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Conditional past-future correlation induced by non-Markovian dephasing reservoirs
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Memory effects can be studied through a conditional past-future correlation, which measures departure with
respect to a conditional past-future independence valid in a memoryless Markovian regime. In a quantum regime
this property leads to an operational definition of quantum non-Markovianity based on three consecutive system
measurement processes and postselection [Phys. Rev. Lett. 121, 240401 (2018)]. Here, we study the conditional
past-future correlation for a qubit system coupled to different dephasing environments. Exact solutions are
obtained for a quantum spin bath as well as for classically fluctuating random Hamiltonian models. The
developing of memory effects and departures from Born-Markov or white-noise approximations are related to
a measurement back action that changes the system dynamics between consecutive measurements. It is shown
that this effect may develop even when the former system evolution is given by a time-independent Lindblad
equation. This unusual non-Markovian case arises when the characteristic parameters of the dynamics become
Lorentzian random distributed variables.
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I. INTRODUCTION

In a classical regime, Markovianity (memoryless property)
leads to descriptions based on local-in-time evolutions such
as Fokker-Planck equations and master equations [1]. In a
quantum regime, instead of probabilities, a density-matrix
operator describes the open system dynamics [2,3]. As is well
known, when a local-in-time description applies, the evolution
of the density matrix must assume a Lindblad structure [4].
Therefore, in the last years these equations were naturally
related to quantum Markovianity. In fact, different quantum
memory measures (quantum non-Markovianity measures)
rely on diverse departures that a system may develop with
respect to their properties [5,6]. Many alternative proposals
were studied [7–22], most of them based on the behavior
of different quantum information measures under a Lindblad
evolution.

Usually in the definition of the previous memory indica-
tors, the only available information is given by the density-
matrix evolution or propagator. Memory effects developing
in open quantum systems can also be defined on alternative
grounds. For example, the well-established notion of classi-
cal Markovianity [1] can be extended to a quantum regime
by subjecting the system to extra control operations (mea-
surements) [23,24]. The operational definition of quantum
Markovianity introduced in Ref. [23] is based on a “process
tensor” framework, which relies on the usual definition of
classical Markovianity in terms of conditional probability
distributions. Thus, quantum Markovianity is defined by a
conditional independence of the system dynamics on past
control operations.

The formalism of Ref. [24] relies on an equivalent but dif-
ferent formulation of classical Markovianity, that is, the statis-
tical independence of past and future events when conditioned
to a given state at the present time [25]. Equivalently, memory

effects break conditional past-future (CPF) independence.
Hence, an ensemble of three time-ordered (random) system
events provides a minimal basis for establishing classical
and quantum Markovianity. A related conditional past-future
correlation becomes a univocal indicator of departures from
a memoryless regime. In a quantum regime, the three events
correspond to the outcomes of three (system) measurement
processes. Postselection takes into account the conditional
character of the definition. The CPF correlation vanishes
whenever a Born-Markov or white-noise approximation ap-
plies to quantum or classical environments, respectively [24].
Its calculation involves both predictive and retrodicted quan-
tum probabilities [26–28]. Hence, techniques and concepts
coming from retrodicted quantum measurements [26–36] play
a fundamental role in this alternative approach.

In this paper we study the CPF correlation for a qubit
system interacting with different non-Markovian dephasing
environments such as a quantum-spin-bath and stochastic
Hamiltonian models. An explicit derivation complements the
exact results presented in Ref. [24]. In addition, the devel-
oping of memory effects and departure from Born-Markov
and white-noise approximations are studied in detail for both
kinds of models. These features are related to a measure-
ment back action that changes the system dynamics between
consecutive measurements processes. Contrarily to all previ-
ous non-Markovian measures [5,6], we explicitly show that
even when a time-independent Lindblad equation defines
the former system evolution (between the first and second
measurements), its posterior dynamics (between the second
and third measurements) can be modified. This unusual non-
Markovian dynamics arises in both kinds of models when the
underlying parameters become random (time-independent)
variables characterized by a Lorentzian probability density.

The paper is outlined as follows. In Sec. II we briefly
resume the formalism established in Ref. [24]. In Sec. III the
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spin-bath model is studied. Section IV is devoted to stochastic
Hamiltonian dynamics. In Sec. V, both kinds of models
are characterized when the underlying parameters become
Lorentzian random variables. The conclusions are provided
in Sec. VI.

II. CONDITIONAL PAST-FUTURE CORRELATION

Given an ensemble of three time-ordered random events
x → y → z occurring at times tx < ty < tz, the Bayes rule
allows us to write the probability P(z, x|y) of past (x) and
future events (z), conditioned to a given present state (y) as

P(z, x|y) = P(z|y, x)P(x|y), (1)

where in general P(b|a) denotes the conditional probability of
b given a. A conditional past-future correlation,

Cp f = 〈OzOx〉y − 〈Oz〉y〈Ox〉y, (2)

defined as

Cp f =
∑

zx

[P(z, x|y) − P(z|y)P(x|y)]OzOx, (3)

is a measure of memory non-Markovian effects [24]. In
fact, for Markovian processes P(z|y, x) = P(z|y), implying
P(z, x|y) = P(z|y)P(x|y). Thus, Cp f = 0. In Eq. (3) the sum
indexes z and x run over all possible outcomes occurring
at times tz and tx, respectively, while y is a fixed particular
possible value at time ty. The parameters {Oz} and {Ox}
correspond to a property associated to each system state.

In a quantum regime, the sequence x → y → z is given by
the outcomes of three consecutive measurements performed
over the system of interest. The corresponding measurement
operators [37] are x → �x, y → �y, z → �z, and fulfill∑

x �†
x�x = ∑

y �†
y�y = ∑

z �†
z �z = I, where I is the iden-

tity matrix in the system Hilbert space, and the sum indexes
run over all possible outcomes at each stage. Furthermore, in
Eq. (3) {Oz} and {Ox} are set by the measured observables.
Given the conditional character of the past-future correla-
tion, in an experimental setup it follows from a postselected
subensemble of realizations where the intermediate y outcome
is a fixed arbitrary one. On the other hand, the calculation of
P(z|y, x) relies on standard predictive quantum measurement
theory. In contrast, P(x|y) is a retrodicted probability that can
be read from a “past quantum state” formalism [28,33].

