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n → m random access code (RAC) is an information task to encode an n-bit random message into a shorter
m-bit string. Resulting from the compression loss from n to m bits, there exists success probabilities for the string
receiver to recover any bits of the initial message. It has been shown that success probabilities of bit recovery can
be enhanced by employing quantum resources. Here we present experimental realizations of 2 → 1 and 3 → 1
distributed entanglement-assisted random access codes (EARACs) with a two-photon entangled source. The
average success probabilities obtained in our experiment are 0.8491(41) for a 2 → 1 EARAC and 0.7724(34) for
a 3 → 1 EARAC, exceeding the classical counterparts, respectively. Moreover, through the existing experimental
data, success probabilities for n varying from 4 to 10 (m = 1) are estimated.
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I. INTRODUCTION

Quantum resources have abundant advantages in the field
of information processing, such as random access code (RAC)
[1]. The classical n → m RAC is an information task to
encode an n-bit random message into a shorter m-bit string,
which is then sent to the receiver for recovering any bits
of the initial message. By using quantum communication
instead of classical communication, quantum random access
code (QRAC) [2] delivers the initial message in a more
accurate way. Nevertheless, QRAC allows only one bit of
the initial message to be recovered each time because of
the state collapse after measuring. The first work on QRAC
was proposed by [3] named conjugate coding. Afterwards,
Ambainis et al. show that there exists the scheme of 2 → 1
QRAC [1] and mention a generalization of 3 → 1 QRAC [4]
(see [5] and [6] for more details). The n → m QRAC with
m > 1 was researched in [1,4]. Moreover, 2 → 1 QRAC and
3 → 1 QRAC were realized experimentally in [7,8]. With the
aid of high success probability, QRAC shows great applica-
tion potential in the fields of network coding [5,9], locally
decodable codes [10,11], quantum state learning [12,13], and
quantum cryptography [14,15].

Entanglement-assisted random access code (EARAC)
shares quantum entanglement among devices with a classical
communication channel. In the case of a unit channel capacity,
EARAC performs better than QRAC with classical shared
randomness [8]. Moreover, Ref. [8] proposed a tripartite Bell-
type inequality with the EARAC approach, which reveals that
the protocol manifests genuine multipartite nonlocality. The
other form of EARAC is distributed EARAC [16] with three
components—preparation, transformation, and measurement
devices. Furthermore, the use of a transformation device
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considerably improves noise tolerance when compared to
simple prepare-and-measure networks [16].

Although it has been proved that QRAC does not exist
without shared randomness (SR) when n � 4 [9], when par-
ties are allowed to use SR, QRAC does exist for any n (see
[2]). A general scenario can be constructed of n → m QRAC
as well as EARAC by means of concatenation primitives that
are 2 → 1 and 3 → 1 QRAC (EARAC). The fundamental
distinction between EARAC and QRAC is that the encoding
messages are hidden in the entanglement state shared among
communicators rather than in a proper qubit. In the EARAC
protocol, the process of communication between Alice, Bob,
and Charlie is completed by measuring each qubit on their
part, while in the QRAC protocol, Alice needs to prepare a
proper state then transmits it to Bob to measure. When there
are strong noises in the quantum channel, the prepared state
in the QRAC will be affected, thus affecting the ultimate
measurement result. Nevertheless, the measurement results
will not be influenced in the EARAC because the purity of
the entanglement state can be improved by means of entan-
glement purification.

Here, we report experimental realizations of 2 → 1 and
3 → 1 distributed EARAC [8,17] using the photonics system.
The average success probability obtained in our experiment
exceeds the optimal classical bound and fits well with cor-
responding theoretical probability, verifying the advantages
of quantum resource over classical ones. Furthermore, we
calculate the success probability for a general scenario n → 1
EARAC when n varies from 4 to 10.

