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While the circuit model of quantum computation defines its logical depth or “computational time” in terms
of temporal gate sequences, the measurement-based model could allow totally different temporal ordering
and parallelization of logical gates. By developing techniques to analyze Pauli measurements on multiqubit
hypergraph states generated by the controlled-controlled-Z (CCZ) gates, we introduce a deterministic scheme
of universal measurement-based computation. In contrast to the cluster-state scheme where the Clifford gates
are parallelizable, our scheme enjoys massive parallelization of CCZ and SWAP gates, so that the computational
depth grows with the number of global applications of Hadamard gates, or, in other words, with the number of
changing computational bases. A logarithmic-depth implementation of an N-times controlled-Z gate illustrates
a trade-off between space and time complexity.
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I. INTRODUCTION

A typical way to build a computer, classical or quantum,
is to first realize a certain set of elementary gates which can
then be combined to perform algorithms. The set of gates is
called universal if arbitrary algorithms can be implemented.
Consequently, the concept of universality is fundamental in
computer science. While the most common choice for the
universal gate set in quantum circuits is a two-qubit entan-
gling gate supplemented by certain single-qubit gates [1], the
universal gate set given by the three-qubit Toffoli gate [or
the controlled-controlled-Z (CCZ) gate for our case] and the
one-qubit Hadamard (H) gate [2,3] is fascinating for several
reasons.

First, the Toffoli gate alone is already universal for re-
versible classical computation. Consequently, the set may give
insight into fundamental questions about the origin of quan-
tum computational advantage, in the sense that changing the
bases among complementary observables (by the Hadamard
gates) brings power to quantum computation [4–8]. Second,
this gate set allows certain transversal implementations of
fault-tolerant universal quantum computation using topolog-
ical error correction codes. Transversality means that, in order
to perform gates on the encoded logical qubits, one can
apply corresponding gates to the physical qubits in a parallel
fashion, and this convenience has sparked recent interest in
this gate set [9–14]. Third, the many-body entangled states
generated by the CCZ gates are known as hypergraph states
in entanglement theory [15–19]. They found applications
in quantum algorithms [20] and Bell inequalities [21]. Fur-
thermore, as discussed below, they were recently utilized in
measurement-based quantum computation (MBQC) [22,23],
because they overlap with renormalization-group fixed-point
states of two-dimensional (2D) symmetry-protected topologi-
cal orders with global Z2 symmetry [24].

Motivated by these observations, we introduce a determin-
istic scheme of MBQC for the gate set of {CCZ, H}, using
multiqubit hypergraph states. MBQC is a scheme of quantum
computation where first a highly entangled multiparticle state
is created as a resource, then the computation is carried out by
performing local measurements on the particles only [25,26].
Compared with the canonical model of MBQC using cluster
states [27] generated by controlled-Z (CZ) gates, our scheme
allows to extend substantially several key aspects of MBQC,
such as the set of parallelizable gates and the by-product group
to compensate randomness of measurement outcomes (see
[28–30] for previous extensions using tensor network states).
Although 2D ground states with certain symmetry-protected
topological orders (SPTOs) have been shown to be universal
for MBQC [22,23,31], our construction has a remarkable
feature in that it allows deterministic MBQC, where the layout
of a simulated quantum circuit can be predetermined. As
a resource state, we consider hypergraph states built only
from CCZ unitaries. This is because (i) these states have a
connection to genuine 2D SPTO, (ii) it is of fundamental
interest if CCZ unitaries alone are as powerful as common
hybrid resources by CCZ (or so-called non-Clifford elements)
and CZ unitaries, and (iii) they might be experimentally rel-
evant since it requires only one type of the entangling gate,
albeit a three-body interaction (cf. [32–35]). On a technical
novelty, we derive a complex graphical rule for Pauli-X basis
measurements on general hypergraph states, which allows a
deterministic MBQC protocol on a hypergraph state. The rule
may find independent applications in deriving entanglement
witnesses [36,37], nonlocality proofs [21,38,39], and verifica-
tion [18,40,41] for a large class of hypergraph states.

As a remarkable consequence of deterministic MBQC,
we demonstrate an N-qubit generalized controlled-Z (CN Z)
gate, a key logical gate for quantum algorithms such as the
unstructured database search [42], in a depth logarithmic
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TABLE I. Features of MBQC schemes using cluster and hyper-
graph states. Our scheme with a hypergraph state implements all
logical CCZ and SWAP gates without adaptation of measurements,
leading to a massive parallelization of these.

Cluster state Hypergraph state

Preparation gates CZ ∈ C2 CCZ ∈ C3

Measurements Pauli + C2 Pauli
Implemented gates ↓ ↓ ↓

C2 C3 CCZ, H
By-product {X, Z} {CZ, X, Z}
Parallelized gates C2 {CCZnn, SWAP}

in N . Although relevant logarithmic implementations of CN Z

have been studied in Refs. [43–45], we highlight a trade-
off between space and time complexity in MBQC, namely,
reducing exponential ancilla qubits to a polynomial overhead
on the expense of increasing time complexity from a constant
depth to a logarithmic depth, in this example.

II. SUMMARY OF THE COMPUTATIONAL SCHEME

In MBQC, an algorithm is executed by performing lo-
cal measurements on some entangled resource state. Con-
sequently, two different physical resources, the entangling
gates needed to prepare the state and the required class of
measurements, characterize the MBQC scheme. To provide a
fine-grained classification, let us define the Clifford hierarchy
of unitary gates [46]. The unitary gates in the kth level of
the Clifford hierarchy, Ck , are defined inductively, with C1

consisting of tensor products of Pauli operators, and Ck+1 =
{U | ∀P∈C1,UPU † ∈ Ck}. The gates in C2 form the so-called
Clifford group, preserving the Pauli group operators under
conjugation. They allow an efficient classical simulation if the
initialization and readout measurements are performed in the
Pauli bases [47].

There are three relevant aspects in the complexity of
MBQC: first, the adaptation of measurement bases, namely,
whether the choice of some measurement bases depends on
the results of previous measurements; second, the notion of
parallelism and logical depth (cf. [48,49]) in terms of the
ordering of measurements; and third, due to intrinsic ran-
domness in the measurement outcomes, there are byproduct
operators sometimes to be corrected. In the canonical scheme
of MBQC using the cluster state, Pauli measurements imple-
ment Clifford gates in C2 without adaptation of measurement
bases, so these gates are parallelized. As Clifford gates are not
universal, more general measurements in the X -Y plane of the
Bloch sphere must be performed to generate unitaries in C3.
The by-product group is generated by the Pauli operators X
and Z .