III. DEPHASING SPIN BATH

Similarly to Ref. [24], here we consider a qubit system
interacting with a quantum spin bath [38–40]. Their mutual
interaction is set by the Hamiltonian

HT = σẑ ⊗
N∑

k=1

gkσ
(k)
ẑ . (4)

In here, σẑ is the system Pauli matrix in the ẑ direction. Its
eigenvectors are denoted as |±〉. On the other hand, σ

(k)
ẑ is the

ẑ Pauli matrix corresponding to the k spin, whose eigenvectors
are denoted as |↑〉k and |↓〉k . {gk} measures the coupling
between each spin of the environment and the qubit.

The interaction model (4) always admits an exact solution
[38–40]. For a separable pure initial bipartite state, ρse

0 =
|�0〉〈�0|, with

|�0〉 = (a|+〉 + b|−〉) ⊗
N∑

k=1

(αk|↑〉k + βk|↓〉k ), (5)

where the initial bath state is set by the individual spin
coefficients {αk} and {βk}, at time t the bipartite state is
ρse

t = |�t 〉〈�t |, where

|�t 〉 = a|+〉 ⊗ |B(t )〉 + b|−〉 ⊗ |B(−t )〉. (6)

Thus, the system and the environment become entangled. The
normalized bath state [〈B(t )|B(t )〉 = 1] is [39,40]

|B(t )〉 =
N∏

k=1

(αke+igkt |↑〉k + βke−igkt |↓〉k ). (7)

The three measurement processes that define the CPF
correlation [Eq. (3)] are chosen as projective ones, all of
them being performed in the x̂ direction of the qubit Bloch
sphere. Thus, the outcomes of each measurement, in suc-
cessive order, are x = ±1, y = ±1, and z = ±1, which in
turn define the system operators values Oz = z and Ox = x.
The corresponding measurement operators are the same,
{�x} = {�y} = {�z} = {�x̂=±1}, where �x̂=±1 = |x̂±〉〈x̂±|,
with |x̂±〉 = (|+〉 ± |−〉)/

√
2. A hat symbol distinguishes di-

rections in the Bloch sphere from measurement outcomes.

A. Conditional probabilities

In the following calculations the initial system state is |+〉
[Eq. (5) with a = 1 and b = 0]. Thus,

|�0〉 = |+〉 ⊗
N∑

k=1

(αk|↑〉k + βk|↓〉k ) (8)

is the initial bipartite system-environment state. The goal is to
calculate P(x|y) and P(z|y, x) [Eq. (1)].

At all steps the bipartite state remains a pure one.
After the first x measurement, from standard quan-
tum measurement theory [37], it becomes |�0〉 → |�x

0〉 =
�x̂=x|�0〉/

√〈�0|�x̂=x|�0〉, delivering

|�x
0〉 = |+〉 + x|−〉√

2
⊗

N∑
k=1

(αk|↑〉k + βk|↓〉k ), (9)

where consistently x = ±1 is the outcome of the first
measurement. The probability of both options is P(x) =
〈�0|�x̂=x|�0〉 = 1/2.

After evolving up to a time t ≡ ty − tx, from Eq. (6) the
bipartite state becomes

|�x
t 〉 = 1√

2
(|+〉 ⊗ |B(t )〉 + x|−〉 ⊗ |B(−t )〉). (10)

Posteriorly, the second measurement, with outcomes y =
±1, is performed in x̂ direction. The probability of
each option, given that the previous outcome was x,
is P(y|x) = 〈�x

t |�x̂=y|�x
t 〉, which delivers P(y|x) = (1 +

yxRe[〈B(−t )|B(t )〉])/2. Introducing the joint probability of
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both outcomes P(y, x) = P(y|x)P(x),

P(y, x) = 1
4 (1 + yxRe[〈B(−t )|B(t )〉]), (11)

it follows that P(y) = ∑
x=±1 P(y, x) = 1/2. The retrodicted

probability P(x|y) = P(y, x)/P(y) then reads

P(x|y) = 1
2 (1 + yxRe[〈B(−t )|B(t )〉]). (12)

Due to the chosen system initial condition, it follows the
symmetry P(x|y) = P(y|x).

After the second y measurement the bipartite state change
as |�x

t 〉 → |�yx
t 〉 = �x̂=y|�x

t 〉/√〈�x
t |�x̂=y|�x

t 〉, which from
Eq. (10) reads

∣∣�yx
t

〉 = |+〉 + y|−〉√
2

⊗ |Byx(t )〉. (13)

The bath state is

|Byx(t )〉 ≡ |B(t )〉 + yx|B(−t )〉√
N yx

t

, (14)

with normalization constant N yx
t = 〈B(t )|B(t )〉 +

〈B(−t )|B(−t )〉 + yx(〈B(t )|B(−t )〉 + 〈B(−t )|B(t )〉). It can
be rewritten as N yx

t = 4P(x|y) [Eq. (12)].
In the next step, the bipartite arrangement evolves during a

time interval τ ≡ tz − ty with the unitary dynamics dictated by
the Hamiltonian (4), |�yx

t 〉 → |�yx
t+τ 〉. From Eq. (6) it follows

that

|�yx
t+τ 〉 = 1√

2
(|+〉 ⊗ |Byx(t + τ )〉 + y|−〉 ⊗ |Byx(t − τ )〉).

(15)
The probability of the last z measurement P(z|y, x) =
〈�yx

t+τ |�x̂=z|�yx
t+τ 〉 reads

P(z|y, x) = 1
2 (1 + zyRe[〈Byx(t − τ )|Byx(t + τ )〉]). (16)

Equations (12) and (16) are the central results of this section.

