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Bravyi and Gosset [S. Bravyi and D. Gosset, Phys. Rev. Lett. 116, 250501 (2016)] recently gave classical sim-
ulation algorithms for quantum circuits dominated by Clifford operations. These algorithms scale exponentially
with the number of T gates in the circuit, but polynomially in the number of qubits and Clifford operations. Here
we extend their algorithm to qudits of odd prime dimension. We generalize their approximate stabilizer rank
method for weak simulation to qudits and obtain the scaling of the approximate stabilizer rank with the number
of single-qudit magic states. We also relate the canonical form of qudit stabilizer states to Gauss sum evaluations
and give an O(n3) algorithm for calculating the inner product of two n-qudit stabilizer states.
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I. INTRODUCTION

With the prospect of noisy intermediate-scale quantum
computers with 50–100 qubits appearing in the next decade
[1,2], determining the minimal classical cost of simulation
of quantum computers has recently received much attention
[3–7]. The Gottesman-Knill theorem shows that Clifford cir-
cuits are efficiently classically simulatable [8]. Adding any
non-Clifford gate creates a universal gate set.1 One such
choice for a non-Clifford gate is the T gate: T | j〉 = ei jπ/4| j〉,
j ∈ {0, 1} [11]. Bravyi and Gosset gave a classical algorithm
for simulation of quantum circuits that scales exponentially
with the number of T gates in the circuit but polynomially
with the number of qubits and Clifford gates [4]. This algo-
rithm was further developed in [12].

What is supplied by the addition of T gates to a Clifford
circuit? The fault-tolerant implementation of Clifford + T
circuits substitutes magic states for each T gate [13,14].
Colloquially, T gates add “magic” to a Clifford circuit. Magic
is supplied by contextuality, a longstanding source of puzzles
and paradoxes in the foundations of quantum mechanics [15].

The relationship of magic to contextuality also provides
a connection to quasiprobability representations of quantum
mechanics [16,17]. Specifically, the positivity of a quasiprob-
ability representation is equivalent to the absence of contextu-
ality, and such positive states, operations, and measurements
admit efficient classical simulation in some cases [18,19].
Classical statistical theories with an imposed uncertainty prin-
ciple can reproduce these positive quasiprobabilistic theories
for Gaussian states and qudits with d > 2 [20,21].

Pashayan et al. gave an algorithm allowing a positive
quasiprobability description to include some negativity [22].
Comparing the algorithms of Bravyi and Gosset [4] and
Pashayan [22] should shed more light on the relation-
ship between magic, contextuality, and negativity. However,

1An elegant recent presentation of this result in group-theoretic
terms is given in [9] and is briefly summarized in [10].

quasiprobability representations for qubits are distinct from
their d-dimensional cousins [23–25]. The desire to understand
the relationship between magic, contextuality, and negativity
therefore motivates extension of the algorithm of Bravyi and
Gosset to qudits with dimension greater than 2. In the present
paper we extend the algorithm of Bravyi and Gosset to qudits
of odd prime dimension.

The structure of the paper is as follows. In Secs. II and III
we briefly introduce the necessary background. In Sec. IV we
give the nonorthogonal decomposition of the magic state. In
Sec. V we give results on the approximate stabilizer rank and
weak simulation algorithm for qudits. In Sec. VI we briefly
compare our algorithm to that of [22].

II. QUDIT PAULI GROUP AND CLIFFORD GATES

The Pauli and Clifford groups were first generalized be-
yond qubits by Gottesman [26]. Assuming henceforth that d
is an odd prime, we define the Heisenberg-Weyl operators

D�x = τ xzX xZz, (1)

where X | j〉 = | j ⊕ 1〉 (⊕ denotes addition modulo d), Z | j〉 =
ω j | j〉, �x = (x, z) [x and z are integers modulo d and ω =
exp(2π i/d )], and τ = e(d+1)π i/d = ω2−1

. The Heisenberg-
Weyl operators form a group whose product rule follows from
the Heisenberg-Weyl commutation relation ωXZ = ZX ,

D�x1 D�x2 = τ 〈�x1·�x2〉D�x1+�x2 , (2)

where 〈�x1 · �x2〉 is the symplectic inner product 〈�x1 · �x2〉 =
z1x2 − x1z2.

The generators of the Clifford group on qudits are P,
H , and controlled-NOT (CNOT), where P| j〉 = ω j( j−1)/2| j〉,
H | j〉 = d−1/2 ∑

k ω jk|k〉, and CNOT | j, k〉 = | j, k ⊕ j〉. We
can also write any single-qudit Clifford unitary as CF,�χ =
D�χUF , where �χ = (x, z) and F is a 2 × 2 matrix with entries
modulo d . We will make particular use of matrices Cγ ,�χ =
D�χUγ for Uγ |k〉 = τ γ k2 |k〉. The order of Cγ ,�χ is d . The
Clifford group is reviewed in more detail in Appendix A.
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Qudit stabilizer states can be prepared from a logical basis
state by a qudit Clifford circuit. The Gottesman-Knill theorem
generalizes to qudits and qudit stabilizer computations allow
efficient classical simulation [26]. Qudit stabilizer states pos-
sess canonical forms in the logical basis just as in the qubit
case [27–29].

The remaining generalization we require is an efficient
classical algorithm for obtaining the inner product of two
stabilizer states. This is required by the algorithm of Bravyi
and Gosset and the qubit case was given in [4]. We give an
O(n3) algorithm for the inner product of two n-qudit stabilizer
states based on Gauss sums in Appendix F.

The qudit T gate was defined in [10,30] as a diagonal gate
UT that maps Pauli operators to Clifford operators. Its action is
specified by the image of X = D(1,0) under UT . Magic states
are then eigenvectors of this image. Let the eigenstate of X
with eigenvalue ωk be |+k〉; then the magic states are UT |+k〉.
This approach is that taken by Howard and Vala in [30].

The image of X under UT can be written (up to a phase)
as C = XPγ Zξ for γ and ξ integers modulo d . The effect of
nonzero ξ is simply to reorder the eigenvectors and hence we
can choose ξ = 0. Similarly, the eigenvectors for γ > 1 and
γ = 1 are related by application of Pγ−1, a Clifford operator.
We can therefore specialize to the case γ = 1 and ξ = 0, and
the gate with action

Cd = Md XM†
d =

{
e2π i/9XP, d = 3

ω−3̄XP, d > 3,
(3)

where 3̄ indicates the multiplicative inverse of 3 modulo d .
This is the gate defined by Campbell et al. in [10]. The qudit
magic states are reviewed in more detail in Appendix B.

The definition of magic states allows one to replace a
Clifford + T circuit with a Clifford circuit with injected magic
states [13,14]. This construction was extended to qudits in
[30] and we review it in Appendix D. In Sec. III we will
review the Bravyi-Gosset algorithm for qubits, which we will
generalize to qudits.

III. BRAVYI-GOSSET ALGORITHM

Bravyi and Gosset gave algorithms for both weak and
strong simulation in [4,12]. A strong simulation outputs the
probability of measuring output x from a given Clifford + T
circuit. A weak simulation algorithm generates samples from
the probability distribution over outputs of a given Clifford
+ T circuit. Here we review the weak simulation algorithm.
A brief summary of relevant features of the strong simulation
algorithm is given in Appendix C.

