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We consider uncertainty relations that give lower bounds to the sum of variances. Finding such lower bounds
is typically complicated, and efficient procedures are known only for a handful of cases. In this paper, we present
procedures based on finding the ground state of appropriate Hamiltonian operators, which can make use of the
many known techniques developed to this aim. To demonstrate the simplicity of the method, we analyze multiple
instances, that involve two or more observables, both bounded and unbounded.
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I. INTRODUCTION

Preparation uncertainty relations capture the essence of
quantum mechanics: not all properties of a quantum system
can be exactly defined at once [1–3]. While quantum comple-
mentarity tells us that there exist complementary properties
which can be assigned to a system but cannot have joint
definite values, uncertainty relations go even beyond this
very counterintuitive concept: they tell us that complementary
properties can be defined at least partially, as long as we do
not require them to be determined with perfect precision. The
uncertainty relations then are doubly counterintuitive: they
originate from complementarity, but then, in a sense, allow
to partially counterbalance the effects of complementarity. In
addition to the foundational issues [4–6], uncertainty relations
have found applications in a variety of problems such as
entanglement detection [7,8], spin squeezing [9], and quantum
metrology [10]. The conventional treatment of preparation
uncertainties follows the Heisenberg-Robertson approach [3],
which involves the product of uncertainties, in order to employ
the Cauchy-Schwartz inequality in their derivation. They are
expressed in terms of variances of incompatible observables,
e.g., �2A�2B � |〈ψ |[A, B]|ψ〉|2/4 for observables A and B.
However, the lower bound for product of variances may be
null for some state |ψ〉, and thus noninformative. Or it is
null whenever one of the two variances is, i.e., when |ψ〉 is
a (proper) eigenstates of one of the observables. This prevents
the interpretation of the product uncertainty relations as a true
measure of how incompatible are two observables, where we
assume that observables are compatible if their value can be
precisely jointly assigned for at least one state of the system.
For these reasons, it is preferable to consider uncertainty
relations that give a lower bound to the sum of variances
�2A + �2B of two or more operators [11–19]. Furthermore,
the case of two observables has important physical applica-
tions, for example, in quantum metrology protocols where
the squeezing of two angular momentum operators (planar
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quantum squeezing) allows for phase uncertainties below the
standard quantum limit [10,20–22], or in quantum informa-
tion strategies for detecting entanglement [7,23]. In this paper,
we present a general procedure to derive a state independent
lower bound for the sum of variances of an arbitrary number
N of Hermitian operators An

VTot (|ψ〉) =
N∑

n=1

�2
|ψ〉An,

where the variances are calculated on an arbitrary state |ψ〉.
The largest possible value of lB that satisfies VTot (|ψ〉) �
lB, ideally one that satisfies it with equality for some state,
constitutes the best attainable lower bound that depends only
on the observables. In contrast to previous derivations, our
method is based on the search of the ground-state energy εgs of
specifically designed Hamiltonian operators, and can use the
multitude of techniques developed to this aim. In general, this
allows to easily and quickly find good approximations l̃B of lB.
The strategies proposed to date for determining lB are based
on different approaches. In Ref. [24], the authors have devised
a method to (analytically) identify lB, provided the operators
An are the generators of a Lie algebra. In Ref. [25], the case of
arbitrary qubit observables is considered. Other methods are
focused in finding lB or at least a sufficiently good approxi-
mations l̃B that may or may not be achievable; they fall in two
different classes: the strategies “from above” and the strategies
“from below.” The former are based on algorithms that find lB
by, possibly iteratively, starting from approximations l̃+

B � lB.
The most obvious of such strategies use numerical minimiza-
tion algorithms that scan the whole M-dimensional Hilbert
space HM of the system searching for lB. Since the procedure
requires the identification of the 2M − 2 real coefficients of
the state |ψmin〉 which minimizes the sum of variances, it is
numerically demanding when M is large and is prone to errors
due to the possibility of getting trapped in some local minima.
A sophisticated procedure “from above” has been put forward
in Ref. [26], where a seesaw numerical algorithm was devised
and used, for example, for a sum of variances involving
angular momentum components. In principle, the algorithm
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can be used with an arbitrary number N of observables, and
it is based on a alternating minimization procedure which
at each step i determines an approximation l̃+

B,i � lB. As the
authors suggests in Ref. [23], the strategy may get trapped in
local minima and the proof of its convergence to the global
minimum lB is an open problem. The strategy “from below”
is instead based on a elegant mapping of the minimization
problem into a geometric one (joint numerical range), where
one searches for a sequence of polyhedral approximations of
a suitable convex set [23,27,28]. While in certain simple cases
the exact lB can be identified [28], in other cases at each step i
the algorithm provides both a valid approximation of lB � l̃−

B,i

from below and an approximation l̃+
B,i � lB from above, such

that one has the control over the precision εi = l̃+
B,i − l̃−

B,i with
which the optimal bound lB is approximated [23] . The method
has been up to now applied to the sum of variances of two
operators; its generalization to a larger number of operators
requires further geometrical and numerical refinements [23].