B. Dynamics between consecutive measurements

The previous analysis allows us to characterize the system
dynamics between consecutive measurement events. After
the first x measurement and before the second y measure-
ment [time interval (0, t )], the system state follows as ρx

t =
Tre[|�x

t 〉〈�x
t |], where |�x

t 〉 is given by Eq. (10), and Tre[·] is
the trace operation over the environment degrees of freedom.
We get

ρx
t = 1

2

(
1 xct

xc∗
t 1

)
, (17)

where the coherence behavior, from Eq. (7), is given by

ct ≡ 〈B(−t )|B(t )〉 =
N∏

k=1

(|αk|2e+i2gkt + |βk|2e−i2gkt ). (18)

Consistent with the underlying interaction [Eq. (4)], only the
system coherences are affected.

After the second y measurement and before the third z mea-
surement [time interval (t, t + τ )], the system state follows as
ρ

yx
t,τ = Tre[|�yx

t+τ 〉〈�yx
t+τ |], where |�yx

t+τ 〉 is given by Eq. (15).

We get

ρ
yx
t,τ = 1

2

(
1 ycyx

t,τ
ycyx∗

t,τ 1

)
, (19)

where the new coherence behavior cyx
t,τ , from Eq. (14), is given

by

cyx
t,τ ≡ 〈Byx(t − τ )|Byx(t + τ )〉= cτ + yx(ct+τ + c∗

t−τ )/2

1 + yx(ct + c∗
t )/2

.

(20)
Here, ct gives the previous coherence behavior, Eq. (18). In
contrast, cyx

t,τ explicitly depends on both previous measure-
ment results.

From Eqs. (10) and (15), it is evident that for this model a
Born-Markov approximation [2,3] does not apply at any stage
(separable system-bath state). This non-Markovian property
can also be read from a measurement back action that leads
to a change of system dynamics between consecutive measure-
ments, cyx

t,τ �= ct .

The former bipartite dynamics in (0, t ) begins in a sep-
arable state [Eq. (9)]. Due to the projective nature of the
second y measurement, this property is also valid for the
interval (t, t + τ ) [Eq. (13)]. Nevertheless, in contrast here
the bath state |Byx(t )〉 is an entangled one that involves all
spin-bath variables [Eq. (14)]. It is a superposition of the bath
states |B(t )〉 and |B(−t )〉 whose phase in turn depends on
the product of outcomes yx. This measurement back action
on the bath degrees of freedom leads to a different posterior
system dynamics. Thus, this change can in fact be read as a
fingerprint of non-Markovian effects and departure from the
Born-Markov approximation.

C. CPF correlation

The CPF correlation (3) can be calculated after getting the
CPF probability P(z, x|y) = P(z|y, x)P(x|y). From Eqs. (12)
and (16), jointly with Eqs. (18) and (20), it follows that

P(z, x|y) = 1
4

{
1 + xy f (t ) + zy f (τ )

+ zx
[ f (t + τ ) + f (t − τ )]

2

}
, (21)

where for simplifying the expression we defined f (t ) ≡
Re[ct ]. In addition,

P(z|y) =
∑

x=±1

P(z, x|y) = 1

2
[1 + zy f (τ )], (22a)

P(x|y) =
∑
z=±1

P(z, x|y) = 1

2
[1 + xy f (t )]. (22b)

The conditional averages then read 〈Oz〉y = y f (τ ), 〈Ox〉y =
y f (t ), while from Eq. (21) we get 〈OzOx〉y = [ f (t + τ ) +
f (t − τ )]/2, where it has been used that Oz = z, Ox = x.
The exact expression for the CPF correlation (3) [Cp f →
Cp f (t, τ )] then is

Cp f (t, τ ) = f (t + τ ) + f (t − τ )

2
− f (t ) f (τ ). (23)

This result recovers the exact expression presented in
Ref. [24].
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FIG. 1. (a) System coherence between consecutive measure-
ments ct [Eq. (18)] and cyx

t,τ [Eq. (20)] for the spin-bath model.
(b) CPF correlation (23) for equal times, Cp f (τ, τ ). In both cases,
N = 50, the coupling is given by the scaling Eq. (25), while
αk = βk = 1/2. The system begins in the state |+〉.

D. Example

In order to exemplify the previous analysis, we consider a
regime where the spin-bath model leads to Gaussian system
decay behaviors [40], a situation that in turn is of interest in
different experimental situations [41].

All spins start in the same state, αk = α, βk = β, with
|α|2 + |β|2 = 1, and gk = gN . Thus, the system coherence
behavior after the first x measurement [Eq. (18)] becomes

ct = (|α|2e+i2gN t + |β|2e−i2gN t )N . (24)

In order to obtain an asymptotic behavior (N � 1) indepen-
dent of N , the following scaling is assumed:

gN = 1√
N

g, |α|2 − |β|2 = ω

2g
√

N
, (25)

where g and ω are free parameters. In the limit N � 1, from
Eq. (24) we get

ct 
 exp[+iωt − 2(gt )2]. (26)

On the other hand, the coherence behavior after the second
y measurement, given by cyx

t,τ [Eq. (20)], can be straight-
forwardly approximated from this expression. When |α|2 =
|β|2 = 1/2, ct follows a pure Gaussian decay behavior
[ω = 0], while

cyx
t,τ 
 e−2(gτ )2 + yx[e−2g2(t+τ )2 + e−2g2(t−τ )2

]/2

1 + yxe−2(gt )2 . (27)

Taking the scaling defined in Eq. (25), in Fig. 1 we plot
the system coherence behaviors between consecutive mea-
surements, ct [Eq. (18)] and cyx

t,τ [Eq. (20)]. Both objects are
very well fitted by Eqs. (26) and (27), respectively. On the
other hand, we note that in general cyx

t,τ , as a function of τ,

may develop strong departures with respect to ct . This feature
depends on the product of outcomes yx and is induced by the
measurement back action that leads to different “initial” bath
states, Eqs. (9) and (13), respectively. This property in turn
leads to strong non-Markovian effects, whose presence can
also be shown through the CPF correlation.

From Eqs. (23) and (26) [ f (t ) 
 exp[−2(gt )2] we get the
following approximation:

Cp f (t, τ ) 
 e−2g2(t+τ )2 + e−2g2(t−τ )2

2
− e−2g2(t2+τ 2 ). (28)

0
5

10
gτ

0

5

10

gt
0.0
0.5
1.0

FIG. 2. CPF correlation Cp f (t, τ ) [Eq. (23)] as a function of both
measurements times. The parameters are the same as in the previous
figure. The behavior is periodic in both measurement time intervals,
t and τ . For increasing number of bath spins, N → ∞, the location
of the central peak diverges.

