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We consider uncertainty relations that give lower bounds to the sum of variances. Finding such lower bounds
is typically complicated, and efficient procedures are known only for a handful of cases. In this paper, we present
procedures based on finding the ground state of appropriate Hamiltonian operators, which can make use of the
many known techniques developed to this aim. To demonstrate the simplicity of the method, we analyze multiple
instances, that involve two or more observables, both bounded and unbounded.
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I. INTRODUCTION

Preparation uncertainty relations capture the essence of
quantum mechanics: not all properties of a quantum system
can be exactly defined at once [1-3]. While quantum comple-
mentarity tells us that there exist complementary properties
which can be assigned to a system but cannot have joint
definite values, uncertainty relations go even beyond this
very counterintuitive concept: they tell us that complementary
properties can be defined at least partially, as long as we do
not require them to be determined with perfect precision. The
uncertainty relations then are doubly counterintuitive: they
originate from complementarity, but then, in a sense, allow
to partially counterbalance the effects of complementarity. In
addition to the foundational issues [4—6], uncertainty relations
have found applications in a variety of problems such as
entanglement detection [7,8], spin squeezing [9], and quantum
metrology [10]. The conventional treatment of preparation
uncertainties follows the Heisenberg-Robertson approach [3],
which involves the product of uncertainties, in order to employ
the Cauchy-Schwartz inequality in their derivation. They are
expressed in terms of variances of incompatible observables,
e.g., A2AAB > |(¥|[A, B]|¥)|*/4 for observables A and B.
However, the lower bound for product of variances may be
null for some state |v), and thus noninformative. Or it is
null whenever one of the two variances is, i.e., when |¥/) is
a (proper) eigenstates of one of the observables. This prevents
the interpretation of the product uncertainty relations as a true
measure of how incompatible are two observables, where we
assume that observables are compatible if their value can be
precisely jointly assigned for at least one state of the system.
For these reasons, it is preferable to consider uncertainty
relations that give a lower bound to the sum of variances
A’A 4+ A’B of two or more operators [11-19]. Furthermore,
the case of two observables has important physical applica-
tions, for example, in quantum metrology protocols where
the squeezing of two angular momentum operators (planar
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quantum squeezing) allows for phase uncertainties below the
standard quantum limit [10,20-22], or in quantum informa-
tion strategies for detecting entanglement [7,23]. In this paper,
we present a general procedure to derive a state independent
lower bound for the sum of variances of an arbitrary number
N of Hermitian operators A,

N
Via(19) = Y A Ay,

n=1

where the variances are calculated on an arbitrary state |y).
The largest possible value of Ig that satisfies Vr(|¥r)) 2
I, ideally one that satisfies it with equality for some state,
constitutes the best attainable lower bound that depends only
on the observables. In contrast to previous derivations, our
method is based on the search of the ground-state energy &4 of
specifically designed Hamiltonian operators, and can use the
multitude of techniques developed to this aim. In general, this
allows to easily and quickly find good approximations  of Ip.
The strategies proposed to date for determining /p are based
on different approaches. In Ref. [24], the authors have devised
a method to (analytically) identify I, provided the operators
A, are the generators of a Lie algebra. In Ref. [25], the case of
arbitrary qubit observables is considered. Other methods are
focused in finding /z or at least a sufficiently good approxi-
mations [ that may or may not be achievable; they fall in two
different classes: the strategies “from above” and the strategies
“from below.” The former are based on algorithms that find I
by, possibly iteratively, starting from approximations /, 5 > lp.
The most obvious of such strategies use numerical minimiza-
tion algorithms that scan the whole M-dimensional Hilbert
space Hy, of the system searching for /g. Since the procedure
requires the identification of the 2M — 2 real coefficients of
the state |Ymin) which minimizes the sum of variances, it is
numerically demanding when M is large and is prone to errors
due to the possibility of getting trapped in some local minima.
A sophisticated procedure “from above” has been put forward
in Ref. [26], where a seesaw numerical algorithm was devised
and used, for example, for a sum of variances involving
angular momentum components. In principle, the algorithm
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can be used with an arbitrary number N of observables, and
it is based on a alternating minimization procedure which
at each step i determines an approximation ZN;J > lg. As the
authors suggests in Ref. [23], the strategy may get trapped in
local minima and the proof of its convergence to the global
minimum /p is an open problem. The strategy “from below”
is instead based on a elegant mapping of the minimization
problem into a geometric one (joint numerical range), where
one searches for a sequence of polyhedral approximations of
a suitable convex set [23,27,28]. While in certain simple cases
the exact /g can be identified [28], in other cases at each step i
the algorithm provides both a valid approximation of Iz > I, B.i

from below and an approximation i; ; = Ip from above, such

that one has the control over the precision €; = [/, — [, with
which the optimal bound /3 is approximated [23] . The method
has been up to now applied to the sum of variances of two
operators; its generalization to a larger number of operators
requires further geometrical and numerical refinements [23].

Here we propose a minimization method “from below,”
on the basis of which one can subsequently also find an ap-
proximation “from above.” It is based on connecting the sum
of variances to an Hamiltonian' expectation value. Whence
the search for a bound from below ig can be mapped onto a
search for the Hamiltonian minimum energy. To begin with
the Hamiltonian to minimize is the sum of the operators
defined on an extended Hilbert space Hy ® Hy (where Hy,
is the system space) defined as

_ART+I®A;

H,
2

—A, QA,. (1)

Indeed,

N
Vi) = (W (Y1 Y Hal¥) ), 2)

n=1

i.e., the sum of variances can be written as the average value
of the operator Hyy = Y, H, on the product state |/)|y) €
Huy @ Har- Then, the search of a lower bound to the sum
of variances maps directly to the search of the ground state
of the total Hamiltonian Hry. In general, the ground state
will not be a factorized state |egs) 7 |v)[), nonetheless,
the corresponding ground-state energy &g will provide a
nonachievable but valid state independent lower bound to the
sum of variances. As we will show, while the mapping (2)
itself can in certain cases provide the optimal value Iz or
close approximations from below l]; , it is also the starting
point for devising procedures that give better bounds when
needed. This is especially important since the ground-state
energy of Hp, may be null. In this case, on one hand, we will
give a bound that involves Hro’s first excited state. On the
other hand, we show how by using appropriate modifications
Hrot.n of Hroe One can obtain refined approximations of [ from
below in terms of their ground-state energies.

The knowledge of the ground state of Hry, or of its
modifications, via its Schmidt decomposition allows one to

"We use “Hamiltonian” to indicate an operator whose spectrum is
lower bounded. The Hamiltonian operators we consider in the paper
are not necessarily connected to an energy observable.

identify a state |sy) € Hy that provides an approximation
“from above,” i.e., Vot (| Wsat)) = 7; > Ip . This procedure can
always be applied, and the unknown tight bound Iz for the
variance sum lies in the interval between the bound “from
above” V1o (| ¥sat) ) and the one “from below” eg. The width of
this interval Voo (|¥sa)) — &gs 2 0 thus provides an indication
of the accuracy of the approximations found, namely how far
is the tight bound from the ones obtained.

We illustrate our methods using some examples: we ana-
lyze both known cases and derive uncertainty relations. The
known cases show that our method is able to recover known
results easily. And the results reported here show that our
method can allow to tackle situations difficult to analyze, such
as the case of more than two observables and the infinite
dimensional case for unbounded operators. For each example,
(i) we identify the relevant operator; (ii) we evaluate the rela-
tive &g, |€gs), |¥sa); and (iii) we give the width of the interval
Vot ([¥sar)) — €gs = 0. We finally notice that, althought we
will not deal in the present manuscript with such a problem,
with the same mapping (2), one can also assess a different yet
interesting task, i.e., the evaluation of the upper bound for the
sum of variances [29].