Our scheme, however, has several key differences summa-
rized in Table I. Our state is prepared using CCZ gates (CCZ ∈
C3), but Pauli measurements alone are sufficient for universal
computation. We choose {CCZ, H} to be the logical gate set
for universal computation. Indeed, we can implement all
logical CCZ gates at arbitrary distance in parallel, by showing
that nearest-neighbor CCZ gates (CCZnn) and SWAP gates are
applicable without adaptation. Our implementation generates
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FIG. 1. Any quantum computation can be described as alterna-
tive applications of logical CCZ and Hadamard gates. Our MBQC
scheme allows a parallelization of all logical CCZ (namely, CCZnn

and SWAP) gates and each Hadamard layer increments computational
depth, as it requires adaptation of measurement bases to correct prior
by-products.

the group of by-product operators {CZ, X, Z}, which differs
from the standard by-product group. Since we need Hadamard
gates to achieve universality and our by-product group is not
closed under the conjugation with the Hadamard gate, we
need to correct all CZ by-products before the Hadamard gates.
Thus, the logical depth grows according to the number of
global applications of Hadamard gates, effectively changing
the computational bases (see Fig. 1).

III. HYPERGRAPH STATES AND MEASUREMENT RULES

Hypergraph states are generalizations of multiqubit graph
states. A hypergraph state corresponds to a hypergraph H =
(V, E ), where V is a set of vertices (corresponding to the
qubits) and E is a set of hyperedges, which may connect more
than two vertices (see Fig. 2 for an example). The hyperedges
correspond to interactions required for the generation of the
state, as the state is defined as

|H〉 =
∏
e∈E

Ce|+〉⊗|V |, (1)

where the Ce’s are generalized CZ gates, Ce = 1 −
2|1 · · · 1〉〈1 · · · 1| acting on the Hilbert space associated
to |e| qubits, and |+〉 is a single-qubit eigenstate of the
Pauli-X observable. Hypergraph states created by only
three-qubit CCZ gates are called three-uniform.

In MBQC protocols CZ unitaries guarantee information
flow via perfect teleportation [26,27]. Obtaining CZ gates with
a unit probability from three-uniform hypergraph states has
been a challenge as Pauli-Z measurements always give CZ

gates probabilistically. Therefore, only probabilistic or hybrid
(where CCZ and CZ gates are available on demand) scenarios
have been considered in the literature [14,22,31]. However,

1 2 3
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≡
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(a) (b)

FIG. 2. (a) Denoting the four-qubit hypergraph state with hy-
peredges E = {{1, 2, 4}, {2, 3, 4}, {1, 3, 4}} with the vertex and the
box. (b) Pauli-X measurements on vertices 1, 2, and 3 by Pauli-X
measurement on the box.
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FIG. 3. Pauli-X measurements on the given hypergraph states
result in graph states, with a Hadamard gate applied to its vertex 5.
All dashed lines (depicting by-products) appear additionally if the
product of measurement outcomes on vertices 1, 2, and 3 is −1.
(a) Pauli-Z by-product. (b) Pauli-Z and CZ by-products.

using a nontrivial Pauli-X measurement rule on three-uniform
hypergraph states, we achieve deterministic teleportation via
projecting on CZ gates with unit probability.

Note that Pauli-X measurement on a graph state always
projects onto a graph state, up to local unitary transformations
[50]. For hypergraph states, only the Pauli-Z measurement
rule is known [17], while Pauli-X measurements lead, in
general, out of the hypergraph state space. In Appendix A, we
give a sufficient criterion and a rule for Pauli-X measurements
to map hypergraph states to hypergraph states. This rule
for general hypergraph states entirely captures the known
graph state case. It can be derived by the well-known local
complementation rule generalized for hypergraph states [37].
Here we only give a couple of examples needed later for the
MBQC protocol (see Appendix A for more).

For ease of notation, we draw a box instead of three
vertices V = {1, 2, 3} and connect it with an edge to another
vertex k (� 4) [see Fig. 2(a)], if every two out of those
three vertices are in a three-qubit hyperedge with the vertex
k. In addition, we say that a box is measured in the M
basis if all three qubits {1, 2, 3} are measured in the M
basis [see Fig. 2(b), where M = X ]. The main two examples
of measurement rules are presented in Figs. 3(a) and 3(b),
where the postmeasurement states are graph states with unit
probability. By direct inspection one can check that there are
only two possible local Clifford equivalent postmeasurement
states when M = X .

IV. UNIVERSAL RESOURCE STATE AND MBQC SCHEME

Theorem 1. Based on the hypergraph state of Fig. 4(a), we
propose MBQC with the following features: (i) it is universal
using only Pauli measurements, (ii) it is deterministic, (iii)
it allows parallel implementations of all logical CCZ and
SWAP gates, among the universal gate set by CCZ, SWAP, and
Hadamard gates, and (iv) its computational logical depth is
the number of global layers of logical Hadamard gates.

We discuss the points in Theorem 1 individually:
(i) Universality with Pauli measurements only. For the

universal gate set we choose CCZ and Hadamard gates. We
realize the CCZ gate on arbitrary qubits in two steps: a nearest-
neighbor CCZ gate (CCZnn) and a SWAP gate, swapping an order
of inputs. Here we assume that information flows from the
bottom to the top.

(a)

(b)

H H

H
H

H
H

H

H

H

H

H

FIG. 4. (a) The universal resource state composed of elements
on Figs. 3(a) and 3(b). (b) Resource state obtained after measuring
all boxes in Pauli-X bases, except the ones attached to three qubits
surrounded by a hyperedge. All dashed circles represent Pauli-Z by-
products.

As a first step we measure almost all boxes in the Pauli-X
basis, except the ones attached to the horizontal three vertices
surrounded by a hyperedge CCZ. As a result we get graph
edges connecting different parts of the new state [see the
transition from Fig. 4(a) to Fig. 4(b)]. Getting these graph
edges is a crucial step, since it is partially responsible for
point (ii).

(ii) Determinism of the protocol. We use the resource in
Fig. 5 to implement the CCZnn gate. For CCZnn gate implemen-
tation we have to secure independently three inputs and three
outputs for the CCZ hyperedge in a hypergraph state to be used
as a logical CCZ gate. The box is measured in the Pauli-Z
basis and just gets removed. The three vertices to which the
box was attached to are still surrounded by a hyperedge CCZ

up to Pauli-Z by-products. These three qubits are connected
to the rest of the state with the graph edges, and performing
measurements as shown in Fig. 5 teleports the CCZ gate to
the output qubits (up to {CZ, Z} by-products). See Fig. 9 in
Appendix B for the explicit derivations.

