited levels

[40,41] which can make calculations a little difficult. In the
next section we consider a realistic model for the atom with
multiple ground and excited states and prove that they can
produce a photon echo.

B. Multilevel atom: Multiple ground and excited states

Here we solve for the dynamics of an atom containing Ng

number of ground state, Ne number of excited states, and Ns

number of spin states. These states are chosen such that the
dipole transition is allowed between the ground and excited
states and excited and spin states. Whereas the transition
between the ground and the spin states is forbidden. To realize
a quantum memory, first the atom is prepared in the uniform
superposition of ground states. Upon absorption of a single
photon the atom will acquire a state which is a superposition
of various excited states. To make this storage of a single
photon, we apply a π pulse which transfers the excitation from
the excited level to the spin level. In order to show that an
I-AFC is capable of storing a single photon first we show the
calculations for the photon echo. These calculations will be
followed by the calculations showing a near perfect transfer
of the excitation from excited states to spin states and vice
versa.

Photon echo: Since the spin level does not participate in
the photon echo, we consider only the ground and the excited
levels which are interacting with oscillating electric field E .
The Hamiltonian for such an system reads

H =
Ne∑

n=1

h̄ωe
n|en〉〈en| +

Ng∑
m=1

h̄ωg
m|gm〉〈gm|

− E (z, t )

2

(∑
n,m

dnm|en〉〈gm|e−iωLt + H.c.

)
, (8)

where |en〉 (|gm〉) represents the nth (mth) excited (ground)
state corresponding to energy h̄ωe

n (h̄ω
g
m), |g1〉 being the

ground state with zero energy, and dnm is the transition dipole
moment between |en〉 and |gm〉. Here we are assuming that
the transition among the ground states and among the excited
states is forbidden. Therefore, dnn′ = dmm′ = 0.

The Hamiltonian for this atom in the interaction picture
can be calculated as HI = eiH0t He−iH0t − H0 using H0 =∑Ne

n=1 h̄ωL|en〉〈en|. The Hamiltonian HI reads

HI =
Ne∑

n=1

h̄
(
ωe

n − ωL
)|en〉〈en| +

Ng∑
n=1

h̄ωg
n|gn〉〈gn|

− E (z, t )

2

(∑
n,m

dnm|en〉〈gm| + H.c.

)
, (9)

Similar to the previous case of single ground state and mul-
tiple excited states, we can assume that the population in
the ground state is much smaller than the excited states, i.e.,∑

m ρmm 	 1 and ρnn 	 ρnn′ 	 ρmm′ 	 0 but ρnm �= 0. This
yields the dynamical equation for the coherence

∂ρnm(z, t )

∂t
+

(
iδnm + γ

2

)
ρnm(z, t ) = idnm

2h̄
ρmm E (z, t ), (10)
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where δnm = [(ωe
n − ω

g
m) − ωL] is the detuning between the

transition |en〉 ↔ |gm〉 and the mean frequency of the laser
light.

Using the definition for the atomic polarization

P (z, t ) = 2N
∑
n,m

d∗
nmρnm, (11)

we can arrive at the equations

ρ̃nm(z, ω) = idnm ρmm

2h̄

Ẽ (z, ω)

i(δnm + ω) + γ /2
, (12)

P (z, ω) = 2N
∑
n,m

i|dnm|2ρmm

2h̄

Ẽ (z, ω)

γ /2 + i(δnm + ω)
, (13)

and propagation equation for Ẽ (z, ω),

Ẽ (z, ω) = Ẽ (0, ω)e−Dz, (14)

where D and g are defined as

D =
∑
n,m

gnm

γ /2 + i(δnm + ω)
+ iω

c
, gnm = N |dnm|2ρmm ωL

2h̄εc
.

Clearly D in this case is identical to the one we obtained for
the case of single ground state. Mathematically both cases are
the same hence we get an echo in these generalized atoms.