The structure of the paper is the following. In Sec. II,
we present the first main general results that one can obtain
by mapping the sum uncertainty relations to a Hamiltonian
ground-state search. Then in Sec. III, we apply these results to
some examples to demonstrate the versatility of the method.
In particular, in Sec. IIT A, we analyze the uncertainty relations
for all the su(2) generators; in Sec. III B, we consider a subset
of the previous operators, namely, the planar spin squeezing;
in Sec. III C, we consider a lower bound for a set of different
numbers of operators chosen from the generators of the su(3)
algebra to show how our method can easily deal with more
than two observables; and finally in Sec. III D, we analyze the
sum uncertainty relations for one quadrature and the number
operator of a harmonic oscillator, to show that our method
can be also applied to unbounded operators. Some of these
examples have already appeared in literature, while others
refer to sum uncertainty relations described in this work.
Finally, the appendices contain some technical results and
supporting material.

II. GENERAL RESULTS

A. Properties of the Hamiltonian Hyy

We start by studying the properties of the Hamiltonian Hr,
in particular, of its ground-state energy &y and ground state
|€gs). The discussion will allow us one hand to describe how
Hry can used to derive the desired lower bounds, and on the
other hand to prepare the ground for the following develop-
ments. As a general premise we choose to base the following
discussions and results on the use of operators A, with non-
degenerate spectrum. This choice allows in the first place to
simplify the notations. While some of the results obtained can
be easily extended to the nondegenerate instances, the latter
should be treated on a case by case basis. Furthermore, we
will treat only set of operators with no common eigenstates,
otherwise the problem trivially reduces to having V., = 0.
With this setting in mind, we first notice that each operator

052121-2



STATE-INDEPENDENT UNCERTAINTY RELATIONS FROM ...

PHYSICAL REVIEW A 99, 052121 (2019)

H, is by construction semidefinite positive, as it can be seen
by writing it in its diagonal form

M
H, = % Z(an,i — @y )l an M an Y anil(an i, (3)

ij=1

where {|a,;)} is the A, eigenbasis and {an,i}?i | the corre-
sponding eigenvalues, that by convention in the paper we
suppose listed in increasing order. In particular H, has &5, =
0 as ground-state energy. The main properties of Hrp, are
described with the following.

Proposition 1. Given N Hermitian operators {A,}"_, with
no common eigenstates, each with nondegenerate eigenspec-
trum and eigenbasis {|a,,,,-)}f"i 1» then

(i) if the Hamiltonian Hry = ), H, with H, as in (1) has
positive ground-state energy zero &, > 0, then

Via(|1¥)) 2 Egss

(ii) if g4 = 0, then Hry has a unique ground state that can
be written in any of the eigenbasis {|a,,,,»)|a,1,,->}?i , as the
maximally entangled state

1 o
legs) = T Z i i) |G i) 4)

with |G, ;) = exp (i¢in/2)lani), Vn, i and ¢,; appropriate
phases. Furthermore, given &; > 0, i.e., the first excited en-
ergy of Hr, then

1
Via(|¥)) 2 81(1 - A_/I)'

The proof of result (i) naturally follows from our starting
point (2) and the fact that for any [) € Hy

(U | Hroal D)) 2 egs.

The proof of result (ii) can be found in Appendix A. Results
(i) and (ii) show that the mapping introduced in (2) has as
first consequence the possibility of deriving a nontrivial, in the
sense of nonzero, lower bound for Vi (]1)) starting from the
Hamiltonian Ht,. While we do not have general results that
allow to establish in the most general case whether the ground-
state energy &, of Hro is zero or not, the proposition takes
into account both cases. How tight are the bounds described in
proposition 1 depends on the problem at hand. As we shall see
in the example (Sec. III A) g4 # 0 and it coincides with the
optimal bound /z. On the contrary in the other examples &,; #
0 and/or &, (1 — %) represent a meaningful approximation /, m
of [z when the dimension M of the underlying Hilbert space
is small; while for large M these values may be far from the
actual /g, for example they do not grow with M. To cope with
these situations, and derive state independent lower bounds
that are closer to the optimal one Iz, we provide different
strategies that are based on modified versions of Hry.

B. State independent lower bounds from modifications of Hry

We illustrate the strategies in two steps. We start with
proposition 2 and derive a lower bound for the set of states that
have null expectation value for at least one of the operators A4,,.
The method that will allow to include all states in H,, will be

described in proposition 3 as an extension of the following
result

Proposition 2. Given the Hamiltonian Hr,, then for each
n the Hamiltonian

HTot,n - HTot +An ®An

A2RI+1QA?
= Z H, + — 2 -
m#n
(1) is positive definite;
(ii) its ground-state energy &g, > 0 provides a nonzero
lower bound of Vg, for all the set of states

S0 = {lp) € Hul(plA,l¢) = O};

(iii) the lower bound for the set of states U,,Sf,’ C Hy, ie.,
those states which have null expectation value for at least one
operator A, is given by

mnln £gsn > 0.

Proof. To prove result (i), we first observe that Hry , is
obviously definite positive whenever A2 is. If this is not the
case, since we are dealing with operators with nondegenerate
spectrum, A2 has a unique eigenstate |a, ) corresponding
to the eigenvalue a,; = 0. Due to the structure of each
kernels Ker(H,,) of the operators H,, m # n, Eq. (Al) in
Appendix A, the only product states in any of the Ker(H,,)
have the form |a,, ;}|a,,;); but since we have supposed that the
operators {A,}"_, have no common eigenstates |a,.)|a,. 1) ¢
Ker(H,,), m # n; therefore it must be Hror,, > 0. Result (ii)
follows from the fact that for all states in S?

(91(P|Hrot|P) |P) = (P1(P|HTor,n| )| )
Pl(BlA, ® Auld) )
¢|<¢|HT0t,n|¢)|¢>

=

—

=

Z (€gs.n|Hrotnl€gs,n)-
One can then determine the following lower bound:

mnin Egsn > 0

for the union U,S,, € Hy. Indeed, if g5, > €gm, 1 7# mthen
€gs,m 1 a lower bound for both set of states belonging to
S, and S,,,. |

As we shall see in the following, in the specific cases,
it turns out that all g4, = INE are equal Vn and, thanks
to the symmetries of the problem, finding the ground-state
energy of a single Hamiltonian Hry, allows to determine
the required lower bound. However, when no such symmetry
properties are available, in general U,S,, C Hy, i.e., U,S, may
only be a proper subset of Hj, and the optimization is not
sufficient. Therefore a different procedure must be devised
to find a lower bound for all states in H,,. To this aim for
fixed n, we first define the operator A% = A, — «l; then Vo €
[@n.1, an.p] One has that A°’A% = A%A, and one can define the
Hamiltonian

(A2 @T+1® (A?)?

HE =
2

—A) @A,
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and the total Hamiltonian

H’%ot = ZHm + I-Il?
m#n
Simply by substitution, one can verity that HY = H, and
Hro = Hy, Therefore VYo € [a,,1, appm] if |¥min) minimizes
V1ot then

VA — (Yrmin | (Wimin | F | Wimin) | Wimin) -

The strategy that allows one to find a state independent lower
bound can now be expressed as follows.