Now we need a SWAP and a Hadamard (H) gate both con-
tained in C2. Since some graph states can directly implement
Clifford gates with Pauli measurements only, we first get rid
of all unnecessary CCZ hyperedges from the resource state
by measuring all remaining boxes in Fig. 4(b) in Pauli-X
bases resulting in the state in Fig. 6(b) (the full Pauli-X
measurement rule is needed for the derivation) and, looking
at the bigger fragment, we get a graph as in Fig. 6(c). The
main idea here is to get rid of all the vertices which might
be included in edges corresponding to by-product CZ’s. Then,

H

H

H

X X X

Z

Z

Z

:=
Z

CCZnn

H

FIG. 5. A nearest-neighbor CCZ gate is implemented up to
{Z, CZ} by-products. See Appendix B for details.
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FIG. 6. A deterministic graph state to implement SWAP and H
gates, and correction steps. (a) Gets rid of hyperedges entirely
and projects on the graph state with Pauli-Z and CZ by-products
depicted by dashed lines in (b). The hexagonal lattice (d) is obtained
deterministically after measuring colored vertices in suitable Pauli
bases on (c).

we make Pauli-Z measurements (qubits to which an H is
applied, we measure in the Pauli-X basis) on colored vertices.
As a result, we project to a hexagonal lattice deterministically.
This construction is the final step also responsible for point
(ii), determinism of the protocol. The hexagonal lattice can
implement any Clifford gate in parallel up to {X, Z} by-
products using Pauli measurements only [51], and therefore,
we can implement a SWAP gate.

(iii) Parallelization. The SWAP and CCZnn gates together
give a CCZ gate over arbitrary distance, up to {CZ, X, Z} by-
products without adaptivity.

(iv) Logical depth. Finally, after every CCZ gate layer, we
need to implement the Hadamard layer, which is straightfor-
ward [26]. However, since CZ by-products cannot be fed for-
ward through Hadamard gates, we need to correct all CZ’s. We
can again use the hexagonal lattice to perform the correction
step; however, the (k − 1)th correction step as enumerated in
Fig. 1 itself introduces {X, Z} by-products which, due to the
commutation relation CabcXa = XaCabcCbc, introduce new CZ

by-products before the kth correction step. Consequently, the
measurement results during the (k − 1)th correction must be
taken into account to correct all CZ by-products before the kth
correction step. To sum up, we can parallelize all CCZ gates,
but we need to increment the circuit depth for each Hadamard
layer in order to correct all CZ by-products adaptively.

V. APPLICATIONS OF PARALLELIZATION

We demonstrate that the parallelization in our MBQC
protocol may find several practical applications, by consid-
ering an example of an N-times controlled-Z (CN Z) gate. Its
implementation has been known either (i) in an O(log N )
non-Clifford T depth with (8N − 17) logical T gates, (10N −
22) Clifford gates, and �(N − 3)/2	 ancillas [43,44], or (ii)
in a constant depth (or constant rounds of adaptive mea-
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FIG. 7. The circuit identity to create a C6Z gate using CCZnn,
SWAP, and Hadamard gates.

surements) albeit with O(exp N ) CZ gates in the cluster-state
MBQC model and O(exp N ) ancillas [26]. In our approach, a
decomposition of the CN Z gate by CCZ gates and a few number
of Hadamard layers is desired.

Theorem 2. An N-times controlled-Z (CN Z) gate is feasible
in an O(log N ) logical depth of the Hadamard layers (or
“Hadamard” depth), using a polynomial spatial overhead in
N , namely, (2N − 6) logical Hadamard gates, (2N − 5) CCZ

gates, and (N − 3) ancillas, where N = 3 × 2r for a positive
integer r.

The detailed derivation of the gate identity and the resource
count is given in Fig. 7 and the Appendix C. See also Fig. 8
for implementation of the larger cN z gate. Note that the T
depth [43,44] of point (i) and the Hadamard depth in Theorem
2 are both logarithmic in this example. However, while the
former counts the depth of gates in C3 as a rough estimate in
fault-tolerant quantum computation, the latter gives the depth
according to the count in C2. Note that the T depth in general is
not the actual circuit depth of a unitary-gate sequence as it in-
volves other noncommuting gates in C2. Our Hadamard depth,
however, is indeed the actual logical depth of computation.
Comparing point (ii) with our Theorem 2, the depth can be
made constant in N on a cluster state, if the number of physical
qubits used in the MBQC protocol is allowed to be 2N − 1
[26]. Note that our construction in Theorem 2 can be adapted
on a cluster state by creating CCZ in a constant depth and
applying Theorem 2, so that the depth can be logarithmic in N
with a polynomial number of physical qubits (see Appendix
C). Therefore, Theorem 2 demonstrates a general trade-off
between space and time complexity required for quantum
algorithms, from the perspective of MBQC.

VI. SUMMARY AND OUTLOOK

We introduced a deterministic scheme of MBQC for the
gate set of CCZ and Hadamard gates, using a three-uniform
hypergraph state and Pauli measurements. It enables us to par-
allelize massively all long-range CCZ gates and the computa-
tional depth grows as we change computational bases. To take
a broader perspective, one can define the Fourier hierarchy
(FH) [4,6,7] in terms of the number of the global change of the
bases (namely, the globally parallel application of H gates).
Notably, classical polynomial-time computation, called the
complexity class P, belongs to the zeroth level of FH. Since
it is known that several important quantum algorithms, such
as Kitaev’s phase estimation, belong to the second level of
FH (which requires only two layers of global H gates) [7],
it would be interesting to explore the implementations of
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FIG. 8. The circuit identity implementing the C12Z gate. Here the middle C6Z gate was created with the circuit in Fig. 7. The procedure can
be iterated to the general CN Z gate.

low-level FH algorithms in our formulation. The recent major
result by Bravyi et al. [52] which proved quantum exponential
advantage in the 2D hidden linear function problem using a
shallow circuit in the second level of FH is really encouraging
towards this research direction (see, e.g., [53–55]).
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APPENDIX A: THE PAULI-X MEASUREMENT RULE FOR
HYPERGRAPH STATES

In this section we derive the Pauli-X measurement rule
for hypergraph states. We give a sufficient criterion for the
Pauli-X measurements on a hypergraph state to project on
a postmeasurement state which is local unitary equivalent to

H4

5

1

X

2 3

X X

4
4

≡
X

5

4 5

FIG. 9. The five-qubit three-uniform hypergraph state [56] is the smallest hypergraph state with no usual graph edges which can project on
a Bell state deterministically. It has hyperedges E = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}}. Qubits 1, 2, and 3 are measured
in the X basis and the postmeasurement state is a graph state with a Hadamard correction on vertex 4. The graph state is obtained with unit
probability but up to a Pauli-Z4 by-product. The probabilistic Pauli-Z4 is denoted by the dotted circle and it appears with the probability 4/5
when the product of Pauli-X measurement outcomes is −1.
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some other hypergraph state. This criterion entirely captures
the rule for graph states. For formulating the criterion we
introduce a term which can be regarded as a generalization
of the term neighborhood known in graph theory. We call
it the adjacency of a vertex a ∈ V and denote it by A(a) =
{e − {a}|e ∈ E with a ∈ e}.

