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Many aspects of the well-known mapping between the partition function of a classical spin model and the
quantum entangled state have been studied in recent years. However, the consequences of the existence of
a classical (critical) phase transition on the corresponding quantum state have been mostly ignored. In this
paper, we consider this problem for an important example of the Kitaev toric code model which has been
shown to correspond to the two-dimensional (2D) Ising model though a duality transformation. We show that
the temperature on the classical side is mapped to bit-flip noise on the quantum side. It is then shown that a
transition from a coherent superposition of a given quantum state to a noncoherent mixture corresponds exactly
to paramagnetic-ferromagnetic phase transition in the Ising model. To identify such a transition further, we define
an order parameter to characterize the decoherence of such a mixture and show that it behaves similar to the order
parameter (magnetization) of the 2D Ising model, a behavior that is interpreted as a robust coherence in the toric
code model. Furthermore, we consider other properties of the noisy toric code model exactly at the critical point.
We show that there is a relative stability to noise for the toric code state at the critical noise which is revealed by
a relative reduction in susceptibility to noise.

DOI: 10.1103/PhysRevA.99.052312

I. INTRODUCTION

Among the well-known connections from statistical me-
chanics to quantum information theory [1–15], a fascinating
correspondence between partition functions of classical spin
models and quantum entangled states has attracted much
attention [16–18]. In 2007, it was shown that the partition
function of a classical spin model can be written as an
inner product of a product state and an entangled state [16].
Such mappings led to a cross-fertilization between quantum
information theory and statistical mechanics [19,20]. Specif-
ically, it has been shown that measurement-based quantum
computation on quantum entangled states [21,22] is related
to computational complexity of classical spin models [23,24].
In this way, a concept of the completeness was defined where
the partition function of a classical spin model generates the
partition function of all classical models [25–30] (see also
[31,32] for recent developments in this direction). Most such
studies were based on a specific mapping between classical-
quantum models. However, we have recently introduced a
canonical relation as a duality mapping where any given
Calderbank-Shor-Steane (CSS) quantum state can be mapped,
via hypergraph representations, to an arbitrary classical spin
model [33].

On the other hand, the problem of phase transition in
classical spin models has attracted much attention in the past
and is therefore a well-studied phenomenon [34]. Simply,
in the high-temperature phase such models exhibit no net
magnetization due to the symmetric behavior of dynamical
variables. Upon decreasing the temperature, this symmetry
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is spontaneously broken at a critical temperature Tcr, and a
nonzero magnetization appears in the system. The behaviors
of such systems at the critical point are characterized by non-
analytic properties of the leading thermodynamics functions
such as magnetic susceptibility. Such nonanalytic behavior is
characterized by a set of critical exponents which fully iden-
tify the symmetry-breaking property (or universality class) of
the particular phase transition [35].

Now, since there is a correspondence between such classi-
cal spin models and entangled quantum states, one would have
to wonder what the consequences of such phase transitions are
on the quantum states. It is our intention to take a step in this
direction by considering the well-known ferromagnetic phase
transition in a 2D Ising model and its consequences on the
Kitaev toric code (TC) [36], which we have previously shown
to be related via a duality mapping [33]. The TC state is of
particular interest since it has a topological order [37,38] with
a robust nature [39–42] as well as an important application
in quantum error correction [43,44]. On the other hand the
2D Ising model is a well-known model in standard statistical
mechanics which allows an exact solution. Therefore, one
can hope that exploration of such a mapping between the
partition function of the Ising model and the TC code can open
an avenue for many possible studies related to topological
properties of the TC state.

Subsequently, we consider the TC in the presence of an
independent bit-flip noise where the Pauli operators X are
applied to each qubit with probability p. We consider the
effect of the bit-flip noise in a coherent superposition of two
specific quantum states in the TC. Then we define an order
parameter that can characterize decoherence of the above
quantum state. Interestingly, we show that such an order
parameter is mapped to the magnetization of the Ising model.
Therefore, we conclude that there is a phase transition from a
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coherent superposition to a noncoherent mixture of the above
quantum state at a critical probability of pcr corresponding
to critical temperature of the 2D Ising model. We interpret
such a behavior as a robust coherence in the TC model. On
the other hand, it is well known that criticality can be marked
by interesting behavior at the transition point. Therefore, we
define a quantity as susceptibility to noise in the noisy TC
model and we show that, at the critical noise of pcr, the
susceptibility shows a relative reduction which is indicative
of critical stability which has been pointed out before [33].

Finally, we note that the TC under a bit-flip noise has
already been studied in the context of error threshold [6]. In
fact, it is proved that the degeneracy of the ground state of the
TC can be protected against bit-flip noise by an active error
correcting protocol if the rate of noise is below a threshold.
However, our problem here is different as we consider the
effect of the bit-flip noise in a coherent superposition of two
specific quantum states in the TC instead of the ground state
considered in [6]. More importantly, we do not consider any
error correcting protocol as we are only interested in studying
the natural robustness of the coherence of the above quantum
state against the bit-flip noise. Accordingly, while the problem
of error threshold is mapped to an Ising model with random
couplings [6], our problem is mapped to a ferromagnetic Ising
model with different physics.