The key advantage of weak simulation is that one can
sample from a P̃out (x) that is close enough to the actual Pout (x).
Bravyi and Gosset devised a method to approximate the
t-qubit magic state |A⊗t 〉, where |A〉 = 2−1/2(|0〉 + eiπ/4 |1〉,
with a superposition of fewer than 2t stabilizer states.

The approximate stabilizer rank χ ′ is defined as the
minimal stabilizer rank (defined in [31] and reviewed in
Appendix C) of a state |ψ〉 that satisfies |〈ψ |A⊗t 〉| � 1 − δ.
A close approximation to the tensor product of magic states
means a close approximation to the action of a Clifford + T

circuit realized by magic state injection [4]. Therefore, P̃out (x)
will be close enough to Pout (x) if δ is small enough.

The sampling procedure given by Bravyi and Gosset relies
on standard computations of stabilizers. The extension of such
computations to d > 2 have long been well understood [26].
We will therefore refer the reader to [4] for details of these
procedures which, mutatis mutandis, can be applied in the
qudit case and focus on the approximate stabilizer rank.

We begin by reviewing the approximate stabilizer rank
construction from [4]. From the magic state |A〉 defined above
one can construct the equivalent magic state

|H〉 = e−π i/8PH |A〉 = cos(π/8) |0〉 + sin(π/8) |1〉 . (4)

The state |H〉 can be decomposed into a sum of nonorthogonal
stabilizer states as

|H〉 = 1

2 cos π/8
(|0̃〉 + |1̃〉), (5)

where |0̃〉 = |0〉 and |1̃〉 = 1√
2
(|0〉 + |1〉). Then |H⊗t 〉 can be

rewritten as

|H⊗t 〉 = 1

[2 cos(π/8)]t

∑
x∈F t

2

|x̃〉 . (6)

The weak simulation algorithm reduces the number of sta-
bilizer states required by approximating |H⊗t 〉. This approxi-
mation |H⊗t∗〉 is constructed by taking a subspace L of F t

2:

|H⊗t∗〉 = 1

[2 cos(π/8)]t

∑
x∈L

|x̃〉 . (7)

The stabilizer rank of this approximation state is the number
of elements in L, which is 2k . The random subspace L is
chosen so that |H⊗t∗〉 satisfies

〈H⊗t∗〉 H⊗t � 1 − δ. (8)

It is useful to discuss the subspaces of F t
2 in the language

of d-ary linear codes. Here L is a k-dimensional binary linear
code which can be specified by k generators of length t . These
generators can be written in a standard form as a k × t matrix
{1k|G}, where 1k is the k × k identity matrix and G is a k ×
(t − k) matrix. Sampling random subspaces of F t

2 is therefore
equivalent to sampling matrices G.

The algorithm of Bravyi and Gosset achieves an improved
scaling of cos(π/8)−2t � 20.23t for weak simulation over
20.47t for strong simulation. In Secs. IV and V we will see
more details of how to bound the scaling while we extend this
approximate rank and weak simulation scheme to qudits.

IV. NONORTHOGONAL DECOMPOSITIONS OF QUDIT
MAGIC STATES

The qudit magic state we want to decompose is an
eigenvalue-1 eigenstate of the Clifford operator Cd as defined
by Eq. (3). We choose a stabilizer state |0̃〉 with nonzero inner
product with the magic state and act on it with powers of Cd to
obtain d stabilizer states {| j̃〉 = C j

d |0̃〉, j = 0, . . . , d − 1}. We
know that these stabilizer states are distinct because if any pair
were equal then the original state |0̃〉 would be an eigenstate
of the Clifford operator and hence a magic state. The sum of
these d states forms a decomposition of the magic state (up to
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TABLE I. Matrices Md , optimal value of p, and approximate stabilizer rank scaling comparison for d = 2, 3, 5, 7. Here κ = −2 logd α, so
dκt = α−2t . Here the ω for d = 5 and d = 7 rows are e2π i/5 and e2π i/7, respectively.

d Md p |α(d )| |α(d )| dκt

2 diag(1, eiπ/4) 0 cos π/8 0.92388 20.23t

3 diag(e2π i/9, 1, e−2π i/9) 0 1+2 cos(2π/9)
3 0.84403 30.31t

5 diag(ω−2, ω, ω−1, ω−2, ω−1) 4 3+2 cos(2π/5)
5 0.723607 50.40t

7 diag(ω3, ω−2, 1, ω3, ω1, ω2, 1) 3 1+6 cos(2π/7)
7 0.677277 70.40t

a possible global phase). Because Cd has order d , this state is
by construction an eigenvalue-1 eigenstate of Cd .

The d stabilizer states in the decomposition form an or-
bit around the magic state. This construction was discussed
previously in [32]. There are d (d + 1) single-qudit stabilizer
states [33], partitioned into d + 1 orbits, each orbit giving a
decomposition of the magic state. Every state in each orbit
has the same overlap with the magic state

〈 j̃〉Md = 〈 j̃|C†
dCd |Md〉 = 〈 ˜j + 1〉Md , (9)

where the qudit magic state is |Md〉 = Md |+〉. This property
is a generalization of 〈0̃〉 H = 〈1̃〉H = cos π/8 for the qubit
case. The overlaps of the elements of the nonorthogonal basis
are given by |〈0̃| j̃〉| = 1√

d
for all j, i.e.,

|〈 j̃|k̃〉|2 = 1 + (d − 1)δ j,k

d
. (10)

This expression is that for states in a symmetric,
informationally complete, positive-operator-valued measure
(SIC-POVM), and the construction here is similar to
the generation of such states from a fiducial state [34,35].
Here we only obtain d states however. See Appendix G for
the evaluation of the phase of 〈 j̃|k̃〉.

The states |+p〉 = Z p |+〉 are representatives of the d
orbits, each of which generated by Cd . This is because
Ca

d |+p〉 �= |+q〉 for any a, p, and q, which follows simply
from the action of Cd in the logical basis. Further, Cd applies
phases quadratic in j to | j〉 followed by a shift. This cannot be
equal to a state generated from |+〉 by any power of Z , which
can only apply phases linear in j to | j〉.

From the orbit representatives we can determine the inner
product of the states in the orbit with the magic state. This is
given by

α = 〈+| Z−p |Md〉 = 〈+| Z−pMd |+〉 = 1

d
Tr(Z−pMd ).

(11)

This is a cubic Gauss sum which can be written

α = ω
1
d (d

4)−p

d

d−1∑
l=0

ω6̄l[l2+ψ (p,d )] d > 3. (12)

For the d = 3 case, the magnitude and phase of this cubic
Gauss sum, and φ(p, d ), are computed in Appendix E. The
sum is real, although not necessarily positive. Although we
do not obtain a closed form for this sum, we can compute the
integer value of p which maximizes its absolute value for a
given d . These values are tabulated for small d in Table I. The

complete form of the nonorthogonal decomposition is

|Md〉 = ±ω
1
d (d

4)−p

d|α|
∑

j

C j
d |0̃〉 , (13)

which is the generalization of Eq. (5) to arbitrary d .