Definition 3. Given a hypergraph state |H〉 corresponding
to a hypergraph H = (V, E ), if we write this hypergraph state
as

|H〉 = 1√
2
|0〉a|H0〉 + 1√

2
|1〉a|H1〉, (A1)

we say that the hypergraph state is expanded over a vertex
a ∈ V . By definition |H0〉 and |H1〉 are also hypergraph states,
respectively corresponding to hypergraphs H0 and H1 with
hyperedges E0 = {e ∈ E |a /∈ e} and E1 = E0 ∪ A(a). If we
choose a subset of vertices Vx ⊂ V instead of a vertex a, we
say that the hypergraph state is expanded over a set of vertices
Vx ⊂ V and expansion is done iteratively for every vertex in
Vx.

For example, if we want to expand the hypergraph state |H〉
over vertices a and b, we first expand it over a and then we
expand hypergraphs |H0〉 and |H1〉 separately over b, resulting
in

|H〉 = 1√
2
|0〉a(|0〉b|H00〉 + |1〉b|H01〉)

+ 1√
2
|1〉a(|0〉b|H10〉 + |1〉b|H11〉). (A2)

If the vertex a is measured in a computational basis, the
postmeasurement state is a hypergraph state |H0〉 for the
outcome 0 or |H1〉 for the outcome 1. However, if measured
in the Pauli-X basis, then the postmeasurement state is ∝
(|H0〉 ± |H1〉) and is not always a local unitary equivalent to
a hypergraph state. To check if for a given hypergraph state
measuring a vertex a or a set of vertices Va in the Pauli-X basis
gives a state local unitary equivalent to a hypergraph state, one
can expand an original hypergraph state over a vertex a or a set
Va and check if all possible equally weighted superpositions of
expanded hypergraph states give some other hypergraph state
or a state which is a local unitary equivalent to a hypergraph
state.

Let us consider particular cases of hypergraph states
|H〉 which when expanded over three vertices 1, 2, and
3 give eight new hypergraphs satisfying the following
constraints: H000 = H001 = H010 = H100 ≡ Hα and H111 =
H110 = H101 = H011 ≡ Hβ . Then the expanded state can be
written as follows:

|H〉 = 1√
8

((|000〉 + |001〉 + |010〉 + |100〉)123 ⊗ |Hα〉

+ (|111〉 + |110〉 + |101〉 + |011〉)123 ⊗ |Hβ〉). (A3)

TABLE II. All possible postmeasurement states for Pauli-X mea-
surements on qubits 1, 2, and 3 in Eq. (A3). Cases 2 and 4 are
equivalent up to a global sign.

No. Outcome Postmeasurement state

1 〈+ + +|123 ∝ (|Hα〉 + |Hβ〉)
2 〈+ + −|123 ∝ (|Hα〉 − |Hβ〉)
3 〈+ − −|123 0
4 〈− − −|123 ∝ −(|Hα〉 − |Hβ〉)

If qubits 1, 2, and 3 are all measured in Pauli-X bases, due
to the symmetry of the first three qubits, there are only the
four possible postmeasurement states presented in Table II.
We see from Table II that outcome 〈+ − −| never occurs and
outcomes 〈+ + −| and 〈− − −| are equivalent to each other
up to the global sign. Therefore, if we measure the first three
qubits of the hypergraph state |H〉 as presented in Eq. (A3),
there are only two possible postmeasurement states and they
correspond to the equally weighted superposition of two
hypergraph states |Hα〉 ± |Hβ〉. These three qubits and their
adjacencies are of our interest and in the main text they are
denoted by a box. Below we consider three examples where
we measure these three qubits but we vary the hypergraphs Hα

and Hβ .
The equally weighted superposition of two hypergraph

states is not always a hypergraph state again unless we choose
two hypergraphs Hα and Hβ specifically. Here we give a
sufficient criterion for equally weighted superpositions of two
hypergraph states being a hypergraph state up to local unitary
operations and derive the graphical rule for such cases.

Theorem 4. Let Hα = (V, E ) and Hβ = (V, E ∪ {a} ∪ Ẽ ),
where Ẽ are hyperedges not containing a vertex a ∈ V . Then
for the equally weighted superpositions of two hypergraph
states |Hα〉 and |Hβ〉 up to the Hadamard gate acting on the
vertex a, Ha are still hypergraph states denoted by |H+〉 and
|H−〉:

Ha|H+〉 ≡ Ha(|Hα〉 + |Hβ〉)

∝
∏

e′∈E ′
Ce′

∏
ea∈Aα (a)

∏
ẽ∈Ẽ

Cea∪ẽCẽ∪a|+〉⊗N , (A4)

Ha|H−〉 ≡ Ha(|Hα〉 − |Hβ〉)

∝ Ca

∏
e′∈E ′

Ce′
∏

ea∈Aα (a)

Cea

∏
ẽ∈Ẽ

Cea∪ẽCẽ∪a|+〉⊗N . (A5)

Here Aα (a) is the adjacency of the vertex a in hypergraph Hα

and E ′ = {e′|a /∈ e′, e′ ∈ E} and Ca = Za.

Proof. Let us assume that a = 1. Then we get

H1|H+〉 = H1(|Hα〉 + |Hβ〉) (A6)

= H1

⎛
⎝|Hα〉 + Z1

∏
ẽ∈Ẽ

Cẽ|Hα〉
⎞
⎠ (A7)
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= H1

⎛
⎝∏

e∈E

Ce

⎛
⎝|+〉⊗N + Z1

∏
ẽ∈Ẽ

Cẽ|+〉⊗N

⎞
⎠ (A8)

= H1

∏
e∈E

CeH1H1

⎛
⎝

⎡
⎣|+〉 + |−〉

∏
ẽ∈Ẽ

Cẽ

⎤
⎦|+〉⊗N−1

⎞
⎠ (A9)

= H1

∏
e′∈E ′

Ce′
∏

e′′∈E ′′
Ce′′H1H1

⎛
⎝

⎡
⎣|+〉 + |−〉

∏
ẽ∈Ẽ

Cẽ

⎤
⎦|+〉⊗N−1

⎞
⎠ (A10)

=
∏

e′∈E ′
Ce′H1

∏
e′′∈E ′′

Ce′′H1H1

⎛
⎝

⎡
⎣|+〉 + |−〉

∏
ẽ∈Ẽ

Cẽ

⎤
⎦|+〉⊗N−1

⎞
⎠ (A11)

=
∏

e′∈E ′
Ce′

∏
e1∈Aα (1)

CNOTe1,1

⎛
⎝

⎡
⎣|0〉 + |1〉

∏
ẽ∈Ẽ

Cẽ

⎤
⎦|+〉⊗N−1

⎞
⎠ (A12)

∝
∏

e′∈E ′
Ce′

∏
e1∈Aα (1)

CNOTe1,1

∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N (A13)

=
∏

e′∈E ′
Ce′

∏
e1∈Aα (1)

∏
ẽ∈Ẽ

Ce1∪ẽCẽ∪1|+〉⊗N . (A14)

In Eq. (A9) we decompose a set of hyperedges E into
two parts: E ′, hyperedges which do not contain vertex 1,
and E ′′ hyperedges which contain vertex 1. In Eq. (A10)
the set of hyperedges

∏
e′∈E ′ Ce′ commutes with H1 and

going to Eq. (A11), H1
∏

e′′∈E ′′ Ce′′H1 = ∏
e1∈Aα (1) CNOTe1,1,

since Hadamard gate H1 changes Z1 to X1 and, therefore,
generalized controlled-Z gates become generalized
controlled-NOT (CNOT) gates.