Action of the π pulse: For simplicity we assume that
Ne = Ns, i.e., the number of the excited states is same as
the number of spin states. Furthermore, we assume that the
comb structure of the excited states is identical to that of the
spin-state frequency comb upon the application of a strong
driving field Ed with mean frequency ωd , the Hamiltonian of
the system in the interaction picture is given as

H = −dEd

2

∑
n

|en〉〈sn| + |sn〉〈en|, (15)

where we have chosen H0 = h̄
∑Ne

n=1 ωe
n|en〉〈en| +

h̄
∑Ns

n ωs
n|sn〉〈sn| and since we assumed spin state and excited

have the same comb we have used ωe
n − ωd = ωs

n. The spin
states are represented by |sn〉 with energy h̄ωs

n and dipole
moment d is taken the same for all the transition between the
excited and the spin states. The evolution of the state of this
atom is captured by the operator U (t0, t ) = exp[−iH (t − t0)].
For the π pulse we have

∫ t
0  dt ′ = π where  = dEd .

This results in U = −i
∑

n (|en〉〈sn| + |sn〉〈en|) which results
in a perfect transfer of the excited state to the spin state.
Next we consider the example of the cesium atom and show
numerically that a photon echo can be observed in this
system.

C. I-AFC in cesium atoms

For example, consider the Cs atom. Here a 16-fold de-
generate 5p66s energy level is chosen as the ground level
and a 32-fold degenerate 5p68p level constitutes the excited
state. The mean transition frequency between the two levels is
773.21 THz [42,43]. The natural linewidth of all the allowed
transitions is taken to be equal (5 MHz) [42]. The degeneracy
in the ground levels and the excited levels is lifted by applying
an external magnetic field of 0.1 T.

In Figs. 2(a) and 2(b) we calculate the most prominent ab-
sorption amplitudes and the optical depths between the chosen
energy levels for �m = ±1 transitions for an ensemble of Cs
atoms in the vapor form with density 1018 m−3 and the vapor
cloud cell of length 5 cm (see Appendix C). The spectrum in
these figures resemble the AFC but with nonuniform spacing
between the teeth and with unequal heights.

In order to observe a photon echo, initially all Cs atoms are
prepared in a uniform superposition of all the ground states
using radio frequency optical pumping [44]. Upon absorption
of a single photon the atom will acquire the state which is a
superposition of different excited states. In Figs. 2(c) and 2(d)
we show numerically the photon emission probability P(t ) for
the forward propagation. The first peak at t = 2 ns in both
plots is the emission probability of the unabsorbed photon.
The second peak is the photon echo which occurs 3 ns after
the input photon.

In order to achieve a long time quantum memory we need
to transfer the delocalized excitation from the excited level
to a long-lived spin level. This can be done by applying a π

pulse between the excited level and the spin level. If the FC in
the excited level is identical to the one in the spin level then
theoretically 100% transfer can be achieved. The population
transfer can also be achieved by chirping of femtosecond
pulses [45]. However, for the nonidentical FCs numerical
optimization is required to achieve the maximum transfer. For
the case of Cs the degenerate energy level 5p65d can serve
as the long-lived spin state where the photon can be stored (in
principle) indefinitely. To retrieve the photon we apply another
π pulse and these two pulses together cause the backward
propagation of the photon.

In Fig. 3 we plot the photon-echo efficiency η for backward
and forward emissions as a function of the cell length z. The
forward efficiency η f ± satisfy the relation

η f ± ∝ (α±z)2 exp(−α±z), (16)

where α± are the optical depths for δm = ±1 transitions.
We found numerically that α+ = 32.09 and α− = 66.77 (see
Appendix D). The efficiency for the backward emission ηb±
follow the relation

ηb± ∝ [1 − exp(−α±z)]2. (17)

The maximum efficiency η f we achieve is close to 48% and
for ηb close to 90% which is numerically optimized over
the spectral width of the incoming photon. Note that the
efficiencies are different for different polarizations, i.e., for
different �m. The anisotropy in the two types of transition is
due to the external magnetic field which causes nonuniform
superposition of the hyperfine levels for �m = ±1 [46].