II. 2 → 1 AND 3 → 1 EARAC

In the 2 → 1 EARAC, a maximally entangled state |ψ〉 =
1√
2
(|00〉 + |11〉) is shared between Alice and Bob. Alice en-

codes two bits x0, x1 ∈ {0, 1} by performing measurements on
one side of the Bell state in the basis of

Ma
A = 1

2

(
I + �Aa

x · �σ )
, (1)
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FIG. 1. Simple network of 2 → 1 EARAC. The dotted line in-
dicates the entangled state shared between Alice and Bob as well
as the solid line corresponds to the classical communication channel
between them. Classical bits x0, x1 are initial encoding bits and the
result of x0 ⊕ x1 decides the specific measurement in Alice’s side.
The decoding device receives an input y ∈ {0, 1} with an aim to
guess xy in higher success probability. The auxiliary bit m1 = x0 ⊕ a
is transmitted in classical channel between Alice and Bob.

where Aa
x = (−1)a · �a,�a = ( 1√

2
, (−1)x√

2
, 0) and x = x0 ⊕ x1.

The measurement outcome of Alice is represented as a ∈
{0, 1}. After Alice’s measurement, she delivers one classical
bit denoted as m1 = x0 ⊕ a to Bob. (as shown in Fig. 1). Note
that the auxiliary classical bit m1 is neither a determinate
message nor a function of original classical bits x0, x1. Bob
receives an input y ∈ {0, 1} with an aim to guess xy by
measuring the other side of the Bell state in the basis

Mb
B = 1

2

(
I + �Bb

y · �σ )
, (2)

where Bb
y = (−1)b · �b, �b = (1, 0, 0) or �b = (0, 1, 0) and b ∈

{0, 1}. Bob’s guess for xy is m1 ⊕ b. The output z = xy is a
function of x, y and the success probability can be described
as p(z = f (x, y)|x, y). Eventually, the success probability p
can be calculated by

p(m ⊕ b = xy) = 1
2 (1 + �a · �b). (3)

Therefore, the theoretical success probability in 2 → 1
EARAC is p = 1

2 (1 + 1√
2

). In the course of experiment, the
average success probability can be calculated by

P = 1

8

∑
p(z = f (x, y)|x, y), (4)

where p(z = f (x, y)|x, y) is the success probability for each
bit. The average success probability of guessing xy is 3

4 in 2 →
1 RAC for a classical system.

The standard 3 → 1 RAC is a communication complex-
ity problem defined in a prepare and measure scenario. An
experimental demonstration of 3 → 1 distributed QRAC was
presented in [8], which adopted a single-photon source. Both
3 → 1 QRAC and EARAC offer the same success probability
P = 1+√

3
2
√

3
≈ 0.7887 [1,17]. In the network of a distributed

EARAC (as shown in Fig. 2), the preparation device is split
into two parts (Alice and Bob) such that Alice receives two
bits x0, x1 and Bob receives only one bit x2. The task of
the decoding part (Charlie) is to decode the initial string in
higher success probability. Alice, Bob, and Charlie share a
three-qubit Greenberger-Horne-Zeilinger state in the form of

|ϕ〉 = 1√
2

(|000〉 + |111〉). (5)

FIG. 2. Experimental model of 3 → 1 entanglement-assisted
distributed random access code. The solid line indicates the en-
tangled state shared between Alice and Bob as well as the dotted
line corresponds to the classical communication channel between
them. Three classical bits x0, x1, x2 (where xi ∈ {0, 1}) are split into
two parts x0, x1 and x2. Alice encodes the first two bits in her
measurements and Bob encodes the last bit in his measurement basis.
Charlie’s input y ∈ {0, 1, 2} determines different measurements on
his party.