In Eq. (A11), H1 is applied to |±〉 and in Eq. (A12) a new
hypergraph state is obtained, which is written in an expanded
form over vertex 1. If we write this hypergraph state we get
Eq. (A13):⎛

⎝
⎡
⎣|0〉 + |1〉

∏
ẽ∈Ẽ

Cẽ

⎤
⎦|+〉⊗N−1

⎞
⎠ ∝

∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N . (A15)

Then generalized CNOT gates are applied to a new hypergraph
state in Eq. (A13). The action of a generalized CNOT gate was
described in Ref. [37] as follows: Applying the generalized
CNOTCt gate to a hypergraph state, where a set of control
qubits C controls the target qubit t , introduces or deletes the
set of edges Et = {et ∪ C|et ∈ A(t )}.

In Eq. (A13) the generalized CNOT gate is applied to
the hypergraph state which corresponds to the hypergraph
(V, {ẽ ∪ {1}|ẽ ∈ Ẽ}). The target qubit in the generalized CNOT

gate is vertex 1 and its adjacency is, therefore, given by
edge set Ẽ . The control qubits are presented by the edge set
Aα (1), which corresponds to the adjacency of vertex 1 in the
hypergraph Hα . The action of the generalized CNOT gate takes
the pairwise union of hyperedges in Aα (1) and Ẽ and adds or
deletes new hyperedges:∏

e1∈Aα (1)

∏
ẽ∈Ẽ

Ce1∪ẽ. (A16)

Inserting these hyperedges in Eq. (A14), we get the final
hypergraph states:

H1(|H+〉) ∝
∏

e′∈E ′
Ce′

∏
e1∈Aα (1)

∏
ẽ∈Ẽ

Ce1∪ẽCẽ∪1|+〉⊗N . (A17)

In the case of the minus superposition H1|H−〉, the deriva-
tions are very similar to H1|H+〉 up to Eq. (A12). In particular,
due to the minus sign in the superposition, we get a different
hypergraph state from the one in Eq. (A15):

H1

⎛
⎝|+〉 − |−〉

∏
ẽ∈Ẽ

Cẽ

⎞
⎠|+〉⊗N−1

=
⎛
⎝|0〉 − |1〉

∏
ẽ∈Ẽ

Cẽ

⎞
⎠|+〉⊗N−1 = C1

∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N . (A18)

Now we apply a generalized CNOT gate to the hypergraph
state in Eq. (A18):

∏
e1∈Aα (1)

CNOTe1,1C1

∏
ẽ∈Ẽ

Cẽ∪1|+〉⊗N . (A19)

The hypergraph state in Eq. (A18) has the additional edge
C1 and this means that the adjacency of vertex 1 in Eq. (A19)
is given by the edge set {Ẽ ∪ {∅}}. The action of the gener-
alized CNOT gate takes the pairwise union of hyperedges in
Aα (1) and {Ẽ ∪ {∅}} and introduces new hyperedges of the
form in the hypergraph

∏
e1∈Aα (1)

Ce1

∏
ẽ∈Ẽ

Ce1∪ẽ. (A20)
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Inserting these hyperedges in the original derivations gives
us the final hypergraph state:

H1|H−〉 ∝ C1

∏
e′∈E ′

Ce′
∏

e1∈Aα (1)

Ce1

∏
ẽ∈Ẽ

Ce1∪ẽCẽ∪1|+〉⊗N . (A21)

�
Given any graph state |G〉 corresponding to a connected

graph G = (V, E ), if we expand it over any of its vertices a ∈
V ,

|G〉 = 1√
2

(|0〉a|G0〉 + |1〉a|G1〉), (A22)

then graphs corresponding to |G0〉 and |G1〉 satisfy the condi-
tion of Theorem 4 since |G1〉 = ∏

i∈N (a) Zi|G0〉, where N (a)
is the neighborhood of the vertex a. So, if the vertex a is
measured in the Pauli-X basis, the postmeasurement states
are the equally weighted superpositions of |G0〉 and |G1〉 and,
therefore, Theorem 4 gives the rules for deriving postmeasure-
ment states for both outcomes of measurement in the Pauli-X
basis. The rules for Pauli-X measurement for graph states was
previously derived in Ref. [50] using a different approach.

1. Pauli-X measurement rule using generalized local
complementation on hypergraph states

Here we briefly review the postmeasurement rules obtained
for graph states using the graphical action called local com-
plementation and then we generalize this result to hypergraph
states. This gives a graphical rule for Pauli-X measurements
on hypergraph states.

Given a graph state |G〉, corresponding to a graph G =
(V, E ), there are well-defined graphical rules for obtaining
postmeasurement states after Pauli-X measurement [50] up to
local corrections. The postmeasurement state after measuring
a vertex a in the Pauli-X basis is

U a
x,±

∣∣τb0

(
τa ◦ τb0 (G)

) − {a}〉, (A23)

for any b0 ∈ N (a), where the map τ is local complementation
and U a

x,± corresponds to a local unitary operation depending
on the measurement outcome. The action of local complemen-
tation on some vertex a is defined as follows: If there were
edges between pairs of vertices in N (a), erase the edges, and
if there are no edges between some of the vertices in N (a),
the edge is added between these pairs of vertices. Pauli-X
measurement on graph states can be described as the three
consecutive applications of local complementation [50].

Now we extend the rule to hypergraph states. We keep
in mind the sufficient rule for Pauli-X measurements on
hypergraph states to give a hypergraph state. Instead of writing
down all the measured qubits, we can write the following
state, which would give exactly the same postmeasurement
states when the vertex B is measured in Pauli-X bases as
the original hypergraph vertices being measured in Pauli-
X bases (here we are disregarding the probabilities for the
postmeasurement states):

|HB〉 = 1√
2

(|0〉B|Hα〉 + |1〉B|Hβ〉). (A24)

We have replaced the three qubits (a box) here with only one
additional ancilla qubit B, which from the structure of the
hypergraphs Hα and Hβ evidently contains at least one graph
edge connecting B to the rest of the hypergraph.

We are now ready to formulate the result:
Theorem 5. Given a hypergraph state |HB〉 corresponding

to a hypergraph HB = (VB, EB) as in Eq. (A24), the post-
measurement states of the Pauli-X basis measurement on the
vertex B are derived by three actions of the generalized local
complementation rule as follows:

Ux,±|τ̃a(τ̃B ◦ τ̃a(|HB〉)) − {B}〉, (A25)

where a and B are contained in the same graph edge, {a, B} ∈
EB, and

Ux,+ = 1 and Ux,− = Ca

∏
ei∈AHα (a)

Cei . (A26)

Here AHα (a) means that the adjacency of qubit a must be
taken from the hypergraph Hα .