This paper is structured as follows. In Sec. II, we give an
introduction to the TC model including its ground state and
excitations. In Sec. III, we first review the duality mapping
from the partition function of the 2D Ising model to the TC
state and specifically show how such a problem is related to
a TC state under a bit-flip noise. Then, we introduce a similar
mapping for the magnetization of the Ising model. In Sec. IV,
we provide our main result where we introduce a decoherence
process for a coherent superposition of two quantum states
in the TC and we find a singular phase transition to the
noncoherent phase which is mapped to the ferromagnetic
phase transition in the 2D Ising model. In Sec. V, we introduce
a susceptibility to noise which reveals a relative (critical)
stability of the toric code state against bit-flip noise at the
transition point.

II. REVIEW OF THE KITAEV TC MODEL

TC is the first well-known topological quantum code which
was introduced by Kitaev in 2003 [36]. Since we will consider
behavior of this model under noise, here we give a brief review
on the TC model which is specifically defined on a 2D square
lattice with periodic boundary condition (i.e., on a torus). To
this end, consider a L × L square lattice where qubits live on
edges of the lattice. Corresponding to each vertex and face of
the lattice, two stabilizer operators are defined in the following
form:

B f =
∏
i∈∂ f

Xi , Av =
∏
i∈v

Zi (1)

where i ∈ ∂ f refers to all qubits living on edges of the face
f and i ∈ v refers to qubits living on edges incoming to the
vertex v [see Fig. 1(a)]. The above operators are in fact gener-
ators of the stabilizer group of the TC where each product of
them is also a stabilizer. For example, if we represent each
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FIG. 1. (a) A 2D square lattice on a torus where qubits live on
edges of the lattice. Each vertex (face) operator Av (Bf ) is defined
corresponding to each vertex (face) of the lattice. (b) There are two
different directions on the lattice where two nontrivial loops can be
defined. The two nontrivial loops on the edges of the lattice are
denoted by γ and γ ′ while on the dual lattice they are denoted by
γd and γ ′

d .

face operator of B f as a loop around the boundary of the
corresponding face, each product of them will also have a loop
representation. In this way, corresponding to each kind of loop
in the lattice, there will be an X -type stabilizer.

On a torus topology, there are two relations between these
operators in the form of

∏
f B f = I and

∏
v Av = I where

I refers to the identity operator. In this way, the number
of independent stabilizers is equal to 2L − 2. By the fact
that [Av, B f ] = 0, it is simple to show that the following
state is an eigenstate of all face and vertex operators with
eigenvalue +1:

|K〉 = 1√
2(| f |−1)

∏
f

(I + B f )|0〉⊗2L

= 1√
2(|v|−1)

∏
v

(I + Av )|+〉⊗2L (2)

where
∏

f refers to the product of all independent face
operators and

∏
v refers to the product of all independent

vertex operators. | f | and |v| refer to the number of faces
and vertices, respectively. |0〉 and |+〉 = 1√

2
(|0〉 + |1〉) are

positive eigenstates of Pauli operators Z and X , respectively.
The stabilizer space of the toric code is fourfold degenerate
and thus there are three other stabilizer states which are
generated by nonlocal operators. In fact, one can consider
two nontrivial loops around the torus in two different di-
rections [see Fig. 1(b)]. Then two operators corresponding
to nontrivial loops γ and γ ′ are defined in the following
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form:

�x =
∏
i∈γ

Xi, �′
x =

∏
i∈γ ′

Xi (3)

where i ∈ γ and i ∈ γ ′ refers to all qubits living in these loops.
In this way, the following four quantum states will be the bases
of stabilizer space:

|ψμ,ν〉 = (�x )μ(�′
x )ν |K〉, (4)

where μ, ν = 0, 1 refer to exponents of nontrivial loop oper-
ators. In addition to the above nonlocal operators, there are
also two other nonlocal operators constructed by Z operators.
Such operators correspond to two loops γd and γ ′

d around the
torus on a dual lattice in the form of �z = ∏

i∈γd
Zi and �′

z =∏
i∈γ ′

d
Zi [see Fig. 1(b)]. One can check that these operators

can characterize four different bases of stabilizer space where
expectation values of these operators are different for the
bases (4).