By performing different measurements on their qubits, Alice
and Bob complete the process of encoding. Alice encodes first
two bits x0, x1 with her measurements

Ma
A = 1

2

(
I + �Aa

x · �σ )
, (6)

where Aa
x = (−1)a · ( 1√

2
, (−1)x+1√

2
, 0) and x = x0 ⊕ x1 as well

as gives out a measurement output a ∈ {0, 1}. Afterwards, she
transmits one bit m1 = x0 ⊕ a to Bob who encodes the last
bit x2 and m1 into his measurements and provides an output
b ∈ {0, 1}. Bob’s bases are as follows:

Mb
B = 1

2

(
I + �Bb

mx · �σ )
, (7)

where B0 = (cos2θ, 0, sin2θ ), B1 = (−cos2θ, 0,−sin2θ ),
and

θ = cos−1

⎛
⎝

√√
3 + (−1)m1⊕x2

2
√

3

⎞
⎠

Subsequently, Bob sends the final encoding bit m2 = m1 ⊕ b
to Charlie. Note that auxiliary classical bits m1, m2 are neither
a determinate message nor a function of original classical bits
x0, x1, x2. Charlie uses a set of orthogonal complete bases such
as σy, σx, σz to measure the particle in his party according to
different bits he want to acquire in initial string and obtain
an output c ∈ {0, 1}. Furthermore, Charlie combines his mea-
sured output c and a received bit m2 to realize the decoding
process of the original bit string. Charlie’s guess for xy is
m2 ⊕ c. The output z = xy is a function of x, y as well as the
success probability can be described as p(z = f (x, y)|x, y).
The average success probability is calculated by

P = 1

24

∑
p(z = f (x, y)|x, y). (8)

By considering all classical deterministic strategies, it can be
checked that when f (x, 0), f (x, 1), f (x, 2) are independent of
each other, then the upper bound of P using a classical channel
is 2

3 .
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FIG. 3. Experimental setup for implementing 2 → 1 and 3 → 1 distributed entanglement-assisted random access code. In the state
preparation process, a pair of entangled photons is first generated via a type-II phase matching β-barium-borate crystal. The first photon
of each pair then passes through beam displacers to generate a pair of qubits, encoded in its path, and polarization degrees of freedom, while
the polarization of the second photon encodes a third qubit. The boxes 1 and 2 are measurement setups of Alice and Bob in the 2 → 1 EARAC.
The boxes 3 and 2 and 1 are measurement setups of Alice, Bob, and Charlie in the 3 → 1 EARAC. BBO: a β-barium-borate (BBO) crystal
cut for collinear type-I phase matching; C-BBO: sandwich-type BBO+HWP+BBO combination; QWP: quarter-wave plate; HWP: half-wave
plate; PBS: polarzing beam splitter; BD: calcite beam displacer; APD: single-photon detector.

III. EXPERIMENTAL DETAILS AND RESULTS

The experimental setup to realize 2 → 1 and 3 → 1
EARAC is shown in Fig. 3, which includes state prepara-
tion and measurement. Let us begin with a 2 → 1 EARAC
scenario first. In order to carry on an experimental re-
alization of the 2 → 1 EARAC, we first prepare a two-
photon polarization-entangled state by the process of sponta-
neous parametric down-conversion (SPDC). A mode-locked
Ti:sapphire pulsed laser (with a duration of less than 100 fs,
a repetition rate of 80 MHz, and a central wavelength of
780 nm) is frequency doubled into 390 nm by a type-I phase-
matching β-barium-borate (BBO) crystal, then focused onto
the sandwich-type down-converter composed of two β-BBO
crystals cut for beamlike type-II phase matching with a true-
zero-order half-wavelength plate between them (see more
details in [18–20]). The maximally entangled state, |φ+〉 =

1√
2
(|HH〉 + |VV 〉), is generated. The photon 1 and photon 2

are two qubit generated in path 1 and path 2, respectively. The
source provided on average 1300 coincidences per second. We
perform quantum state tomography on the generated state and
the fidelity is up to 98.45 ± 0.22%.

