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Exotic Bohmian arrival times of spin-1/2 particles: An analytical treatment
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It is well known that orthodox quantum mechanics does not make unambiguous predictions for the statistics
in arrival time (or time-of-flight) experiments. Bohmian mechanics (or de Broglie–Bohm theory) offers a distinct
conceptual advantage in this regard, owing to the well-defined concepts of point particles and trajectories embed-
ded in this theory. We revisit a recently proposed experiment [S. Das and D. Dürr, Sci. Rep. 9, 2242 (2019)], the
numerical analysis of which revealed a striking spin dependence in the (Bohmian) time-of-arrival distributions
of a spin-1/2 particle. We present here a mathematically tractable variant of the same experiment, where the pre-
dicted effects can be established rigorously. We also obtain some results that can be compared with experiment.
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I. INTRODUCTION

The description of arrival times of a quantum particle at a
detector (e.g., a scintillation screen in the double-slit exper-
imental setup) is an unsettled issue. A very careful analysis
of arrival times within the framework of standard quantum
mechanics was initiated by Allcock [1,2], but did not find a
definite arrival time distribution. Noteworthy in this regard is
also the earlier work of Aharonov and Bohm [3]. For more
recent reviews see [4,5] and ([6], Chap. 5). It is also known
that time is not a quantum observable in the canonical sense
of a self-adjoint operator, hence there is no clear (or unique)
way to address this problem from first principles of orthodox
quantum mechanics. In fact, many theoretical proposals for
the arrival time distribution of a particle (claimed to be) based
on orthodox quantum mechanics turn out to be ambiguous,
and at times even paradoxical [7,8], not to mention only
vaguely connected to experiments [9]. It is also known that
the statistics of standard quantum measurements are given by
positive operator valued measures (POVMs; also referred to as
generalized observables) on the particle’s Hilbert space [10].
In principle, specifying the POVM associated with a given
arrival time experiment requires a full quantum mechanical
analysis of the macroscopic system comprised of the appara-
tus and the particle. Since this is practically impossible, there
have been many attempts to guess a universal POVM or a
universal class of POVMs from symmetry or other principles
of orthodox quantum mechanics [3,11–14]. To our knowl-
edge, none of the POVMs suggested have been experimentally
verified in a serious manner.

We shall study in this paper the arrival time problem
within the framework of Bohmian mechanics, which offers
a broader viewpoint on quantum phenomena, not limited by
self-adjoint operators or POVMs. More importantly, due to
the well-defined concepts of point particles and trajectories
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embedded in this theory, it is naturally suited for computing
arrival times of a particle. The virtues of Bohmian trajectories
in the context of tunneling times have been recognized in
recent publications [15,16]. We focus on certain special wave
functions that can be prepared (e.g., ground states of a po-
tential), and for which the Bohmian arrival time distributions
show very striking behavior. Indeed, the distributions we find
are so extremely well articulated that their existence almost
demands experimental inspection.

We refer to the Bohmian arrival time distributions as
ideal or intrinsic distributions, since the influence of the
detector is ignored in our theoretical treatment. Such an
idealization proves to be satisfactory in many applications,
e.g., the double-slit experiment, Fig. 1. See [17] for a weak
measurement of average quantum trajectories in a double-slit
experiment, which can indeed be seen as Bohmian trajecto-
ries. In a followup to this paper [18] we model the influence
of a physical detector (via a phenomenological imaginary
potential [2]), which supports our conviction that the ideal
arrival time distributions are in fact good approximations to
the measured ones.

So far, there exist no experimental data for arrival time
distributions other than that obtained in the “far field” or
scattering regime [20–25]. In such experiments, the scattered
particle after leaving the source travels freely for a long
distance (compared to the width of its wave function at the
time of preparation), and the measured time of flight (TOF) of
the particle is explained classically, tacitly assuming the va-
lidity of Newtonian mechanics. Such treatments are routinely
used for fitting TOF data, both in single-particle experiments
involving heavy ions (e.g., 40

20Ca+, 90
232Th+) [23,26] and many-

body experiments [24,25] involving a cloud of ≈103 atoms.
The empirical success of semiclassical methods is not

altogether surprising from a Bohmian viewpoint, since the
emergence of Newtonian behavior in scattering situations is
an ubiquitous feature of this theory. In particular, the wave
function of a particle in far field (potential-free) regions be-
comes an approximate plane wave; consequently the Bohmian
trajectories become nearly straight lines of constant velocity,
similar to the Newtonian trajectories of a free particle. On
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FIG. 1. Collection of Bohmian trajectories of a spin-0 particle
passing through a double-slit interferometer, with initial positions
sampled randomly from the initial |ψ |2 distribution (dots). Most
trajectories are reflected back (not shown). Inset: magnified view of
the near field region. Figure courtesy of Kellers [19].

the contrary, in the near field (e.g., close to the slits in a
double-slit setup, Fig. 1), the particle is influenced by inter-
ference of wave packets, causing its trajectory to meander in
a non-Newtonian manner. The (Bohmian) arrival time of the
particle at a distant screen is thus to a good approximation
explained by classical reasoning, ignoring the negligible time
spent in the near field region. Therefore, soliciting deviations
from semiclassical methods, theorists (including those ap-
proaching the problem from non-Bohmian viewpoints) have
recommended “moving the detectors closer to the region of
coherent wave packet production, or closer to the interaction
region” ([5], p. 419). However, such a relocation may not only
disturb the wave function of the particle in an undesirable way
[27], but also require cutting edge time resolution equipment.

Based on these considerations, an arrival time experiment
for a spin-1/2 particle was proposed in [28,29], which had
the distinctive virtue that the particle in the course of its
flight never moved freely. Therefore, the Bohmian arrival
time was not given by a classical formula (as in the far field
scattering situations discussed above). Most importantly, in
this experiment the nonclassical motion was not caused by
the interference of waves (as in the regions close to the slits),
but was instead due to the spin term found in the Bohmian
guidance law of a spin-1/2 particle (explained below). The
obtained arrival time distributions revealed a remarkable spin
dependence, hitherto unknown. Furthermore, all distinguish-
ing features were well preserved even with the detector placed
at large distances from the source; hence the predictions could
be checked by present-day experiments.

II. RECAP OF THE EXPERIMENT PROPOSED IN [28]

A spin-1/2 particle of mass m is constrained to move in a
long waveguide, modeled as a semi-infinite cylinder. Initially,
it is trapped between the end face of the waveguide and an
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FIG. 2. Schematic drawing of the experimental setup. The barrier
at d is switched off at t = 0 and arrival times are monitored at z = L.

impenetrable potential barrier placed at a distance d , as shown
in Fig. 2. At the start of the experiment, the particle is prepared
in a ground state �0 of this cylindrical box; then the barrier at
d is suddenly switched off at, say, t = 0, allowing the particle
to propagate freely within the waveguide. A suitable detector
records the arrival time (or TOF) τ of the particle on the
plane situated a distance L (> d ) from the end face of the
waveguide. We ask what is the distribution ��0 (τ ) of these
arrival times?