V. WEAK SIMULATION AND APPROXIMATE
STABILIZER RANK

In order to get an approximation for |M⊗t 〉, we can follow
the method of Bravyi and Gosset for the qubit case, taking a
k-dimensional subspace of F t

d :

|M⊗t∗〉 = |L〉 = 1√
dkZ (L)

∑
x∈L

|�̃x〉. (14)

Here we label the state by L ⊂ F t
d , a k-dimensional code sub-

space of F t
d , and Z (L) is a normalization factor. Comparison

with Eq. (13) shows that Z (Fd ) = d|α|2. We require

|〈L|M⊗t 〉|2 = dk|α|2t

Z (L)
� 1 − δ (15)

for a given δ, where the first equality follows from Eq. (9) and
where

Z (L) =
∑
�x∈L

〈0̃⊗t |C�x |0̃⊗t 〉 (16)

for C�x = Cx1 ⊗ Cx2 ⊗ · · · ⊗ Cxt , xi ∈ Fd .
Selection of the subspace L depends on two factors. First,

we choose the dimension of L by setting k:

k = �1 − 2t logd |α| − logd δ�. (17)

Note that the maximum precision that can be required
from the method for given t is obtained by setting k = t ,
so δmax = 2−t (1+2logd |α|)+1.

Next we find an L for which Z (L) is not too large. The
probability of obtaining a small enough Z (L) can be analyzed
as in [4] by evaluating the expectation value of Z (L) over all
possible L ∈ F t

d :

E (Z (L)) = 1 +
∑

�x∈F t
d /{0}

〈�̃0t |C�x |�̃0t 〉E (IL(�x))

= 1 + (dk − 1)

(dt − 1)
[Z (Fd )t − 1]

= 1 + dk − 1

dt − 1
(dt |α|2t − 1)

� 1 + dk|α|2t . (18)
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Here IL(�x) is a indicator function, i.e., it is equal to 1 when
x ∈ L and 0 otherwise. The second equals sign stands because
the expectation value of IL(x) for a fixed x is dk−1

dt −1 and∑
x∈F t

d /{0}
〈�̃0t |C�x |�̃0t 〉 =

∑
x∈F t

d

〈�̃0|C�x |�̃0〉 − 1

=
(

〈0̃|
d−1∑
x=0

Cx |0̃〉
)t

− 1. (19)

From Eq. (17) we have dk|α|2t = O(1), so E (Z (L)) =
O(1). Therefore, from Markov’s inequality we obtain

Prob[Z (L) � (1 + dk|α|2t )(1 + δ)]

> 1 − E (Z (L))
(1 + dk|α|2t )(1 + δ)

� 1 − 1

1 + δ
> δ. (20)

Randomly choosing δ−1 subspaces gives an L such that

Z (L) � (1 + dk|α|2t )(1 + δ), (21)

hence satisfying Eq. (15), with high probability.
The upper bound for the approximate stabilizer rank of a

t-qudit magic state given by the above method is

χ ′(t ) = dk = O(δ−1|α|−2t ). (22)

In the qubit case an explicit sum formula was given for
Z (L) with 2k terms and hence the cost of evaluating Z (L) is
O(2k ). What is the cost of evaluating Z (L) for arbitrary d? In
Appendix G we give an explicit formula for Z (L) as a sum of
products and hence the cost of evaluating Z (L) for arbitrary d
is O(dk+1).

VI. DISCUSSION

The motivation to study the qudit generalizations of sta-
bilizer rank algorithms such as those in [4,12] is to enable
comparison with other simulation algorithms. In [22], the
authors apply Monte Carlo sampling on trajectories of the
quasiprobability representation to estimate the probability of
a measurement outcome. They find that the hardness of this
strong simulation depends on the total negativity (negativity
of the inputs, gates, and measurements) of the circuit. Specif-
ically, the cost of the algorithm scales with the square of the
total negativity.

For Clifford + T circuits that are gadgetized so that the
circuit is realized by Clifford gates with magic state injection,
the negativity of the circuit only comes from the ancilla
inputs of magic states. If we apply the method of [22] to the
gadgetized circuit with an input of t-qutrit magic states, the
cost scales as 30.84t . This result is obtained by calculating
the negativity of a single-qutrit magic state.

In the present paper we obtain a scaling of 30.32t for
weak simulation of qutrit Clifford + T circuits. This shows
that weak simulation using the approximate rank method
has superior scaling to strong simulation using the method
of [22]. A stabilizer rank based strong simulation algorithm
for qudits would require new results on an exact stabilizer
rank of qudit magic states, a topic for future work. Recent

progress in extending the qubit case has been reported in [12],
and improvements to Pashayan’s algorithm using a discrete
system generalization of the stationary phase approximation
were given in [36].

It should be noted that one should not think of weak simu-
lation as easy and strong simulation as hard. The difficulty of
weak and strong simulations is a property of the distribution
being sampled or computed. In some cases, such as quantum
supremacy, we expect the difficulties of weak and strong
simulations to coincide [3].

If we consider negativity and stabilizer rank as two mea-
sures of quantumness, we can see that they differ. Bravyi et al.
[31] conjectured that the magic state has the smallest stabilizer
rank out of the nonstabilizer states. However, the quasiprob-
ability of the magic state has the largest negativity. In fact,
Howard and Campbell also noticed this disagreement between
stabilizer rank and robustness of magic [37]. It is worth noting
the differences between stabilizer rank and approximate stabi-
lizer rank. Namely, the approximate stabilizer rank seems to
agree with other measures of quantumness such as negativity
or robustness of magic in that it reaches a maximum at the
magic state and a minimum on stabilizer states. The exact
stabilizer rank does not share these properties. This makes the
investigation of the difference between exact and approximate
stabilizer ranks interesting.
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APPENDIX A: QUDIT CLIFFORD GROUP

We recall that d is an odd prime. In a d-dimensional system
the Pauli operators X and Z are defined as

X =
∑
j∈Fd

| j ⊕ 1〉〈 j| , Z =
∑
j∈Fd

ω j | j〉〈 j| , (A1)

where ω = exp(2π i/d ). These operators obey the
Heisenberg-Weyl commutation relation

ωXZ = ZX. (A2)

In d dimensions the Weyl-Heisenberg displacement operators
are defined by

D�x = τ xzX xZz, (A3)

where �x = (x, z) and τ = e(d+1)π i/d = ω2−1
. The qubit Pauli

operators are recovered from this expression for d = 2, with
D(1,0) = X , D(0,1) = Z , and D(1,1) = −Y . The Heisenberg-
Weyl operators form a group with multiplication rule

D�x1 D�x2 = τ 〈�x1·�x2〉D�x1+�x2 , (A4)

where 〈�x1 · �x2〉 is the symplectic inner product

〈�x1 · �x2〉 = z1x2 − x1z2. (A5)

For d > 2 the Weyl-Heisenberg operators are unitary but not
generally Hermitian.
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In the qubit case, the Clifford gates map Pauli operators
to Pauli operators. In the qudit case Clifford gates map
Weyl-Heisenberg operators to one another. The generators of
the Clifford group are defined so that the Hadamard gate maps
X → Z and the phase gate maps X → XZ . The generators of
the single-qubit Clifford group are

H = 1√
2

(
1 1

1 −1

)
, P =

(
1 0

0 i

)
. (A6)

The d-dimensional Clifford operators are generated by

P =
∑
j∈Fd

ω j( j−1)/2 | j〉〈 j| , H =
∑

j,k

ω jk | j〉〈k| /
√

d, (A7)

and

CNOT =
∑

j

| j〉〈 j| ⊗ X j . (A8)