Proof. We first introduce the action of a generalized local
complementation on vertex B of an arbitrary hypergraph state
|H〉:

τ̃B(|H〉) =
∏

ei∈AH (B)

∏
e j∈AH (B),i< j

Cei∪e j |H〉. (A27)

Therefore, a pairwise union of ∀ei, e j ∈ AH (B), where i < j,
is added to the hyperedges of a hypergraph H as a result
of an action of a generalized local complementation. For the
physical maps and a derivation of the rule see Ref. [37].

Now we use this rule to prove the theorem. From The-
orem 4 we know that the hypergraphs have the following
structure: Hα = (V, E ) and Hβ = (V, E ∪ {a} ∪ Ẽ ), where Ẽ
are hyperedges not containing a vertex a ∈ V . Therefore, the
hypergraph HB indeed contains an edge {a, B} and there is no
other hyperedge in HB containing both a and B together.

Let us then consider the action of the first generalized local
complementation τ̃ (a). Note again that a is only contained in
the hyperedges E ∪ {a, B}:

τ̃ (a)|HB〉 = τ̃ (a)CaB

∏
ẽi∈Ẽ

Cẽi∪B|+〉B|Hα〉

= CaB

∏
ei∈AHα (a)

Cei∪B

∏
e j∈AHα (a),i< j

×Cei∪e j

∏
ẽi∈Ẽ

Cẽi∪B|+〉B|Hα〉. (A28)

Now we consider the second action, when τ̃ (B) is applied
to the new hypergraph. Note that the vertex B is now contained
in three types of hyperedges: every hyperedge in AHα ∪ in
every hyperedge in Ẽ ∪ finally in {a, B}. We have to take a
pairwise union between the types of the hyperedges and also
the pairwise union within each type too:

τ̃ (B) ◦ τ̃ (a)|HB〉 = CaB

∏
ei∈AHα (a)

Cei∪B

∏
ẽi∈Ẽ

Cẽi∪BCẽi∪aCẽi∪ei

×
∏

ẽ j∈Ẽ ,i< j

Cẽi∪ẽ j

∏
e′∈E ′

Ce′ |+〉⊗|VB|, (A29)
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where E ′ are hyperedges in Hα , which do not contain the vertex a. The next step is to remove the vertex B and all the hyperedges
it is adjacent to:

|τB ◦ τa(|HB〉)) − {B}〉 =
∏

ei∈AHα (a)

∏
ẽi∈Ẽ

Cẽi∪aCẽi∪ei

∏
ẽ j∈Ẽ ,i< j

Cẽi∪ẽ j

∏
e′∈E ′

Ce′ |+〉⊗|VB|−1. (A30)

And finally, the generalized local complementation over the vertex a gives:

|τa(τB ◦ τa(|HB〉)) − {B}〉 =
∏

e′∈E ′
Ce′

∏
ẽi∈Ẽ

Cẽi∪a

∏
ei∈AHα (a)

Cẽi∪ei |+〉⊗|VB|−1. (A31)

This expression exactly corresponds to the one in Eq. (A4), the postmeasurement state for the positive superposition. For the
negative outcome we just fix the correction term Ux,−:

Ux,−|τa(τB ◦ τa(|HB〉)) − {B}〉 = Ca

∏
e′∈E ′

Ce′
∏
ẽi∈Ẽ

Cẽi∪a

∏
ei∈AHα (a)

Cẽi∪eiCei |+〉⊗|VB|−1, (A32)

which exactly corresponds to the postmeasurement state for
negative superposition in Eq. (A5). �

2. Examples of Pauli-X measurements on hypergraph states

Here we give examples of Pauli-X measurements on hy-
pergraph states. In all of our examples exactly three vertices
are measured in Pauli-X bases. The postmeasurement states
are derived by first expanding the hypergraph state over these
three vertices as shown in Eq. (A3), then checking if new
emerging hypergraphs Hα and Hβ satisfy the condition of
Theorem 4. And only the final step is to apply the result of
Theorem 4 to give the postmeasurement hypergraph states.

Here we only consider three-uniform hypergraph states and
focus on cases when postmeasurement states are graph states
regardless of the measurement outcomes; in general this is not
the case.

Example 1. The smallest three-uniform hypergraph state
which after measuring the first three qubits in the Pauli-X
basis can deterministically project on a Bell state is (see
Fig. 9)

|H5〉 = C124C125C134C135C234C235|+〉⊗5

= 1

2
√

2
((|000〉 + |001〉 + |010〉 + |100〉)|+〉⊗2

+ (|011〉 + |110〉 + |101〉 + |111〉)|−〉⊗2). (A33)

The state |H5〉 is given in the expanded form over vertices
1, 2, and 3 as in Eq. (A3) and |Hα〉 = |+〉⊗2 and |Hβ〉 =
|−〉⊗2 = Z⊗2|+〉⊗2.

We fix a to be vertex 4, Hα to have hyperedges Eα =
{}, and Hβ to have hyperedges Eβ = {{4} ∪ Ẽ}, where Ẽ =
{{5}}. These two hypergraphs satisfy condition of Theo-
rem 4. So, measuring qubits 1, 2, and 3 in the Pauli-
X basis gives two possible postmeasurement hypergraph
states H4|H+〉 ∝ |+〉⊗2 + |−〉⊗2 with the probability 1/5 and
H4|H−〉 ∝ |+〉⊗2 + |−〉⊗2 with the probability 4/5. Using
Theorem 4 we derive these postmeasurement states:

H4|H+〉 ∝ H4(|+〉⊗2 + |−〉⊗2) ∝ C45|+〉⊗2

and

H4|H−〉 ∝ H4(|+〉⊗2 − |−〉⊗2) ∝ C45C4|+〉⊗2. (A34)

Example 2. Let us consider the six-qubit hypergraph state
|H6〉 presented in Fig. 3(a). After measuring qubits 1, 2, and 3
in the X basis, we project on the three-qubit graph state. To see
this, we write |H6〉 directly in the expanded form over vertices
1, 2, and 3:

|H6 (|000 + |001 + |010 + |100 )⊗ 4 5 6

+(|110 + |101 + |011 + |111 )⊗ 4 5 6 .

(A35)

Here Hα has hyperedges Eα = {} and Hβ has hyperedges
Eβ = {{4}, {5}, {6}} and we fix to apply the Hadamard correc-
tion on the vertex a = 5. We can use Theorem 4 to derive two
postmeasurement states up to the Hadamard gate applied to
vertex 5:

H5|H+〉 ∝ C45C56|+〉⊗3 and H5|H−〉 ∝ C45C56C5|+〉⊗3.