In [28,29], the cylindrical confinement of the waveguide
was modeled by a harmonic potential

V⊥(x, y) = 1
2 m ω2(x2 + y2), (1)

after popular quadrupole ion traps (also known as Paul traps),
while the end face of the waveguide (i.e., the xy plane) and the
barrier at d were modeled as hard-wall potential barriers. The
ground-state wave functions of a spin-1/2 particle confined in
such a cylindrical box have the form �0(rrr) = ψ0(rrr)χ , where

ψ0(rrr) =
√

2mω

π h̄d
θ (z) θ (d − z) sin(πz/d ) e− mω

2h̄ (x2+y2 ) (2)

is the “spatial part” of the wave function, χ is a normalized
two-component spinor (χ†χ = 1), and θ (·) is Heaviside’s step
function.

The instant the barrier is switched off, the wave function
spreads dispersively, filling the volume of the waveguide. The
particle moves along a definite Bohmian trajectory RRR(t ) =
X (t ) x̂xx + Y (t ) ŷyy + Z (t ) ẑzz in accordance with Bohm’s guidance
law, Eq. (6), below. For such an experimental setup, the first
arrival time (or hitting time) of a trajectory starting at RRR0 ≡
RRR(0) and arriving at z = L is

τ (RRR0) = min{t | Z (t,RRR0) = L, RRR0 ∈ supp(�0)}, (3)

where Z (t,RRR0) ≡ Z (t ) is the z coordinate of the particle at
time t and supp(�0) denotes the support of the initial ground-
state wave function (the region 0 < z < d). The arrival time
is thus a function of L and the initial position RRR0. The initial
positions realized in a sequence of experimental runs are
random, with distribution given by |�0|2 (see Sec. III); hence
the density of the arrival time distribution

�
�0
Bohm(τ ) =

∫
supp(�0 )

d3RRR0 δ(τ (RRR0) − τ )|�0|2(RRR0). (4)

This distribution predicted an unexpected articulated feature
for the so-called “up-down” ground-state wave function, char-
acterized by

χ = 1√
2

(
1

eiβ

)
, 0 � β < 2π, (5)
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FIG. 3. Arrival time histogram �
�0
Bohm(τ ) versus (dimensionless)

arrival time h̄τ

md2 for the spin-up-down wave function: the detector
is placed at L = 100d , and we have set β = 0 with ω = 103 h̄

md2 .
The histogram was generated with 8 × 105 Bohmian trajectories
whose initial points were randomly drawn from the Born |�0|2
distribution. All Bohmian trajectories in this case strike the detector
before t = τmax ≈ 42.9 md2

h̄ . An infinite train of self-similar smaller
lobes, separated by distinct “no-arrival windows,” is seen below
τ = 15.9 md2

h̄ (dashed line).

namely, the density vanished beyond a characteristic arrival
time τ = τmax, which we called the “maximum arrival time”
(see Fig. 3). That is, all Bohmian trajectories in this case strike
the plane z = L before t = τmax. Furthermore, the distributions
for different choices of the parameter β turned out to be
identical (a consequence of the cylindrical symmetry of the
waveguide [30]) and displayed an infinite sequence of self-
similar lobes below τ = mdL

2π h̄ (dashed line in Fig. 3), which
diminished in size as τ → 0. It was also observed that the
smaller lobes are separated by distinct gaps (or “no-arrival
windows”) inside which the arrival time density is zero. Since
the predicted distributions showed such interesting and signif-
icant behavior, we suggested that the proposed experiment be
performed to test the predictive power of Bohmian mechanics
for spin-1/2 particles.

The observations in [28], however, were based on numer-
ical evidence, since analytical solutions for the trajectories
were not available. In this paper we explain the emergence
of the maximum arrival time with a mathematically tractable
variant of the same experiment. The only modification is the
replacement of the hard-wall potential barrier at z = d by a
smooth harmonic barrier 1

2 m ω2
zz2, which effectively limits

the initial wave function to the region 0 < z <
√

h̄/m ωz,
and which is switched off at t = 0. In this model, the time
evolution of the wave function is greatly simplified, and we
are able to prove rigorously that the drop-off in the up-down
arrival time distribution manifests at a sharply defined time
τmax. This supports our conjecture that the notable features
reported in [28] are generic and stable against perturbations.

We begin in Sec. III with a brief overview of the Bohmian
mechanics of a spin-1/2 particle, applying it in Sec. IV to
an analysis of the arrival time experiment. Focusing on two
specific wave functions, viz., those of the spin-up (�↑) and the
spin-up-down (�	) ground states, we analyze the Bohmian

trajectories of the particle following its sudden release from
the trap at t = 0. Arrival time distributions for these cases
are found in Sec. V, where we also consider their behavior
in the limit ω → ∞ (i.e., as the diameter of the waveguide
goes to zero), keeping L fixed. The spin-up arrival time dis-
tribution (being independent of ω) remains unaffected, while
the up-down arrival time distribution approaches a limiting
distribution with τmax → ω−1

z

√
(m ωz/h̄)L2 − 1. In Sec. V C

we obtain an analytical formula for this limiting distribution,
relegating most of the details to the mathematical Appendixes.
On the other hand, both distributions coincide in the “no
waveguide” limit, ω → 0. A confining waveguide is there-
fore essential to observing this intriguing spin dependence
of the arrival time distributions. Section VI offers a general
discussion and concludes with a heuristic explanation of the
“no-arrival windows” found in Fig. 3.

III. ELEMENTS OF BOHMIAN MECHANICS

Bohm’s theory, like Newtonian mechanics, describes the
motion of point particles. However, this dynamics is of first
order; therefore, the motion of an isolated particle is governed
by an equation of the type

d

dt
RRR(t ) = vvvBohm(RRR(t ), t ), (6)

where RRR(t ) ∈ R3 is the position of the particle at time t and
vvvBohm is the velocity field. In other words, Bohmian trajectories
are integral curves of this (Bohmian) velocity field, i.e., a
solution of Eq. (6) for some initial position RRR0 ≡ RRR(0).

The Bohmian velocity field for a spin-1/2 particle of mass
m is given by [31,32, Chap. 10]

vvvBohm(rrr, t ) = h̄

m
Im

[
�†∇∇∇�

�†�

]
+ h̄

2m

[
∇∇∇ × (

�†σσσ�
)

�†�

]
, (7)

where � ≡ �(rrr, t ), the wave function, is a two-component
complex-valued spinor solution of the Pauli equation

ih̄
∂

∂t
�(rrr, t ) = − h̄2

2m
(σσσ · ∇∇∇ )2�(rrr, t ) + V (rrr, t )�(rrr, t ), (8)

with given initial condition �0(rrr), �† is its adjoint, and
σσσ = σx x̂xx + σy ŷyy + σz ẑzz is a three-vector of Pauli spin matrices.
Here, V (rrr, t ) denotes an external potential characterizing the
interactions of the particle with its surroundings. If magnetic
fields are present, the gradient in Eqs. (7) and (8) should be
understood as the gauge covariant derivative, involving the
vector potential.

For almost every RRR0 (with respect to the |�0|2 measure)
and under general conditions on the initial wave function
�0 and the potential V one has existence and uniqueness of
Bohmian trajectories [33,34]. In particular, this implies that
Bohmian trajectories cannot run into nodes (or zeros) of the
wave function, where the velocity field is ill defined.

