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Quantum anomaly detection with density estimation and multivariate Gaussian distribution
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We study quantum anomaly detection with density estimation and multivariate Gaussian distribution. Both
algorithms are constructed using the standard gate-based model of quantum computing. Compared with the
corresponding classical algorithms, the resource complexities of our quantum algorithm are logarithmic in
the dimensionality of quantum states and the number of training quantum states. We also present a quantum
procedure for efficiently estimating the determinant of any Hermitian operators A ∈ RN×N with time complexity
O(poly log N ), which forms an important subroutine in our quantum anomaly detection with multivariate
Gaussian distribution. Finally, our results also include the modified quantum kernel principal component analysis
(PCA) and the quantum one-class support vector machine (SVM) for detecting classical data.
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I. INTRODUCTION

Anomaly detection (AD) is a pivotal topic in statistics
that has been researched within diverse areas and application
domains, such as fraud detection for credit cards, insurance
or health care, intrusion detection for cyber-security, fault
detection in safety critical systems, and military surveillance
for enemy activities [1,2]. The importance of AD is due to the
fact that anomalous data indicate significant information. For
example, an anomalous MRI image may mean the presence
of malignant tumors [3]. Traditional anomaly detection tech-
niques focus on detecting anomalous data that differ from nor-
mal (or clean) data patterns. Over time, a variety of anomaly
detection techniques have been developed in several research
communities. One of the most common machine learning
algorithms for AD is based on the density estimation method
by estimating the probability density function [4–7]. In 2009,
the authors presented a first attempt to evaluate two previously
proposed methods for statistical anomaly detection in sea
traffic, namely the Gaussian mixture model and the adaptive
kernel density estimator [8]. Erfani et al. proposed a hybrid
model for unsupervised anomaly detection that combines a
one-class support vector machine (SVM) and a deep belief
network (DBN) [9]. Carrera et al. presented a novel approach
for detecting anomalous structures in images by learning a
convolutional sparse model that describes the local struc-
tures of normal images [10]. Especially for point anomalies,
Hoffmann studied kernel PCA for novelty detection in 2007
[11]. Due to the fact that abnormalities are very rare, we
could not use the traditional classification method to learn an
anomaly model described by the fault conditions. AD offered
a solution to this situation by modeling a normal data set
and using a distance measure and a threshold for determining
abnormality [12].
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In parallel, we are witnessing the influence of quantum
information processing on its classical counterpart. Follow-
ing the discovery of quantum algorithms for factoring [13],
database searching [14], and quantum matrix inverse [15],
decades of work have shown that quantum algorithms have
the capability of outperforming existing classical methods.
These algorithms have recently been employed in machine
learning and form an interdisciplinary field called quantum
machine learning (QML). In particular, it has proved useful in
regression and classification problems that appear in machine
learning [16–21].

A natural question arises of how to design a quantum
machine learning algorithm for detecting anomalies in a
quantum computer. Although some previous results have
been reported [17,22,23], AD still requires more investiga-
tion from a quantum mechanics perspective. Quite recently,
Sentís et al. introduced the quantum change point and devised
online strategies for identifying a change point in a stream
of quantum particles allegedly prepared in identical states
[22,23], which is a quantum version of identifying changes
in a sequence of random variables. Liu et al. designed two
quantum algorithms for quantum anomaly detection, quantum
kernel PCA and quantum one-class SVM, proved that these
two quantum algorithms can be performed using resources
logarithmic in the dimensionality of quantum states [17].

In the present study, we design two anomaly detection
algorithms based on density estimation and multivariate Gaus-
sian distribution. Given a training set of M quantum states
which have d dimensional features, we can identify which
one varies significantly from the average. We show how a
training set can be modeled by using a Gaussian distribution
and how the model can be used for anomaly detection. Our
algorithm can be achieved using resources only logarithmic
in the dimensionality of quantum states and the number
of training quantum states. The organization of the paper
is as follows. In Sec. II, we review the classical anomaly
detection algorithm with density estimation and multivariate
Gaussian distribution. In Secs. III and IV, we introduce
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FIG. 1. A simple example of anomalies in a two-dimensional
data set.

the key quantum anomaly detection algorithm with density
estimation and multivariate Gaussian distribution in detail.
We discuss the generalization of quantum kernel PCA and
quantum one-class SVM to tackle a classical discrete data
anomaly in Sec. V. A summary and discussions are included
in Sec. VI.