Proposition 3. For each n and for each « € [an,1, aynm],
define the Hamiltonian Hy, , = Hy, + A; ® A} with nonzero
ground-state energy €% > 0. Then

(i) for fixed n it holds that V|¢) € Hy

s,n
VTot(|¢>) > min Sgs n
a€lay,anml =7
and min, €g , provides a state independent lower bound;
(ii) the best lower bound V|¢) € Hy, is given by

max min & > 0.
gs,n
n a€lay,anml

Proof. Since (AO‘.)2 is diagonal in the same basis of

02 .
(A27°%)°, the positivity of Hf , can be demonstrated in

the same way it was shown in proposition 2 for H{i‘ot?l
In order to prove result (i), we first define the set S% =

{I¢) € Hul(®|Anlp) = a}; then V|p) € S (P|A7]¢) =0 and

Vioi(16)) = (61{@|Hrot|#)[9)
= (Pl{@|Hry , D)D) —
= (P1(@|HE | #)|9)

2 (Egs,n|HTot,n|8gs,n> = ggs,n'
For « belonging to the spectrum of A, it holds
Uselan1,anm1Sy = Hu and one obtains (i). Result (ii) is
therefore a simple consequence of the fact that, for each n,
ming g, , is a lower bound for all states in Hy; and the
maximum of these values gives the highest lower bound
obtainable by means of the above defined Hamiltonians. Wl

Propositions 1-3 constitute the main general results of our
work. They show that the mapping (2) allows one to reduce the
problem of finding the lower bound for Vg to an eigenvalue
problem. There are at least three different ways of obtaining
the desired lower bound: (a) one can work directly with Hrq;
(b) one can use a single Hamiltonian Hy , for some specific
n; and (c) in order to further optimize the result one can use the
Hg,, , for all n. Before passing to analyze different examples
we want first discuss the limits and virtues of the outlined
approach.

We start with the possible limits. The procedure is in
the first place based on the evaluation of the ground-state
energy of Hamiltonians acting on Hy ® Ha and thus have
dimension M? x M? that can in principle be very large. Fur-
thermore, in order to obtain the best result (ii) in proposition 3
the procedure outlined requires in general a minimization over
« for each n, that in principle, e.g., when the dimension of the
Hilbert space M or the number of operators N is large, and/or
the intervals [a, 1, a, ] are very large, can be numerically
demanding.

(@1(1A, ® A |D)|$)

As for the virtues, in the first place the procedure is
based on the evaluation of ground state energies, a task for
which very efficient and stable routines are available, even for
large dimensions, especially if the Hamiltonians have some
simple form (e.g., sparse, banded, etc.). Secondly, in order
to obtain a state independent lower bound one in principle
only need to choose one of the Hamiltonians Hg ,, i.
choose a specific n, and then only one optimization over
o € [ay1,a,m] is needed; for example, one could choose
n such that the interval [a, 1, a,m] is the smallest possible.
Furthermore, one can be interested in a lower bound that,
though being strictly speaking state dependent, is very simple
to achieve. For example if for the physical problem at hand
only states with specific average values are relevant, e.g.,
states with fixed average (¢|A,|¢) = ayix, the optimization
procedure simply requires the evaluation of the single ground-
state energy sgsf‘ﬁ, The procedure can therefore be flexibly
adapted to various specific needs and/or to obtain partial
results.

The above reasonings are valid for the most general case,
i.e., when there is no structure in the problem, and the A,,’s are
totally unrelated. However, as we will show in the following
examples, there may be situations where the presence of some
constraints, e.g., symmetries, allow to drastically reduce the
complexity of the problem. This can be solved by either re-
ducing the problem to an equivalent one which has known an-
alytic solution, or by evaluating a single ground-state energy,
instead of minimizing over «. Indeed, suppose, for example,
that Vo (U|¥)) = Vot (|)), where U is a unitary operator
acting on H,, that represents a symmetry for Vr,. Then one
has immediately that UT ® UHpoU ® U = Hryy, such that
the symmetries of Vry can be translated into symmetries of
Hro and can be exploited in the Hamiltonian framework with
the aim of simplifying the evaluation of the relative lower
bounds. In this respect we now give a result that holds in some
of the examples.

Proposition 4. Given the set of operators {A, }n |» suppose
that for some 7 there exist a unitary operator U such UA,U" =
—A, and such that }° _ H, is left invariant by the adjoint
action of U ® U, then

(i) the ground-state energy &g, of the Hy, , defined in
proposmon 3 is an even function of a, i.e., &g , = €573

(i) 8 0 is a local minimum for « varying in [a,, 1, anm].

The proof is given in Appendix B. Result (i) allows for
each fixed n to reduce the interval for the search of min, &g ,
to the positive interval o € [0, a,y,]. Result (ii) allows to use
proposition 2 as a starting point for the minimization, i.e.,
one could first find €2=0 > 0 and use it as a first estimate of
the searched lower bound i.e., an upper bound of the global
minimum.

We finally notice that in principle the mapping (2) allows
to enlarge the set symmetries that can be used to evaluate the
ground state of the specific Hamiltonian. Indeed, while the
symmetries of Vr, can obviously be translated into ones of
the corresponding Hamiltonian problem, there may be others
V H1otV = Hry represented by unitary operators V #£ U ® U,
which are not symmetries of Vp,, and that may of help in
finding the ground-state energy and thus the desired lower
bound.
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C. Strategy to find a state that (approximately)
saturates the lower bound

In order to complete our discussion, in the following, we
show how it is possible, from the knowledge of the ground
states to extract further relevant information. Indeed, once the
a state independent lower bound /; has been found in terms
of the ground state energy of the operator under consideration,
on one hand, one is interested in understanding how well l~B_
approximate the actual unknown optimal value /g, and on the
other hand, in identifying at least a state |g,) € Hy such
that Vo (|¥sar)) & Ig. In this section, we describe how a state
|Ysat) can be, in principle, inferred and we discuss how its
existence also provides a way to check the goodness of the
approximation / 5 - As shown above, in general, the (nontrivial)
lower bound will be found in correspondence of the ground
state |egs) Of Hry, if €45 # 0, or in correspondence of the
ground state |eg ,) of some modified version Hy, , for some
fixed «. In the following discussion, we drop for simplicity
all indexes «, n and we refer to a generic operator H and
relative ground state |&) corresponding to & # 0. In general
le) # |¥)|¥), i.e., the ground state is not in a product form
and thus the bound is not saturable. The strategy to find state
|Vsat) € Hpr is based on the Schmidt decomposition |e) =
D 0 AnlAn) |A;,), where A,, > 0 are the Schmidt coefficients. If
the ground state is unique and the Schmidt coefficients are not
degenerate, since all of the above defined Hamiltonians are
symmetric with respect to a swap of the two identical Hilbert
spaces onto which they are defined, then |,) = |A;l), Vn,ie.,
the Schmidt decomposition is given in terms of product of
identical states |1,)|A,). The decomposition can thus be used
to find the desired |55 ). Indeed, if Avax = max,, A,, a possible
natural candidate for |4, ) is the state | Anax). For such a state,
one has

<)LMax | ()\Max |H|)\Max) MMax)

K
X €03+ Y Enl (Antax| (tax €)%, (5)

n=1

where {g,, |€,)},>, are the eigenvalues and eigenstates of
H above the ground state and K = M? — 1. Unless |¢) =
[AMax) | AMax ), the sum for n > 1 in (5) is not negligible such
that the average (Amax|{AMmax|H [AMax)|AMax) > € and it can
in general be larger than . However, we can upper bound
the sum and to find some conditions on A, that guarantee
that the average is sufficiently close to €. Given Apnx, Since
g, > 0, Vn then the sum in (5)

K
D enl Oontanl vtax ) > < (1= Adge)

n=1

is upper bounded by the maximal eigenvalue ¢x. Therefore
the worst case scenario is given by

(AMax | (AMax [H | 2Max) [AMax) = Adgax + 5 (1 — AMgar)-

Now in order for the state |Ayax) | Amax) tO give a good approx-
imation of ¢, one has to impose that a)uﬁ,lax > ex(l — )"lz\/lax)
or

; &
__ "Max > _K (6)

If one is able to determine A%, and if the previous condition
is satisfied then

(Antax | vt [H | Adiax) AMax) 2 EA3 105

In the most favorable case Apax (M) = O(1) and Apax >
Ans YAy # AMax, 1.€., AMmax 1S sufficiently larger than the
other Schmidt coefficients, such that one can identify |Ygy) =
|)‘Max>~

The existence of |y, ) allows for the desired assessment
of the goodness of the approximation provided by ¢. Since
Vot (1¥sat)) = (AMax [{AMax |H [AMax) | AMax) 2 €, the actual un-
known lower bound Iz must lie in the interval [&, Vo (| Wsae))];
the smaller this interval the better the approximation. In the
examples described below, we provide evidences that the
above method can indeed be successfully applied.