The dynamical equations (6), (7), and (8) are all time-
reversal 1 and Galilean invariant. Moreover, Eqs. (6) and (7)

1Unlike a scalar wave function, the time reversal transformation
of a spinor is implemented by � → −i σy�

∗ ([35], Eq. 4.4.65).
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are the unique nonrelativistic limit of the guidance equation
for a relativistic spin-1/2 particle, whose wave function satis-
fies the Dirac equation [31,36,37].

In Bohmian mechanics the primary role of the wave func-
tion is to determine the motion of the particle, while its
statistical significance is a derived consequence. As much
as in Newtonian mechanics, unique initial conditions lead to
unique outcomes via Eqs. (6) and (8); nevertheless, experi-
mental predictions made by Bohmian mechanics are always
probabilistic in character. This is because the initial particle
positions realized in a sequence of identically prepared exper-
iments (i.e., experiments with the same initial wave function
�0) are typically random, with distribution given by |�0|2 (see
[38] for a justification). By virtue of the velocity field (7), the
position of a Bohmian particle remains |�|2 distributed at any
later time t . This property is known as equivariance.

The ostensible randomness, together with the equivariance
of the |�|2 measure and its precise interpretation, imply that
Bohmian predictions must agree with the predictions of ortho-
dox quantum mechanics, whenever the latter are unambiguous
(e.g., position, momentum, and spin measurements) [10,32].
As explained in the Introduction, there is no consensus on a
quantum-mechanical prediction for the arrival time statistics
of a particle at present. Thus our analysis provides a possibil-
ity to test the predictive power of a pragmatic application of
Bohmian mechanics to arrival time experiments.

IV. FORMULATION

In Cartesian coordinates rrr = (x, y, z) the cylindrical
waveguide depicted in Fig. 2 can be modeled by the potential

V (rrr, t ) = V⊥(x, y) + V‖(z, t ), (9)

where V⊥(x, y) = 1
2 m ω2(x2 + y2), as in (1), but the axial

potential V‖(z, t ) = v(z) + θ (−t ) 1
2 m ω2

zz2 is now comprised
of a harmonic potential barrier (which is switched off at t = 0)
and a hard-wall potential,

v(z) =
{∞, z � 0,

0, z > 0,
(10)

delineating the end face of the waveguide. As the units of
measurement of mass, length, and time we take, respectively,

m,
√

h̄/m ωz , and 1/ωz

(formally, this amounts to setting h̄ = m = ωz = 1 in all
equations). From here on we will work in these units unless
otherwise stated.

The ground-state wave function of a spin-1/2 particle
confined in the trap (for t < 0) takes the general parametric
form

�0(rrr) = ψ0(rrr)

(
cos(α/2)

sin(α/2)eiβ

)
,

0 � α � π,

0 � β < 2π,
(11)

where

ψ0(rrr) = A θ (z) z e− z2

2 − ω
2 (x2+y2 ), (12)

One can easily verify that under this transformation vvvBohm flips its
direction.

and A = √
4ω/π3/4 is a normalization constant. For the

present discussion of arrival times we focus on two specific
wave functions, viz.,

�↑(rrr, 0) = ψ0(rrr)

(
1
0

)
, �	(rrr, 0) = ψ0(rrr)√

2

(
1
1

)
, (13)

which correspond, respectively, to the choices α = β = 0, and
α = π

2 , β = 0, in (11), and will be referred to as the spin-up,
and spin-up-down, wave functions, respectively. Here, up and
up-down refers to the orientation of the “spin vector”

sss := 1

2

�†σσσ�

|�|2 = 1

2

{
ẑzz, � = �↑,

x̂xx, � = �	,
(14)

associated with the wave function �, which is aligned parallel
(perpendicular) to the waveguide axis in the case of �↑ (�	).
Arrival time distributions for general α and β are discussed in
[28–30].

The solutions of the Pauli equation, Eq. (8), with initial
conditions (13), are (see Appendix A for details)

�↑(rrr, t ) = ψt (rrr)

(
1
0

)
, �	(rrr, t ) = ψt (rrr)√

2

(
1
1

)
, (15)

where

ψt (rrr) = A θ (z)
z

(1 + it )3/2

× exp

[
− z2

2(1 + it )
− ω

2
(x2 + y2 + 2it )

]
. (16)

We see that both wave functions propagate dispersively, filling
the volume of the waveguide. Their axial widths 2 �z(t ) ≈
0.47

√
1 + t2 increase with time, while the transverse waveg-

uide potential V⊥(x, y) keeps the wave packets from spreading
in the lateral directions. Note that both wave functions vanish
at z = 0, respecting the (Dirichlet) boundary condition at the
end face of the waveguide. Note as well that

|�↑(rrr, t )|2 = |�	(rrr, t )|2 = ψ∗
t ψ∗

t . (17)

Hence the statistical distributions of particle positions within
the waveguide are identical in both cases at any time t .
However, this does not imply that the arrival time distributions
should be identical, since these depend exclusively on the
underlying dynamics encoded in the guidance law.

We turn now to the Bohmian trajectories, i.e., the solutions
of Eq. (6). The first summand on the right-hand side of the
Bohmian velocity field (7), the so-called convective velocity,
is the same for both wave functions, viz.,

Im

[
�†∇∇∇�

�†�

]
= t z

1 + t2
ẑzz, (18)

and is directed parallel to the axis of the waveguide. Similarly,
the second summand (also known as the spin velocity) can
be calculated explicitly. Since ∇∇∇ × sss = 0 in both cases [cf.
Eq. (14)], the spin velocity can be written as

∇∇∇ × (�†σσσ�)

2 �†�
= ∇∇∇(ln |ψt |2) × sss

2�z(t ) := √〈z2〉� − 〈z〉2
� .
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=
{−ω(y x̂xx − x ŷyy), � = �↑,(

1
z − z

1+t2

)
ŷyy + ωy ẑzz, � = �	.

(19)

The particle position at time t is RRR(t ) = X (t ) x̂xx + Y (t ) ŷyy +
Z (t ) ẑzz. Its time derivative ṘRR(t ) features in the guidance equa-
tion (6), the right-hand side of which can be evaluated using
Eqs. (18) and (19) to obtain the component equations

Ẋ = −ωY, (20a)

Ẏ = ωX, (20b)

Ż = t

1 + t2
Z, (20c)

for the spin-up wave function, and

Ẋ = 0, (21a)

Ẏ = 1

Z
− Z

1 + t2
, (21b)

Ż = ωY + t

1 + t2
Z, (21c)

for the spin-up-down wave function.
In view of Eqs. (20) and (21), the reader might be con-

cerned that the wave function symmetry in the x and y
coordinates has been lost in the guidance equations. However,
this should come as no surprise, since the spin vector sss picks
out a preferred direction in each case. We proceed next to
the solution of these coupled ODEs with initial condition
RRR0 = X0 x̂xx + Y0 ŷyy + Z0 ẑzz.