Another important property of the TC state is related to
excitations of the model. To this end, consider two vertices
of the lattice denoted by i, j where a string, denoted by Si j ,
can connect these two vertices [see Fig. 1(a)]. Then we apply
the Pauli operators X on all qubits belonging to the string Si j

where we denote the corresponding string operator by Sx
i j . It is

clear that such an operator commutes with all vertex operators
Av instead of Ai and Aj , which are the two end points of the
string Si j . Such an excited state can also be interpreted as
two charge anions at the two end points of Si j . Charge anions
are generated as pairs and one can move one of them in the
lattice by applying a chain of Pauli operators. Furthermore,
we can also define string operators of the Pauli operators Z .
To this end, consider two faces r and t where a string Srt can
connect them [see Fig. 1(a)]. One can define a string operator
Sz

rt which is a product of Z operators on the Srt . Similarly, such
an operator does not commute with two face operators Br and
Bt at the two end points of the Srt , and it is interpreted as two
flux anions at the end points of the Srt .

We should emphasize that the TC model can also be
defined on other lattices with different topologies. The most
important difference between different topologies is related to
degeneracy of the stabilizer space. Specifically in this paper,
we consider a two-dimensional square lattice with an open
boundary condition (see Fig. 2). Vertex and face operators
are defined similarly to Eq. (1). However, note that vertex
operators corresponding to vertices of the boundary of the
lattice are three-body local. It is simple to check that unlike
the TC on the torus there is only one constraint on vertex
operators,

∏
v Av = I , and no constraint on face operators. In

this way, the degeneracy of stabilizer space will be equal to
2. It is also interesting to consider excitation of this model.
Unlike the TC on a torus, here one can find flux anions in odd
numbers. In fact if we apply a Z operator on a qubit on the
boundary of the lattice it will only generate one flux anion
in the neighboring face. The other flux anion always lives on
the boundary of the lattice. In other words, the corresponding
string operator has two end points with one on the boundary
and another inside the lattice. We denote such a string operator
by S0i where zero refers to a qubit on the boundary and i refers
to a qubit inside the lattice (see Fig. 2).
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FIG. 2. TC model on a 2D square lattice with open boundary.
The vertex operators corresponding to vertices on the boundary
are three-local. If a string starts in the boundary the corresponding
operator generates only one flux anion at the end point of the string
in the lattice.

III. MAPPING THE ISING MODEL
TO A NOISY TC MODEL

It is well known that the partition function of a classical
spin model can be mapped to an inner product of a product
state and an entangled state [16]. We have recently provided
such a mapping using a duality transformation for CSS states
which are mapped to classical spin models [33]. In this
section, we first review such mapping between the TC state
and 2D Ising model. We also show how a change of variable
allows the temperature in the Ising model to be transformed to
bit-flip noise in the TC state. Next, we extend such mapping
to the magnetization of the 2D Ising model where it is also
mapped to a specific quantity in the noisy toric TC model.

A. Mapping for the partition function

We start with the partition function of a 2D Ising model
which is defined on a 2D square lattice with an open boundary
condition where we suppose all spins in the boundary are
fixed to a value of +1. The partition function will be in the
following form:

Z =
∑
{σi}

eβJ
∑

〈i, j〉 σiσ j (5)

where σi = {±1} refers to spin variables which live on ver-
tices of the lattice which we call vertex spins, J refers to
coupling constants, and β = 1

kBT . Now, we define new spin
variables ξl which live on edges of the square lattice which
we call edge spins. In Fig. 3, we show these new spins by
green circles. We also define the value of each edge spin ξl

in the form of ξl = σiσ j where σi and σ j are two vertex spins
which live on two end points of the edge l . In the next step, we
rewrite the partition function of Eq. (5) in terms of the edge
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i jl

FIG. 3. Spin variables of the 2D Ising model are denoted by
black circles. Corresponding to each edge of the lattice a new spin
variable is defined and is denoted by the green circle. The dashed
lattice is the dual of the initial lattice where faces and vertices of
the initial lattice correspond to vertices and faces of the dual lattice,
respectively.

spins ξl in the following form:

Z =
∑
{ξl }

eβJ
∑

l ξl
∏

f

δ

⎛
⎝∏

l∈∂ f

ξl

⎞
⎠ (6)

where l ∈ ∂ f refers to edges around the face of f and we
have added delta functions corresponding to each face of
the lattice in order to satisfy constraints between edge spins.
In other words, since ξl = σiσ j , it is clear that the product
of spin variables corresponding to each face of the lattice
will be equal to 1. We should emphasize that one can find
another representation for constraints based on the dual lattice
which is the same as the square lattice. As it is shown in
Fig. 3, each face of the square lattice corresponds to a vertex
of the dual lattice. In this way, constraints in the form of∏

f δ(
∏

l∈∂ f ξl ) in Eq. (6) can be replaced by
∏

vd
δ(

∏
l∈vd

ξl )
where vd refers to a vertex of the dual lattice. Here, we use
such dual representation for finding the quantum formalism
of the 2D Ising model.