For increasing numbers of spins N, this expression provides a
very good fitting of Eq. (23). In Fig. 1(b), we plot the corre-
lation for equal times, Cp f (t, t ). After a transient, it reaches a
plateau regime, Cp f (t, t ) = 1/2. This is the expected behavior
when N → ∞. In fact, the correlation of the spin bath does
not decay in time [24]. On the other hand, for finite N
recursive time behaviors are expected. This property is clearly
seen in Fig. 2, where as in Fig. 1 we have taken N = 50. Due
to the natural recurrence time of the total unitary dynamics,
the temporal behavior is periodic in both measurement times
(not shown). Consistently, the localization of the central peak
(around gt = gτ 
 5.5) goes to infinity for increasing N.

IV. HAMILTONIAN NOISE MODELS

The spin-bath model [Eq. (4)] does not have a natural
Markovian limit. In fact, the reservoir correlation does not
decay in time. In solid-state environments, extra degrees of
freedom coupled to the spin variables induce this feature. A
simple way of representing this situation is to approximate
the spin bath and “its environment” by a classical colored
noise [42]. Thus, the stochastic Hamiltonian evolution is
considered,

d

dt
ρst

t = −iξ (t )[σẑ, ρ
st
t ], (29)

where the system state ρt follows by averaging ρst
t over real-

izations of the real noise ξt , ρt = ρst
t [43], which is denoted

with the overbar symbol.
For simplicity, we only consider pure initial conditions.

Hence, the problem can be studied through a stochastic wave
vector, ρst

t = |ψt 〉〈ψt |, whose evolution is

d

dt
|ψt 〉 = −iξ (t )σẑ|ψt 〉. (30)

Taking the initial state |ψ0〉 = a|+〉 + b|−〉, which is uncor-
related from the noise realizations, the stochastic wave vector
reads

|ψt 〉 = e−i
∫ t

0 dt ′ξ (t ′ )a|+〉 + e+i
∫ t

0 dt ′ξ (t ′ )b|−〉. (31)

This stochastic dynamics replaces the bipartite description
given by Eq. (6).
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Memory effects induced by the noise ξ (t ) can be stud-
ied through the measurement scheme associated to the
CPF correlation. Similarly to the spin-bath model, here
the three successive measurements are chosen as projec-
tive ones, being performed in x̂ direction (in the qubit
Bloch sphere). The outcomes of each measurement are
x = ±1, y = ±1, and z = ±1, with measurement operators
{�x} = {�y} = {�z} = {�x̂=±1}, where �x̂=±1 = |x̂±〉〈x̂±|,
with |x̂±〉 = (|+〉 ± |−〉)/

√
2. The system initial condition is

taken as |ψ0〉 = |+〉, which in turn is statistically independent
of the noise.

A. Conditional probabilities

The following calculations are performed by taking into
account a particular noise realization. After the first x mea-
surement, the system state suffers the transformation |ψ0〉 →
|ψx

0 〉 = �x̂=x|ψ0〉/
√〈ψ0|�x̂=x|ψ0〉, delivering

∣∣ψx
0

〉 = |+〉 + x|−〉√
2

, (32)

where x = ±1 is the outcome of the measurement. The prob-
ability of both options is Pst (x) = 〈ψ0|�x̂=x|ψ0〉 = 1/2.

In the next step, during a time interval t the system evolves
following the dynamics (31),

∣∣ψx
t

〉 = 1√
2

[
e−i

∫ t
0 dt ′ξ (t ′ )|+〉 + e+i

∫ t
0 dt ′ξ (t ′ )x|−〉]. (33)

The probability for the second measurement outcomes y =
±1 follow from Pst (y|x) = 〈ψx

t |�x̂=y|ψx
t 〉, which then reads

Pst (y|x) = (1 + yxRe[exp ( − 2i
∫ t

0 dt ′ξ (t ′))])/2. Clearly, this
object is random and depends on each particular noise
realization. The joint probability distribution, Pst (y, x) =
Pst (y|x)Pst (x), is given by

Pst (y, x) = 1
4 (1 + yxRe[e−2i

∫ t
0 dt ′ξ (t ′ )]), (34)

which in turn implies Pst (y) = ∑
x=±1 Pst (y, x) = 1/2. Thus,

the retrodicted probability Pst (x|y) = Pst (y, x)/Pst (y) can be
written as

Pst (x|y) = 1
2 (1 + yxRe[e−2i

∫ t
0 dt ′ξ (t ′ )]). (35)

After the second y measurement, the wave vector collapses
as |ψx

t 〉 → |ψyx
t 〉 = �x̂=y|ψx

t 〉/√〈ψx
t |�x̂=y|ψx

t 〉, delivering

|ψyx
t 〉 = |+〉 + y|−〉√

2
. (36)

Notice that this state depends only on the last outcome y, being
independent of the previous outcome x. In addition, it does not
depend either on the measurement time t or on the particular
noise realization.

In the next step, the system evolves with the stochastic
unitary evolution (31) during a time interval τ, |ψyx

t 〉 →
|ψyx

t+τ 〉. Hence,

∣∣ψyx
t+τ

〉 = 1√
2

[
e−i

∫ t+τ

t dt ′ξ (t ′ )|+〉 + e+i
∫ t+τ

t dt ′ξ (t ′ )y|−〉]. (37)

The probability for the third z measurement is Pst (z|y, x) =
〈ψyx

t+τ |�x̂=z|ψyx
t+τ 〉,

Pst (z|y, x) = 1
2 (1 + zyRe[e−2i

∫ t+τ

t dt ′ξ (t ′ )]). (38)

We notice that the conditional probabilities (35) and (38)
depend on each particular noise realization in the intervals
(0, t ) and (t, t + τ ).