A. Bohmian trajectories for �↑

The differential equation for the z coordinate, Eq. (20c), is
separable and admits a simple solution:

Z (t ) = Z0

√
1 + t2. (22)

Moving now to Eqs. (20a) and (20b), an easy way of solving
these is to introduce a complex coordinate

S(t ) := X (t ) + iY (t ), (23)

the time derivative of which is

Ṡ = Ẋ + iẎ = ω
( − Y + iX

) = iωS. (24)

Equation (24) is readily solved:

S(t ) = S0 eiωt , S0 = X0 + iY0, (25)

and the desired solutions can be read off from the real and
imaginary parts of Eq. (25), viz.,

X (t ) = X0 cos(ωt ) − Y0 sin(ωt ), (26a)

Y (t ) = Y0 cos(ωt ) + X0 sin(ωt ). (26b)

From Eq. (25) we also see that |S(t )|2 = X 2(t ) + Y 2(t ) =
|S0|2 is a constant of motion. The angular velocity of the
particle about the z axis, given by

d

dt
Arg [S(t )] = ω,

is a constant as well. Therefore, a spin-up Bohmian trajectory
is a circular helix of radius |S0|, which circulates in an anti-

clockwise sense about the waveguide axis (see Table I for an
example).

B. Bohmian trajectories for ��

The first equation, Eq. (21a), has the obvious solution

X (t ) = X0, (27)

the initial value of X . Consider next Eqs. (21b) and (21c):
these equations are also analytically integrable; however, the
solutions can only be written in terms of certain nontrivial
integrals (i.e., solution by quadrature). Introducing a new
function ξ defined by

Z (t ) = ξ (t )
√

1 + t2, (28)

Eqs. (21b) and (21c) can be written as

Ẏ = 1√
1 + t2

(
1

ξ
− ξ

)
, (29a)

ξ̇ = ω√
1 + t2

Y. (29b)

Dividing Eq. (29a) by Eq. (29b), we find

d

dt

[
ln |ξ (t )| − 1

2
ξ 2(t ) − ω

2
Y 2(t )

]
= 0,

⇒ ln ξ 2(t ) − ξ 2(t ) − ωY 2(t ) = const, (30)

an extremely useful constant of motion. Since Eq. (30) holds
for all t on the trajectory, one can fix the constant of integra-
tion from the initial conditions, i.e.,

ln ξ 2(t ) − ξ 2(t ) − ωY 2(t ) = ln Z2
0 − Z2

0 − ωY 2
0

=: ln(−g), (31)

noting ξ (0) = Z0 from Eq. (28). We have introduced

g = −Z2
0 e−Z2

0 −ωY 2
0 ≡ g(Y0, Z0) (32)

for brevity. Solving for Y in (31), we obtain

Y (t ) = ±
√

ln(ξ 2(t )/ − g) − ξ 2(t )

ω
. (33)

Substitution of (33) in (29b) then yields

sgn(Y )
dξ√

ln(ξ 2/ − g) − ξ 2
= √

ω
dt√

1 + t2
, (34)

where sgn(·) is the signum function. In order to integrate the
above, we characterize the variation of sgn(Y ) with respect
to ξ as follows: observe that ξ (t ) attains an extremum (either
a maximum or a minimum) whenever Y = 0 [cf. Eq. (29b)].
These extreme values, ξ̄ , therefore satisfy

ln(ξ̄ 2/ − g) − ξ̄ 2 = 0 ⇒ −ξ̄ 2 e−ξ̄ 2 = g

⇒ −ξ̄ 2 = W (g)

⇒ ξ̄ = ±
√

−W (g), (35)

where W (·) is the Lambert W function (or product logarithm)
[39]. For the values of g permitted by the initial conditions
[Eq. (32)], viz.,

−1/e � g < 0, (36)
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TABLE I. Overview of results and essential details of the paper. Here, 1F1(a; b; z) denotes the confluent hypergeometric function of the
first kind.

Wave function: �↑(rrr, t ) = ψt (rrr)
(

1
0

)
�	(rrr, t ) = ψt (rrr)√

2

(
1
1

)
Position probability density: �†� |ψt (rrr)|2 |ψt (rrr)|2

Spin vector: sss = 1
2

�†σσσ�

�†�

1
2 ẑzz (along waveguide axis) 1

2 x̂xx (perpendicular to waveguide axis)

Guiding equations
Ẋ = −ωY
Ẏ = ωX
Ż = t

1+t2 Z

Ẋ = 0
Ẏ = 1

Z − Z
1+t2

Ż = ωY + t
1+t2 Z

Constants of motion X 2 + Y 2 and XẎ − Y Ẋ ln
(

Z2

1+t2

) − Z2

1+t2 − ωY 2 and X

Typical Bohmian trajectories for
respective wave functions:
RRR(0) = 0.05 x̂xx + 0.1 ŷyy + 0.2 ẑzz and
ω = 20; both trajectories are plotted
for the time interval [0,2]

Arrival time distributions for L = 50
and ω = 500

Distribution function �↑(τ ) = 4L3

λ0
√

π

τ e
− L2

1+τ2

(1+τ2 )5/2 No closed form expression for �	(τ )

Behavior for large τ Heavy tailed ∼ 4L3

λ0
√

π
τ−4 + O(τ−6), as τ → ∞ Vanishes for all τ > τmax

Behavior for small ω Independent of ω Reduces to �↑(τ ), as ω → 0, while
τmax → ∞

Behavior for large ω Independent of ω Convergence to �s(τ ), as ω → ∞, while
τmax → √

L2 − 1

Arrival time moments 〈τμ〉↑ = 4L3

3λ0
√

π

{
1F1

(
1; 5

2 ; −L2
)
, μ = 1

2 1F1
(

1
2 ; 5

2 ; −L2
)
, μ = 2

∞, μ > 2
All moments are finite

there are two possible real values of W (g) (see Fig. 4),
denoted by W−1(g) and W0(g). Since ξ (t ) > 0, 3 we discard
the negative radical in Eq. (35). Thus

ξs :=
√

−W0(g), ξb :=
√

−W−1(g), (37)

satisfying ξs � ξb are the only possible extreme values of ξ (t ).
The following inequality must therefore hold at any given

3The “node evading” property of Bohmian trajectories discussed
in Sec. III implies that the trajectories do not penetrate the base
of the waveguide (the xy plane), which is a stationary node of �	.
Therefore, Z (t ) (consequently, ξ (t ) = Z (t )/

√
1 + t2) > 0 for all t .

time t :

ξs � ξ (t ) � ξb. (38)

A schematic plot of ξ (t ) is depicted in Fig. 5.
Since Y (t ) changes sign whenever ξ (t ) attains an ex-

tremum (Y ∝ ξ̇ ), integrating Eq. (34) between t = 0 and some
generic time t for the example shown in Fig. 5 yields∫ ξb

Z0

dξ√
ln(ξ 2/ − g) − ξ 2

−
∫ ξs

ξb

dξ√ · · · +
∫ ξb

ξs

dξ√· · ·

−
∫ ξ (t )

ξb

dξ√ · · · =
∫ ξb

Z0

dξ√· · · + 2
∫ ξb

ξs

dξ√· · · −
∫ ξ (t )

ξb

dξ√ · · ·
= √

ω sinh−1 t, (39)
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−1 1 2 3

−4

−3

−2

−1

1

−1/e

x

W

FIG. 4. Two real branches of W (x): W−1(x) (dashed); W0(x)
(solid). The thick red line emphasizes the interval [−1/e, 0), the
range of the function g(Y0, Z0).