Note that both the ground states and the excited states have
FC-like structure which might create complications; however,
we find that the FC in the ground state does not affect the
photon echo.

So far we have shown that an I-AFC can result in photon
echo. Our results are supported by numerical calculations for
Cs atoms. Next we show that the I-AFC is robust against an
environmental effect, particularly, Doppler broadening.
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FIG. 2. Nonuniform AFC and the photon echo in a Cs atom. (a) and (b) Numerically calculated absorption and optical depths for various
transitions for �m = +1 and �m = −1. Here the x axis is the detuning with respect to the incoming light and the y axis is the value of the
absorption for various transitions. The solid circles represent the optical depth corresponding to each transition for a density of 1018 m−3, length
of the vapor cloud cell L = 5 cm, and the natural linewidth γ = 5 MHz. (c) and (d) The photon echo observed in Cs atoms for �m = ±1
transitions.

IV. EFFECT OF DOPPLER BROADENING ON I-AFC

In an ensemble of Cs atoms in a thermal equilibrium at
temperature T the state of each of the atoms is |v〉 ⊗ |ψv〉
where |v〉 is the kinetic state of the atom and |ψv〉 is its
electronic state labeled by the velocity v. The total state of
the atomic ensemble can be written as

ρ =
∫

dv p(v)|v〉〈v|⊗|ψv〉〈ψv|, (18)

where p(v) = exp(−mv2/2kBT ) is the thermal distribution
with m being the mass of the atom and kB being the Boltz-
mann constant. The motion of the atom makes it perceive
the frequency of the incoming photon shifted from ωL to
ωL + vvv · k where k is the wave vector of the photon. Or it can
be perceived as a shift of −vvv · k frequency in the FC. Since
the time of the photon echo depends only on the separation
� between the teeth of the FC, it remains invariant under
any such shift of the comb. Therefore, the photon echo from
Cs atoms with different velocities would occur exactly at the
same time 2π/�.

It can be understood as follows: the shift in the FC would
result in an additional phase exp(ivvv · kz/c) in the state, i.e.,
|ψv (t )〉 → eivvv·kz/c|ψv (t )〉 (see Appendix B). However, since
the thermal distribution is incoherent, this additional phase
does not cause any interference. The photon-emission prob-
ability P(t ) for this system reads

P(t ) =
∫

v

dv p(v)|〈G|s−|ψv (t )〉|2, (19)

which is independent of the phase exp(ivvv · kz/c). Here |G〉
is the collective ground state. Therefore, the photon echo is
the thermal average of the echoes from all the atoms having
different velocities and appear at exactly the same time.
Hence, Doppler broadening has no effect on the I-AFC.

In Fig. 4 we plot the output from the Cs vapors at 100 K.
In the inset of this figure we have the numerically optimized
efficiencies for the backward and the forward propagation
for �m = ±1 as a function of temperature. The backward
efficiency starts with a value close to 90% at zero temperature
and ends above 80% for 300 K for both transitions. Similarly,
the forward efficiency is unaffected by temperature. This
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FIG. 3. Here we plot the photon echo efficiency for backward
ηb± and forward η f ± emission for �m = ±1 transitions. The max-
imum efficiency for the forward emission is η f ∼ 48% and for the
backward emission is ηb ∼ 90%.

shows that the proposed scheme for quantum memory is
robust against thermal effects.

V. CONCLUSION

To conclude, we have proposed an I-AFC which is con-
structed using different transitions of a single atom. This
AFC is important for trapped ions and on-chip quantum
computation, single-atom quantum memory, and microwave-
to-optical transducers. Since the I-AFC is constructed from
individual atoms, this FC (in atomic ensembles) is immune
against Doppler broadening; and hence can be used for high-
temperature photonic quantum memory. The spacing between
the neighboring teeth in the comb which characterize the time
of the photon echo is controlled by an external magnetic field.
Therefore, the time of the photon echo can be controlled
by tuning the magnetic field. Since the I-AFC can absorb
both left-handed and right-handed polarized light (�m =
±1), the proposed quantum memory is the most suitable
for the polarization qubits. The anisotropy in the absorption
of the two polarizations can be minimized by reducing the
magnetic field. Any remaining imbalance in the absorption
can be corrected by external polarization dependent loss. We
considered the example of a Cs atom and showed that I-AFC
can be realized in Cs atoms.
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FIG. 4. In this figure we show the photon echo which occurs
3 ns after the input pulse in the presence of Doppler broadening at
100 K temperature. In the inset we show the photon-echo efficiencies
for the forward and for the backward propagation as a function of
temperature.