(A36)

Example 3. Let us consider the more complicated six-qubit
hypergraph state |H6〉 presented in Fig. 3(b). We write this
state expanded over vertices 1, 2, and 3:

|H6 (|000 + |001 + |010 + |100 )⊗ 4 5 6

+(|110 + |101 + |011 + |111 )⊗ 4 5 6 .

(A37)

Here Hα has hyperedges Eα = {{1, 2, 3}} and Hβ has hy-
peredges Eβ = {{1, 2, 3}, {4}, {5}, {6}} and we fix to apply
the Hadamard correction on the vertex a = 5. We can use
Theorem 4 to derive two postmeasurement states up to the
Hadamard gate applied to qubit 5:

H5|H+〉 ∝ C45C56|+〉⊗3 and H5|H−〉 ∝ C45C56C46C5|+〉⊗3.

(A38)

Remark. We can increase the number of vertices that we
measure in Pauli-X and generalize a notion of the box defined
in the main text. The box that we considered up to now was
corresponding to the structure of the expanded three vertices
and was always connected to the rest of the hypergraph with
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three-qubit hyperedges. Now we try to extend this result to
higher cardinality edges. Let us expand a hypergraph state
over m qubits, where 3 � m � N − 2 is an odd number, in
the following way:

|HN 〉 ∝
(∑

x

|x〉
)

⊗ |Hα〉 +
(∑

y

|y〉
)

⊗ |Hβ〉, (A39)

where x, y ∈ {0, 1}m and the first sum runs over all computa-
tional basis elements with the weight w(x) � �m/2� and the
second sum runs over all computational basis elements with
the weight w(y) > �m/2�.

If all the first m vertices are measured in Pauli-X bases,
then we again get two possible measurement outcomes |Hα〉 ±
|Hβ〉. However, the box now can look very different from the
m = 3 case.

For simplicity let us fix |Hα〉 = |+〉⊗|N−m| and |Hβ〉 =
|−〉⊗|N−m|. The smallest hyperedge for which the new type of
box is connected to the rest of the hypergraph has a cardinality
equal to �m/2	 + 1. But in addition, for some cases of m with
this construction the box will be connected to the rest of the
hypergraph with different sizes of hyperedges.

To illustrate this let us consider an example of |H7〉,
where m = 5 and |Hα〉 = |+〉⊗2 and |Hα〉 = |−〉⊗2. Then the
smallest cardinality hyperedge in the hypergraph is of size
4—the smallest weight of vector |y〉 is equal to �5/2	 = 3
and plus 1. However, these are not all the hyperedges in
the hypergraph: The vectors with weight 4 are in the second
summand and they are tensored with |−〉⊗2. However, if we
choose any four vertices among m, then every three from them
are connected to both vertices m + 1 and m + 2, but

(4
3

) =
4, which is an even number. So, the hypergraph must have
additional cardinality-five edges. Similarly we have to check
the weight of the last term in the sum:

(5
3

) + (5
4

) = 15 is an
odd number and, therefore, there are no cardinality-six edges

in the hypergraph. Therefore, similarly to the m = 3 case, we
got a box containing five qubits but the box is connected to the
rest of the hypergraph with four- and five-qubit hyperedges in
a symmetric manner.

APPENDIX B: IMPLEMENTATION OF CCZnn GATE

Since we have chosen {CCZ, H} to be the universal gate set,
we need to show in detail how to implement these gates on our
resource state. To start with, we implement CCZ gates only on
the nearest-neighbor qubits (denoted by CCZnn) and, therefore,
we need the SWAP gate too. The goal is to implement all the
gates deterministically. All Pauli measurements are made in
one step but for simplicity we consider them in several steps.
At step 1 the box is measured in the Pauli-Z basis. This
evidently removes the box entirely and introduces Pauli-Z
by-products on vertices 1, 2, and 3 as presented in Fig. 10.

In Fig. 10 at step 1 we first describe the measurements
needed to get the CCZnn gate using our resource state. Now
let us measure vertex 4 in the Pauli-Z basis; this effectively
implements Pauli-X measurement, since the Hadamard gate
was applied to this vertex. We need to use Theorem 4 to derive
a postmeasurement state. Let us write the hypergraph state in
the expanded form over vertex 4:

|H〉 = 1√
2

(|0〉4|H0〉 + |1〉4|H1〉)

= 1√
2

(|0〉4|H0〉 + |1〉4Z1Z7|H0〉). (B1)

Then |H0〉 and |H1〉 satisfy the condition of Theorem 4
with a Hadamard gate applied on vertex 1 and accordingly
the postmeasurement state is given in Fig. 10 at step 3. The
CCZ gate is now applied to vertices 2, 3, and 7. At this step we
have to point out that the postmeasurement state has the edges
{1} {2, 3} for the measurement outcome “−1”. Thus, this

H

H

H

Z

H

H

H

Step 1

Z1 2 3

4

5

6

7

8

9

H

H

H

Z

H

H

H

Step 2

Z1 2 3

4

5

6

7

8

9

H

H

Step 3

H
2 3X

H

H

Step 4

7 Z

Z

8

99

8

Step 5

X X

77

7

FIG. 10. Implementing the CCZnn gate. All measurements are made simultaneously. We present them step by step to emphasize how CZ

by-products come into the computational scheme. Step 1: The Pauli-Z measurement on the box removes the box and introduces Pauli-Z
by-products on vertices 1, 2, and 3. Step 2: Vertex 4 is measured in the X basis projecting on the state at step 3. Step 3: We see the CZ23

by-product depending on the outcome of the measurement on vertex 4. Measuring vertex 1 in Pauli-Z projects on the hypergraph at step 4.
Step 4: Repeating the measurements for vertices 2, 3, 5, and 6 gives the state at step 5.
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is where CZ by-products come into the computation scheme
discussed in the main text. At step 3, vertex 1 is measured
in the Pauli-X basis and since the Hadamard gate is applied
to these qubits, this implements the Pauli-Z measurement
instead. Repeating this measurement pattern as shown at step
4 gives the final state at step 5, where the CCZ gate is applied
to vertices 7,8,9 up to CZ and Z by-products.

APPENDIX C: DISCUSSION OF THE COMPLEXITY

Here we first give the proof for the gate identity from the
main text.

Lemma 6. The following equality holds for any state |ψ〉
and sets i ∈ e1 and i ∈ e2:

Ce1 HiCe2 HiCe1 |+〉i|ψ〉 = |+〉iCe1∪e2\{i}|ψ〉. (C1)

Proof. Assume that i = 1 and denote e′
1 ≡ e1\{1} and e′

2 ≡
e2\{1}, then e1 ∪ e2\{1} = e′

1 ∪ e′
2:

Ce1 HiCe2 HiCe1 |+〉i|ψ〉 = C{1}∪e′
1
CNOTe′

2,1C{1}∪e′
1
|+〉1|ψ〉.