where we omitted writing the radical explicitly in the integrals
above for brevity. Note that a general trajectory attains ξb as
the first extremum only if Y0 > 0 (as in Fig. 5); otherwise it
attains ξs. Consequently, the lower limit of the last integral
changes depending on the number of half-cycles n that are
completed between t = 0 and time t . If n is even [e.g., 2, as in
Eq. (39)], the lower limit of integration of the last term equals
the upper limit of integration of the first term. If n is odd,
these limits are different. The generalization of Eq. (39) for
any trajectory may be written as∫ ξb

Z0

dξ√
ln(ξ 2/ − g) − ξ 2

+ n
∫ ξb

ξs

dξ√· · · + (−1)n+1

×
∫ ξ (t )

ξb+ξs
2 +(−1)n ξb−ξs

2

dξ√ · · · = √
ω sinh−1 t (Y0 > 0), (40a)

−
∫ ξs

Z0

dξ√
ln(ξ 2/ − g) − ξ 2

+ n
∫ ξb

ξs

dξ√· · · + (−1)n

×
∫ ξ (t )

ξb+ξs
2 −(−1)n ξb−ξs

2

dξ√ · · · = √
ω sinh−1 t (Y0 < 0), (40b)

t1 t2 t3 t t4 t5

ξs

ξb
Z0

×

ξ(t)

t

ξ

FIG. 5. Schematic plot of ξ (t ) against t , showing the extreme
values ξs and ξb. Note that ξ (0) = Z0 and ξ̇ (t ) = Y (t ) = 0 at the in-
stants t1, t2, . . . , t5. The solid (dashed) parts of the curve correspond
to Y (t ) > 0 (< 0).

0 5 10 15 20 25
�0.15
�0.10
�0.05
0.00
0.05
0.10
0.15

z

y

FIG. 6. Typical Bohmian trajectory of a spin-1/2 particle with
wave function �	 and initial position RRR0 = 0.3 x̂xx + 0.1 ŷyy + 0.5 ẑzz, the
x coordinate of which is a constant of motion. The trajectory is
plotted for the time interval [0,20] with ω = 50.

where the slightly complicated expressions in the lower limits
of each of the last integrals ensure the correct choice of
ξb or ξs according to the rule explained above. Although
Eq. (40) gives ξ (t ) only implicitly, it plays a crucial role
in explaining the arrival time statistics of the up-down wave
function. Once ξ (t ) is found, the complete trajectory of the
particle is (implicitly) determined via Eqs. (28) and (33). A
typical Bohmian trajectory is depicted in Fig. 6.

V. ARRIVAL TIME STATISTICS

The first arrival time (or passage time) of a trajectory
starting at RRR0 and arriving at z = L is given by Eq. (3),
where supp(�0), the support of the initial wave function, now
denotes the half-space z � 0. 4 Since the initial position RRR0

is |�0|2 distributed with �0 ∼ e−z2/2, a few initial positions
(those with Z0 > L) will be realized behind the detector
surface. Since L � 1, such spurious initial conditions are
rare and can be discarded. We renormalize the arrival time
distribution Eq. (4) accordingly:

�↑/	(τ ) =
∫

0<Z0<L d3RRR0 δ(τ (RRR0) − τ ) |�↑/	(RRR0, 0)|2∫
0<Z0<L d3RRR0 |�↑/	(RRR0, 0)|2 ,

(41)

denoting the spin-up (spin-up-down) arrival time distribution
as �↑(τ ) (�	(τ )) for brevity. Here,

τ (RRR0) = min{t | Z (t ) = L, 0 < Z0 < L}. (42)

Recalling that

|�↑/	(RRR0, 0)|2 = 4ω

π3/2
θ (Z0)Z2

0 e−Z2
0 −ω(X 2

0 +Y 2
0 ) (43)

in both cases [cf. Eq. (13)], the denominator of Eq. (41) can
be evaluated explicitly:∫

0<Z0<L
d3RRR0 |�↑/	(RRR0, 0)|2 = erf (L) − 2L√

π
e−L2 ≡ λ0,

(44)

4Compare this with the ground state (2) of [28], which was sup-
ported on the bounded region 0 � z � d .
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where erf (·) denotes the error function. In what follows, we
consider the arrival time distributions on a case-by-case basis.

A. Arrival times for �↑

The spin-up Bohmian trajectories propagate axially out-
ward, each one crossing z = L at most once. Using the exact
solution for the trajectory, Eq. (22), the first arrival time (or
simply the arrival time) is given by

τ (RRR0) =
√

(Z0/L)2 − 1. (45)

Since this depends only on Z0, the X0 and Y0 integrals in
Eq. (41) can be readily evaluated, yielding

�↑(τ ) = 4

λ0
√

π

∫ L

0
dZ0 δ(

√
(L/Z0)2 − 1 − τ )Z2

0 e−Z2
0 .

(46)

In order to evaluate the above integral and for later use, we
recall the identity

δ(φ(x)) =
∑

n

δ(x − xn)

|φ′(xn)| , (47)

where xn is a zero of the function φ, φ′ denotes its derivative,
and the sum runs over all zeros of φ. For

φ(Z0) =
√

(L/Z0)2 − 1 − τ, (48)

we obtain two zeros, viz.,

Z0± = ± L√
1 + τ 2

, (49)

and evaluating the derivatives of φ at Z0±, we have

δ(
√

(L/Z0)2 − 1 − τ ) = τZ3
0

L2
[δ(Z0 − Z0+) + δ(Z0 − Z0−)].

(50)

Since Z0− < 0, only the first delta function term contributes
to the integral and we obtain

�↑(τ ) = 4L3

λ0
√

π

τ e− L2

1+τ2

(1 + τ 2)5/2
. (51)

Figure 7 plots �↑(τ ) for different values of L. It follows from
the above that

�↑(τ ) ∼ 4L3

λ0
√

π
τ−4 + O(τ−6), (52)

as τ → ∞. This asymptotic behavior seems to be a charac-
teristic feature of the spin-up distribution [28,30], and implies
that only the mean first arrival time 〈τ 〉↑, and 〈τ 2〉↑ are finite
(see Table I for exact formulas), while all higher moments
diverge.

Note as well that �↑(τ ) is independent of the trapping
frequency ω, which dropped out obligingly in Eq. (46). The
reason is that the motion in the z direction decouples from
the evolution of the x and y coordinates of the particle [cf.
Eq. (20)]. The arrival time of any trajectory thus depends
only on Z0. Furthermore, since the initial wave function �↑
is separated in the position coordinates, Z0 is distributed
independently with density 4Z2

0 θ (Z0) exp(−Z2
0 )/

√
π , which

is also independent of ω.

0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

0.10

0.12

τ

↑(
τ
)

L = 10

L = 20

L = 30

· · · L = 100

FIG. 7. Graphs of �↑ vs τ for select values of L. The distribution
stretches over larger arrival times with increasing L.