II. ANOMALY DETECTION ALGORITHM

In this section, we provide the necessary background in-
formation to understand this paper. An anomaly detection
algorithm aims to construct a data model which normal data
obeys whereas anomalous data do not. Anomalies are patterns
in data that do not meet a well defined notion of normal
behavior [24]. For instance, Fig. 1 illustrates anomalies in a
simple two-dimensional data set. The data set has two normal
regions, R1 and R2, since most observations lie in these two
regions. Points that are sufficiently far away from the regions,
e.g., points p1 and p2, and points in region R3, are anomalies.
Typically, one can estimate a number of parameters charac-
terized by the data model of a random variable. Parametric
approaches make an assumption that data distributions are
Gaussian in nature and they can be modeled statistically based
on data means and covariance [12]. We will use an anomaly
detection algorithm with density estimation and multivariate
Gaussian distribution, described below, as a foundation to
present a quantum anomaly detection algorithm.

A. Anomaly detection algorithm with density estimation

Suppose we are given a training set {xi}M
i=1 with d features

and M samples which are expected to follow a Gaussian
distribution. The algorithm aims to create a statistical model
p(x) from the training set by assuming each feature follows a
Gaussian distribution and then identifying whether the new
datum x is abnormal or not. Then the overall procedure is
depicted as follows:

(1) Fit density parameters μ1, . . . , μd , σ 2
1 , . . . , σ 2

d , where

μ j = 1

M

M∑
i=1

xi
j, σ 2

j = 1

M

M∑
i=1

(
xi

j − μ j
)2

.

(2) Given a new example x, compute p(x),

p(x) =
d∏

j=1

p
(
x j ; μ j, σ

2
j

) =
d∏

j=1

1√
2πσ j

e
− (x j −μ j )2

2σ2
j . (1)

(3) If p(x) < ε, one can flag this datum as an anomaly;
otherwise, it is a normal datum.

The parameter ε is some threshold probability value de-
pending on how sure we want to be. The most common
method for selecting a suitable threshold is K-fold cross
validation, the same as other prediction tasks [25,26]. For sim-
plicity, we take the following computation based on Eq. (1):

ln p(x) = ln
d∏

j=1

1√
2πσ j

e
− (x j −μ j )2

2σ2
j =

d∑
j=1

ln
1√

2πσ j

e
− (x j −μ j )2

2σ2
j

= −d

2
ln 2π −

d∑
j=1

ln σ j −
d∑

j=1

(x j − μ j )2

2σ 2
j

. (2)

B. Anomaly detection algorithm with multivariate
Gaussian distribution

The multivariate Gaussian distribution is different from
the Gaussian distribution. This algorithm attempts to develop
a model p(x) all in one process, instead of modeling each
feature separately as in Eq. (1). For a training set {xi}M

i=1 with
d features and M samples, we fit model p(x) by setting

μ = 1

M

M∑
i=1

xi, C = 1

M

M∑
i=1

(xi − μ)(xi − μ)T . (3)

Given a new example x, compute

p(x) = 1

(2π )
d
2 |C| 1

2

e− 1
2 (x−μ)T C−1(x−μ), (4)

where |C| represents the determinant of matrix C. If p(x) < ε

we can flag this datum as an anomaly, otherwise, it is a normal
datum.

III. QUANTUM ANOMALY DETECTION ALGORITHM
WITH DENSITY ESTIMATION

In this section, we will develop a quantum anomaly algo-
rithm with density estimation. For classical data, our schemes
require the method of encoding classical information into the
amplitude of a quantum system and then applying our quan-
tum anomaly detection algorithms directly. In other words, we
encode a 2n-dimensional vector �u = {u0, u1, . . . , u2n−1} into
the 2n amplitudes u0, u1, . . . , u2n−1 of an n-qubit quantum
system, |u〉 = ∑2n−1

i=0 ui|i〉, where {|i〉} is the computational
basis [18]. Thus, in what follows, we only consider quantum
pure-state anomaly detection. In that sense, our algorithms can
detect an anomaly in both classical data and quantum states
generated from quantum devices.