B. Dynamics between consecutive measurements

The dynamics between consecutive measurements can be
obtained by averaging over noise realizations. After the first
x measurement and before the second y measurement, the
system state follows as ρx

t = |ψx
t 〉〈ψx

t |, where |ψx
t 〉 is given

by Eq. (33). We get,

ρx
t = 1

2

(
1 xct

xc∗
t 1

)
, (39)

where the coherence behavior is given by

ct = cst (t ) ≡ exp
[

− 2i
∫ t

0
dt ′ξ (t ′)

]
. (40)

Similarly to the quantum-spin-bath model, only the system
coherences are affected.

After the second y measurement and before the third z mea-
surement, the system state follows as ρ

yx
t,τ = |ψyx

t+τ 〉〈ψyx
t+τ ||yx,

where |ψyx
t+τ 〉 is given by Eq. (37). We get,

ρ
yx
t,τ = 1

2

(
1 ycyx

t,τ
ycyx∗

t,τ 1

)
, (41)

where cyx
t,τ is given by

cyx
t,τ = cst (t, τ )

∣∣
yx ≡ exp

[
− 2i

∫ t+τ

t
dt ′ξ (t ′)

]∣∣∣∣∣
yx

. (42)

In contrast with Eq. (40), in the previous expression the
classical average (denoted as F[ξ ]|yx, where F[ξ ] is a func-
tional of the noise) is restricted (conditioned) to the occur-
rence of the previous x and y measurement outcomes. The
probability P([ξ ]|y, x) of a noise realization conditioned on
these outcomes, from the Bayes rule, is

P([ξ ]|y, x) = Pst (y, x)P([ξ ])

Pst (y, x)
. (43)

Here, P([ξ ]) is the unconditional probability of a noise re-
alization. Furthermore, Pst (y, x) is the joint probability of y
and x outcomes conditioned to a given noise realization. Thus,
it is given by Eq. (34). For an arbitrary noise functional, the
conditional average F[ξ ]|yx can then be written as

F[ξ ]
∣∣
yx = F[ξ ]P([ξ ]|y, x) = F[ξ ]Pst (y, x)

Pst (y, x)
. (44)

Applying this result to Eq. (42), we get the final expression,

cyx
t,τ = cst (t, τ )(1 + yxRe[cst (t )])

1 + yxRe[cst (t )]
, (45)

which is defined in terms of unconditional classical ensemble
averages.
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We notice that cyx
t,τ �= ct . This change of dynamics fol-

lows from a measurement back action on the (average)
environmental influence. In fact, this feature emerges from
conditioning the classical noise average to the occurrence
of previous quantum measurement outcomes. The different
coherence behaviors indicates the non-Markovian property of
the system dynamics. In fact, Eqs. (40) and (45) are the analog
of Eqs. (18) and (20), which correspond to the quantum spin
environment.

C. CPF correlation

The conditional probabilities Pst (x|y) [Eq. (35)] and
Pst (z|y, x) [Eq. (38)] rely on quantum measurement theory.
They were calculated taking into account a single noise re-
alization. The probability P(z, x|y), which defines the CPF
correlation (3), describes the statistics for an ensemble of
(conditional) measurement results. Given its conditional char-
acter, it can be written as

P(z, x|y) = Pst (z, x|y) = Pst (z|y, x)Pst (x|y)|y, (46)

where the (classical noise) average is conditioned to the
occurrence of a particular y outcome. This average can
be performed with the conditional probability P([ξ ]|y) =
Pst (y)P([ξ ])/Pst (y), where Pst (y) is the probability of obtain-
ing a y outcome for a given noise realization. Nevertheless,
for the chosen initial conditions, Pst (y) = ∑

x=±1 Pst (y, x) =
1/2 [see Eq. (34)]. Thus, P([ξ ]|y) = P([ξ ]), which implies
that, for the chosen initial conditions, the noise average in
Eq. (46) can be taken as an unconditional one, P(z, x|y) =
Pst (z|y, x)Pst (x|y). Using this result, from Eqs. (35) and (38) it
is possible to obtain

P(z, x|y) = 1
4 [1 + xy f (t ) + zy f ′(τ ) + zx f (t, τ )]. (47)

The auxiliary functions are

f (t ) = Re[cst (t )] = Re[e−2i
∫ t

0 dt ′ξ (t ′ )]. (48)

Thus, f (t ) = Re[ct ] [Eq. (40)]. Furthermore,

f ′(τ ) = Re[cst (t, τ )] = Re[e−2i
∫ t+τ

t dt ′ξ (t ′ )]. (49)

For stationary noises [1] this function does not depend on the
time t . In fact, stationarity implies f ′(τ ) = f (τ ). Finally,

f (t, τ ) = Re[cst (t )]Re[cst (t, τ )], (50)

which explicitly reads

f (t, τ ) = Re[e−2i
∫ t

0 dt ′ξ (t ′ )]Re[e−2i
∫ t+τ

t dt ′ξ (t ′ )]. (51)

From Eq. (47), using that Oz = z, Ox = x, the
conditional averages read 〈Oz〉y = y f (τ ), 〈Ox〉y = y f (t ),
and 〈OzOx〉y = f (t, τ ). The CPF correlation, Cp f (t, τ ) =
〈OzOx〉y − 〈Oz〉y 〈Ox〉y, becomes

Cp f (t, τ ) = f (t, τ ) − f (t ) f (τ ). (52)

These expressions recover the exact results presented in
Ref. [24].

Taking into account the expressions (48) and (51), we
realize that Cp f (t, τ ) corresponds to the centered correla-
tion of the real part of the phase terms exp[−2i

∫ t
0 dt ′ξ (t ′)]

and exp[−2i
∫ t+τ

t dt ′ξ (t ′)], which in turn correspond to the
(stochastic) coherence decay behaviors in the intervals (0, t )
and (t, t + τ ), respectively.