B. Arrival times for ��

In this case an explicit formula for τ (RRR0), such as Eq. (45)
cannot be found, as the Bohmian trajectories are known
only implicitly (cf. Sec. IV B). Moreover, considering the
quasiperiodic character of ξ (Fig. 5), a typical Bohmian
trajectory intersects the plane z = L multiple times, as shown
in Fig. 8. Experimentally, of course, only the first crossing
time t1 (= τ ) is relevant (the time at which the particle is
detected). However, Z (tk ) = L at any crossing time tk , which
as a result of Eq. (28) and inequality (38) implies

ξs �
L√

1 + t2
k

� ξb. (53)

0 ts t1 t t2 t3 tb

L

Z(t)
ξs

√ 1 + t2

ZZ

ξ b
√ 1 +

t2

no
crossings

here

no
crossings

here

t

z

FIG. 8. Schematic plot of Z (t ) vs t for a spin-up-down Bohmian
trajectory, enveloped between the dashed curves ξs

√
1 + t2 and

ξb

√
1 + t2. The trajectory intersects z = L at the instants t1 (= τ ),

t2, and t3, which lie in the interval [ts, tb], in accordance with (55).
t ′ denotes the first instant after ts at which the trajectory touches the
upper envelope.
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Solving for tk above, keeping in mind that

0 < ξs � 1, 1 � ξb < ∞ (54)

[cf. Eq. (37)], yields an analogous inequality for any crossing
time of a Bohmian trajectory:

ts � tk � tb, (55)

where

ts := θ (L − ξb)

√
L2

ξ 2
b

− 1, tb :=
√

L2

ξ 2
s

− 1. (56)

That is, any crossing of a given trajectory, including the first
one, commences before time tb. However, recalling Eq. (32),
one finds that g approaches zero whenever Y0 or Z0 become
very large, or even when Z0 ≈ 0; consequently ξs = √−W0(g)
also approaches zero (see Fig. 4). For such initial conditions,
tb gets arbitrarily large and hence does not explain the uniform
upper bound on the arrival times (τmax) found in Fig. 3.

To derive such a bound, consider the first instant after
t = ts, say t ′, at which a given trajectory touches the upper
envelope ξb

√
1 + t2, depicted in Fig. 8. At this instant, Z (t ′) =

ξb

√
1 + t ′2, and since t ′ > ts,

Z (t ′) > ξb

√
1 + t2

s � L,

substituting the definition of ts from Eq. (56). Thus the first
crossing τ necessarily occurs before t = t ′ and we have

ts � τ � t ′. (57)

Since t ′ lies within at most one full cycle after ts, subtracting
Eq. (40) evaluated at t = ts from that evaluated at t = t ′
implies

sinh−1 t ′ � sinh−1 ts + 2√
ω

∫ ξb

ξs

dξ√
ln(ξ 2/ − g) − ξ 2

. (58)

For any initial condition of the trajectory, the above integral
remains bounded:∫ ξb

ξs

dξ√
ln(ξ 2/ − g) − ξ 2

�
∫ ξb

ξs

dξ√
(ξ − ξs)(ξb − ξ )

=
∫ ξb

ξs

dξ√(
ξb−ξs

2

)2 − (
ξ − ξb+ξs

2

)2

=
∫ 1

−1

du√
1 − u2

= π,

substituting ξ = ξb−ξs

2 u + ξb+ξs

2 in the second line above. The
remaining term on the right-hand side of Eq. (58) is also
bounded, since ts �

√
L2 − 1 as a result of Eqs. (54) and (56),

thus yielding

τ � sinh

(
2π√

ω
+ sinh−1

√
L2 − 1

)
, (59)

via Eq. (57). The first crossing time of any Bohmian trajectory
is therefore bounded from above. Hence, irrespective of the
initial position, the particle strikes the plane z = L before a
maximum arrival time τmax.

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

τ

(τ
)

L = 10

L = 20

L = 30

· · · L = 100

FIG. 9. Up-down arrival time histograms for select values of L
and ω = 500. Each histogram is constructed from ≈105 Bohmian
trajectories, whose initial conditions were sampled randomly from
the initial |�|2 distribution (43). It should be noted that for every L
there exists a maximal arrival time τmax.

To illustrate this better, we sample N ≈ 105 random initial
positions from the |�0|2 distribution Eq. (43), solve the up-
down equations of motion Eq. (21) numerically for each
point in this ensemble, continuing until the trajectory hits
z = L, then record the arrival time and plot the histogram
for �	(τ ), Fig. 9. Note that a τmax occurs regardless of L.
Figure 10 plots the mean 〈τ 〉	, standard deviation �	, and τmax
of these histograms against L. Indeed, τmax lies well below the
threshold permitted by Eq. (59).

C. Trapping frequency limits

The trapping frequency ω measures the effective diameter
of the waveguide, which we take to be the width of the radial
wave function, viz.,

√
h̄/m ω (= 1/

√
ω in our dimensionless

units); typical particle trajectories also lie within this distance

0 20 40 60 80 100
0

20

40

60

80

100

si
nh

2
/
√ ω

+
si
nh

−1
√ L

2 − 1 √ L
2 − 1

L

τ
Δ
τmax
τ ↑

Δ↑

FIG. 10. Graphs of mean first arrival time 〈τ 〉 and standard
deviation � vs L for a fixed ω = 500. The spin-up statistics, unlike
the up-down ones, are independent of ω. The maximum arrival time
τmax of the up-down distribution is also depicted here, which lies in
the shaded region permitted by inequality (59).
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0 10 20 30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

0.05

0.06

τ

(τ
)

ω = 104

γ

ω = 102

ω = 50

ω = 103

s(τ)

FIG. 11. Up-down arrival time histograms for select values of ω

and L = 50. The histograms approach �s(τ ), the distribution of ts

(thick gray curve), as ω → ∞, while τmax → √
L2 − 1 ≈ 50. The

angle subtended at the foot of the distribution, the podal angle,
γ ≈ tan−1(4.16/L2).

from the waveguide axis. We consider here the behavior of
the arrival time distributions with changing ω, for a fixed L.
As noted at the end of Sec. V A, the spin-up distribution is
independent of ω, so in what follows we focus on the spin-up-
down distribution.

In the limit ω → 0, the radial confinement of the waveg-
uide is absent, the distribution �	(τ ) reduces to the spin-up
distribution �↑(τ ) [Eq. (51)], while the maximum arrival time
τmax is pushed to infinity. This can be seen from Eq. (21c),
which for small ω approaches its spin-up analog, Eq. (20c).
The latter led directly to the spin-up distribution in Sec. V A.
However, in this limit, the respective Bohmian trajectories re-
main manifestly different: the spin-up trajectories are straight
lines running parallel to the z axis, while the spin-up-down
trajectories take the form X (t ) = X0,

Y (t ) ≈ Y0 +
(

1

Z0
− Z0

)
sinh−1 t, Z (t ) ≈ Z0

√
1 + t2.

On the other hand, in the limit ω → ∞, the wave function
gets compressed onto the waveguide axis, effectively fusing
the trajectories onto the same. Even in this rather singular
limit, the up-down arrival time distribution converges to a
well-defined distribution, a feature illustrated numerically in
Fig. 11. This behavior can be anticipated from the combined
inequality (57) and (58):

ts � τ � sinh

(
2π√

ω
+ sinh−1 ts

)
, (60)

which suggests that the first arrival time τ approaches ts,
as ω → ∞. However, this has to be taken cum grano salis,
since ts itself depends intricately on ω and RRR0. Therefore, we
consider the convergence of τ → ts in distribution.