The 2 → 1 EARAC for Alice and Bob, who share the
two entangled photons, can be realized where Alice and Bob
perform the measurement on photons 1 and 2, respectively. In
the process of 2 → 1 EARAC, we use the setup in the boxes
1 and 2 individually, while boxes 3 and 4 are not included
(shown in Fig. 3). Alice encodes her two classical bits into her
measurement on the polarization degree of freedom of photon
1 by using a combination of half-wave plate (HWP), quarter-
wave plate (QWP), and polarized beam splitter (PBS) shown
in the box 1 of Fig. 3. Similarly, Bob selects an appropriate
basis acting on polarization degree of freedom of photon 2

according to the initial bits he wants to recover (shown in
the box 2 of Fig. 3). Specific settings of wave plates are
listed in the Appendix to realize the measurements in Eqs. (1)
and (2). Moreover, we used silicon avalanche photodiodes
(APDs) to detect photon coincidences at output ports of two
PBS. For each set of measurements, the time intervals of data
acquisition are set to 10 s. Success probabilities in this part
are presented in Table I. The average success probability is
0.8491(41), which is adjacent to theoretical probability.

As for a 3 → 1 EARAC, three-qubit GHZ state is shared
among Alice, Bob, and Charlie. In experiment, we prepared
three-qubit states based on the photon pair described by |φ+〉.
The polarization degrees of freedom of the photon pair encode
two qubits, labeled as B and C, respectively. As shown in
the box 4 of Fig. 3, the photon 2 is sent through the first
calcite beam displacer (BD) which acts such that the vertically
polarized component of the first photon passes into the upper
path, while the horizontally polarized component passes into
the lower path. Thus the first BD entangles the path and
polarization degrees of freedom of photon 2. This path degree
of freedom of the photon 2 encodes a qubit labeled as A. Along
with the qubit B and qubit C, the state preparation process

TABLE I. Success probability in 2 → 1 EARAC. The averaged
probability is 0.8491(41) adjacent to theoretical probability.

x0x1 p(x0) p(x1) p(x0x1)

00 0.8528(41) 0.8545(40) 0.8537(41)
01 0.8356(40) 0.8688(43) 0.8612(42)
10 0.8537(42) 0.8184(38) 0.8361(40)
11 0.8592(42) 0.8318(40) 0.8455(41)
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TABLE II. Success probability of eight different strings of 3 → 1
EARAC. The averaged probability is 0.7724(34) adjacent to theoret-
ical probability.

x0x1x2 P(x0) P(x0) P(x0) P(x0x1x2)

000 0.7573(33) 0.7958(36) 0.7446(33) 0.7659(34)
001 0.7479(32) 0.7390(33) 0.8204(37) 0.7691(34)
010 0.8069(36) 0.7242(32) 0.7883(35) 0.7731(34)
011 0.7833(35) 0.7842(35) 0.7731(34) 0.7802(34)
100 0.7786(35) 0.7750(35) 0.7704(34) 0.7747(34)
101 0.8110(37) 0.7306(31) 0.7886(35) 0.7767(34)
110 0.7437(33) 0.7520(33) 0.8214(37) 0.7724(34)
111 0.7441(33) 0.8124(37) 0.7440(32) 0.7668(34)

generates entangled three-qubit states. The qubit A of Alice
corresponds to path information of photon 2. Likewise, the
qubit B of Bob and the qubit C of Charlie correspond to the
polarization of photon 2 and photon 1, respectively.

At the stage of state measurement, Alice’s and Bob’s
measurements are realized as shown in the boxes 3 and 2
of Fig. 3, respectively, as well as Charlie’s measurements are
realized in the box 1. Alice adopts a combination of half-wave
plate [HWP (ϕ)] and two quarter-wave plates (both θ = 45◦
with its fast axis) to ensure the suitable phase in her mea-
surements. In addition, two different HWPs, forming an angle
of −22.5◦ and 22.5◦ with its fast axis, respectively, locate at
different ways before the second BD to ensure the appropriate
amplitude for Alice’s basis. After the measurements of Alice,
the path information corresponding to qubit A converts to
polarization states. Furthermore, Alice transmits a classical
bit m1 = x0 ⊕ a to Bob. Bob’s basis to measure the qubit B
is shown in Eq. (7), which not only depends on his own bit x2

but also on bit m1 received from Alice. It can be realizable
to array a HWP, a QWP, and a PBS in sequence. As for
Charlie, his task is to measure the qubit C (the polarization
of photon 1) in σy, σx, σz and thus recover the initial bit in a
higher success probability. Furthermore, he utilizes his own
measurement output c and an auxiliary bit m2 from Bob to
recover the desired bit in a success probability. Similarly,
Charlie’s measurements are made up of one HWP, one QWP,
and one PBS. All degrees of three basis are listed in the
Appendix.