III. EXAMPLES

The examples that we present are different in many aspects,
and we use each of them to highlight different features of
the scheme proposed and how the latter can, in principle, be
further modified. The first two involve generators of the su(2)
algebra, and their relative bounds have already been obtained
in literature. The other ones are our contributions. The third
example involves su(3) operators; this will also allow us to
compare the results obtainable with our approach with those
obtained with other methods [28]. We finally use the fourth
example to show how the mappings proposed may be used
even in the case unbounded operators.

A. Generators of su(2)

In this first example we show a case in which the initial
mapping provided by Hr is sufficient to obtain the desired
lower bound; and we also show how Hry and Hy, , are just
starting points and different mappings are possible depending
on the specific problem at hand. We recover the bound for the
sum of the variances of the three generators Jy, Jy, Jz of the

2j + 1-dimensional irreducible representation of su(2):
Viyz = A%Jx + A%Jy + A%y @)

The attainable lower bound of Iz = j has already be found
with different methods [7,24]. Here, in principle, the operator
Hr, one needs to diagonalize is

HTot - Z
a=X,Y,Z

<@®hﬁﬁﬂwﬂ®ﬁ_h®h)(&
2

It turns out that its ground-state energy €., = j coincides with
Ip and it is attained by the product ground states |j, j), ®
|j, j); and |j, —j); ® |j, —Jj);, such that the bound for the
variance is indeed attainable. In order to show how the method
we propose can be flexibly adapted to specific situations we
obtain the same result by means of a different mapping that
makes use of the following property of the su(2) algebra. The
Casimir operator of the su(2) algebra can be expressed as

C=Js+J5+7;
= j(j + Dlyjy1,

052121-5



GIORDA, MACCONE, AND RICCARDI

PHYSICAL REVIEW A 99, 052121 (2019)

therefore, by using the previous relation, one can map the
minimization of the sum of variances

Vayz = j( +1) — (Ux)? — (y)? — (Jz)?

into a new eigenvalue problem based on the operator

Hyy = j(j + Dy @ Ly — Z Jo ® Ty,

a=XY.Z
where again, for every state [|) € Hyj41, one has
Vxvz(I1¥) = (Y [{(Y|Hp|¥) ).  Now  the  operator
Hieis = — D gy yzJa ®Jo is well known since it

represents a Heisenberg isotropic Hamiltonian whose
ferromagnetic ground states are, for example, |j, j). ® |/, j).
C1j,—7): ®1j, —J);) and they correspond to a ground-state
energy sgfis = — j? such that

minViyz = (j. jl{. j1Hrolj. . )
- ©)

The lower bound found is thus nontrivial and, since in this
case, the ground states are product states, it is saturated by
|Vsat) = 1], J), | — j, —Jj). It is then easy to check that the
states |, j). ® |j., j)z and |j, —j) ® | j. — ). are also ground
states of Hry and that they correspond to the ground-state
energy &g = j.

This first result shows on one hand that the mapping (2)
introduced in the previous section can directly provide the
desired lower bound in terms of &g. On the other hand, it
shows that by using the information about the relations be-
tween the operators involved in Vxy, in this case the algebraic
relation provided by Casimir, one can find another mapping
that allows to derive the desired lower bound as the solution
of a known eigenvalue problem.

B. Spin operators and planar squeezing

We now focus on an example that allows us to illustrate
many of the results derived in the previous section. We first
derive the lower bound by selecting the relevant Hamiltonian
on the basis of symmetry arguments. We then discuss how
one can find the state |/s) able to fairly well approximate
the bound and we show that the |/, ) we identify is, in prin-
ciple, obtainable in the laboratory via two-axis spin squeezing
[9,30].

We focus on a pair of generators of su(2). In order to fix the
ideas and without loss of generality, we choose to work with

Vyz = A%Jx + A%J,. (10)

The minimization of Vyxz has been introduced in Ref. [10],
where it was shown that the simultaneous reduction of the
noise Vyz of two orthogonal spin projections in the plane XZ
(e.g., Jx,Jz) can be relevant for the optimization one-shot
phase measurements, since it allows for phase uncertainties
A¢ ~ j~213 ie., a precision beyond the standard quantum
limit that importantly do not depend on the actual value of
the phase ¢ [20-22]. In Ref. [10], the behavior of Vx  in the
asymptotic limit j — oo was obtained by means of analytical
arguments and the overall behavior of Vyi"(j) via numerical
fitting such that

ViEm (j) = 0.595275 j*3 — 0.1663 j'/° +0.0267.  (11)

On the other hand, in Ref. [26], the asymptotic behavior was
obtained numerically by means of a seesaw algorithm as

Vi () & 0.569524 j23. (12)
We start our analysis by showing that the Hamiltonian

2@ D+ hjy @ J2
Hrot = Y yox7 ( . L 2 =

has ground-state energy is zero. Indeed, Vj one can write

—Ju ®Ja)

1 L. .
legs) = W,ﬂ; |j, m2)|j, mz)

1 J
= —— Y limlim)
J2j+1 m—j

and check that &g = 0. One can subsequently use result
(ii) in proposition 1 and evaluate &(1 — ﬁ). However, in
this case, one can easily check that &, = 0.5 for all j and
therefore Hr, provides a nonzero lower bound which scales
poorly with j. We are thus led to use the strategy based on
the Hamiltonians Hy , described in proposition 3. This is
however a case in which we can apply Proposition 4. Indeed,
one has that U = exp (—imJz) is such that UJxU' = —Jx
and the adjoint action of U ® U obviously leaves the whole
Hamiltonian Hr invariant. Therefore one can start by search-
ing for the lower bound among the states belonging to the set
S = {|¥) € Haj+11{y¥|Jx|¥) = 0} and use the Hamiltonian

J2@ Iy + 1 ®J2
Hrgx = ) < TR )—JZ®JZ. (13)
a=X,Z

The relative lower bound 82&)( provides a local minimum.
Then one should extend the search by using the Hamiltonian
HE, « witha € [0, j]. Of course, this strategy is of use when j
is sdfﬁciently small, whereas j becomes large the task would
be quite demanding. However, in this case the search in SY is
sufficient to obtain the overall lower bound since the Hamil-
tonian Hry enjoys the same type of continuous symmetry
of Vro. Indeed, Vro[|¥)] = Vrolexp (i0Jy)|y)] for all |y)
and 6 € R and in the same way given Uyy = exp (—ifJy) ®
exp (—ifJy)

UYYHTotUY'Y = Hry

and this allows to limit the minimization over Sg [10,26]
(see also Appendix C). Furthermore since the role of Z
and X can be exchanged we can focus on Hry x only. We
notice that, when expressed in the J; eigenbasis, Hyo x i
banded and sparse and thus efficient algorithms can be used
for its diagonalization. The ground-state energy &4 x(j) can
then be numerically evaluated for different values of j, it is
always nonzero and the results are plotted in Fig. 1 (top) and
compared with the two bounds (11) and (12). The result show
that Vjeg x (/) < Vyz ' (j) < Vi, (j) and the ground-state
energy of Hry x provide a fairly good and meaningful lower
bound.