The exact result (52) can be evaluated for arbitrary (sta-
tionary) noises. The (real) functions f (t ) and f (t, τ ) also
determine the system dynamics between consecutive mea-
surements, Eqs. (40) and (45). In fact, for a stationary noise
with a vanishing mean value, ξ (t ) = 0, it follows that

ct = f (t ), cyx
t,τ = f (τ ) + yx f (t, τ )

1 + yx f (t )
. (53)

D. Gaussian noise

Gaussian fluctuations arise naturally in different physical
situations, such as, for example, in solid-state environments
[42,44]. For this statistics, the calculation of the functions
f (t ) and f (t, τ ) [Eqs. (48) and (51)] can be performed in
different alternative ways. Here, they are determine through
the characteristic noise functional [1],

G[k] = exp

[
i
∫ ∞

0
k(t ′)ξ (t ′)dt ′

]
, (54)

which depends on an arbitrary test function k(t ). For a Gaus-
sian noise with null average, ξ (t ) = 0, it reads [1]

G[k] = exp
[

− 1

2

∫ ∞

0
dt2

∫ ∞

0
dt1k(t2)k(t1)χ (t2, t1)

]
, (55)

where χ (t2, t1) ≡ ξ (t2)ξ (t1) = χ (|t2 − t1|) is the noise corre-
lation. The last equality is valid for stationary noises.

After giving an explicit noise correlation, the averages
(48) and (51) follow by writing Re[a] = (a + a∗)/2, and
by taking an adequate set of test functions. For exam-

ple, exp i
∫ t

0 ξ (t ′)dt ′ follows from G[k] with k(t ′) = θ (t −
t ′), where θ (x) is the step function, and performing the
corresponding time integrals. Similarly, the calculus of

exp i[
∫ t+τ

t ξ (t ′)dt ′ ± ∫ t
0 ξ (t ′)dt ′] is obtained with k(t ′) =

θ (t + τ − t ′)θ (t ′ − t ) ± θ (t − t ′).

1. White noise

For a white noise, χ (t2, t1) = γwδ(t2 − t1), it follows that

f (t ) = exp[−2γwt], f (t, τ ) = f (t ) f (τ ). (56)

Hence, a Markovian limit is achieved,

cτ = cyx
t,τ = f (τ ), Cp f (t, τ ) = 0. (57)

In fact, here the system dynamics between consecutive mea-
surement events do not depend on the measurement outcomes
and are the same. Consistently, the CPF correlation vanishes.
Furthermore, both intermediate dynamics [Eqs. (39) and (41)]
obey a (dephasing) Lindblad evolution,

dρt

dt
= 1

2
γ (t )(σẑρtσẑ − ρt ), (58)
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FIG. 3. Coherence decay behaviors cτ and cyx
t,τ between consec-

utive measurements [Eq. (53)] for the Gaussian stochastic Hamilto-
nian model with exponential correlation (61) for different correlation
times τc : (a) gτc = 100 and (b) gτc = 5. In both cases, gt = 1.5.

where the time-dependent rate is determined by the coherence
behavior

γ (t ) = − 1

〈+|ρt |−〉
d

dt
〈+|ρt |−〉. (59)

Thus, in both cases γ (t ) = 2γw.

2. Infinite correlation time

This case corresponds to a noise correlation that does not
decay in time, χ (t2, t1) = g2. We obtain

f (t ) = exp[−2(gt )2], f (t, τ ) = f (t + τ ) + f (t − τ ).
(60)

This decay behavior recovers the (asymptotic in N ) dynam-
ics induced by the spin-bath model when developing pure
Gaussian decay behaviors. Thus, the exact expression for the
coherences cτ and cyx

t,τ [Eq. (53)] are given by Eqs. (26) and
(27), respectively. The CPF correlation then corresponds to
Eq. (28). Between the first two measurements [Eq. (39)], the
system evolution is given by Eq. (58) with γ (t ) = 4g2t > 0. A
more complex expression (which depends on the product yx
of measurement outcomes) describes the rate for the second
evolution [Eq. (41)].

3. Exponential correlation

For an exponential correlation,

χ (t2, t1) = g2 exp[−|t2 − t1|/τc], (61)

where the parameter τc gives the characteristic correlation
time of the noise fluctuations, and g2 measures their initial
width, it follows that

f (t ) = exp { − 4(τcg)2[t/τc − (1 − e−t/τc )]}. (62)

The function (51) reads

f (t, τ ) = f (t ) f (τ ) cosh[ϕ(t, τ )], (63)

where the auxiliary function is

ϕ(t, τ ) ≡ 4(τcg)2(1 − e−t/τc )(1 − e−τ/τc ). (64)

In the limit τc → ∞, these expressions consistently give
the infinite correlation limit (60). On the other hand, taking
γw/2 = g2τc as a constant parameter, in the limit τc → 0, the
Markovian regime (56) is recovered.

In Fig. 3 we plot the coherence decay cτ and cyx
t,τ [Eq. (53)]

between consecutive measurement events. For larger correla-
tion times (gτc = 100), the behavior is similar to that of the

0
1

2gτ
0

1

2
gt

0.0
0.1
0.2
0.3

FIG. 4. CPF correlation [Eq. (52) jointly with Eqs. (62) and (63)]
for the Gaussian stochastic Hamiltonian model with exponential
correlation (61) with parameters gτc = 5.

quantum spin bath (see Fig. 1). On the other hand, for smaller
correlation times (gτc = 5) the measurement back action on
the coherence behavior is diminished. In fact, the difference
between both dynamics disappears in a white-noise limit. The
dynamics between the first two measurements is given by the
Lindblad evolution (58), with γ (t ) = 4g2τc(1 − e−t/τc ) > 0,

while a more complex expression describes the rate for the
second evolution [Eq. (41)].

In Fig. 4, for the same correlation time (gτc = 5) the
CPF correlation is plotted [Eq. (52)]. Its maximal amplitude
(central peak) diminishes when τc diminishes (compare with
Fig. 2, which can be read as the τc → ∞ limit). Furthermore,
as the Markovian limit is being approached, Cp f (t, τ ) is not
null only at short times.

In order to visualize the transition between Markovian and
non-Markovian regimes, in Fig. 5(a) we plot the coherence
behavior cτ [Eq. (53)]. Different values of the correlation τc

are chosen while the parameter γw/2 = g2τc remains constant.
A transition between exponential and Gaussian behaviors
is clearly seen when increasing the correlation time τc. In
Fig. 5(b) we also plot the CPF correlation for a set of different
correlation times. For increasing τc the limit (28) is recovered,
while for decreasing τc the CPF correlation approaches the
Markovian limit (57).