The single-qudit Clifford group is isomorphic to the
semidirect product group of SL(2, Zd ) and (Zd )2 [35,38].2 We
can represent the Clifford group using a 2 × 2 matrix F and a
2 vector �χ , both with entries in Zd :

C = {C(F |�χ ) | F ∈ SL(2, Zd ), �χ ∈ Zd
2}. (A9)

Specifically, a Clifford unitary is given as

C(F |�χ ) = D�χUF , (A10)

where if

F =
[
α β

γ δ

]
, �χ =

[
x

z

]
, (A11)

then

UF = 1√
d

d−1∑
j,k=0

τβ−1(αk2−2 jk+δ j2 ) | j〉〈k| (A12)

if β �= 0 and

UF =
d−1∑
k=0

ταγ k2 |αk〉〈k| (A13)

if β = 0 [35].
The multiplication rule is

C(F1|�χ1 )C(F2|�χ2 ) = τ 〈�χ1·F �χ2〉C(F1F2|�χ1+F1 �χ2 ). (A14)

The action of the Clifford operators on the Heisenberg-Weyl
operators in this representation can be given as

C(F |�χ )D�xC†
(F |�χ ) = ω�χ ·�xDF�x. (A15)

In particular, we are interested in Clifford operations defined
by matrices of the form

Fγ =
[

1 0

γ 1

]
(A16)

2SL(2, Zd ) is the group of 2 × 2 matrices with entries from Zd and
determinant 1.

and we introduce the notation

Cγ ,�χ = C[
1 0

γ 1

]
,

[
x

z

] (A17)

for �χ = (x, z)T . From Table I in Ref. [35] the order of any
element Cγ ,�χ is d . Clearly X , P, and Z are order d . For d = 2,
H is order 2 and for d > 2, H is order 4.

The generators H and P are given by

FH =
(

0 d − 1

1 0

)
, �χH = (0, 0)T , (A18)

which follows from HXH† = Z and HZH† = X −1, and

FP =
(

1 0

1 1

)
, �χP = (0, (d − 1)/2)T . (A19)

These expressions for H and P allow us to construct the F and
�χ for any single-qudit Clifford operation expressed as a word
on the generators H and P.

APPENDIX B: QUDIT MAGIC STATES AND T GATES

To go beyond Clifford group computation it is useful
to introduce the Clifford hierarchy, which classifies unitary
operators by their action on the Pauli group. The Clifford
hierarchy was defined by Gottesman and Chuang in [39]:

C(k + 1) = {U | UPU ∈ C(k), P ∈ P} (k � 0). (B1)

The first level of the Clifford hierarchy is the Pauli group
C(1) = P . The Clifford group is the second level of the
hierarchy, unitary operators that map the Pauli group to itself.
Note that elements of the Pauli group are themselves elements
of the first level of the Clifford hierarchy. The third level of
the Clifford hierarchy are operators that map Pauli operators
to Clifford operators. The qubit T gate is such an operator
because T XT † = PHP2H , a non-Pauli element of the second
level of the Clifford hierarchy.

Bravyi and Kitaev first proposed qubit magic states in [13].
They define magic states as the image of |H〉 and |T 〉 under
single-qubit Clifford gates, where |H〉 is defined by Eq. (4)
and |T 〉 by

|T 〉 = cos β |0〉 + sin βeiπ/4 |1〉 (B2)

for cos(2β ) = 1√
3
. Here |H〉 is the eigenstate of the Hadamard

gate H and |T 〉 is the eigenstate of the product of Hadamard
and phase gate PH .

Any magic state is equivalent as a resource to any other
state obtainable from it by a Clifford operation. We can define
magic states more generally as the eigenstates of Clifford
operations and obtain them as follows. Taking any H-type
magic state |H〉, we have

UHU †U |H〉 = UH |H〉 = λU |H〉 , (B3)

where λ is the eigenvalue of H and U is a Clifford gate. This
means that U |H〉 is the eigenstate of a new Clifford operator
UHU †. The same is true for T -type magic states.

Campbell et al. [10] used this relationship between magic
states and eigenvectors of Clifford operators to extend the def-
inition of magic states to qudits [10]. Concurrently, equivalent
extensions were obtained by Howard and Vala [30].
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1. Qudit T gates

Campbell et al. [10] define sets of gates Mm
d containing

all gates M with the following properties: M is diagonal,
Mdm = 1, det M = 1 so that M ∈ SU(d ), and M is in the third
but not the second level of the Clifford hierarchy. Within this
set of gates is the canonical Md gate

Md =
∑

j

exp(i2λ jπ/dm)| j〉〈 j| , (B4)

which is defined so that it maps the X operator to a Clifford
operator proportional to XP,

Cd = Md XM†
d =

{
e2π i/9XP, d = 3

ω−3̄XP, d > 3.
(B5)

Here 3̄ is the multiplicative inverse of 3 modulo d . This
Clifford operator has order d .

This condition, as well as the condition det M = 1, gives
the following form for the λ j (see Appendix A of [10]):

λ j = dm−2

[
d

(
j

3

)
− j

(
d

3

)
+

(
d + 1

4

)]
. (B6)

The parameter m determines the order dm of the operator M.
For d = 3 the form above is valid when m � 2. For d > 3 it
is valid when m � 1.

By definition M maps X , a generalized Pauli operator, to a
non-Pauli Clifford operator and so is in the third, but not the
second, level of the Clifford hierarchy. We can therefore think
of M as a generalized T gate.

From the definition of the matrix M in (B4) we have, for
d = 3 and m = 2,

M3 = diag
(
ei2π/9, 1, e−i2π/9

)
(B7)

and

M5 = diag
(
e−4π i/5, e2π i/5, e−2π/i5, e−4π i/5, e−2π i/5) (B8)

for d = 5 and m = 1, where ω = e2π i/5. The qudit version of
the T gate M is further generalized in [30], which we will
discuss below.

The T gate is also sometimes called the π/8 gate because

T = e−iπ/8

(
eiπ/8 0

0 e−iπ/8

)
. (B9)

Howard and Vala developed the qudit versions of this gate
concurrently with the development of qudit magic states by
Campbell et al. [10,30]. The results are equivalent and we give
the details of the relationship between them here.

Howard and Vala parametrized the set of diagonal gates on
a single qudit as follows:

Uv = U (v0, v1, . . . , vp−1) =
d−1∑
j=0

ωvk |k〉〈k| (vk ∈ Zd ).

(B10)

All diagonal gates fix D(0,1) and so their action is completely
determined by UvD(1,0)U †

v = UvXU †
v . This parallels the devel-

opment of Campbell et al., who considered the action of their
canonical gate M on the operator X and insisted that the result
of that action was proportional to XP.

Howard and Vala proceeded more generally, computing the
action of these diagonal matrices

UvD(x|z)U
†
v = D(x|z)

∑
k

ω(vk+1−vk )|k〉〈k|. (B11)

Given Uv is diagonal, only UvD(1|0)Uv
† is nontrivial.