The algorithm implemented requires the diagonalization
process that eventually determines the value of the bound.
However, the structure of the state |1, ) able to approximately
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FIG. 1. (Top) Scaling of the sum of variances Vy; with j =
(1, 100): (green diamonds) lower bound of Vy; provided by
the ground-state energy &y x(j) of the Hamiltonian (13); (blue
squares) Vi, (j) as in (11); (red circles) Vi, (j) as in (12);
all quantities are plotted in arbitrary units. (Bottom) Relative er-
rors obtained with the use of |6,) = exp (—if,Hras)|j, j) (see
text) as a function of j =1,...,100. Upper curve (orange trian-
gles) 12 = [V (10m)) — gs x 1/ €gs.x > lower curve (green circles) r; =
Vi (16)) = Vag™ (DI /Vag™ (7).

saturate the bound is not directly apparent from the algorithm
unless the ground state is a product state |eg x) = [V/)|¥).
In this case, the numerical computations suggest that the
ground state is not in a product form although it provides
values which are pretty close to those evaluated in (11).
The results obtained can be refined in the following way.
For generic j, one has that the numerical found ground-
state energy is doubly degenerate. By fixing j, one can ex-
plore the ground-state manifold in search for a ground state
whose Schmidt decomposition can be written as |egs x) =
> AnlAn)|A,) and such that the maximum Schmidt coeffi-
cient is sufficiently large. For fixed j, we can identify two
states |)\&ax), [Amax) corresponding to two different states
|8;’X), |8gis’X) both belonging to the ground-state manifold
and for which the largest Schmidt coefficients coincide. For
example, with j = 9/2, one finds sufficiently large values
Miax = Myax = 0.99619. The overlap of the product states
with the respective ground states is equal and large, i.e.,
(8;?+|A&ax)|kﬁax) = <8§s,z—|)“1:4ax)|)”1?4ax> = 0.996191. Similar
results have be obtained for generic values of j < 100,
thus one one hand both states |k]4\'4ax), [Ayax) constitute good

candidates for |{g,) and for the (approximate) saturation of
the found lower bound, and on the other hand the result is an
indirect confirmation that the lower bound provided by &g x
is close to the actual one /p.

In order to estimate the error in determining the lower
bound via g4 x, i.€., Vot (|Wsa)) — €gs,x» We now proceed with
a further refined approach to determine |V, ). Indeed, while
the states |Aﬁax), which are good candidates for |V, ), are
obtained numerically it would be desirable to find analogous
states that at least in principle can be produced in the lab-
oratory, and that have the same property of |)\;‘j[ax>, ie., to
approximately saturate the lower bound. In Appendix D, we
show how starting from the knowledge of the shape of |Xf,[ax)
and by means of further physical insights one can indeed
identify the following candidate:

|0) = exp(—i@Htas)lJ, j),

where |j, j) is the eigenstate of J; corresponding to the
eigenvalue j; and

Hras = —i(J7 —J?)

is the two-axis squeezing operator [9,30]; the latter having
the property of squeezing the state along the X axis and
simultaneously anti-squeezing it along the Y axis. As shown
in Appendix D, by means of the mapping provided by the
Holstein-Primakoff approximation, it is possible to infer the
optimal value of the squeezing parameter 6,, = —l“ﬁrl;”
such that |[Ys) = |6,,) provides a good approximation of the
lower bound for each j. In Fig. 1 (bottom), we plot r; =
Viot(18m)) — Vg (DI /Vyz " (), i.e., the relative error in the
evaluation of Vg, with respect to the best bound given by
Vyz ' (j). For j < 100, the error is firmly below 3%, thus
showing that the approximation provided by |6,,) is indeed
quite good.

With the aid of |6,,) we can then provide an estimate
of the errors in the determination of the lower bound
by means of egx. In Fig. 1 (bottom), we plot r, =
[Vrot(16m)) — €5, x|/€gs,x; the latter shows that the relative
error is for j < 100 of the order of 6%, such that by choosing
(Vrot(160m)) + €g5,x )/2 as the estimate of the true lower bound
the relative error is at most 3%, a result that confirms the
goodness of the approximation provided by &g x. Similar
results can be obtained directly using |)»1J(/Iax), |Apax) instead
of |6,,).

We finally notice that the state |6,,) is in principle obtain-
able in the laboratory via two-axis squeezing and thus is a
good candidate for the estimation procedure based on Planar
Squeezed states. While the realization of the latter has been
proposed in Ref. [10] as the ground state of a two-mode
Bose-Einstein condensate and in Ref. [20] as the result of
a nondemolition quantum measurement protocol, here we
provide evidence that the same result can be obtained via
two-axis spin squeezing.

C. su(3) operators

We now derive the lower bound for the sum of the vari-
ances of four operators belonging to the su(3) algebra. This
will allow us to show the results of proposition 3 in action.
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FIG. 2. Plot of sgs . as a function of « € [a, a,4,] for the oper-
ators A; (orange continuous), A, (dash dotted), A3 (dashed), and A,
(dotted). The best lower bound &5 is attained for H %% (black
continuous horizontal); all quantities are plotted in arbitrary units.

Consider the following operators:

0 1 0 1 0 0
A= |1 0 i], A, =10 0 0],
0 —i 0 0 0 -1
1 1 0 1 0 i
Az =11 0o -—11, Ay=1 0 O 0
0o -1 -1 —i 0 -1

The bounds for the sum of pair of variances Vi, = A%A; +
A%A; > 15/32 and Va4 = A2A3 + A%A, > 0.765727 were
found in Ref. [28] on the basis of the (uncertainty) numer-
ical range approach. If we compare these results with the
approximations l); obtained within our framework we find
that for V5, ig = 0.4384, which is approximately 6.5% lower
that the value found in Ref. [28]; while for Va4, l}; = 0.7281,
which is approximately 5% lower that the value found in
Ref. [28]. As for the lower bound of the sum of the four
variances Vio; = A2A| + A%A; + A%A; + A%Ay, the ground-
state energy of the corresponding Hyo is different from zero
and it provides a first approximation of the searched lower
bound, i.e., &g = 0.804103. The problem does not appear to
have evident symmetries and in order to check the consis-
tency of &g, and to refine the approximation we then use the
method outlined in proposition 3. In Fig. 2, we plot the values
of the ground states g5 , of the Hamiltonians H%mn, n=
1,2,3,4 as a function of o € [ay1.ax3 ], 1.6, o varying in
the interval defined by the lowest/highest eigenvalue of each
A,. The best lower bound /; = max, min, €015 Obtained
with the Hamiltonian Hg | in correspondence of the value

a = 0.963. The corresponding lower bound I; = 2% =

1.39932 is higher than &4, = 0.804103, therefore showing that
the method outlined in proposition 3 allows for a significa-
tive refinement of the result. If we now find the Schmidt
decomposition of |e%] 0963y "we have that the largest Schmidt
coefficient is Apax = 0 941487 and for the corresponding
[Amax), the value of Vg (|Amax)) = 1.5901. Therefore the ac-
tual bound /5 will lie in the interval (3 =0963 v (| AMax))] =
(1.39932, 1.5901]. Since the Hilbert space has dimension
3, we have performed a standard minimization procedure
directly on Vr, and we have obtained Iz ~ 1.56274 such that

£gs is about half the value /5; £%7% results to be smaller for

about 10%; while Vo (|Amax) ) 18 just 1.6% higher.