FIG. 5. (a) System coherence cτ [Eqs. (53) and (62)] for the
Gaussian stochastic Hamiltonian model with exponential correlation
(61) for different correlation times τc, where γw/2 = g2τc. (b) CPF
correlation (52) for equal times, Cp f (τ, τ ), for different correlation
times τc.
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V. NON-MARKOVIAN DEPHASING
LINDBLAD EVOLUTIONS

Lindblad dynamics [like Eq. (58)] with positive rates are
associated to a Markovian regime [5,6]. In the present scheme
quantum Markovianity does not rely on Lindblad theory. It
is defined by a vanishing CPF correlation. If both evolutions
between consecutive measurement events are defined by the
same Lindblad equation the CPF correlation vanishes. In
the previous Hamiltonian model this situation arises when the
noise is a δ-correlated one.

In this section we show that even when the evolution
between the first and second measurement events is given by
a time-independent Lindblad equation, the posterior evolution
(between the second and third measurements) may change,
implying a nonvanishing CPF correlation. Thus, the original
Lindblad equation cannot be associated to a Markovian dy-
namics. This unusual non-Markovian effect emerges when
the underlying parameters of the studied models become
Lorentzian random variables [1,45].

A. Spin environment with random coupling

In solid-state environments the couplings {gk} in the spin-
bath model (4) may become random variables [40]. This fea-
ture may represent, for example, distance-dependent system-
bath interactions modulated by the random location of each
spin of the environment [44]. Independently of its physical
origin, the description of a random coupling model follows
from the results of Sec. II after averaging over the distribution
of the set {gk}:

ct ≡ ct , cyx
t,τ ≡ cyx

t,τ

∣∣∣
yx

, Cp f (t, τ ) ≡ Cp f (t, τ )
∣∣
y. (65)

In these expressions bold letters denote averaged quantities.
The (random) objects are defined by Eqs. (18), (20), and (23),
evaluated in a particular realization of the set {gk}. The over-
bar denotes an average over their probability distributions.

The average that gives ct is an unconditional one. Nev-
ertheless, for cyx

t,τ the classical average is conditioned to the
occurrence of y and x outcomes. Similarly to Eq. (43), from
Bayes’s rule this conditional average is defined by the distri-
bution

P({gk}|y, x) = P(y, x)P({gk})

P(y, x)
, (66)

where P({gk}) is the (unconditional) probability distribution
of the coupling constants, while P(y, x) is given by Eq. (11)
evaluated in a particular realization of the set {gk}. Thus, from
Eq. (20), the coherence behavior between the first two (x and
y) measurements is

cyx
t,τ = cτ + yx(ct+τ + c∗

t−τ )/2

1 + yx(ct + c∗
t )/2

, (67)

which is written in terms of unconditional averages.
The correlation Cp f (t, τ ) [Eq. (65)] is defined by a clas-

sical average conditioned to the occurrence of a particular y
outcome. Nevertheless, due to the chosen initial conditions,
similarly to the average in Eq. (46), it can be taken as an
unconditional one. Thus, Cp f (t, τ ) = Cp f (t, τ ).

Lorentz probability distribution

The coupling {gk} are taken as independent identical ran-
dom variables, with the scaling

gk = 1

N
g̃. (68)

The probability density of the random variable g̃ is a
Lorentzian one,

P(g̃) = γ /2

π [(g̃ − ω/2)2 + (γ /2)2]
, (69)

where γ and ω are free parameters. Denoting with an overbar
the average over g̃, the following relation occurs [45]:

exp(+2ig̃t ) =
∫ +∞

−∞
dg̃P(g̃)e+2ig̃t = exp(iωt ) exp(−γ |t |).

(70)
Thus, random phases with a Lorentzian distribution leads to
exponential decay behaviors.

Assuming that all spin of the reservoir began in the same
state, αk = α, βk = β, with |α|2 + |β|2 = 1, from Eq. (18)
the average coherence behavior ct is given by

ct = ct = e−γ |t |(|α|2e+iωt/N + |β|2e−iωt/N )N . (71)

Hence, an exponential decay behavior is valid for arbitrary
N. Furthermore, for N � 1, it can be approximated as ct 

e−γ |t | exp[i(|α|2 − |β|2)ωt]. If |α|2 = |β|2 = 1/2, or alterna-
tively, taking ω = 0, the induced complex phase vanishes.
Thus, from Eq. (71) the pure exponential decay behavior
follows:

ct = exp[−γ |t |]. (72)

Similarly, from Eq. (67) the exact result follows:

cyx
t,τ = e−γ |τ | + yx(e−γ |t+τ | + e−γ |t−τ |)

1 + yxe−γ |t | . (73)

The exponential behavior (72) implies that between the
first two measurements the system dynamics is given by a
dephasing Lindblad equation with a time-independent rate
[Eq. (58) with γ (t ) = γ ]. Nevertheless, the second y mea-
surement induces a posterior change of system behavior [see
Eqs. (9) and (13)]. The change ct → cyx

t,τ , in spite of the
former pure exponential behavior, indicates that the dynamics
is non-Markovian. Consequently, a Lindblad dynamics does
not guarantee quantum Markovianity. In Fig. 6(a) we show
the behavior of both ct and cyx

t,τ , which is given by the
previous two expressions. cyx

t,τ develops a nondifferentiable
time behavior, which is induced by the Lorentzian coupling
statistics. In fact, the average defined by Eq. (67) [terms
ct+τ and c∗

t−τ ] becomes nondifferentiable due to the modulus
function appearing in Eq. (70). Other statistics do not lead to
this feature.

The non-Markovian property of the system dynamics can
also be shown through the CPF correlation. From Eqs. (23)
and (65) [with Cp f (t, τ ) = Cp f (t, τ )] the following exact
expression straightforwardly occurs:

Cp f (t, τ ) = e−γ |t+τ | + e−γ |t−τ |

2
− e−γ (|t |+|τ |), (74)

which certainly is not null.
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FIG. 6. (a) System coherences ct [Eq. (72)] and cyx
t,τ [Eq. (73)] for

the spin-bath model with Lorentzian distributed coupling. (b) CPF
correlation (74) for equal times, Cp f (τ, τ ). In both figures, the
random coupling is given by the scaling Eq. (68), while the average
coupling is null, ω = 0 [Eq. (69)], and N = 50. The system and bath
initial conditions are the same as in Fig. 1.