APPENDIX A: MULTILEVEL ATOM: SINGLE GROUND
STATE AND MULTIPLE EXCITED STATES

Here we solve for the dynamics of an atom containing a
single ground state and N number of excited states interacting
with oscillating electric field E . The Hamiltonian for such an
atom can be written as [47]

H =
N∑

n=1

h̄ωn0|n〉〈n| − E (z, t )

2

N∑
n=1

(dn0|n〉〈0|e−iωLt + H.c.),

(A1)
where |n〉 represents the nth excited state corresponding to
energy h̄ωn0, |0〉 being the ground state with zero energy,
and dn0 is the transition dipole moment between |0〉 and |n〉.
Here we are assuming that the transition between the different
excited states is forbidden. Therefore, dnn′ = 0 for n, n′ �= 0.
We can write the oscillating electric field as

E (z, t ) = E (z, t ) cos(ωLt − kz), (A2)

where E (z, t ) gives the temporal shape of the electric field and
ωL is the mean frequency of light.

The Hamiltonian H in the interaction picture can be calcu-
late as HI = eiH0t He−iH0t − H0 using H0 = ∑N

n=1 h̄ωL|n〉〈n|.
The Hamiltonian HI reads

HI =
N∑

n=1

h̄δn|n〉〈n| − E (z, t )

2

N∑
n=1

(dn0|n〉〈0| + d∗
n0|o〉〈n|),

(A3)

where δn = ωn0 − ωL is the detuning between the nth energy
level and the mean frequency of the laser light.

The state of the atomic system is represented by the density
operator ρ where ρnn is the population of the nth energy
level and ρnn′ represents the coherence. In our system we
consider that the number of photons are much smaller than
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the number of atoms in the ensemble. Therefore, ρ00 	 1
which would imply that ρnn 	 ρnn′ 	 0 but ρn0 �= 0. With
these approximations we can write the dynamical equation for
the coherence terms as

∂ρn0(z, t )

∂t
+

(
iδn + γ

2

)
ρn0(z, t ) = idn0

2h̄
E (z, t ), (A4)

where the term with γ is added phenomenologically to incor-
porate the environmental effects.

Equation (A4) characterize the dynamics of the atomic
state when it interacts with the external electromagnetic field.
In order to solve for the (forward) propagation of light through
the ensemble of atoms we need to consider the effect of the
atomic polarization on the electromagnetic field as well which
can be written as(

∂

∂z
+ 1

c

∂

∂t

)
E (z, t ) = iωL

2ε0c
P (z, t ). (A5)

Here P (z, t ) is the amplitudes of the atomic polarization
which is defined as the expectation value of the aggregate
transition electric dipole moment operator d of the entire
ensemble,

P(z, t ) = N Tr[ρ d]

= N
(

N∑
n=1

d∗
n0ρn0e−i(ωLt−kz) +

N∑
n=1

dn0ρ
∗
n0ei(ωLt−kz)

)
,

(A6)

where N is the density of atoms. The atomic polarization
is driven by the external electric field. Therefore, the time
dependence of the polarization and the electric field is the
same. Hence, we can write

P(z, t ) = 1
2P (z, t )e−i(ωLt−kz) + c.c. (A7)

Comparing Eq. (A7) with Eq. (A6) results in

P (z, t ) = 2N
N∑

n=1

d∗
n0ρn0. (A8)