D. Harmonic oscillator operators 7i, X

While the definition of H = ), H, was given for bounded
operators, one can use the same definition for unbounded
one and use the same mapping (2), which of course remains
valid, for finding the relative lower bounds. In the following,
we show how the procedure and the results of Sec. II can
be applied by focusing a specific example. We consider the
operators 71 (number operator) and X (position operator) for a
single bosonic mode and we seek for the lower bound of

Vi = A%+ A%R. (14)

The latter is very much analogous to the bosonic counterpart
of Vxz with j = 1, see Eq. (D1) in Appendix D. The analogy
with the spin case is strengthened by the three variances sum

Vipn = A2+ A%+ ATp > 1,

whose lower bound is again attained by the analog of |j, j),
i.e., the vacuum |0) for which V,,, = 1 and V,,, = 1/2. If one
is to reduce V,,, one needs to simultaneously reduce A% <
1/2 and therefore enhance A2p > 1/2.

The starting Hamiltonian here is

Hry = 3 @I+ 1@ 4% —a®h
+ 1@ RI+I®?) -i®%

and its approximate ground-state energy can be found by
expressing £ = (a +a’)/+/2 and by truncating the single
mode Fock space, i.e., by expressing Hr, in the subspace
Hipge © Higgo, With Hp,, = spanf|0), [1), ..., [nmax)} Where
|n) is an n bosons state. By letting the maximum number of
bosons nyax grow, we numerically check that g, — 0, there-
fore Hry itself does not provide a meaningful lower bound.
However, here we can again resort to the result of proposi-
tion 4 and thus identify the needed modified Hamiltonian.
Indeed, the relevant unitary operator here is Uy = exp (—ifn);
one has that U,,)%U; = —X, and the adjoint action of U, ® U,
leaves the Hamiltonian Hy, invariant. Therefore, in search
for the lower bound, we can start restricting ourselves to the
states belonging to Sg = {|¥) € Hpos|(X) = 0} and consider
the Hamiltonian

Hrypz = (7 @I+ 1@ 4
+IERI+1I®4Y)

)—A®7

which is a local mini-

and its ground-state energy eg”,

mum. For sufficiently hlgh values of np.x, one has that sgs N

+~ 0412721 < 1/2. The ground
state in this case |8gsx> # |¥)|¢¥) is not in a product form,
however we can again use the argument outlined in Sec. Il and
find the Schmidt decomposition |€gs,2) =Y AnlAn)|Ay). For
nyviax = 30, we have that the maximum Schmidt coefficient
Aax ~ 0.99931 such that one is led to consider the corre-
sponding state |[Anx)|Amax) as a fairly good approximation
of the ground state. Indeed, |<Sgs,g|)LMax)|)LMax>| ~ (0.99931
and therefore |Y,) = |AMax) in this case is a good candidate
for the minimization of (14). This is confirmed by the value

converges to the value egs
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Ven(JAMax)) = 0.415139 such that the relative error of the
approximation |Vy, (|Amax)) — 825, f(|/agw2 ~ 0.5% is excellent.
While the previous results have been obtained numerically, the
following arguments allow one to identify a state realizable
in the laboratory that closely approximate |Apax). Just as in
the spin case the profile of [Avax) = >t 7a|n) is such that
only the states with even number of bosons are populated, the
distribution of probability is peaked for n = 0 and it rapidly
decreases with n. As in the Jy, J; case, this again hints to the

preferred tentative choice of the single mode squeezed state

N

- ;i(_t h |£])"
§) = JJ/cosh |&] = anh [§] 2p!

|2n)

as candidate for the minimization of V,,. Indeed, in terms of
|€), (14) reads

Vi = 2sinh?([&]) cosh®(€]) + w

its minimum is obtained for & = &,, = 0.1665679 and it is
equal to Vy,(|€,)) = 0.41591, which is a fairly good approxi-
mation of &g ¢ and Vy,(JAmax)). Indeed, if one evaluates the
fidelity between |£,,) and the numerically obtained |Amax),
one has (&,,|Amax) = 0.999927; furthermore |<£gs,x|§m> &) =
0.999168 such that |£,,)|&,) also provides a good approxima-
tion of the ground state.

Now, in principle, in order to find whether sos . 18 a proper
and faithful lower bound one should extend the search to the
other sets S¢, a € [0, co], which is of course an impossible
task. We thus opt for a different strategy. In the first place,
the result can be further supported analytically by showing
that |£,) minimizes V,, over the restricted set of Gaussian
states; this is shown in Appendix E. Since the minimum
corresponds to |&,) with (n) very small, we further support
our result by using standard numerical minimization routines
and search for the minimum of V,, in a sub space H,, =
span{|0), |1), ..., [nmax)} With nyvax sufficiently large; the nu-
merical results rapidly converge to the lower bound found
above.

We have thus shown how the method proposed can in prin-
ciple work even with sums of variances involving unbounded
operators. With the analysis of the Schmidt decomposition of
the ground state Isgs’j,), and the subsequent reasonings and
calculations, we have shown that is possible to identify a
state that approximately saturates the bound provided by sgs‘ e
Therefore, even in this case, the latter can be considered a
good approximation of the actual bound /p.

5)

IV. CONCLUSIONS

In this work, we have addressed the problem of finding
the state independent lower bound /5 of the sum of variances
Vit ([¥)) = 211\/ A‘zw)A,, for an arbitrary set {A,},—; y of
Hermitian operators acting on an Hilbert space H, with
dimension M. The value Iz is the highest positive constant
such that V|yr) € Hy, Vio(|¥)) = Ip. In general, the problem
can be solved by finding a sufficiently good approximation
Tg < . To this aim we have introduced a method based on a
mapping of the minimization problem into the task of finding
the ground-state energy &g of specific Hamiltonians acting on

an extended space Hys @ Hys. This way, we have shown that
Egs = } 5 > 1.€., &g provides the required approximation.

In our work, we have first provided the main general results
that characterize the method proposed and then, by means
of different examples, we have described its implementation.
While we have shown an instance where &4, = I3, in general,
the ground state |e45) € Hy ® Hay corresponding to g, is not
in a product form, such that the corresponding &¢s = } s <l
will only be an approximation of the actual /5, and the bound
provided by &4 will not be attainable, even though it will
still be a valid state independent lower bound. In such cases,
we have also proposed and tested a method to identify, from
the knowledge of the ground state |ey) € Hy ® Hy, a state
|Vsat) € Har that allows, at least approximately, to saturate
the bound, i.e., Vo (| ¥sat)) % Ig . This procedure provides an
efficient way to assess the quality of the approximations given
by &5 and Vo (|1sar) ): the true lower bound /z must lie in the
interval (&gs, V1ot (|¥sa))]. The examples developed show that
the latter can be very small, such that even when &4 # I the
approximations are quite good. While the main general results
have been derived for bounded (nondegenerate) operators, we
have also shown by means of an example that the method
can be applied to sum of variances involving unbounded
operators.

The results presented constitute a first attempt to lay down
a general and reliable framework, alternative to the existing
ones, for deriving meaningful state independent lower bounds
for the sum of variances Vg,. As such we have discussed
the virtues and limits of the proposed framework. Since the
latter is based on ground-state evaluation, it does not suf-
fer from the caveats of general minimization schemes that
can be numerically demanding and can get trapped in local
minima. On the other hand, it requires the diagonalization of
operators of dimension M? x M?, that for M very large can
be numerically complex. As we have shown the complexity
of the solution may however be drastically reduced when
the problem presents some symmetries and/or the operator
involved are simple (e.g., sparse). While the examples dis-
cussed show that the method can indeed be effective, several
questions remain open for future research. As we have shown
in the paper, since the mapping is not unique, other possibly
more effective mappings may be found. The extension of
the method to cases involving unbounded operators and the
assessment of its limits require a thorough analysis. It would
also be desirable to devise a procedure allowing one, when
possible, to foresee in advance the achievable precision of
the approximations provided by our approach. On another
level, it would be intriguing to explore the connections, if
any, between the framework proposed and the already existing
ones, e.g., those based on the joint numerical range.