Howard and Vala then considered the case that Uv is in the
third level of the Clifford hierarchy so that the image of X can
be written [cf. Eq. (18) in [30]]

UvXUv
† = ωε′

Cγ ′,(1,z′ )T , (B12)

where ε′, γ ′, z′ ∈ Zd . The right-hand side here is the most
general form allowed because Eq. (B11) implies that the
image of X must be X times a diagonal Clifford operator
and the most general form of a diagonal Clifford operator has
�χ = (0, 1) and β = 0 and α = 1. Combining Eqs. (B11) and
(B12), one obtains [cf. Eq. (19) in [30]]

X
∑

k

ω(vk+x−vk )|k〉〈k| = ωε′
Cγ ,(1,z′ )T . (B13)

Howard and Vala then solved for Uv with these three
parameters:

vk = 1̄2k{γ ′ + k[6z′ + (2k − 3)γ ′]} + kε′. (B14)

This analysis is equivalent to that performed in Ref. [10],
Appendix A.

The d = 3 case as usual presents some special difficulties.
In the Campbell et al. analysis one must choose m = 2 for λ

as there are no Clifford operators with m = 1 and d = 3 [10].
The set of operators Uv for d = 3 is given by

Uv =
2∑

k=0

ξ vk |k〉〈k| , (B15)

where ξ = e2π i/9. The vk are given by

v = (v0, v1, v2) = (0, 6z′ + 2γ ′ + 3ε′, 6z′ + γ ′ + 6ε′),

(B16)

where all operations can be taken modulo 9. The determinant
of Uv for d = 3 can be computed from the definition

det Uv = exp

(
2π i

9

∑
k

= 02vk

)
= exp

(
2π i

3
(z′ + γ ′)

)
,

showing that Uv is not in SU(3) for d = 3.
We can relate the diagonal operators Uv defined by Howard

and Vala and the operators M defined by Campbell et al. as
follows. Writing

M =
d−1∑
k=0

exp

(
2π i

dm
λk

)
|k〉〈k| =

d−1∑
k=0

ωλk/dm−1 |k〉〈k| (B17)

and

Uv =
d−1∑
k=0

ωvk |k〉〈k| , (B18)

we wish to compare

λk

dm−1
= 1

d

[
d

(
k

3

)
− k

(
d

3

)
+

(
d + 1

4

)]
(B19)
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and

vk = 1̄2k{γ ′ + k[6z′ + (2k − 3)γ ′]} + kε′. (B20)

These are both cubic in k, so we can find the particular Uv

that corresponds to M by equating the coefficients. We begin
by setting k = 0 to find the constant term. We immediately
obtain

v0 = 0,
λ0

d
= 1

d

(
d + 1

4

)
. (B21)

We conclude that Uv and M will only be equivalent up to a
global phase determined by this convention.

Equating the cubic terms yields γ ′ = 1. Equating the
quadratic terms gives

z′ − γ ′

2
= d − 1, (B22)

so z′ = (d − 1)/2. Finally, equating the linear terms gives

ε′ = 1̄2(6d − 2d2 − 1). (B23)

We may therefore relate Uv (z′, γ ′, ε′) and M for arbitrary d >

3 as follows:

Md = ω
1
d (d+1

4 )Uv ((d − 1)/2, 1, 1̄2(6d − 2d2 − 1)). (B24)

The first two cases of this equivalence are for d = 5 and d = 7
and, up to a global phase, are as given in Eqs. (70) and (71) of
[30].

The case of d = 3 is distinct (1̄2 does not exist modulo 3),
but from the definition of Uv for d = 3 given in Eqs. (B15)
and (B16) we have

M3 = e2π i/9Uv (1, 1, 0). (B25)

This is, up to a global phase, as given in Eq. (69) of [30].

2. Qudit magic states

The gates M also allow us to find eigenstates of CM as
follows. Define the state |Mk〉 = M |+k〉, where |+k〉 is the
eigenstate of X with eigenvalue ωk . We can calculate

CM |Mk〉 ∝ MXM† |Mk〉
= MXM†M |+k〉
= ωkM |+k〉
= ωk |Mk〉. (B26)

Given Eq. (B12), Howard and Vala recovered the definition
of the magic states of Campbell et al. and showed that
these magic states Uv |+〉 are eigenstates of Cγ ′,(1,z′ )T with
eigenvalue ω−ε′

:

Cγ ′,(1,z′ )T Uv |+〉 = ω−ε′
UvD(1|0)Uv

†Uv |+〉
= ω−ε′

UvD(1|0) |+〉
= ω−ε′

Uv |+〉. (B27)

APPENDIX C: STRONG SIMULATION FOR QUBITS

We review here the strong simulation algorithm given by
Bravyi and Gosset in [4]. Let t be the number of T gates in
the n-qubit quantum circuit we wish to classically simulate.

FIG. 1. Gadget to implement a T gate using an ancilla magic
state |A〉 as defined in [14]. Using this gadget, universal quantum
computation can be achieved using a Clifford circuit with injected
magic states.

The first step is to replace every T gate in the circuit by
Clifford gates and an ancilla input of a magic state |A〉, defined
in [13] as

|A〉 = 1√
2

(|0〉 + eiπ/4 |1〉). (C1)

This is accomplished using the gadget shown in Fig. 1 [14].
The number of ancilla qubits is t . We consider an initial state
|0⊗n〉 for the Clifford + T circuit and |0⊗n〉 ⊗ |A⊗t 〉 for the
gadgetized circuit.

At the end of the computation we will measure w of the n
qubits in the logical basis. This measurement with outcome x
(where x is a bit string of length w), postselected to the case
where all ancilla measurements have result 0, is represented
by a projector �(x) = |x〉〈x| ⊗ 1 ⊗ |0t 〉〈0t |. The strong sim-
ulation algorithm classically computes the probability of this
measurement outcome after acting with a Clifford circuit V ,
which is our original (non-Clifford) circuit with all T gates
replaced by the gadget of Fig. 1. Therefore, we can express
the probability of obtaining output x as

P(x) = 2t 〈0nAt |V †�V |0nAt 〉. (C2)

The factor of 2t here compensates for the fact that we postse-
lected the measurement outcomes of the t ancilla qubits.

We define a t-qubit projection operator �G =
〈0n|V †�V |0n〉. This projector maps states onto a stabilizer
subspace. Then Eq. (C2) becomes

P(x) = 2t 〈0nAt |V †�V |0nAt 〉 = 2−u〈At | �G |At 〉 , (C3)

where u is an integer that depends on the number of qubits
we are measuring out of n and the dimension of the stabilizer
subspace �G is mapping onto.

If we can expand |At 〉 into a sum of stabilizer states,
then we can express P(x) as a sum of inner products of
t-qubit stabilizer states, which can be computed in O(t3) time
[4,8,31,40]. The fewer stabilizer states in the expansion of
|At 〉, the more efficient the algorithm.

Stabilizer rank is defined as the minimal number of sta-
bilizer states needed to write a pure state as a linear com-
bination of stabilizer states. The value of χ (t ) is trivially
upper bounded by 2t because logical basis states are stabilizer
states, and χ (t ) is also believed to be lower bounded by
an exponential in t . For practical purposes we can achieve
progress through a series of constructive upper bounds.

In [31], Bravyi et al. found a stabilizer rank upper bound
by obtaining χA(6) � 7 for |A6〉 and dividing the t-qubit state
into a product of six-qubit states. Therefore, χA(t ) has a upper
bound 7t/6 � 20.47t . If we denote the stabilizer rank for the
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tensor product of t single-qubit magic states |At 〉 by χA(t ), the
cost of classically computing P(x) by taking inner products as
described above is O(t3χA(t )2).