In Fig. 6(b) we plot Cp f (t, τ ) for equal time intervals,
while in Fig. 7 we plot its dependence on both times. In
contrast to Fig. 2, due to the randomness of the coupling
coefficients, the time behavior is not periodic in time. Further-
more, the asymptotic behavior limt→∞ Cp f (t, t ) = 1/2 again
is related to an infinite-environment correlation time.

The dynamics characterized previously demonstrates that
a Lindblad equation may arise even when the Born-Markov
approximation does not apply. Notice that the non-Markovian
character of the evolution can only be detected through extra
information that is not encoded in the density-matrix dynam-
ics corresponding to the time interval (0, t ).

B. Random frequency models

Instead of a time-dependent stochastic noise one can con-
sider a random frequency model, that is, Eq. (29) under the
replacement ξ (t ) → g̃:

d

dt
ρst

t = −ig̃
[
σẑ, ρ

st
t

]
, (75)

where g̃ is a (time-independent) random variable with
probability density P(g̃). The infinite correlation limit of
the Gaussian noise [Eq. (55)] can be read in this way,
where P(g̃) is a Gaussian distribution. On the other hand,
we notice that the evolution (75) corresponds to a par-
ticular case of a (quantum-classical) generalized Lindblad
equation [46].

0
2

4
6 0

2

4

6

Γt
0.0
0.2
0.4

0 1 2 3 4 5
0

1

2

3

4

5

γt

γτ

γτ

FIG. 7. CPF correlation Cp f (t, τ ) [Eq. (74)] for the spin-bath
model with Lorentzian coupling constants. The parameters are the
same as in the previous figure.

All calculations performed in Sec. IV apply to the present
model after replacing ξ (t ) → g̃. The functions f (t ) and f ′(τ )
[Eqs. (48) and (49)] become

f (t ) = e+2ig̃t + e−2ig̃t

2
, f ′(τ ) = e+2ig̃τ + e−2ig̃τ

2
, (76)

where the overbar here denotes an average with the distribu-
tion P(g̃). Equation (51) becomes

f (t, τ ) = (e+2ig̃t + e−2ig̃t )(e+2ig̃τ + e−2ig̃τ )

4
. (77)

Lorentzian random frequencies

Similarly to the spin-bath model, here we chose a
Lorentzian distribution (69) for g̃. Taking ω = 0, from
Eq. (70) it follows that

f (t ) = exp[−γ |t |], f ′(τ ) = exp[−γ |τ |], (78)

and similarly,

f (t, τ ) = exp[−γ |t + τ |] + exp[−γ |t − τ |]
2

. (79)

With these expressions at hand it is simple to realize that ct

and cyx
t,τ [Eq. (53)] are given by Eqs. (72) and (73), respec-

tively. Furthermore, the CPF correlation Cp f (t, τ ) [Eq. (52)]
is given by Eq. (74). Therefore, the random frequency model
leads to the same results and expressions as the spin-bath
model with Lorentzian random coefficients. This simplified
model [Eq. (75)] also demonstrates that a Lindblad equation
may rely on strong (non-Markovian) system-environment cor-
relations. It is interesting to note that a similar conclusion was
found decades ago by Lindblad (see Ref. [47], where non-
Markovianity follows from breaking of quantum regression
hypothesis).

VI. CONCLUSIONS

Similarly to classical systems, quantum non-Markovian
effects can be studied through a CPF correlation. Its defini-
tion relies on three quantum measurements performed suc-
cessively over the system of interest. We characterized the
CPF correlation for a qubit system whose non-Markovian
dynamics is induced by different dephasing mechanisms. On
the basis of standard quantum measurement theory, exact
expressions were found for a quantum spin environment as
well as for stochastic Hamiltonian models.

The present analysis allowed us to relate the presence
of memory effects, indicated by a nonvanishing CPF cor-
relation, with a measurement back action that changes the
system dynamics between consecutive measurement events.
In fact, in a Markovian limit, defined by a vanishing CPF
correlation, this dynamical change is absent. For the Hamil-
tonian noise model, Markovianity emerges in a white-noise
limit.

Taking the underlying parameters of the models as random
variables with a Lorentzian probability density, the former
system evolution between the first two measurements is given
a dephasing Lindblad equation with a time-independent rate.
In spite of this feature, the posterior system evolution, be-
tween the second and third measurements, is different from
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the former one. This unexpected (non-Markovian) property
demonstrates that Lindblad equations may emerge even when
the system and the environment are highly correlated. Quan-
tum non-Markovian measures based solely on the system
density-matrix evolution are unable to detect these non-
Markovian features.

ACKNOWLEDGMENTS

The author thanks Felick A. Pollock for providing
Ref. [47]. This work was supported by Consejo Na-
cional de Investigaciones Científicas y Técnicas (CONICET),
Argentina.

[1] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1981).

[2] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[3] I. de Vega and D. Alonso, Dynamics of non-Markovian open
quantum systems, Rev. Mod. Phys. 89, 015001 (2017).

[4] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and
Applications, Lecture Notes in Physics Vol. 717 (Springer,
Berlin, 1987).

[5] H. P. Breuer, E. M. Laine, J. Piilo, and V. Vacchini, Colloquium:
Non-Markovian dynamics in open quantum systems, Rev. Mod.
Phys. 88, 021002 (2016).

[6] A. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and detection,
Rep. Prog. Phys. 77, 094001 (2014).

[7] H. P. Breuer, E. M. Laine, and J. Piilo, Measure for the Degree
of Non-Markovian Behavior of Quantum Processes in Open
Systems, Phys. Rev. Lett. 103, 210401 (2009).

[8] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Assessing
Non-Markovian Quantum Dynamics, Phys. Rev. Lett. 101,
150402 (2008).

[9] A. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and
Non-Markovianity of Quantum Evolutions, Phys. Rev. Lett.
105, 050403 (2010).
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