Suppose we are given access to the unitaries {Ui}M
i=0 to

obtain quantum states {|xi〉}M
i=0, where Ui|0 · · · 0〉 = |xi〉. We

are given a set of M normal quantum training states {|xi〉}M
i=1

and the test quantum state {|x0〉}. Our task is to detect how
anomalous the state |x0〉 is compared to the normal states.
We assume the runtime of our algorithm is dominated by the
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number of quantum gates. First, we define the analogous mean
state of the training quantum state by

|μ〉 = 1

Nμ

M∑
i=1

|xi〉 = 1

Nμ

M∑
i=1

d∑
j=1

xi
j | j〉, (5)

where xi
j denotes the jth element of state |xi〉. The normal-

ization coefficient N2
μ = ∑M

k,l=1〈xk|xl〉 can be found using
O(log M ) resources. Here, we show a method for preparing
the mean state. We can apply the unitary operation I ⊗ H log M

on the given initial state |�1〉 = 1√
M

∑M
i=1 |xi〉|i〉 to obtain

|ψμ〉 = 1

M

M∑
i=1

|xi〉
M∑

j=1

(−1)i· j | j〉, (6)

where i · j is the bitwise inner product of i and j, modulo 2.
Specifically, we perform a Hadamard gate H on each of the
qubits of the second register. Then by making a projective
measurement |0 · · · 0〉〈0 · · · 0| on the second register we can
recover the mean state |μ〉|0 · · · 0〉. The success probability
Pμ of this measurement is

Pμ = tr(|0 · · · 0〉〈0 · · · 0|H⊗ log M |�1〉〈�1|H⊗ log M )

= 1

M2

M∑
k,l=1

〈xk|xl〉. (7)

Obviously, the use of an O(log M ) Hadamard gates means that
our gate resource count is O(log M ).

Algorithm 1: Efficiently computing
∑d

j=1

(x0
j −μ j )2

2σ 2
j

Step 1. Prepare the quantum state
∑d

j=1 |χ j〉|χ 0
j 〉| j〉.

Step 2. Add an ancilla qubit |0〉 and perform a controlled unitary
operator R1 to obtain

d∑
j=1

|χ j〉
∣∣χ 0

j

〉| j〉

⎛
⎜⎝χ 0

j

χ j
|0〉 +

√√√√1 −
(

χ 0
j

χ j

)2

|1〉

⎞
⎟⎠.

Step 3. Uncompute the second and third registers. The system state
is

d∑
j=1

| j〉

⎛
⎜⎝χ 0

j

χ j
|0〉 +

√√√√1 −
(

χ 0
j

χ j

)2

|1〉

⎞
⎟⎠.

Step 4. Measure the observable M1 = I ⊗ |0〉〈0| and the

expectation 〈M1〉 = ∑d
j=1 (

χ0
j

χ j
)
2

.

Next, we show a method for preparing the state
|χ〉 = 1

Nχ

∑d
j=1 |χ j〉| j〉 = 1

Nχ

∑d
j=1

∑M
i=1(xi

j − μ j )|i〉| j〉 cor-
responding to the x j − μ j in classical anomaly detection with
density estimation, where N2

χ = ∑d
k,l=1〈χk|χl〉. We rewrite

the mean state |μ〉 as |μ〉 = 1
Nμ

∑d
j=1 μ j | j〉, where μ j =∑M

i=1 xi
j . Suppose we are given the control unitaries to create

the following superpositions of training states:

|�2〉 = |0〉∑d
j=1 |xi〉| j〉 + |1〉|μ〉∑M

i=1 |i〉√
2

. (8)

Then we apply a Hadamard gate on qubit of the first register
to obtain

1

2

⎛
⎝|0〉

d∑
j=1

M∑
i=1

(
xi

j + μ j
)|i〉| j〉 + |1〉

d∑
j=1

M∑
i=1

(
xi

j − μ j
)|i〉| j〉

⎞
⎠.