Equations (A4) and (A5) together describe the propagation
of light through an atomic ensemble [32,48]. We are interested
in finding the state of light at time t and position z which
requires solving these two equations simultaneously. We can
obtain the solution by taking the Fourier transform of ρ, P ,
and E in the time domain. This would yield

ρ̃n0(z, ω) = idn0

2h̄

Ẽ (z, ω)

i(ω + δn) + (γ /2)
, (A9)

P (z, ω) = 2N
∑

n

i|dn0|2
2h̄

Ẽ (z, ω)

γ /2 + i(δn + ω)
, (A10)

and propagation equation for Ẽ (z, ω),(
∂

∂z
+ iω

c

)
Ẽ (z, ω) = iωL

2ε0c
P (z, ω). (A11)

From here it is straightforward to solve for Ẽ (z, ω) which
reads

Ẽ (z, ω) = Ẽ (0, ω)e−Dz, (A12)

where D and g are defined as

D =
∑

n

g

γ /2 + i(δn + ω)
+ iω

c
, g = N |d|2ωL

2h̄εc
. (A13)

Clearly the first term in D is a comb where the Lorentzian
distributions in ω are placed at δn. The second term results in
a position dependent phase where ω/c = k. Inverse Fourier
transform of Ẽ (z, ω) gives the output in the time domain.

APPENDIX B: EFFECT OF DOPPLER BROADENING ON
THE OUTPUT ELECTRIC FIELD

In this Appendix we consider the effect of Doppler broad-
ening on the output light. An atomic ensemble at temperature
T contains pv fraction of atoms moving with velocity vvv

where pv has the form of thermal distributions, i.e., pv =
exp(−mv2/2kBT ). Here m is the mass of the atom and kB is
the Boltzmann constant. An atom with velocity vvv and wave
vector k experience the modified frequency of the incoming
light from ωL to ωL + k · vvv. This would modify the detuning
δ to δ + k · vvv which shows in D in Eq. (A13) as

Dvvv =
∑

n

g

γ + i(δn + k · vvv + ω)
+ iω

c
. (B1)

From this modified Dvvv we can calculate the output electric
field

Ẽ (z, ω, vvv) = Ẽ (0, ω)e−Dvvvz. (B2)

Hence the light emitted from an atom moving with velocity
vvv is Ẽ (z, ω, vvv) which is different from Ẽ (z, ω, vvv = 0) by only
an overall phase which can be calculated by replacing ω →
ω′ = k · vvv + ω. Thus the additional phase the Ẽ (z, ω, vvv) gets
is exp ik · vvvz/c. Since the velocity distribution is incoherent
over the atomic ensemble, we need to add the intensity of light
coming from each atom which is independent of the velocity.
Thus, the intensity of light in the photon echo is unchanged
due to the Doppler effect.

APPENDIX C: TRANSITIONS IN CS ATOM

In this Appendix we calculate the transitions between the
states 5p66s (degenerate ground state) and 5p68p (degenerate
excited state). The Hamiltonian of the atom in the presence of
an external magnetic field can be written as [47]

H = H0 + Hhfs + HB , (C1)

where H0 is the unperturbed spinless Hamiltonian plus the
fine-structure Hamiltonian of the atom and H ′ = Hhfs + HB

is the perturbation. The Hamiltonian Hhfs = A(I · J) is the
hyperfine correction and HB = −(μ̂

J
+ μ̂

I
) · B = (gJ μB Jz −

gI μN Iz )B is the interaction of the atom with the magnetic field.
Here A is the hyperfine structure constant, I and J are nuclear
spin operator and total (spin and orbital angular momentum)
operator, and μB and μN are the Bohr and nuclear magneton.
gJ and gI are given as

gJ = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
, (C2)

gI = 0.7369 for a Cs atom.
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We are interested in only the states 5p66s and 5p68p
which are the eigenstates of the Hamiltonian H0. The energy
difference between these states is 773.20996 THz which lies
in the optical frequency range [42,43]. The 5p66s states which
we call ground states have 16-fold degeneracy and the 5p68p
energy level (excited states) has 32-fold degeneracy. The
perturbation H ′ helps lift the degeneracy in these states which
we exploit for AFC purposes.