From the left inequality of (60), we have

P(τ � t ) = P(ts � τ and ts � t ) � P(ts � t ), (61)

where P(·) is the Born probability, given by the |�0|2 measure.
Now, using the right inequality of (60), rewritten as

sinh

(
sinh−1 τ − 2π√

ω

)
� ts, (62)

we have, for a given t ,

P

[
ts � sinh

(
sinh−1 t − 2π√

ω

)]

= P

[
(62) and ts � sinh

(
sinh−1 t − 2π√

ω

)]

� P

[
sinh

(
sinh−1 τ − 2π√

ω

)
� sinh

(
sinh−1 t − 2π√

ω

)]
= P(τ � t ). (63)

Combining the above with (61) yields

P

[
ts � sinh

(
sinh−1 t − 2π√

ω

)]
� P(τ � t ) � P(ts � t ).

(64)
To take the limit ω → ∞ in (64), we observe that

P(ts � t ) =
∫ t

0
dt ′ �s(t

′), (65)

where �s is the density of ts. As shown in Appendix B, �s

is independent of ω, thus P(ts � t ) is unaffected in the limit
ω → ∞. As a result,

lim
ω→∞ P(τ � t ) =

∫ t

0
dt ′ �s(t

′), (66)

and formally �	(t ) (:= d/dtP(τ � t )) → �s(t ), explaining
Fig. 11.

To put this result in perspective, consider a 40
20Ca+ ion

of mass m ≈ 6.6 × 10−26 kg, initially trapped in the region
0 < z <

√
h̄/m ωz ≈ 10−6 m, or ωz ≈ 104 rad/s, and mov-

ing in a quadrupole ion trap waveguide. The typical trapping
frequencies range from ω ≈ 107–1011 rad/s, which in our
dimensionless units correspond to ω ≈ 103–107. For these
specifications we will, for all practical purposes, end up with
the limiting distribution �s, as shown in Fig. 11. An explicit
formula for this distribution is therefore desirable. We perform
such a calculation in Appendix B, finding

�s(τ ) = τL

(1+ τ 2)3/2
θ
(√

L2 −1− τ
)
�

(
L√

1 + τ 2

)
+ ηδ(τ ),

(67)

where

�(x) = 8x

π λ0
(x2 − 1)e−x2

∫ x

�(x)

du√
2 ln(u/x) + x2 − u2

, (68)

η :=
∫ ∞

L
dx �(x), �(x) :=

√
−W0(−x2e−x2 ). (69)

Note that this distribution vanishes for any τ �
√

L2 − 1, the
limiting value of τmax. A tangent line to the distribution at this
point defines an angle γ with the τ axis (indicated in Fig. 11)
given by

γ ≈ tan−1

(
4.16

L2

)
, L � 1. (70)
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ω = 104

FIG. 12. Comparison of the theoretically calculated podal angle
of the limiting distribution (ω → ∞) with numerical estimates for
two (large) values of ω.

This podal angle is a notable characteristic of the up-down
distribution. In Fig. 12 we plot numerical estimates of γ

against L for two large values of ω, obtaining good agreement
with Eq. (70).

A further surprising feature of the limiting distribution
Eq. (67) is the appearance of a singular term, ηδ(τ ), which
implies that a few arrivals occur instantaneously in the limit
ω → ∞. In practice, we cannot observe such arrivals by
simply choosing a large value of ω and, more to the point,
initial conditions associated with them are located very near
the end face z = 0 of the waveguide and hence are atypical.

VI. CONCLUDING REMARKS

Our findings for the spin-up and the spin-up-down wave
functions with all essential details are collected in Table I.

In comparing with results found in [28] we would like
to emphasize the following: the maximum arrival time τmax
reported in [28] also manifests in the model considered in this
paper, and is shown here to be a consequence of certain special
dynamical properties of the Bohmian trajectories, namely,
(i) the natural convection of the trajectories driven by the
dispersing wave packet, (ii) a quasiperiodic oscillation of the
variable ξ (t ) = Z (t )√

1+t2 , and (iii) a uniform lower bound (over
all initial positions) for the maximum ξb [cf. Eq. (37)] of these
oscillations.

The confining waveguide certainly plays a key role here,
since the oscillations of ξ are suppressed in the “no waveg-
uide” limit, ω → 0, and the up-down arrival times approach
the spin-up ones. The latter satisfy only property (i).

For the model considered in [28] (cf. Fig. 2), these prop-
erties are difficult to verify, as the wave function separates
into an infinite collection of tiny ripples near z ≈ d as soon
as the barrier is switched off at t = 0 [29,30]. The ripples, in
the course of time, develop into wave packets (separated by
nodes), each propagating dispersively along the waveguide.
5 Each of the smaller lobes of the arrival time histogram,
Fig. 3, is caused by the arrival of particles propagating within

5This remarkable wave phenomenon, known as diffraction in time
[40], manifests in response to a sudden change in the boundary
conditions of the wave function at a given surface (in this case,

the support of one such wave packet. In particular, due to
the nodes separating these wave packets, the particle remains
within the support of the particular wave packet for which
its random initial position was realized at t = 0+. The nodes
move forward in time, carrying the particle along; hence the
arrival times are recorded in bunches.

The Bohmian dynamics within a given wave packet is very
similar to the Bohmian dynamics of the waveguide-confined
particle studied here, in the sense that the rear node of a
given wave packet resembles the waveguide hard wall at
z = 0, while the frontal node is analogous to the vanishing
tail of the wave function Eq. (15). Continuing the analogy,
the results of this paper would suggest the appearance of a
“maximum arrival time” for each wave packet. Such a τmax
would necessarily be smaller than the time at which the
rear node of the preceding wave packet crossed L. This is
consistent with the formation of “no arrival windows” found
numerically in [28] and illustrated in Fig. 3.

Questions not addressed in this paper concern the exper-
imental relevance of the first arrival times of Bohmian tra-
jectories. We mentioned previously the problem of backscat-
tering of the detector on the wave function, which may be
modeled by an imaginary potential barrier [18]. Another
project underway is the study of relativistic corrections to the
results of [28], using the Bohm-Dirac guidance law. Finally,
experimental realizations of the waveguide and detector (e.g.,
[23] or [41]) are currently being discussed.
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APPENDIX A: TIME EVOLUTION OF �0

The Pauli equation (8) with initial condition (11) can
be solved as follows: applying the identity (σσσ · ∇∇∇ )2 = ∇21

(where 1 is the 2 × 2 unit matrix), the right-hand side of
Eq. (8) becomes diagonal, essentially simplifying it to the
Schrödinger equation

i
∂ψt

∂t
= −1

2
∇2ψt +

[
ω2

2
(x2 + y2) + v(z)

]
ψt , (A1)

for the spatial part of the spinor wave function �, with initial
condition (12). The constant spinor forming the spin part of
the wave function remains unchanged. Now, employing the
ansatz