(9)

As the final step measure the first register in |1〉, the remaining
qubits collapse into the state

d∑
j=1

M∑
i=1

(
xi

j − μ j
)|i〉| j〉 =

d∑
j=1

|χ j〉| j〉. (10)

The success probability Pχ of this measurement is

Pχ = tr(|1〉〈1|H |�2〉〈�2|H ) =
d∑

k,l=1

〈χk|χl〉. (11)

In this process, our gate resource count is O(1). The same trick
as above, for the test quantum state |x0〉 and the mean state
|μ〉, we can easily prepare state

∑d
j=1

∑M
i=1(x0

j − μ j )|i〉| j〉 =∑d
j=1 |χ0

j 〉| j〉, where |χ0
j 〉 = ∑M

i=1(x0
j − μ j )|i〉.

Algorithm 2: Efficiently computing
∑d

j=1 ln δ j

Step 1. According to Eq. (10), we obtain the quantum state∑d
j=1 |χ j〉| j〉.

Step 2. Add an ancilla qubit |0〉 and perform a controlled unitary
operator R2 to obtain

d∑
j=1

|χ j〉| j〉(ln χ j |0〉 + √
1 − 2 ln χ j |1〉).

Step 3. Uncompute the second register. The system state is
d∑

j=1

| j〉(ln χ j |0〉 + √
1 − 2 ln χ j |1〉).

Step 4. Measure the observable M2 = I ⊗ |0〉〈0| and the
expectation 〈M2〉 = 2

∑d
j=1 ln χ j .

With these preparations, we present Algorithm 1 for cal-

culating the
∑d

j=1
(x0

j −μ j )2

2σ 2
j

. In step 2, the unitary opera-

tor R1 transform |0〉 to
χ0

j

χ j
|0〉 +

√
1 − (

χ0
j

χ j
)
2|1〉 controlled

by the states |χ j〉 and |χ0
j 〉. Thus, we can easily deduce∑d

j=1
(x0

j −μ j )2

2σ 2
j

= 1
2 〈M1〉.

At the same time, we present Algorithm 2 for computing∑d
j=1 ln δ j . In step 2, the unitary operator R2 transform |0〉

to ln χ j |0〉 + √
1 − 2 ln χ j |1〉 controlled by the states |χ j〉.

Thus, we can easily deduce
∑d

j=1 ln δ j = 1
2 〈M2〉. Then, given

a probability threshold ε, these two algorithms allow us to
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detect anomalies based upon Algorithm 3. If

ln p(|x0〉) = −d

2
ln 2π − 1

2
(〈M1〉 + 〈M2〉) < ln ε,

one can flag |x0〉 as a normal quantum state, otherwise, |x0〉 is
an abnormal quantum state. The overall resource complexity
of Algorithm 3 is O(log M ).

Algorithm 3: Quantum anomaly detection with density estimation

Input. The quantum state training set {|xi〉}M
i=1, the test quantum

state |x0〉. and a suitable threshold ε.

Step 1. Apply Algorithm 1 to obtain 〈M1〉 using quantum gate
resources O(log M ).

Step 2. Apply Algorithm 2 to obtain 〈M2〉 using quantum gate
resources O(1).

Step 3. If

ln p(|x0〉) = −d

2
ln 2π − 1

2
(〈M1〉 + 〈M2〉) < ln ε,

then |x0〉 is a normal quantum state. Otherwise, |x0〉 is an
abnormal quantum state.

IV. QUANTUM ANOMALY DETECTION ALGORITHM
WITH MULTIVARIATE GAUSSIAN DISTRIBUTION

Here, we show how to identify an anomaly with a mul-
tivariate Gaussian distribution on a quantum computer. For
simplicity, we transform Eq. (4) to a fairly easy form,

ptest = (x − μ)T C−1(x − μ) > 2 ln
(
(2π )

n
2 |C| 1

2 ε
)
. (12)

We also give two algorithms to efficiently compute the
subitems ptest and the determinant of C. In subsection A,
we show the computation of ptest . Then, we describe the
computation process of estimating the determinant of a given
Hermitian positive definite operator in subsection B. Since our
algorithms make use of a quantum linear systems algorithm
[15], we achieve an exponential speed-up over its classical
counterpart.

A. Efficient computation of ptest

For a quantum anomaly detection algorithm with multivari-
ate Gaussian distribution, first we define the centered state of
the training quantum state by

|zi〉 =
d∑

j=1

zi
j | j〉, (13)

where zi
j is the jth component of the vector zi and zi = xi − μ.