Now, we rewrite each delta function in the form of

δ(
∏

l∈vd
ξl ) = 1+∏

l∈vd
ξl

2 . Next, the partition function will be
written in a quantum language in the following form:

Z = 〈α|G〉 (7)

where |α〉 = (eβJ |0〉 + e−βJ |1〉)⊗Nd and |G〉 = ∏
vd

I+∏
l∈vd

Zl

2
(|0〉 + |1〉)⊗Nd where Nd is the number of edges of the dual
lattice. By comparison with Eq. (2) and by the fact that∏

l∈vd
Zl is in fact a vertex operator Av on the dual lattice,

it is clear that |G〉 is the same as the toric code state |K〉 on
the dual lattice up to a correction in the normalization factor.

Finally, the partition function will be in the form of

Z =
√

2| fd |〈α|K〉, (8)

where | fd | is the number of faces of the dual lattice. In this
way, the partition function of the 2D Ising model on a square
lattice is related to a TC state on the dual lattice with qubits
which live on the edges.

Now, let us define a new quantity p which is related to
Boltzmann weight in the form of p = e−2βJ

1+e−2βJ . Since βJ is a
quantity between zero and infinity, it is concluded that 0 <

p < 1
2 . In terms of this new quantity, the partition function

can be rewritten in the following form:

Z = 1

[p(1 − p)]
Nd
2

W (p), (9)

where

W (p) = 2Nd −1 Nd ⊗〈0|
∏

i

((1 − p)I + pXi )|K〉. (10)

We now show that the W (p) can be interpreted as an im-
portant quantity in a noisy TC state. To this end, we consider a
probabilistic bit-flip noise on the TC state where an X operator
is applied on each qubit with a probability of p. We consider
the density matrix of the model after applying a quantum
channel corresponding to the bit-flip noise. Such a noise leads
to different patterns of errors constructed by X operators on
qubits and we denote such an error by Ê (X ). The probability
of such an error is equal to WE (p) = p|E |(1 − p)Nd −|E | where
|E | refers to the number of qubits which have been affected by
the noise and Nd is the total number of qubits. The effect of
bit-flip noise on an arbitrary N-qubit quantum state, denoted
by density matrix ρ, can be presented by a quantum channel
in the following form:

(ρ) =
∑
E

WE (p)Ê (X )ρÊ (X ). (11)

Now, we come back to the relation of W (p) in Eq. (10)
and suppose p is the probability of bit-flip noise. If we
expand

∏
i[(1 − p)I + pXi] in this equation, we will have a

superposition of all possible errors with the corresponding
probability in the following form:∏

i

[(1 − p)I + pXi] =
∑
E

WE (p)Ê (X ). (12)

On the other hand, the toric code state on the dual lattice
is in the form of |K〉 = 1√

2| fd |
∏

f (I + B f )|0〉⊗Nd where the

operator
∏

f (I + B f ) is also a superposition of all possible
X -type loop operators if we interpret the identity operator as a
loop operator with a zero length (an interpretation that will be
supposed in the remainder of the paper). Therefore, it will be
easy to see that W (p) is equal to the probability of generating
loops in the noisy TC state. By this fact, Eq. (9) is a relation
between the partition function of the Ising model on a 2D
square lattice and the probability of generating loops in the
noisy TC state.

B. Mapping for the magnetization

Equation (9) for the partition function of the 2D Ising
model shows that there might be a deeper correspondence
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FIG. 4. (a) There is a chain of spins σ1, σ2, σ3, and σ4 between
two spins σm and σn. (b) After change of variables and converting to
quantum language, there will be a string operator corresponding to
the initial string Smn.

between the 2D Ising model and a noisy TC state. However,
in order to better understand such a correspondence it will
be useful to consider such a mapping for other important
quantities in the 2D Ising model. One of the most important
candidates is the magnetization of the 2D Ising model which
plays an important role in characterization of phase transition
in the 2D Ising model.

We start by considering the mean value of the product of
two arbitrary spins in the 2D Ising model, i.e., the correlation
function. The correlation function is formally given by

〈σmσn〉 = 1

Z
∑
{σi}

σmσneβJ
∑

〈i, j〉 σiσ j . (13)

Now, let us consider two particular spins as is shown
in Fig. 4. Then we consider an arbitrary string of spins
denoted by Smn between two spins σm and σn which we
denote by σ1, . . . , σ4. Since σ 2

i = 1, we can write σmσn =
(σmσ1)(σ1σ2)(σ2σ3)(σ3σ4)(σ4σn). Next, we write Eq. (13) in
the following form:

〈σmσn〉

=
∑

{σi}(σmσ1)(σ1σ2)(σ2σ3)(σ3σ4)(σ4σn)eβJ
∑

〈i, j〉 σiσ j

Z . (14)

By this new form, we can use edge spins that we defined in
the previous section to rewrite the above relation in terms of
edge spins ξl . We will have