(C2)

We can express an arbitrary multiqubit state |ψ〉 in the Pauli-
X orthonormal basis | j〉: |ψ〉 = ∑

j φ j | j〉. Then each vector
|+〉1| j〉 is itself a hypergraph state. In Ref. [37] the action of
a generalized CNOT gate was described on hypergraph states
as we have already used in the previous sections: Applying
the generalized CNOTCt gate to a hypergraph state, where a set
of control qubits C controls the target qubit t , introduces or
deletes the set of edges Et = {et ∪ C|et ∈ A(t )}.

In our example the target qubit t = 1 and for each hy-
pergraph state |+〉1| j〉 the target qubit t = 1 is in a single
hyperedge Ce1 only. Therefore, from linearity it follows that

C{1}∪e′
1
CNOTe′

2,1C{1}∪e′
1
|+〉1

⎛
⎝∑

j

ψ j | j〉
⎞
⎠

= C{1}∪e′
1
Ce2∪e′

1
C{1}∪e′

1
|+〉1

⎛
⎝∑

j

ψ j | j〉
⎞
⎠ = Ce2∪e′

1
|+〉1|ψ〉

(C3)

�

For an example let us consider the circuit in Fig. 7 in a
step-by-step manner by implementing a C6Z gate:

C145H1C123H1C145|+〉1|+〉2|+〉3|ψ〉456789

= C2345|+〉1|+〉2|+〉3|ψ〉456789. (C4)

Applying the same identity one more time when we have a
Hadamard on the second qubit (we omit the first qubit |+〉1),

C267H2C2345H2C267|+〉2|+〉3|ψ〉456789

= C34567|+〉2|+〉3|ψ〉456789. (C5)

And finally, using the third qubit |+〉3 for the same identity,
we get the C6Z gate (we again omit writing |+〉2):

C389H3C34567H3C389|+〉3|ψ〉456789 = |+〉3C456789|ψ〉456789.

(C6)

Measuring qubits 1, 2, and 3 in Pauli-X bases, we get
C456789 = the C6Z gate being applied to the arbitrary state
|ψ〉456789.

Next we count the physical resources necessary to imple-
ment the CN Z gate. We saw in Appendix B in Fig. 10 that the
minimal physical resource for the CCZnn gate is one physical
CCZnn gate and three CZ gates, represented by physical edges
{{1, 4}, {2, 5}, {3, 6}} and six ancilla qubits {1, 2, 3, 4, 5, 6}.
The minimal physical resource for a SWAP gate is nine CZ gates
and eight ancilla qubits, represented in Fig. 11(b). The number
of total CCZnn gates can be counted easily from the circuit; it
also matches the number of Hadamard gates in the circuit plus
one and for implementing the C3×2r

gate is equal to

KCCZ = 3

(
r∑

k=1

2k

)
+ 1 = 2N − 5. (C7)

Here we count number of SWAP gates needed. For C6Z

we need 24 SWAP gates. In general, to implement a CN Z

gate with our protocol having already created a CN/2Z gate,
we need N (N − 2) SWAP gates. So, in order to create a CN Z

gate we need to sum up the SWAP gates needed at all previous
steps of the iteration. If N = 3 × 2r , then there are a total of
r = log (N/3) iterations in our model from Theorem 2. To

|+ 1

|+ 2

|+ 3

H

H

H H

H

H

=4

5

6

7

8

9

4

5

6

7

8

9

:=SWAP

X

X

X

X

X

X
X

X

,

(a) (b)

FIG. 11. (a) Circuit for C6Z gate using long-ranged CCZ gates. (b) Implementation SWAP gate: uses nine CZ gates (brown edges) and eight
ancilla qubits.
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FIG. 12. (a) The 55-qubit graph state given in Ref. [26], which can implement three-qubit phase gates. Six gray vertices are for input-output,
seven dark purple vertices are measured in the second round of measurement, and the rest are measured in the Pauli-X basis in the first round and
the vertices which are already removed are measured in the Pauli-Z basis. (b) The seven-qubit graph state obtained after Pauli measurements
in (a) capable of implementing a three-qubit phase gate [26,57].

sum up, a total of

KSWAP =
r∑

k=1

(3 × 2k )(3 × 2k − 2) = 4N

(
N

3
− 1

)
(C8)

SWAP gates are needed.
So, to sum up we need KCCZ = 2N − 5 physical

CCZnn gates, 3KCCZ + 9KSWAP = 3(2N − 5) + 12N2 − 36N =
12N2 − 30N − 15 physical CZ gates, and 6KCCZ + 8KSWAP =
32
3 N2 − 20N − 30 physical qubits.

Next we look into the standard protocol for creating the
CN Z gate using MBQC with cluster states. In Ref. [26] the
55-qubit cluster state is given to implement three-qubit phase
gates. Some of the vertices are missing from the cluster as they
have been measured in the Pauli-Z basis [see Fig. 12(a) for the
55-qubit cluster state from Ref. [26]]. The gray qubits serve
for input and output registers. The main idea of the protocol
is to measure all the vertices displayed in Fig. 12(a) except
the dark purple ones in the first round of measurements in the
Pauli-X basis simultaneously. The resulting postmeasurement
state up to Pauli-Z by-products is the seven-qubit graph state

in Fig. 12(b). Note the similarity of this graph with the graph
in Fig. 5 of Ref. [57].

We draw this graph state in the following way: The graph
has

(3
1

) = 3 central vertices, which are connected to input-
output wires,

(3
3

) = 1 vertex adjacent to all the central qubits,
and

(3
2

) = 3 vertices, each adjacent to only two of the cen-
tral vertices such that all pairs from the central vertices are
connected to distinct vertices. In total, this makes

(3
1

) + (3
2

) +(3
3

) = 23 − 1 = 7 qubits. Then, depending on the previous
Pauli-X measurement outcomes, each of these seven qubits
is measured in the two eigenbases of UZ (±π

4 )XUZ (±π
4 )†,

creating a three-qubit phase gate up to Pauli by-products
[26,57].

If we extend this result for the C4Z gate, the initial
cluster state must be reduced to the graph state via Pauli
measurements implemented in parallel. The structure of this
graph is analogous to the one discussed for the C3Z case.
But now we need

∑4
i=1

(4
i

) = 24 − 1 qubits. From here one
can see that to implement a CN Z gate in the standard way
starting from the cluster state, one would only need to adapt
the measurement basis twice, which is constant for any N ,
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but the number of qubits one would require is
∑N

i=1

(N
i

) =
2N − 1, which is exponential with the size of the gate
implemented [57].

Let us look at the count of a physical qubits in the case
our gate identity from Theorem 2 is used on a cluster state. As

seen in Fig. 12(b) for the three-qubit phase gate, eight physical
qubits are needed. The SWAP gate can be implemented as in
Fig. 11(b) and therefore needs eight qubits. Therefore, a total
of 8(KCCZ + KSWAP) = 32

3 N2 − 16N − 40 qubits are needed,
which is polynomial in N .
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