Following the method of [19], we will assume the following
oracle:

O1(|i〉|0⊗ log d〉) → |i〉|zi〉, (14)

to get the state |zi〉 in time O(log d ). Obviously, given a
new example x0, we can also obtain the corresponding cen-
tered state |z0〉. The covariance matrix can be rewritten in
terms of quantum states as C = 1

M−1

∑M
i=1 |zi

j〉〈zi
j |. It is also

proportional to a density matrix C = C
tr(C) , where tr(C) =

1
M−1

∑M
i=1

∑d
j=1 zi

j (z
i
j )

∗. Since C is a Hermitian operator, we
can use the method of [27] to exponentiate this operator.
Assuming the operator C has spectral decomposition C =∑d

k=1 λk|uk〉|〈uk|, we can obtain

ptest = 〈z0|C−1|z0〉 = 〈z0|C−1|z0〉
tr(C)

= 1

tr(C)

d∑
j=1

β2
j

λ j
. (15)

At the same time, we decompose |z0〉 in the eigenbasis of C.
To avoid exponential small eigenvalues, we define an effective
condition number κ and take into account only eigenvalues in
the interval [1/κ, 1]. Here, we give a quantum Algorithm 4
for tackling this problem based on the phase estimation [28].
The expectation value for the measurement in the final state

|�3〉 is 〈M3〉 = ∑
j

β2
j

λ j
. Thus, we can easily deduce the value

of ptest = 〈M3〉.

Algorithm 4: Efficiently computing ptest

Step 1. Prepare the quantum states |0〉 and |z0〉 in registers A, B

Step 2. Since the operator C is Hermitian positive semidefinite, use
the well-known technique of phase estimation [28] to obtain the
eigenvalue/eigenvector, in time O(log d ):

d∑
j=1

β j |λ j〉A|uj〉B, β j = 〈z0|uj〉.

Step 3. Add a joint qubit |0〉 and invert the square root of
eigenvalues to obtain

d∑
j=1

β j |λ j〉A|uj〉B

(
1√
λ j

|0〉 +
√

1 − 1

λ j
|1〉

)
.

Step 4. Uncompute the output of the phase estimation and obtain
the state

|�3〉 =
d∑

j=1

β j |uj〉B

(
1√
λ j

|0〉 +
√

1 − 1

λ j
|1〉

)
.

Step 5. Measure the observable M3 = IB ⊗ |0〉〈0| and the
expectation 〈M3〉 = ∑d

j=1
β2

λ j
.

B. Efficient estimation ln |C| 1
2

In this subsection, we will describe a method to estimate
the determinant of a Hermitian positive definite operator,
which plays key roles in machine learning and optimization
[29]. However, the determinant of matrices has been less
investigated from a quantum information perspective. For a
Hermitian operator B ∈ Rn×n with spectral decomposition
B = ∑n

i=1 λiuiu
†
i , the determinant of B is given by

|B| = n
i=1λi = e

∑d
i=1 ln λi . (16)

Thus, we only need to achieve the exponential of
∑d

i=1 ln λi.

Motivated by the Harrow-Hassidim-Lloyd algorithm [15], we
design Algorithm 5 to estimate the determinant of Hermitian
positive definite operator. Next, we would like to establish
error bounds on the final result in Algorithm 5. We first define
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Algorithm 5: Estimating the determinant of B

Step 1. Since the operator B is Hermitian positive semidefinite, use
the the well-known technique of phase estimation [28] to obtain
the eigenvalue/eigenvector.

Step 2. Apply the map taking |λi〉 to ln λi|λi〉 by an ancilla qubit.
Once it succeeds, we go to the next step.

Step 3. Uncompute the eigenvalue register and obtain the state∑N
i=0 |ui〉(ln λi|0〉 +

√
1 − (ln λi )2|1〉).

Step 4. Measure the observable M = IB ⊗ |0〉〈0| and the
expectation 〈M〉 = ∑N

i=0 ln λi. Then the determinant |B| = e〈M〉.

the map

|g(λ)〉 := ln λ|0〉 + √
1 − 2 ln λ|1〉. (17)

This allows us to obtain the logarithm of the eigenvalue. We
will make use of the following lemma to bound the error.