Furthermore, we also used silicon avalanche photodiodes
(APDs) to detect photon coincidences at output ports of two
PBS. For each set of measurements, the time intervals of data
acquisition are set to 10 s. The success probabilities for 3 → 1
distributed EARAC are presented in Table II. The final success
probability in our experiment is 0.7724(34), which is close to
the theoretical probability of 1

2 (1 + 1√
3

).

IV. CONCATENATION

An n → 1 EARAC can be realized by concatenating the
2 → 1 and (or) the 3 → 1 EARAC [17]. For example, the
4 → 1 EARAC can be performed by three 2 → 1 ones
(shown in Fig. 4). The initial bit string x0, x1, x2, x3 can be
divided into two parts. For every part, the same process of
2 → 1 EARAC is performed. In the same way, with regards
to the output of the aforementioned two parts, the third

FIG. 4. Examples of two possible concatenation for 5 → 1
EARAC. The probability of Bob guessing x2 is higher than for
x3 since the success probability in 2 → 1 EARAC is higher than
3 → 1 EARAC. The success probability for guessing x2 and x3 is
P2 = 1

2 (1 + 1√
4

)(k = 2, j = 0) and P3 = 1
2 (1 + 1√

6
)(k = 1, j = 1),

respectively. Therefore, the averaged success probability is p =
2
5 P2 + 3

5 P3.

2 → 1 EARAC is executed so that we get the final success
probability for n = 4. In 5 → 1 EARAC, there are different
permutations of input bits. One possible permutation of input
bits is shown in Fig. 4. More generally, for any n, one can
divide them into n2 groups of 2 and n3 groups of 3 to get
the final success probability by adopting the similar way
aforementioned. For a specific bit in the bit string, the success
probability depends on which position is located since the
success probability in n = 2 is higher than n = 3. Therefore,
the final probability should be averaged. In conclusion, the
final success probability not only depends on the primitives in
every step, but also the numbers of the correct and incorrect
steps.

In the process of concatenation 2 → 1 and 3 → 1 EARAC,
the success probability can be written as Eq. (9) when the
number of inaccurate steps is even:

p2e(k) = 1
2

(
1 + 2− k

2
)
, p3e(k) = 1

2

(
1 + 3− k

2
)
. (9)

Likewise, for an odd number of errors [17], one has

p2o(k) = 1
2

(
1 − 2− k

2
)
, p3o(k) = 1

2

(
1 − 3− k

2
)
. (10)

As a result, the total probability [17] for receiver is written as

p(k, j) = p2e(k)p3e(k) + p2o(k)p3o(k)

= 1
2

(
1 + 2− k

2 3− j
2
)
. (11)

TABLE III. Success probability for a (n, 1, pn) EARAC com-
pared theoretical probability with an experimentally possible one.

n pT
n pE

n

4 3
4 0.7437(57)

5 1
20 (12 + √

6) 0.7117(50)

6 1
2 (1 + 1√

6
) 0.6902(46)

7 1
21 (12 + √

6) 0.6723(42)

8 1
80 (52 + √

6) 0.6702(60)

9 2
3 0.6589(39)

10 1
20 (10 + √

2 + √
3) 0.6473(58)
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It is worth noticing that whatever the size of n is, the
final success probability will exceed 1

2 according to Eq. (11).
Taking advantage of our experimental result in 2 → 1 and
3 → 1 EARACs and Eq. (11), we calculate several cases from
n = 4 to n = 10 listed in Table III.