〈σmσn〉 = 1

Z
∑
{ξl }

⎡
⎣ ∏

l∈Smn

ξl

⎤
⎦ eβJ

∑
l ξl

∏
f

δ

⎛
⎝∏

l∈∂ f

ξl

⎞
⎠ (15)

where l ∈ Smn refers to all edges belonging to the string
of Smn. Similar to the procedure that we performed for the
partition function of the 2D Ising model, we can rewrite the
above relation in a quantum language where we replace edge
spins with the Pauli matrices Z and by using definition of TC
states we will have

〈σmσn〉 = 〈α| ∏l∈Smn
Zl |K〉

〈α|K〉 = 〈α|Sz
mn|K〉

〈α|K〉 (16)

where Sz
mn is a Z-type string operator between vertices of m

and n and Sz
mn|K〉 is an excited state including two flux anions

in vertices of m and n.
The above process can also be applied for the mean value

of an arbitrary spin of the 2D Ising model denoted by 〈σi〉
which is in fact the order parameter of this model. Since we
considered a 2D Ising model with an open boundary condition
where all spins in the boundary of the lattice are fixed to
the value of +1, the expectation value of an arbitrary spin
σi is in fact equal to the correlation function between that
spin and another spin on the boundary of the lattice denoted
by σ0 = +1. Therefore, we can use the above formalism
for the correlation function to find a quantum formalism for
〈σi〉. As we show in Fig. 5, we consider a string of spins
σ1, . . . , σk between a particular spin σm and a spin σ0 = +1
on the boundary of the lattice. In this way, we will have σm =
(σmσ1)(σ1σ2) . . . (σk−1σk )(σkσ0) and the order parameter will
be in the following form:

〈σm〉

=
∑

{σi}(σmσ1)(σ1σ2) . . . (σk−1σk )(σkσ0)eβJ
∑

〈i, j〉 σiσ j

Z . (17)

Then we use a change of variable to edge spins ξl and finally
the above equation is rewritten in a quantum language in the
following form:

〈σm〉 = 〈α| ∏l∈Sm0
Zl |K〉

〈α|K〉 = 〈α|Sz
m0|K〉

〈α|K〉 (18)

where Sm0 refers to a string with one of its end points on
the boundary of the lattice and the other on the face of
m. Furthermore, since Sz

m0 is a Z-type string operator, the
quantum state of Sz

m0|K〉 is an excited state of the TC model
with only one flux anion in one of the end points of the string.

In order to relate the above result to a noisy TC model,
we use the transformation from Boltzmann weights in the
|α〉 to probability of noise p according to p = e−2βJ

1+e−2βJ . In this
way, according to Eq. (9) in the previous section, it is clear
that the denominator in Eq. (18) is the same as the partition
function up to a factor

√
2| fd | and will in fact be equal to

W (p)√
2| fd |[p(1−p)]

Nd
2

. Furthermore, we need to find an interpretation

for the numerator of Eq. (18). To this end, we note that
after transformation to probability of noise p the numerator
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FIG. 5. (a) There is a chain of spins between the boundary of the
lattice and spin σm. (b) After change of variables and converting to
the quantum language, there will be a string operator corresponding
to the string of S0m which corresponds to a flux anion in the TC model
with an open boundary.

is written in the following form:

〈α|Sz
m0|K〉 =

N⊗〈0|(pX + (1 − p)I )⊗N Sz
m0|K〉√

2| fd |[p(1 − p)]
N
2

(19)

where we have replaced the Nd by N for simplifying the
notation. As noted previously, [pX + (1 − p)I]⊗N is equal
to superposition of all possible bit-flip errors. On the other
hand, in the Sz

m0|K〉 = Sz
m0

∏
f (I + B f )|0〉⊗N ,

∏
f (I + B f ) is

equal to superposition of all X-type loop operators with the
same weight +1. However, the string operator Sz

m0 does not
commute with X -type loop operators that cross the string of
Sm0 an odd number of times. Therefore, one can conclude
that in the state of Sz

m0|K〉 we will have a superposition of all
X -type loop operators with two different weights +1 for loops
that cross the string Sm0 an even number of times and −1 for
loops that cross the Sm0 an odd number of times. By this fact,
the numerator will be related to the total probability, denoted
by W+(p), that noise leads to loops with even crossings with
the Sm0 minus total probability, denoted by W−(p), that noise
leads to loops with odd crossings with Sm0. Finally, Eq. (18)
will be in the following form:

〈σm〉 = W+(p) − W−(p)

W+(p) + W−(p)
(20)

where we have replaced W (p) in the denominator by W+(p) +
W−(p) and we have removed a factor of 1√

2| fd |[p(1−p)]
N
2

from

denominator and nominator.