Finally, while in this paper we have not assessed the
problem, our method can be used for entanglement detection
[7,8] and it would be desirable to apply it to relevant problems
in that area of research.
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APPENDIX A: PROPERTIES OF Hqyy,

In the following, we prove point (ii) of proposition 1 by
construction. To this aim, we start by supposing that each
A, has a nondegenerate eigenspectrum. This hypothesis is, in
principle, not necessary but we use it to simplify the notations.
We thus notice that given a state |¢) € Hy @ Hy, since each
operator H,, is semidefinite positive one has that (¢|H,|¢) = 0
iff |¢) € Ker(H,). Since we assume that the all A,,’s have non-
degenerate eigenspectrum, one has that Vn dim[Ker(H,)] =
M each Ker(H,,) can be written as

Ker(Hn) = Span{|an,l>|an,1>v |an,2)|an,2)y ey

|an. ) annr)}s (AL)

a fact which is easily derived by looking at the form of the
generic H, (1): the states {|a, ;)|an, ,)}M , are mutually orthog-
onal, are all eigenstates of H, with zero eigenvalue and they
form an orthonormal basis of Ker(H,). The Hamiltonian Hry,
has g, = 0 iff N,Ker(H,) # @ such that |eg) € N,Ker(H,),
i.e., if the intersection of the kernels of the H, operators is
not void and the ground state is a common eigenvector of all
the H, with zero energy. In order to derive the general form
of |egs), we start by supposing that N, Ker(H,) # @ and that
there exist |eg) € N,Ker(H,). We then focus on on a specific
H,, say Hy; since by hypothesis |e,s) € Ker(H,), we write the
state in terms of the eigenbasis (A1) of Ker(H,)

M
legs) = Y e ilarilar).
i=1

Since Vi one can write a; ; = |ay ;|e’®'" and reabsorb the phase
factors in the definitions of the eigenvectors, e.g., |d; ;) =
e'®i/2|a; ;) such that

M
legs) = > lorn illan.i)an,i)-
i=1

In this way, the ground state is written in its Schmidt decom-
position in terms of the basis {|a; ;) |511,i)}?i1- Since |eg) €
N,Ker(H,) and due to the structure (A1) of each Ker(H,), the
same is true for all H, such that one has

|egs) = Dal,nal, lay i) = Zmzlnaz, |ax,i)

o= Z leww il ) i) (A2)

This result tells us that the ground state must be unique and
that Vi, n it must be |«, ;| = 1 /~/M. Indeed, each decompo-
sition of the ground state (A2) represents, in principle, a dif-
ferent inequivalent versions of the Schmidt decomposition of
|€gs). But for a pure bipartite state, if the Schmidt coefficients
|cty ;| are not all degenerate, i.e., all equal, than the Schmidt
decomposition is unique up to phase factors [31]. Since by
hypothesis |eg) € N,Ker(H,), in order for the relation (A2)

to be true, in the first place it must be |o, ;| = 1/~/M, Vn,i.

Therefore if there is a common ground state this must read

| M | M
|egs) = i ; layi)an:) = T ; |a2.i)|a.;)

1 M
== —= > lan)ay.)-
M i=1

Now depending on the problem, there may or may not be
the possibility of adjusting the phases ¢;, in order to have
a single ground state with g = 0. In the affirmative case,
the ground state of Hrp, is unique and it can be written by
using the appropriate phases as |g4) = \/;M > an i) an,i), Yo
From which follows the first part of result (ii). It is actually not
important for the next part of the result to determine exactly
the various ¢; ,. Indeed, the nonzero state-independent lower
bound &1(1 — Ai/l) can be derived as follows. If e5s = 0, given
the general form of the ground state derived above (A3) i.e.,
that of a maximally entangled one, for any given |¢) € Hyy,
one can write

(A3)

1 M
|‘9 S) aly—t |an,i>|an.i)
g m ;
1 M
= TM(; |¢n,i>|¢n,,->),

where {|¢n,,~)}§‘i , being mutually orthonormal and |¢) =
|pn,1), while Vi |¢7,) is the complex conjugate of |¢, ;)
when the latter is expressed in the {|a,;)} basis. The lat-
est formula allows to infer that maxg)cy,, |<¢|(¢|8gs)|2 =
max,g)en,, |{@lo* )|?/M = 1/M; the maximum being attained
by any state |¢) =) ,Ujila,;) with Uj € R. Then, if
{len) KO_ I are the eigenstates of Hry corresponding to the

eigenenergies &9 = &g = 0and ¢, >0, Vn=1,... S M?—1,
one has that V|¢p) € Hy
M>—1
(D{P|Hrot|P) |B0) = (P](] Z Enlen)(enl1P) 1)
n=0
M2—1

> ) lol(@len)

n=1
= £1(Pl(@I(Ip2 — [egs) (€gsDIP) )

= e1(1 — [{@l{plegs) ).

Since

. 1
min e1(1 - (ol (Plegs) ) = e (1 —~ M)’

one has that V|¢) € Hy,
1
€1 <1 — —) > 0,
M

APPENDIX B: PROOF OF PROPOSITION 4

Vial(19)) = (91(d|H1ot| D) |4) =

which is the second part of result (ii).

We now prove the results of proposition 4. We begin with
(1). Suppose « > 0, the proof is based on the analysis of the
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Hamiltonian
'QI+1® (4%)°
Tot n Z H + )
m##n
= Hron — (A, @ T+1T®A,) + oI,

H, + M is defined as above. If

gs,n) 1s a ground state of H then legen) = U @ Uleg )
must be a ground state of Hp{,. Indeed, on one hand, due
to the symmetry properies of Zm 2n Hi that extend to Hro,n,

it holds (Sgs n|HTmn|sggn) = (& gsn|HT0t n|8gsn> Furthermore,
due to the action of U on A,,

<8g7:tn‘(An ® I —+ I ® A”)|8g75?tn)
=—(e5, | (A @ T+ T ® A6 )

where Hrorn = D, 4n
leg

Tot n

such that

—a <
gs,n T \“gs,n

€ |HT0t n|8gs n) - ( gs n| Tot n|8gs n) = ggs,n'

Then (ii) simply follows from the fact that
(e0,|An @ T+ I @A), ,)
— (%A ®T+T®A,)|e% ),

and there for to first order in o < 1, one has sgq n = Egen T

O
80{ g% n

APPENDIX C: SYMMETRIES FOR SPIN HAMILTONIAN

In this Appendix, we detail the symmetries property of Hry
(8) defined in terms of the two spin operators Jx, Jz. One has
that

e 0 I, 6% = cos0J, + sin 6Jy,
e Iy = —sin0J; + cos Oy,
then, given Uyy = e~ @ e~ 10,
UyyJz ® J7Uyy = cos® 0J; @ Jz + sin® 0Jx ® Jx
+ sinf cosO(Jz @ Jy +Jx ® Jz),
UyyJx ® JxUy, = sin®60J; @ J; + cos® 0Jx ® Jx
— sinf cosO0(Jz @ Jxy +Jx ® J7),
such that
Uyy(Jz®Jz +Ix ® -,X)U;y =(z®Jz +Jx ®Jx).