Lemma 1. The map λ 
→ |g(λ)〉 is O(κ2)-Lipschitz, mean-
ing that for any λi �= λ j ,

‖|g(λi )〉 − |g(λ j )〉‖ � cκ2|λi − λ j | (18)

for some c = O(1).
Proof. Since λ 
→ |g(λ)〉 is continuous everywhere and

differentiable, it suffices to bound the norm of the derivative
of |g(λ)〉. We consider

d

dλ
|g(λ)〉 = 1

λ
|0〉 − 1

λ
√

1 − 2 ln λ
|1〉. (19)

Next, the norm of d
dλ

|g(λ)〉 is

1

λ2
+ 1

λ2(1 − 2 ln λ)
� 2

λ2
= 2κ2. (20)

This completes the proof, with c = 2. �
If we require result error to be of O(ε), we need to take the

phase estimation accuracy to be δ = O( ε
κ2 ).

Using classical computation theory, the determinant can
be expressed as a sum of products of entries of the operator
where each product has N items, and this expression grows
rapidly with the size of the operator, O(N!). However, the
runtime of the proposed algorithm is O(poly(log N )), which
is an exponential improvement over its classical counterpart.

Based on these two algorithms and Eq. (12), we can
flag example quantum state |x0〉 as an anomaly if 〈M3〉 >

2 ln [(2π )
d
2 |C| 1

2 ε], otherwise it is a normal state.

V. QUANTUM KERNEL PCA AND ONE-CLASS
SVM FOR CLASSICAL DATA

In [17], the authors presented quantum kernel PCA and
one-class SVM for quantum state anomaly detection. In this
section, we apply the quantum kernel PCA and one-class
SVM for detecting a classical data anomaly. After encoding
the discrete data set {xi}M

i=1 to quantum state {|xi〉}M
i=1, we

can directly use the quantum one-class SVM to identify the
anomaly. Although quantum kernel PCA can also directly
detect an anomaly for classical data, the resources required
are much more than for our modified quantum kernel PCA
discussed below.

The modified quantum kernel PCA

We can rewrite the centered quantum state as

|zi〉 =
d∑

j=1

zi
j | j〉, (21)

the same as Eq. (13) in Sec. 4 A. We can prepare the test
centered state by |z0〉 = ∑d

j=1 z0
j | j〉. The centered sampled

covariance matrix is C = 1
M−1

∑M
i=1 |zi〉〈zi|. The proximity

measure f (|z0〉) obeys 0 � f (|z0〉) � 1, where

f (|z0〉) = 〈z0|I − C|z0〉. (22)

In [17], the inner product can be calculated by M times the
modified swap test, and each of that requires O(poly(log d )).
Thus the proximity measure f (|z0〉) can be estimated using re-
sources scaling as O(poly(M log d )) [17]. Here, we present a
modified algorithm to efficiently compute the proximity based
on Algorithm 4 using resources scaling as O(poly(log d )).
More specifically, we use the method of [27] to obtain the
eigenvalue of C and rotate one qubit |0〉 to (1 − λ)|0〉 +√

1 − (1 − λ)2|1〉 controlled by λ. The time complexity of
this process is O(poly(log d )) independent of the number of
training quantum states.

VI. CONCLUSION AND DISCUSSION

In the present study, we presented quantum anomaly de-
tection with density estimation and multivariate Gaussian
distribution. For an exponentially large data set, the resources
are logarithmic in the dimensionality of quantum states and
the number of training quantum states. Moreover, We also
developed a quantum subroutine for efficiently estimating
the determinant of any Hermitian operator A ∈ RN×N with
time complexity O( log(N )). This algorithm might be a sub-
routine in machine learning and optimization. Finally, our
work generalized the result given in [17] to tackle a classical
data anomaly while the authors had only considered quantum
anomaly detection for quantum states generated from quan-
tum devices.

Although we have seen the feasibility of detecting an
anomaly on a quantum computer, some open questions still
require further study in the future. For example, it would
be interesting to study how to select a suitable threshold ε

efficiently on a quantum computer. Finally, both algorithms
are described in the standard gate-based model of quantum
computing. In 2007, Aharonov et al. stated that adiabatic
quantum computation [30] is as powerful as conventional
quantum computation [31]. Thus, it would be interesting to
consider other alternative quantum anomaly detection algo-
rithms with adiabatic quantum computing.
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