According to Eq. (20) we have found a quantum analog
for the magnetization of the 2D Ising model. By using this
equation and Eq. (9) for the partition function, we are ready
to consider an interesting problem for a noisy TC model. In
other words, since in the 2D Ising model it is well known that
there is a phase transition at a critical temperature Tcr, one can
ask if there is a phase transition in the noisy TC model at a
corresponding probability of pcr. In the next section we use
the above mappings to show that there is a transition from a
coherent to a noncoherent phase in a noisy TC model.

IV. PHASE TRANSITION IN A NOISY TC MODEL

In this section, we give the main result of this paper where
we introduce a phase transition in a noisy TC model. To this
end, we note that the magnetization in Eq. (20), which is
in fact the order parameter of the 2D Ising model, shows a
second-order phase transition. Therefore, we expect the same
behavior for the quantity in the right-hand side of Eq. (20)
which should be an order parameter for characterization of
a type of phase transition in the noisy TC model. In order
to understand such a phase transition, first we need to find a
physical interpretation for the right-hand side of Eq. (20). To
this end, we come back to the noisy model and we consider the
effect of the bit-flip noise on a particular initial state. Suppose
that the initial state is an eigenstate of string operator Sz

m0. It
is a simple matter to check that such a state will be in the
following form:

|ψ+〉 = 1√
2

(|K〉 + Sz
mo|K〉). (21)

The above state is in fact a coherent superposition of a vacuum
state |K〉, where there is no anion, and a two anion state
Sz

m0|K〉 where one lives on the boundary zero and the other
lives on the face of m. Our main purpose is to investigate the
decoherence process of this coherent superposition as a result
of noise. We expect that by increasing the probability of the
bit flip noise the initial state converts to a complete mixture
of |K〉〈K| and Sz

m0|K〉〈K|Sz
m0. However, the actual trend, as a

function of noise probability, that such a transition to deco-
herence occurs is an important consideration. For example, is
the transition a gradual one or is there a sharp (second-order)
phase transition? How can one characterize such a transition.
Next, we set out to show that such a transition is in fact
sharp and can be characterized by an order parameter which
measures the amount of coherence in the system.

In order to consider the above decoherence process, we
divide all errors E (X ) in Eq. (11) to three parts. By the fact
that each error of E (X ) can be represented as a pattern of string
operators X on the lattice, we consider three kinds of strings
which are schematically shown in Fig. 6. The first are open
strings where there are charge anions in the end points of those
strings. The second are closed strings (loops) that cross the
string of Sm0 an odd number of times and the third are closed
strings that cross the string of Sm0 an even number of times.
It is simple to check that the effect of errors corresponding
to the open strings, denoted by E1, on the state of |ψ+〉 leads
to generation of charge anions on end points of open strings
and takes the initial state to other excited states. The effect of
the second kind of errors, denoted by E2, is interesting where
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(b)(a) (c)
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FIG. 6. The red string refers to the string operator Sz
m0 with a flux

anion in the end point. (a) The first set of errors E1 which correspond
to open strings of X operators with two charge anions in the end
points. (b) The second set of errors E2 which correspond to loops
of X operators which cross the Sm0 an odd number of times. (c) The
third set of errors E3 which correspond to loops of X operators which
cross the Sm0 an even number of times.

it takes |ψ+〉 to 1√
2
(|K〉 − Sz

mo|K〉), denoted by |ψ−〉 which is
orthogonal to |ψ+〉, because loop operators of the second type
anticommute with Sz

m0. Finally the effect of the third kind of
errors, denoted by E3, is trivial as it takes |ψ+〉 to |ψ+〉. In this
way, Eq. (11), when we insert ρ = |ψ+〉〈ψ+|, can be written
in the following form:

(|ψ+〉〈ψ+|) =
∑
E∈E1

WE (p)|ψE 〉〈ψE | + W−(p)|ψ−〉〈ψ−|

+W+(p)|ψ+〉〈ψ+| (22)

where

W−(p) =
∑
E∈E2

WE (p),

W+(p) =
∑
E∈E3

WE (p),

and

|ψE 〉 = E (X )|ψ〉,
and E1, E2, and E3 refer to the above three kinds of errors,
respectively. W+ and W− are the total probability of gener-
ating loops which cross the Sm0 an even and odd number
of times, respectively. In order to find a better interpretation
for the above state, note that in the final quantum state there
is a mixture of |ψ+〉 with probability of W+(p) and |ψ−〉
with probability of W−(p). In other words, while the state
of |ψ+〉 = 1√

2
(|K〉 + Sz

mo|K〉) is a coherent superposition of
states |K〉 and Sz

m0|K〉, the effect of bit-flip noise has led
to generating a noncoherent mixture of them which can be
represented in the corresponding subspace in the following
form:

1

2

(
(W+ + W−) (W+ − W−)

(W+ − W−) (W+ + W−)

)
. (23)

Now, we need to define a parameter to characterize the amount
of decoherence in the above mixture in terms of p. According
to Eq. (23), the following parameter is a well-defined measure
for the above decoherence:

O(p) = W+(p) − W−(p)

W+(p) + W−(p)
. (24)

m

crT T

1

p

1

(a) (b)

ferromagnetic
 phase

paramagnetic
 phase

coherent
 phase

noncoherent
 phase

O

0.29crp 0.50

FIG. 7. (a) A schematic representation of the well-known di-
agram of the order parameter in the 2D Ising model where the
magnetization goes to zero at Tcr. (b) By comparing Eqs. (20) and
(24), the expectation value of the string operator Sz

m0 shows the same
behavior with a phase transition at pcr = 0.29.