The quadratic dependence on stabilizer rank can be im-
proved by a Monte Carlo method, developed by Bravyi and
Gosset, to approximate the norm of a tensor product of magic
states projected on a stabilizer subspace:

|〈At | �G |At 〉| = ‖�G |At 〉‖2 = ‖ψ‖2, (C4)

therefore enabling one to calculate P(x) with cost O(t3χA(t )),
linear in stabilizer rank. This concludes our summary of the
strong simulation algorithm of Bravyi and Gosset.

APPENDIX D: QUDIT T GATE GADGET

We also require a gadget that substitutes a qudit T gate
by an injected qudit magic state and Clifford gates. The qudit
gadget was introduced by Howard and Vala and is shown in
Fig. 2.

Howard and Vala also generalized the qubit T -gate gadget
to qudits for their magic state construction [30]. We reproduce
their gadget here in the interest of making the paper self-
contained.

In order to project a qudit state onto the eigenstate of
operator P with eigenvalue ωk , the projection operator can be
written as

�(P|k) = 1

d
(I + ω−kP + ω−2kP2 + · · · + ω−(d−1)kPd−1).

(D1)

By analogy with the qubit case, we need a gadget that allows
us to implement the qudit Uv gate by injecting magic states. It
is straightforward to check that

CSUM−1�(0,0|1,d−1)[0](|ψ〉|ψUv
〉) = Uv|ψ〉|0〉 (D2)

performs this task for a given arbitrary state |ψ〉, where
|ψUv

〉 = Uv |+〉 is the magic state and � is a rank-p projector
defined by

�(0,0|1,d−1)[0] = 1

d
[I + Z ⊗ Z−1 + · · · + (Z ⊗ Z−1)d−1].

(D3)

This projection is equivalent to measuring the Z ⊗ Z−1 ob-
servable to get eigenvalue 1. If we get eigenvalue ωk , we
perform an X −k on the first qudit state to recover it back to

FIG. 2. Gadget for qudit Uv gate.

the 1 eigenspace. In fact, this gadget works for implementing
any diagonal gate U by injecting the state U |+〉.

APPENDIX E: MAGNITUDE AND PHASE OF THE MAGIC
STATE INNER PRODUCT WITH ORBIT

REPRESENTATIVES OF NONORTHOGONAL
DECOMPOSITIONS

Here we compute Eq. (12). We begin with d = 3. In this
case we need only tabulate the inner product for three values
of p,

〈+| Z−p |M3〉 = 〈+| Z−pM3 |+〉

= 1

d
Tr(Z−pM3)

= 1

d

(
e2π i/9 + e−2π ip/3 + e2π i/3(2p−1/3)), (E1)

giving

〈+| Z0 |M3〉 = 1

3

[
1 + 2 cos

(
2π

9

)]
,

〈+| Z−1 |M3〉 = 1

3
eiπ/3

[
2 cos

(
π

9

)
− 1

]
,

〈+| Z−2 |M3〉 = 1

3
e2iπ/3

[
1 + 2 cos

(
4π

9

)]
. (E2)

The largest magnitude overlap is obtained for p = 0.
Now we consider generally prime d > 3. Given the expres-

sion for Md we can write

〈+| Z−p |Md〉 = ω
1
d (d+1

4 )

d

d−1∑
j=0

ωφ( j), (E3)

where φ( j) is a cubic in j given by

φ( j) =
(

j

3

)
− j

d

(
d

3

)
− p j. (E4)

The evaluation of cubic Gauss sums is not as straightforward
as for quadratic Gauss sums. However, we can obtain a closed
form for the phase of the sum, up to a sign, by depressing
the cubic to remove the quadratic term. In this case this is
particularly simple,

φ′( j) = φ( j + 1)

=
(

j + 1

3

)
− j + 1

d

(
d

3

)
− p j − p

= 6̄ j[ j2 − 1 − (d − 1)(d − 2) − 6p] − 1

d

(
d

3

)
− p

= 6̄ j[ j2 − ψ (d, p)] − 1

d

(
d

3

)
− p, (E5)

where

ψ (d, p) = d2 − 3d + 3 + 6p. (E6)

Then

〈+| Z−p |Md〉 = ω
1
d (d+1

4 )− 1
d (d

3)−p

d

d−1∑
j=0

ω6̄ j[ j2−ψ (d,p)]. (E7)
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The magnitude of this expression can be determined from the
sum, which is real:

S = 1

d

d−1∑
j=0

ω6̄ j[ j2−ψ (d,p)]

= 1

d
+ 1

d

(d−1)/2∑
j=1

ω6̄ j[ j2−ψ (d,p)] + 1

d

d−1∑
j=(d+1)/2

ω6̄ j[ j2−ψ (d,p)]

= 1

d
+ 1

d

(d−1)/2∑
j=1

(ω6̄ j[ j2−ψ (d,p)] + ω6̄(d− j)[(d− j)2−ψ (d,p)] )

= 1

d
+ 1

d

(d−1)/2∑
j=1

(ω6̄ j[ j2−ψ (d,p)] + ω−6̄ j[ j2−ψ (d,p)] )

= 1

d
+ 2

d

(d−1)/2∑
j=1

cos
2π

d
6̄ j[ j2 − ψ (d, p)]. (E8)

While this shows that the sum is real, it does not guarantee
that it is positive and hence the phase of the inner product, up
to a sign, is given by

ω
1
d (d+1

4 )− 1
d (d

3)−p = ω
1
d (d

4)−p. (E9)

APPENDIX F: CANONICAL FORMS FOR QUDIT
STABILIZER STATES AND THE INNER PRODUCT

ALGORITHM

A qubit stabilizer state can be written in the form [27,29]

|ψ〉 = 2−m/2
∑
x∈A

(−1)q(x)il (x) |x〉 , (F1)

where l (x) is a linear form and q(x) takes the quadratic form
q(x) = ∑

i �= j qi jxix j + cixi, with qi j and ci constants in Z2. In
addition, A is an affine space defined as A = {Gu + h | u ∈
Z2

m, h ∈ Z2
n}, with G an n × m matrix with entries in Z2.

To prove that this canonical form holds true for all qubit
stabilizer states, one only need to make sure that every state
in this form is the eigenstate of a stabilizer operator, as shown
in [27]. It also suffices to verify that any of the {H, P, CNOT}
gates preserves the form, only changing the coefficients of
q(x), l (x), and affine space A. This proof is given in [29].

The normal form was generalized to arbitrary dimensions
in [28]. The stabilizer canonical form for qudits is

|ψ〉 ∝
∑
u∈Zk

d

ωqd (u)+qn (u) |Gu + h〉, (F2)

where qn(u) = ∑
i �= j qi juiu j and qd (u) = ∑k

i=1 qi
ui (ui−1)

2 +
liui, with qi j, qi, li ∈ Zd . The state has support in a k-
dimensional affine space

�x = Gu + h = span(g1, . . . , gk ) ⊕ h

= u1g1 ⊕ u2g2 ⊕ · · · ⊕ ukgk ⊕ h, (F3)

where G is an n × k matrix and has each of its columns being
g1, . . . , gk with entries in Zd , while h is an n × 1 vector that
has entries in Zd . The division of the phase into two quadratic
terms reflects the action of the phase and Hadamard gates,

respectively. States of this form were shown to be the +1
eigenstate of some Pauli (Weyl-Heisenberg) operator in [28].