Furthermore by using the Casimir relation j(j + 1)I = J2 +
J,% + J% the Hamiltonian Hry can be expressed as

(Z+73) @I +1® (J7 +J3)
2
—(z®Jz+Jx ®Jx)
LRI+1®J}
2

Tot —

=j+DII—
—(Uz®J7 +Jx ®Jx),
such that

UYYHTOLU;y = Hry,

therefore V|¢) € Hy, if
(91{@|HrotlP) D) = (),

then one has also that

(@B Hrotl®)d) = (@1(d|Uyy HroUyy 9)16)
= (¢o|{¢o|Hrot|¢0) o)
= c(9).

Therefore one has a certain degrees of freedom in choosing
|¢) since all states |¢g) = €% |¢), VO € R will have the same
variance c(¢). Now

(PolJildg) = —sinO(@|J:|@) + cos O (p|J:[).

Suppose now |¢) is a state which minimizes Vy. One can
always choose for example 6 such that

(¢o|Jx|pa) = 0,

i.e., we can choose 6 by setting

sin 6 (¢|J;|¢) = +cos 6 (¢p|J|),
_ (Blile)
AN

6 = arctan <M>
(B |p)

Therefore even if 6 is unknown we can find the lower bound
of Vx; by finding the ground state of the Hamiltonian

(Z+J3)@I+1Q (J2 +J3)
2

Indeed, s%n’ x Will give alower bound V|¢) € Sg)( among which
there will be the |¢y), which minimizes Vxz. Then V|¢) €
‘Hus, one has

Hrox = —Jz®Jz.

Vxz(¥)) = Vxz(lda))

=
>8§X'

APPENDIX D: PLANAR SPIN SQUEEZING

In this Appendix, we show how from the knowledge of
|kMaX) [Apax)> ONE can obtain a state |vg,) = |6,,) that can
in principle realized in the laboratory and that approximately
saturates the bound for planar spin squeezing. For fixed j, one
can study the profile of |AMaX) |Apax) s @ feature that holds for
all analyzed values of j is that the profile is peaked at m, = j
and m, = —j, respectively, and such that only the states with
m, = —j + 2k have nonzero amplitudes. These numerical
findings will lead us in the search for states |, ) that on one
hand are a good approximations of |Ay;,.), |Ay,,) and on the
other hand are in principle obtainable in the laboratory.

We start by considering the relation (10) which, over the
set of eigenstates of Jz, is minimized by |j, &) and for such
states A%J; =0 and Vyz = A%Jx = j/2. In order to obtain
a lower bound for Vyxz smaller than j/2, one can imagine
to start from the state |j, j) for example and to modify it in
such a way that A%J; 2 0 is little changed and at the same
time A%Jx is considerably reduced. This heuristic reasoning
suggests the strategy of searching for an operator G such
that |0) = exp (—i0G)|j, j)z0 € R is the state required. If
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one analyses V!, = Vxz(|0)) and, in particular, its first order
variation 95V, in = 0 one has
36[A%7(0)]o=0 = O,
36[A%x (0)lo=0 = (j. j|[J%. G]lJ. J)
— s ilWx iy s il G )
=21Im[(j, j = 2IGlj, )]

The previous relations thus leads to consider operators for
which (j, j — 2|Glj, j). # 0. The above reasoning heuristi-
cally leads to analyze the action of the two-axis squeezing
operator

Hips = —i(J3 = J2),

which is known to have the property of squeezing along the
X axis and simultaneously anti-squeezed along the Y axis.
This latter property is consistent with the relation (7) where
it can be seen that any attempt to squeeze the sum Vy; implies
the enhancement of A%Jy. The action of the operator U =
exp (—i@Hras) on |j, j) is not known in an analytical form,
however it has the desirable property of populating only the
basis states | j J — 2k) thus reproducing one of the features of
the states |AMaX) [Ayiax) discussed above.

Following the previous discussion the goal now is to find
the optimal value 6, of the squeezing parameter 6 such
that the state [r) = [6) = exp (—i6uHras)lj. )7 approx-
imately saturates the lower bound for Vx,. This, in principle,
requires for each j the numerical search for the optimal value
of 6,, = 6,,(j) for which the minimum of V)?z is attained. We
now show how to analytically estimate the optimal value of
6,,. As anticipated in the main text we resort to the Holstein-
Primakoff (HP) transformation that allows to map the spin
operators to harmonic oscillators ones. Indeed, as shown in
Refs. [26,32,33], one can write the spin operators in terms of
the bosonic creation and annihilation operators a, at.

-
I = /2ja" /1—— J_=2j 1—“2—%
2j j

J,=a'a—j,

such that for states with average number of bosons (i) =
(a'a) « 2j,onehasthatJ, = /2ja’, J_ = /2ja. With this
transformation the sum of variances (10) can be written as

Vst = A+ jAR, (D1)
where 7 is the number operator; X = (a—}—aT)/«/E is the
position operator and A2%J; — A2AA%Jy — jA2%. Within
the Holstein-Primakoff representation the spin state |j, j) is
mapped into the vacuum |0). In general, there is no such map-
ping between the squeezed state |#) and the corresponding
single mode squeezed vacuum state that reads [34]

1 .
1) = exp {E[w ) — s*a21}|0>
with & = re™™ the squeezing parameter. However, this state is

the “natural” counterpart of |@) in the search for a minimum of
V2%, Within the HP framework two-axis squeezing operator

transforms into the single-mode squeezing operator
~ exp(—62jl(a’)? — a*]},

such that if we now choose & = —4j6 we can bridge the spin
and the bosonic version of Vyz. With these assumptions V3
reads

e—iQHTAS — exp[—@(.]_%_ — JE )]

exp(3;6)
=

The minimization of the latter expression with respect to 6
provides a single real solution for j >> 1 can be written as

V,2%5(9) = 2sinh*(4j0) cosh?(46) + j (D2)

ln2+an

Op = —
24 j

+o(1/j%), (D3)

and for j > 1, one finds
V%8, ~ 0.595275 3.

We notice that the scaling obtained in the HP framework
coincides with the dominant part of (11) for large j. The
found approximate solution 6,, can now be used to compute
the bound for the spin version of the sum of variances (10),
i.e., Vxz(]6,,)). The consequences of this results are described
in the main text.

APPENDIX E: THE BOSONIC CASE: GAUSSIAN STATES

The generic pure Gaussian state reads

D(a)$(8)[0) = |a, §).
The variance of x for such states can thus be written as
A ox = (o, £, §) — (o, Elxlor, §)°

= (¢ID"(0)xD(@)D" (@)xD(@)|§)

— (£ID"(@)xD(@)|&)*
= Ay X

with x, = D" (a)xD() = x + 2Re[«]L. Since A%[A + cl] =
A2A, one has that A|2a,s>£ = A‘zé)fc, i.e., the displacement does
not change the variance of x, since it only changes its average
value. We now evaluate the variance of 7 and find Afa@ﬁ =
A‘é)ﬁa with n, = n+ a'o + ae* + |«|?. The constant |o|?
again can be dropped and one is left with such that

Afoyitg = Afoy it + 2|al* Al Rurg
+ |a|[<ﬁ2arga> + <£argaﬁ> - 2<ﬁ> @argoz)]a

where g = (ae’ 2% +a'e™ %) /,/2. Since the averages
are taken for the state |£), for the property of the latter one
has (Afage) = Fargaf)) = (Rarge) = 0. Overall the previous
results show that, Vo, &, i.e., for all pure Gaussian states |, &)

2 2 2 2A2 2
Ajg eyt + Ajg )X = Ay + 21" Ay Xarga + Ajg)X
2 2
Z Ajgynt + Ajgyx

such that the minimum of V,,, over the set of Gaussian state
is given by the squeezed vacuum state |&,) that minimizes
Afgyn + Afyx
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