This quantity can be also interpreted as the expectation value
of Sz

m0 in a subspace which is spanned by |ψ+〉 and |ψ−〉. For
example, when W+ = W and W− = 0 the order parameter O is
equal to 1 which indicates a coherent superposition, and when
W+ = W− it is equal to zero, indicating a complete mixture
where Eq. (23) becomes proportional to the identity operator.
Now, referring to Eq. (20), we see that O is identical to the
order parameter of the 2D Ising model. On the other hand,
it is well known that the order parameter in the 2D Ising
model characterizes the nature of ferromagnetic phase tran-
sition where at a critical temperature Tcr the system shows a
second-order phase transition from an ordered phase 〈σm〉 �= 0
to a disordered phase 〈σm〉 = 0. Therefore, by using Eq. (24),
it is concluded that there is a phase transition in the noisy
TC state where a relatively coherent state, O �= 0, goes to
a complete mixture, O = 0, at a well-defined (and relatively
large) noise value of pcr which is easily calculated from the
critical temperature of the 2D Ising model to be pcr = 0.29.

The picture that emerges is very interesting. One would ex-
pect that increasing bit-flip noise on a coherent superposition
would lead to decoherence. However, we have shown that the
system remains relatively robust to such an effect for small
values of noise probability p 	 pcr and that the transition
can be characterized by an order parameter which shows
a sharp (second-order) phase transition to decoherence at a
relatively large value of noise value. Figure 7 schematically
shows such a behavior as increasing p from zero to half leads
to decoherence at the value of pcr = 0.29. This interesting and
unexpected property indicates a robust coherence which might
be related to topological order of the TC state, a point that we
will come back to in Sec. VI.

V. SUSCEPTIBILITY AND CRITICAL STABILITY
AT PHASE TRANSITION

Although the existence of a phase transition in a physical
system is very important by itself, the critical point which
separates two different phases of the system is also a key
matter which should specifically be considered. Therefore,
we intend to look for other consequences of criticality on
the classical side for the quantum model. In this section we
consider this problem and specifically show that the ground
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state of the TC model under the noise displays an interesting
behavior precisely at the critical point pcr.

We consider an important issue that has been previously
emphasized in the general context of CSS states, i.e., relative
critical stability, which occurs at pcr [33]. Here, we investigate
such a concept in terms of a susceptibility to noise which is
defined for an initial state affected by a bit-flip noise. To this
end, we use a familiar quantity in the quantum information
theory called fidelity. In other words, if we consider the
state of |K〉 as an initial state, the fidelity of this state and
the final state after applying noise will be in the following
form:

F (p) = 〈K|(ρ)|K〉 (25)

where (ρ) is the final state after applying the bit-flip channel
to the initial state ρ = |K〉〈K|. Now it is clear that if F (p)
is small (large) it means that susceptibility to noise is high
(low) because the final state is very different from (similar to)
the initial state. In other words, there is an inverse relation
between susceptibility to noise and fidelity. Therefore, we
define the following quantity to measure the susceptibility:

χ (p) = −log[F (p)]. (26)

It will be interesting to give a physical picture to this quantity.
To this end, we interpret F (p) in an anionic picture for the
TC state. In fact, when a bit-flip noise is applied to a qubit
of the lattice, it generates two charged anions. Therefore, the
effect of probabilistic bit-flip noise on all qubits can lead to
two events, generation of pair anions and walking anions in
the lattice. It is clear that as long as there is an anion in the
lattice the system is in an excited mode and fidelity is zero, i.e.,
susceptibility is infinite. The only possible way that the system
comes back to the ground state is that anions fuse to each other
and annihilate. In other words, anions must generate complete
loops in the lattice. This consideration seems to indicate that
F (p) should be equal to the probability of generating loops
which is the same as W (p).

In order to explicitly prove that F (p) = W (p), we use
the definition of Eq. (25) for F (p). On one hand, we know
that |K〉 = 1√

2| f |
∏

f (I + B f )|0〉⊗N and
∏

f (I + B f ) is equal
to summation of all possible X -type loop operators in the
lattice. On the other hand, (ρ) in Eq. (25) is equal to∑

E WE (p)Ê (X )ρÊ (X ) which is equal to a summation of all
possible X chains with the corresponding probability. In this
way, when such a summation inserts between two states |K〉
in Eq. (25), all X chains in the summation lead to error and
convert the inner product to zero, except for the X chains
corresponding to loops which convert the inner product to
1. Therefore, there will be a summation of probability of
generating loops and it is equal to W (p).