This quadratic form on the exponent can also be repre-
sented in matrix form

qd (u) + qn(u) = 2−1uT Qu + Lu, (F4)

where 2−1 is taken modulo d . Here Q is a k × k matrix with its
diagonal terms being qi and off-diagonal terms being qi j and
L is a 1 × n matrix where each term corresponds to li − qi.

We will give another proof that this form is preserved under
Clifford operations using the properties of quadratic Gauss
sums. We give this proof in order to develop the techniques
we will use in the inner product algorithm for qudit stabilizer
states.

We consider the single-qudit case first. We will prove that
the form

1√
d

∑
j∈Zm

d

ω f j( j−1)/2+gj | j + y〉 (F5)

is preserved under the action of the single-qudit Clifford
generators where f and g belong to Zd and y is a shift vector
that also belongs to Zd . We are studying the single-qudit case
here, so m is either 0 or 1. When m = 0, this is simply a
computational basis state.

Acting with diagonal Clifford gates on (F5) such as P or
Z will only change the coefficients f and g in this expression.
Similarly, acting with powers of the X gate will only shift y,
again preserving the quadratic form of the exponents.

It only remains to check the Hadamard gate:

H
1√
d

∑
j∈Zm

d

ω f j( j−1)/2+gj | j + y〉

= 1

d

∑
k

ωyk

⎛
⎝∑

j∈Zm
d

ω f j( j−1)/2+(k+g) j

⎞
⎠ |k〉. (F6)

If m = 0, the quantity in large parentheses is simply a phase
factor without the sum. Then this form reverts to (F5) with
f = 0 modd . If m = 1, we recognize the quantity in the large
parentheses as a Gauss sum. There are again two cases. If f =
0 modd , then we have∑

j∈Zd

ω(k+g) j = dδk+g,0. (F7)

Then (F6) reverts to (F5) as in the m = 0 case, i.e., a compu-
tational basis state.

If f �= 0 mod d , to compute this Gauss sum, we first com-
plete the square∑

j

ω f j( j−1)/2+(k+g) j =
∑

j

ω( f /2)[ j2− j+2(k+g) j f̄ ]

= ω−2̄ f [ f̄ (k+g)−2̄]2
∑

j

ω2̄ f [ j−2̄+(k+g) f̄ ]2

= ω−2̄ f [ f̄ (k+g)−2̄]2
∑

n

e2π i2̄ f n2/d , (F8)
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where 2̄ and f̄ , meaning that 22̄ ≡ 1 modd and f f̄ ≡ 1 modd .
The value of this Gauss sum is well known,

∑
n

e2π i2̄ f n2/d =
{( 2̄ f

d

)√
d, d ≡ 1(mod4)

i
( 2̄ f

d

)√
d, d ≡ 3(mod4),

(F9)

where ( 2̄ f
d ) is the Legendre symbol. Hence∑

j

ω f j( j−1)/2+(k+g) j ∝ ω− f̄ k(k−1)/2−2̄[(2g+1) f̄ −1]k . (F10)

The new coefficients − f̄ and −2̄[(2g + 1) f̄ − 1] here are still
in Zd . This means that the general form

∑
k ω f k(k−1)/2+gk |k〉

of single-qudit stabilizer states is preserved under the action
of any Clifford operations.

For multiqudit states, we have the same affine space prop-
erty as the qubit case except that the additions are modulo d .
Before we give the proof, we need to show that the quadratic
forms given in terms of the basis vectors of the affine space
�u and the qudit vector itself �x are equivalent. Changing the
arguments only changes the coefficients of the quadratic form.
Given Eq. (F4), we further assume the quadratic and linear
matrices in terms of x being Q̃ and L̃:

ωxT Q̃x+L̃x = ω(uT GT +hT )Q̃(Gu+h)+L̃(Gu+h)

∝ ωuT GT Q̃Gu+(2hT Q̃G+L̃G)u. (F11)

From this equation we can see the relationship between Q, L
and Q̃, L̃: Q = GT Q̃G and L = 2hT Q̃G + L̃G.

Now we use Van den Nest’s method [29] to prove that the
canonical form (F2) is preserved under the action of CSUM, P,
and H . The CSUMi→ j gate shifts the affine space by mapping
|a〉|b〉 to |a〉|a ⊕ b〉, without changing the phases. As in the
qubit case, we only need to add the ith row of the matrix G to
the jth row,

CSUM
∑
u∈Zm

d

ωqd (u)+qn (u) |Gu + h〉 =
∑
u∈Zm

d

ωqd (u)+qn (u) |G′u + h〉 ,

(F12)

where G′ differs from G by g̃ j → g̃i ⊕ g̃ j .
Acting with P on qudit i results in the state

Pi |ψ〉 ∝
∑
x∈A

ωqn (x)+qd (x)ωxi (xi−1)/2 |x〉 , (F13)

which again leaves the canonical form unchanged. The
Hadamard gate requires some work. Without loss of gener-
ality, we assume that H acts on the first qudit

H1 |ψ〉 ∝
d−1∑
v=0

∑
u

ωqn(u)+qd (u)+v(ḡ1u+h1 ) |v, Ḡu + h̄〉 , (F14)

where (g̃1)T is the first row of G and Ḡ is the rest of it. If Ḡ is
still full rank after taking out (g̃1)T , we obtain the new G′ as(

1 �0T

�0 Ḡ

)
. (F15)

Therefore, we now have m + 1 basis vectors and v becomes
the new u1. The term v(ḡ1u + t1) in the phase can be absorbed

in the quadratic form qn(u). So this is of the canonical
form (F2).

If Ḡ is rank m − 1 after taking out (g̃1)T , then the columns
of Ḡ are not linearly independent. In this case one of the ui

is redundant and we want it to be summed out in order to get
back to the canonical form. Without loss of generality, let us
assume that u1 = ∑m

i=2 riḡi, therefore Ḡu + h̄ = ∑m
i=2(ui +

ri )ḡi + h̄. If we define u′
i ≡ ui + ri for i = 2 to m (ū) and

u′
1 ≡ v, qn(ū) and qd (ū) can be written in terms of ū′ with

different coefficients from qn and qd , say, q′
n(ū′) and q′

d (ū′),
together with some constant factor which can be neglected.
Then Eq. (F14) becomes

H1 |ψ〉 ∝
d−1∑
v=0

∑
u

ωqn(u)+qd (u)+v(g̃T
1 u+h1 ) |v, Ḡu + h̄〉

∝
d−1∑
v=0

∑
u′

2,...,u
′
m

∑
u1

ωqn(u)+qd (u)+v(g̃T
1 u+h1 )

∣∣∣∣∣v,

m∑
i=2

u′
iḡi + h̄

〉

=
∑

u′
1,u

′
2,...,u

′
m

ωq′
n (ū′ )+q′

d (ū′ )+u′
1[

∑m
i=2 g1i (u′

i−ri )+h̄1]

×
(∑

u1

ωqn(u1 )+qd (u1 )+vg11u1

)∣∣∣∣∣v,

m∑
i=2

u′
iḡi + h̄

〉
.