ψt (rrr) = ϕt (z)e− ω
2 (x2+y2 )−iωt (A2)

the plane z = d). For the harmonic barrier 1
2 m ω2

zz2 considered in
this paper, such conditions are not met; consequently no ripples are
observed.
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in Eq. (A1), we arrive at the PDE

i
∂ϕt

∂t
= −1

2

∂2ϕt

∂z2
+ v(z)ϕt , (A3)

for the function ϕt , which satisfies ϕ0(z) = A θ (z) z e− z2

2 .
Equation (A3) is simply the one-dimensional Schrödinger
equation for a particle subject to a hard-wall potential barrier
at z = 0; thus ϕt (z) = 0 for any z � 0. In the region z > 0, the
solution of Eq. (A3) can be written as

ϕt (z) =
∫ ∞

0
dz′ K (z, t | z′, 0)ϕ0(z′), (A4)

where

K (z, t | z′, 0) = e
i

2t (z−z′ )2

√
2π it

− e
i

2t (z+z′ )2

√
2π it

(A5)

is the propagator (or Green’s function) of Eq. (A3) [42]. Ex-
ploiting the symmetry of the integrand in Eq. (A4) to extend
the integral to −∞ < z′ < ∞ allows writing the solution as

ϕt (z) = A

2
√

2π it

∫ ∞

−∞
dz′ z′

[
exp

(
i

2t
(z − z′)2 − z′2

2

)

− exp

(
i

2t
(z + z′)2 − z′2

2

)]

= Aeiz2/2t

√
2π it

∫ ∞

−∞
dz′ z′(−i) sin

(
zz′

t

)
e−( 1

2 − i
2t )z′2

= Aeiz2/2t

√
2π it

∫ ∞

−∞
dz′ z′ exp

[
−

(
1

2
− i

2t

)
z′2 − iz

t
z′
]

= Az

(1 + it )3/2
e− z2

2(1+it ) (A6)

using the identity

2√
π

∫ ∞

−∞
dx x e−ax2+bx = b

a3/2
eb2/4a, Re[a] > 0. (A7)

The final solution thus reduces to (16).

APPENDIX B: DISTRIBUTION OF ts

Equation (56) expresses ts as a function of ξb, which
takes values in the interval [1,∞) [see Eq. (54)]. Thus the
distribution of ts may be written as

�s(t ) =
∫ ∞

1
dξb δ(ts(ξb) − t )�(ξb), (B1)

where � is the distribution of ξb, given by

�(ξb) = 1/λ0

∫
0<Z0<L

d3RRR0 δ(ξb(Y0, Z0) − ξb)|�0|2(RRR0).

(B2)

Here, ξb(Y0, Z0) is defined via Eqs. (37) and (32):

ξb(Y0, Z0) ≡ ξb(g(Y0, Z0)) =
√

−W−1
( − Z2

0 e−Z2
0 −ωY 2

0
)
.

(B3)

Substituting the definition of ts, Eq. (56) in Eq. (B1), we obtain

�s(t ) =
∫ L

1
dξb δ

(√
L2

ξ 2
b

− 1 − t

)
�(ξb)

+ δ(t )
∫ ∞

L
dξb �(ξb). (B4)

We shall denote the integral multiplying δ(t ) by

η :=
∫ ∞

L
dξb �(ξb). (B5)

The remaining integral in Eq. (B4) can be evaluated with the
help of identity (47), exactly as in Sec. V A, with the final
result

�s(t ) = t L

(1 + t2)3/2
θ
(√

L2 − 1 − t
)
�

(
L√

1 + t2

)
+ η δ(t ).

(B6)

Note that �s(t ) vanishes for any t >
√

L2 − 1, regardless of
the specific form of �(ξb).

Next, we turn to the evaluation of �(ξb). Substituting
|�0|2(RRR0) [Eq. (43)] in Eq. (B2), and integrating over X0,
yields

�(ξb) = 4
√

ω

π λ0

∫ L

0
dZ0 Z2

0

∫ ∞

−∞
dY0

× δ(ξb(Y0, Z0) − ξb)e−Z2
0 −ωY 2

0 . (B7)

Once again, recalling identity (47), with

φ(Y0) = ξb(Y0, Z0) − ξb, (B8)

we compute the zeros of φ, satisfying ξb(Y0, Z0) = ξb,

⇒ W−1
(−Z2

0 e−Z2
0 −ωY 2

0
) = −ξ 2

b

⇒ e−ωY 2
0 = ξ 2

b e−ξ 2
b

Z2
0 e−Z2

0

(B9)

⇒ Y0 = ±
√

2 ln(Z0/ξb) + ξ 2
b − Z2

0

ω
≡ Y0±. (B10)

In Eq. (B9), we invoked the defining property of the Lambert
W function: W (a) = b ⇔ a = beb [39]. We evaluate φ′(Y0±)
as follows:

φ′(Y0±) = ∂ξb(Y0, Z0)

∂Y0

∣∣∣∣
Y0±

= ∂ξb(g)

∂g

∂g

∂Y0

∣∣∣∣
Y0±

= −W−1(g)

2gξb(g)[1 + W−1(g)]
(−2gωY0)

∣∣∣∣
Y0±

= ωY0±
ξb

ξ 2
b − 1

. (B11)

Here, we used the identity W ′ = W/z(1 + W ) [39]. Putting all
the pieces together yields

δ(ξb(Y0, Z0) − ξb) = θ
(
Z2

0 e−Z2
0 − ξ 2

b e−ξ 2
b
) ξ 2

b − 1

ω ξbY0+
× [

δ(Y0 − Y0+) + δ(Y0 − Y0−)
]

(B12)

via (47). Note that the Heaviside function θ (·) eliminates any
Z0 that gives rise to an imaginary Y0±, which therefore does
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not contribute to the integral (B7). Substituting Eq. (B12) into Eq. (B7) and evaluating the integral over Y0 yields

�(ξb) = 8
(
ξ 2

b − 1
)

π λ0 ξb
√

ω

∫ L

0
dZ0

Z2
0

Y 2
0+

θ
(
Z2

0 e−Z2
0 − ξ 2

b e−ξ 2
b
)
e−Z2

0 −ωY 2
0+

= 8ξb

π λ0

(
ξ 2

b − 1
)
e−ξ 2

b

∫ L

0
dZ0

θ
(
Z2

0 e−Z2
0 − ξ 2

b e−ξ 2
b
)√

2 ln(Z0/ξb) + ξ 2
b − Z2

0

, (B13)

using Eqs. (B9) and (B10). Note that ω dropped out obligingly in the previous step. Now, for a given ξb � 1, the inequality
Z2

0 e−Z2
0 > ξ 2

b e−ξ 2
b implies √

−W0
( − ξ 2

b e−ξ 2
b

)
︸ ︷︷ ︸

=:�(ξb)

< Z0 <

√
−W−1

( − ξ 2
b e−ξ 2

b

)
︸ ︷︷ ︸

=ξb

,

which, incorporated into Eq. (B13), yields the final result

�(ξb) = 8ξb

π λ0

(
ξ 2

b − 1
)
e−ξ 2

b

∫ min{ξb,L}

�(ξb)

dZ0√
2 ln(Z0/ξb) + ξ 2

b − Z2
0

. (B14)

Since we evaluate �(·) at L/
√

1 + t2 in Eq. (B6), the upper limit of the integral can be simply replaced by ξb.
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