Now, we note that W (p) was related to the partition func-
tion of the 2D Ising model according to Eq. (9) and since
F (p) = W (p) we have

Z = 1

[p(1 − p)]
N
2

F (p). (27)

Therefore, one can find the fidelity in the form of [p(1 −
p)]

N
2 Z . Since p � 1

2 , it is concluded that [p(1 − p)]
N
2 → 0 for

large N . In this way, it seems that F (p) should be zero for any

nonzero value of p and therefore susceptibility is infinite for
any generic noise probability. However, at the critical point,
the partition function displays a nonanalytic behavior, where
fluctuations become relevant. A fluctuation correction to the
partition function can be written as [35]

Z ≈ exp(−βA)
√

2πkT 2Cv, (28)

where A is the Helmholtz free energy and Cv is the heat
capacity which behaves as Cv ∼| T − Tcr |−α , near the critical
point. Fidelity is clearly equal to unity for zero noise (or
temperature), but it is also a strongly decreasing function of
p as can be seen from Eq. (27). However, the divergence of
heat capacity at the critical point will cause a relative increase
of the value of fidelity (or relative decrease of susceptibility)
as the critical point is approached, thus leading to a relative
stability [33].

There are two points about critical stability that should
be emphasized. The first is that the concept of susceptibility
that we defined here is not the usual susceptibility in classi-
cal phase transitions. For example, in the Ising model, heat
capacity can be interpreted as susceptibility of the system
to an infinitesimal change of temperature. However, in our
case, the susceptibility measures stability of the initial state
to the whole of the noise, not an infinitesimal change of the
probability of the noise. In other words, our susceptibility is
not defined as a derivative, but as the response of the ground
state to a noise probability of a finite value p.

As the second point, we emphasize that the critical proba-
bility of pcr should not be regarded as a threshold for stability
of the toric code state. In contrast, it is a relative stability
that occurs only at a particular noise probability, pcr. It is
different from the role of pcr in the previous section where
it was a threshold for maintaining coherence of a particular
initial state.

A physical picture may help to clarify what is happening
in both situations. As p increases the possibility of forming
larger loops also increases. It is at pcr where the possibility
of having loops of the order of system size, N , appear. This
is related to the fact that correlation length diverges at the
critical point. These system size loops are prime candidates
for increasing the value of W−, as they are prime candidates
for crossing the string operators once, when compared to
smaller strings which typically do not cross or cross twice (see
Fig. 6). This explains how the order parameter suddenly drops
to zero at the critical point as a significant W− cancels out the
already reduced W+. Also note that for p > pcr both values of
W+ and W− are significantly small and equal, leading to zero
order parameter. On the other hand, the emergence of such
system size loops which can occur only at pcr give a relative
increase to the value of W (p) = W+ + W−, thus explaining the
relative stability near (at) the critical point.

VI. DISCUSSION

Although some time has passed since the introduction of
quantum formalism for the partition function of classical spin
models, it seems that such mappings are richer than what
had been previously supposed. In particular, here we studied
a neglected aspect of such mappings related to the phase
transition on the classical side. In particular, we observed
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the existence of a sharp (second-order) phase transition from
a coherent phase to a mixed phase in the noisy TC model
as well as a relative critical stability at the transition point.
These seem like important physical properties which might
find relevance in the applications of quantum states in general.
As a closing remark, we would like to emphasize that the large
value of the critical noise Pcr = 0.29 can be interpreted as a
robust coherence of the initial state against bit-flip noise. On
the other hand, since string operators and loop operators in the
TC model correspond to processes of generating and fusing
anions, it seems that the robust coherence is in fact related
to anionic properties. This point in addition to a relative
stability at the critical noise support a conjecture that such
behaviors might be related to topological order of the TC state.
Since the critical stability has also been observed in other
topological CSS states [33], it will be interesting to consider
the existence of the robust coherence in such models, a
problem we intend to address in future studies. Also, recently,
more exotic 2D topological phases [45] have been proposed

and studied, and since dualities between these phases and
statistical mechanical models have also been introduced [46]
it will be interesting to consider our approach for such models
along the lines of our approach via possible consequences of
criticality.

We finally note that we have specifically looked at the map-
ping for a toric code on a square lattice with open boundary
conditions. However, it is easy to see that any other lattice
structure and/or boundary condition could have been used
while the mapping to the corresponding Ising model with
the same lattice structure and boundary condition would have
still been valid [33]. Therefore, since the Ising transition is
independent of such details, the same conclusions, e.g., robust
coherence, would still hold.
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