V. CONCLUSIONS

We have experimentally implemented a 2 → 1 as well as
a 3 → 1 EARAC with success probabilities 0.8491(41) and
0.7724(34), respectively, by adopting a Bell state. Originally,
we just employ a Bell state and a combination of wave
plates to realize the process of encoding and decoding in
a 2 → 1 EARAC. What is more, in a 3 → 1 EARAC, we
construct an interferometer consisting of two BDs on the
basis of a Bell state for the sake of completing the preparation
of GHZ state. With the comparison of classical RACs and
heralded single-photon source based QRACs, our EARACs
show distinct advantages both in the success probability and
without shared randomness. Therefore, our present work
can provide valuable references for further implementation
of EARACs into quantum information and quantum dense
coding. Last but not least, taking advantage of a combination
of the 2 → 1 EARAC and (or) the 3 → 1 EARAC can realize
n → 1 EARAC [17]. We present success probabilities of two
cases and calculate several examples from n = 4 to n = 10
based on concatenation, comparing with corresponding
theoretical ones.

In fact, we did not apply electrical-modulated optical
(EOM) devices in our experiment, but carried out correspond-
ing operations manually. In practical application, in order to
encode a random bit in real-time scenarios, the EOM de-
vices should be applied to real-time control Bob’s (Charlie’s)
measurement basis according to Alice’s measurement results.
Therefore, this is just a proof-of-principle demonstration.

In addition, there are some noises and imperfections in
our system. For example, the entanglement and fidelity of
two-photon entangled states are 98.73 ± 0.27% and 98.45 ±
0.22%, respectively, which are not the maximum entangled
two-qubit states. Besides, the interference visibility of the BD
interferometer is 98.58 ± 0.35%, which is not the perfect in-
terference. Those imperfections will influence converting path
information to polarization information executed by Alice,
and further result in slight deviations between experimental
data and theoretical predictions.
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TABLE IV. Specific settings of wave plates are demonstrated to
realize the measurements in Eq. (1) and Eq. (2) in 2 → 1 EARAC.

Alice’s measurement

Case Output 1
2 λ 1

4 λ

x0 ⊕ x1 = 0 a = 0 146.25◦ 135◦

a = 1 33.75◦ 45◦

x0 ⊕ x1 = 1 a = 0 56.25◦ 45◦

a = 1 11.25◦ 45◦

Bob’s measurement
Case Output 1

2 λ 1
4 λ

y = 0 b = 0 22.5◦ 45◦

b = 1 −22.5◦ 45◦

y = 1 b = 0 0◦ 45◦

b = 1 0◦ −45◦

APPENDIX

Here we provide specific settings of wave plates in 2 → 1
(Table IV) and 3 → 1 (Table V) EARAC to encode and de-
code the classical bit string. Note that all degrees are forming
with their fast axis.

TABLE V. Orientation of combined wave plates allows Alice,
Bob, and Charlie to complete the process of encoding and decoding
in 3 → 1 EARAC.

Alice’s measurement

Case Output ϕ θ

x0 ⊕ x1 = 0 a = 0 56.25◦ 45◦

a = 1 11.25◦ 45◦

x0 ⊕ x1 = 1 a = 0 78.75◦ 45◦

a = 1 33.75◦ 45◦

Bob’s measurement
Case Output 1

2 λ 1
4 λ

m1 ⊕ x2 = 0 b = 0 13.68◦ 180◦

b = 1 58.68◦ 90◦

m1 ⊕ x2 = 1 b = 0 31.32◦ 180◦

b = 1 166.32◦ 0◦

Charlie’s measurement
Case Output 1

2 λ 1
4 λ

y = 0 c = 0 0◦ 135◦

c = 1 0◦ 45◦

y = 1 c = 0 22.5◦ 0◦

c = 1 67.5◦ 90◦

y = 2 c = 0 0◦ 0◦

c = 1 45◦ 0◦
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