(F16)

Here the large parentheses contain the Gauss sum we com-
puted earlier. Then we can drop the prime for the u and absorb
the result of the Gauss sum and u′

1[
∑m

i=2 g1i(u′
i − ri) + h̄1]

into the q′
n and q′

d functions. Finally, we arrive at the same
form but with different coefficients. Hence, the canonical form
is preserved under the action of all Clifford gates.

We now use this canonical form and the Gauss sum tech-
niques to provide an O(n3) algorithm for the computation of
the inner products of two-qudit stabilizer states.

Inner product of two-qudit stabilizer states

The inner product between two-qubit stabilizer states can
be computed efficiently in O(n3) [4,8,31,40]. However, a
corresponding algorithm for qudits has not yet been given,
although most aspects of the theory of stabilizer states have
been generalized [26,28]. We will now describe an O(n3)
algorithm that computes the inner product of two-qudit stabi-
lizer states based on the Gauss sum techniques we discussed
in Appendix E.

As discussed above, the quadratic forms in terms of the
basis vector of the affine space �u and the qudit vector itself �x
are equivalent. Therefore, Eq. (F2) is equivalent to

|ψ〉 ∝
∑
x∈A

ωq̃n(x)+q̃d (x) |x〉 , (F17)

where A is the affine space defined by Gu + h in Eq. (F3).
Assume we have two-qudit stabilizer states |ψ1〉 and

|ψ2〉, which take the above form (F17) with subindices 1
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and 2,

〈ψ2||ψ1〉 = d−(k1+k2 )/2
∑

x1∈A1

∑
x2∈A2

ωq̃1(x1 )−q̃2(x2 ) 〈x2〉 x1

= d−(k1+k2 )/2
∑

x∈A1∩A2

ωq̃1(x)−q̃2(x)

= d−(k1+k2 )/2
∑

x∈A1∩A2

ωq̃(x)

= d−(k1+k2 )/2
∑
u∈F k

d

ωq(u), (F18)

where q̃1 = q̃1d + q̃1n, q̃2 = ˜q2d + q̃2n, q̃ = q̃1 − q̃2, k is the
dimension of A1 ∩ A2, and q is the quadratic form in the new
basis of A1 ∩ A2. The new basis of the affine space A1 ∩ A2,
as well as the new quadratic form associated with it, can be
calculated with the same method used by Bravyi and Gosset
in Appendixes B and C for qubits [4], with cost O(n3).

What remains in Eq. (F18) is a Gauss sum, which we again
rewrite in the form

∑
u∈F k

d

ωuT Qu+Lu, (F19)

where the exponent is given by Eq. (F4). We can diagonalize
Q and factor this sum into a product of k Gauss sums over Fd .
We obtain a transformation matrix P that gives

PT QP = �, (F20)

where � is the diagonal matrix with entries λ1, . . . , λk .
Then if we further define u = Pu′, we obtain∑

u∈F k
d

ωuT Qu+Lu =
∑

u′∈F k
d

ωu′T PT QPu′+LPu′

=
∑

u′∈F k
d

ωu′T �u′+LPu′

=
k∏

i=1

∑
ui∈Fd

ωλiu′2
i +l ′i u

′
i , (F21)

where l ′
i = ∑

j p jil j . This is a product of k Gauss sums, as
given in Eqs. (F8)–(F10).

Each Gauss sum only takes O(1) time, so the product of
k of them takes time O(k). The scaling of this algorithm is
determined by the complexity of Gaussian elimination, O(k3)
because Q has rank k. Therefore, together with the first step to
obtain A1 ∩ A2, the algorithm takes O(n3) time overall in the
worst case.

APPENDIX G: EVALUATION OF Z(L)

The quantity Z (L) is given by Eq. (16),

Z (L) =
∑
x∈L

〈0̃t |C�x |0̃t 〉 =
∑
x∈L

t∏
l=1

〈0̃|Cxl |0̃〉 =
∑
x∈L

t∏
l=1

〈0̃||x̃l〉 . (G1)

We can see that this quantity is a function of the values 〈0̃|1̃〉, . . . , 〈0̃| ˜d − 1〉. We label the phase of 〈0̃| j̃〉 by β j for all j, where
β0 = 1. Using Eq. (10), Z (L) can be rewritten in the form

Z (L) =
∑
x∈L

t∏
l=1

〈0̃||x̃l〉 =
∑
x∈L

t∏
l=1

βxl

√
1 + (d − 1)δ0,xl

d
=

∑
x∈L

∏t
l=1 βxl

d (t−|x|)/2
=

∑
x∈L

∏d−1
j=1 β

|x| j

j

d (t−|x|)/2
, (G2)

where |x| is the Hamming weight of codeword x in code L, i.e., the number of nonzero elements in the codeword; |x| j means
the number of digits in string x that equals j. If we regard L as a linear code, then the qubit case Z (L) is exactly the weight
enumerator of the code. In the qudit case, Z (L) depends on the Hamming weight as well as the β j . Now let us calculate an
explicit expression for the β j .

For the d = 3 case, we specifically obtain β1 = eπ i/18 and β2 = e−π i/18. For the d > 3 case, we assume our initial stabilizer
state |0̃〉 = Z p |+〉. In addition,

β j =
√

d 〈0̃〉 j̃ =
√

d 〈0̃|C j |0̃〉 , (G3)

where the C for the Campbell et al. choice of |Md〉 is simply ω−3̄XP according to Eq. (3). We can calculate
(XP) j as

(XP) j =
∑

k

ω
∑ j−1

l=0 (k+l
2 ) |k + j〉〈k| = ω6̄( j3−3 j2+2 j)

∑
k

ω2̄( jk2+( j2−2 j)k) |k + j〉〈k| . (G4)

Therefore, we can rewrite C j as

C j = ω−3̄ j (XP) j = ω6̄( j3−3 j2 )
∑

k

ω2̄( jk2+( j2−2 j)k) |k + j〉〈k| . (G5)
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Then we can calculate β j as

β j =
√

d 〈+| Z−aC jZa |+〉

= ω6̄( j3−3 j2 )

√
d

〈k′′|
∑

k′′
ω−pk′′ ∑

k

ω2̄( jk2+( j2−2 j)k) |k + j〉 〈k|
∑

k′
ωpk′ |k′〉

= ω6̄( j3−3 j2−6p j)

√
d

∑
k

ω2̄[ jk2+( j2−2 j)k]. (G6)

This is a quadratic Gauss sum times a phase. Using Eqs. (F8) and (F9) for f = j and k + g = 2̄( j2 − j), we obtain∑
k

ω2̄[ jk2+( j2−2 j)k] = ω−2̄3 j( j−2)2

(
2 j

d

)
= ω−2̄3 j( j−2)2

i

(
2 j

d

)
. (G7)

The final expression of β j in terms of p is

β j = ω6̄ j3−2̄ j2−p jω−2̄3 j( j−2)2

(
2 j

d

)

= ω6̄ j3−2̄ j2−p jω−2̄3 j( j−2)2
i

(
2 j

d

)

=
{

ω(6̄−2̄3 ) j3−(p+2̄) j
( 2 j

d

)
, d ≡ 1(mod4)

ω(6̄−2̄3 ) j3−(p+2̄) j i
( 2 j

d

)
, d ≡ 3(mod4),

(G8)

where again ( 2̄ j
d ) is the Legendre symbol.
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