To construct the AFC in the Cs atom we need to find
the absorption spectrum of the transitions between 5p66s and
5p68p in the presence of the perturbative corrections H ′. For
that purpose we write the Hamiltonian H = H0 + H ′ in the
basis |F, MF , I, J〉 which is the simultaneous eigenbasis of
I, J, F, and Fz. Here F = I + J. We numerically solve the
Hamiltonian H to find the eigenvectors and the eigenvalues.

The absorption amplitudes are calculated from the imag-
inary part of electric susceptibility χe where the atomic po-
larization P = ε0χeE (A10). Therefore the absorption coeffi-
cients reads

Imχe = N
h̄ε0

∑
n

∣∣dnen0

∣∣2
γ

γ 2 + (δn + ω)2
. (C3)

Optical depth α is defined as

α = N |d|2ωLL

2h̄ε0cγ
. (C4)

Here L is the length of the cell which we have taken to be
5 cm, γ = 5 MHz is the decay rate of the Cs transition at
100 K temperature [42]. N is the number density of the Cs
atoms in the ensemble which is taken to be 1018 m−3. The
magnetic field strength is taken to be 0.1 T. The dipole matrix
elements dnen0 = 〈ne|d|n0〉, where |ne〉 is one of the excited
states and |n0〉 is one of the ground states which can easily
be calculated numerically. In Figs. 5(a) and 5(b) we show the
absorption coefficients and the optical depths for the �m =
±1 transitions.

APPENDIX D: OPTIMUM EFFICIENCY FOR
QUANTUM MEMORY

The transmission of electric field through an absorptive
medium can be written as an exponential decay of the am-
plitude, i.e.,

E f (L, t ) = e−αL/2E f (0, t ), (D1)

where E f (L, t ) is the amplitude of the electric field at time
t and position L, and α is the absorption coefficient of the
medium. Here we have assumed L is so small that the time
L/c is neglected. The efficiencies of the backward and forward
photon echo in AFC can be determined by the same absorp-
tion coefficient α. The efficiency of the forward photon-echo
η f and the backward photon-echo ηb is given by [33]

η f (L) = ε(αL)2 exp(−αL), (D2)

ηb(L) = ε[1 − exp(−αL)]2, (D3)

where ε is the proportionality constant which is same for the
two efficiencies.
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FIG. 5. Numerically calculated absorption coefficients and op-
tical depth for various transitions for �m = +1 and �m = −1 for
the Cs atom. Here the x axis is the detuning with respect to the
incoming light and the y axis is the value of the absorption for various
transitions. The natural linewidth of each transition is taken to be
5 MHz.

Since in the I-AFC different transitions have differ-
ent absorption coefficients, we can assume that the total
medium have an average coefficient α�m for �m = ±1.
In Fig. 6 we plot the numerically calculated values of
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FIG. 6. Data and the curve fits for efficiency vs length at 0 K. The
absorption coefficients obtained from curve fitting are α1 = 32.09
and α−1 = 66.77.
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FIG. 7. Data and the curve fits for efficiency vs length at 0 K.

η0 = E f (L, t )/E f (0, t ) for �m = ±1 and calculate the coeffi-
cient α±1 from the data. From here we found that α1 = 32.09
and α−1 = 66.77.

In Fig. 7 we plot the numerically calculated efficiency for
the forward photon-echo η f for I-AFC. We can see that the
efficiency η f satisfies the relation Eq. (D2) with unknown ε

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

L (m)

η b

Δm = +1
Δm = −1

FIG. 8. Backward mode efficiency vs length at 0 K.

which can be calculated from this numerical data. From this
numerical simulation we found ε+ = 0.902 and ε− = 0.895
for �m = ±1 transitions. With this numerically calculated
value of ε± we plot the efficiency of the backward photon
echo as a function of L in Fig. 8. We can see that the optimum
backward efficiency achieved in the I-AFC in Cs atoms is
close to 90% for both transitions.
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