Here we propose a minimization method “from below,”
on the basis of which one can subsequently also find an ap-
proximation “from above.” It is based on connecting the sum
of variances to an Hamiltonian1 expectation value. Whence
the search for a bound from below l̃−

B can be mapped onto a
search for the Hamiltonian minimum energy. To begin with
the Hamiltonian to minimize is the sum of the operators
defined on an extended Hilbert space HM ⊗ HM (where HM

is the system space) defined as

Hn = A2
n ⊗ I + I ⊗ A2

n

2
− An ⊗ An. (1)

Indeed,

VTot (|ψ〉) = 〈ψ |〈ψ |
N∑

n=1

Hn|ψ〉|ψ〉, (2)

i.e., the sum of variances can be written as the average value
of the operator HTot = ∑

n Hn on the product state |ψ〉|ψ〉 ∈
HM ⊗ HM . Then, the search of a lower bound to the sum
of variances maps directly to the search of the ground state
of the total Hamiltonian HTot. In general, the ground state
will not be a factorized state |εgs〉 �= |ψ〉|ψ〉, nonetheless,
the corresponding ground-state energy εgs will provide a
nonachievable but valid state independent lower bound to the
sum of variances. As we will show, while the mapping (2)
itself can in certain cases provide the optimal value lB or
close approximations from below l̃−

B , it is also the starting
point for devising procedures that give better bounds when
needed. This is especially important since the ground-state
energy of HTot may be null. In this case, on one hand, we will
give a bound that involves HTot’s first excited state. On the
other hand, we show how by using appropriate modifications
HTot,n of HTot one can obtain refined approximations of lB from
below in terms of their ground-state energies.

The knowledge of the ground state of HTot, or of its
modifications, via its Schmidt decomposition allows one to

1We use “Hamiltonian” to indicate an operator whose spectrum is
lower bounded. The Hamiltonian operators we consider in the paper
are not necessarily connected to an energy observable.

identify a state |ψsat〉 ∈ HM that provides an approximation
“from above,” i.e., VTot (|ψsat〉) = l̃+

B � lB . This procedure can
always be applied, and the unknown tight bound lB for the
variance sum lies in the interval between the bound “from
above” VTot (|ψsat〉) and the one “from below” εgs. The width of
this interval VTot (|ψsat〉) − εgs � 0 thus provides an indication
of the accuracy of the approximations found, namely how far
is the tight bound from the ones obtained.

We illustrate our methods using some examples: we ana-
lyze both known cases and derive uncertainty relations. The
known cases show that our method is able to recover known
results easily. And the results reported here show that our
method can allow to tackle situations difficult to analyze, such
as the case of more than two observables and the infinite
dimensional case for unbounded operators. For each example,
(i) we identify the relevant operator; (ii) we evaluate the rela-
tive εgs, |εgs〉, |ψsat〉; and (iii) we give the width of the interval
VTot (|ψsat〉) − εgs � 0. We finally notice that, althought we
will not deal in the present manuscript with such a problem,
with the same mapping (2), one can also assess a different yet
interesting task, i.e., the evaluation of the upper bound for the
sum of variances [29].

The structure of the paper is the following. In Sec. II,
we present the first main general results that one can obtain
by mapping the sum uncertainty relations to a Hamiltonian
ground-state search. Then in Sec. III, we apply these results to
some examples to demonstrate the versatility of the method.
In particular, in Sec. III A, we analyze the uncertainty relations
for all the su(2) generators; in Sec. III B, we consider a subset
of the previous operators, namely, the planar spin squeezing;
in Sec. III C, we consider a lower bound for a set of different
numbers of operators chosen from the generators of the su(3)
algebra to show how our method can easily deal with more
than two observables; and finally in Sec. III D, we analyze the
sum uncertainty relations for one quadrature and the number
operator of a harmonic oscillator, to show that our method
can be also applied to unbounded operators. Some of these
examples have already appeared in literature, while others
refer to sum uncertainty relations described in this work.
Finally, the appendices contain some technical results and
supporting material.

II. GENERAL RESULTS

A. Properties of the Hamiltonian HTot

We start by studying the properties of the Hamiltonian HTot,
in particular, of its ground-state energy εgs and ground state
|εgs〉. The discussion will allow us one hand to describe how
HTot can used to derive the desired lower bounds, and on the
other hand to prepare the ground for the following develop-
ments. As a general premise we choose to base the following
discussions and results on the use of operators An with non-
degenerate spectrum. This choice allows in the first place to
simplify the notations. While some of the results obtained can
be easily extended to the nondegenerate instances, the latter
should be treated on a case by case basis. Furthermore, we
will treat only set of operators with no common eigenstates,
otherwise the problem trivially reduces to having VTot = 0.
With this setting in mind, we first notice that each operator
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Hn is by construction semidefinite positive, as it can be seen
by writing it in its diagonal form

Hn = 1

2

M∑
i, j=1

(an,i − an, j )
2|an,i〉|an, j〉〈an,i|〈an, j |, (3)

where {|an,i〉} is the An eigenbasis and {an,i}M
i=1 the corre-

sponding eigenvalues, that by convention in the paper we
suppose listed in increasing order. In particular Hn has εn

gs =
0 as ground-state energy. The main properties of HTot are
described with the following.

Proposition 1. Given N Hermitian operators {An}N
n=1 with

no common eigenstates, each with nondegenerate eigenspec-
trum and eigenbasis {|an,i〉}M

i=1, then
(i) if the Hamiltonian HTot = ∑

n Hn with Hn as in (1) has
positive ground-state energy zero εgs > 0, then

VTot (|ψ〉) � εgs;

(ii) if εgs = 0, then HTot has a unique ground state that can
be written in any of the eigenbasis {|ãn,i〉|ãn,i〉}M

i=1 as the
maximally entangled state

|εgs〉 = 1√
M

∑
i

|ãn,i〉|ãn,i〉 (4)

with |ãn,i〉 = exp (iφi,n/2)|an,i〉, ∀n, i and φn,i appropriate
phases. Furthermore, given ε1 > 0, i.e., the first excited en-
ergy of HTot then

VTot (|ψ〉) � ε1

(
1 − 1

M

)
.

The proof of result (i) naturally follows from our starting
point (2) and the fact that for any |ψ〉 ∈ HM

〈ψ |〈ψ |HTot|ψ〉|ψ〉 � εgs.

The proof of result (ii) can be found in Appendix A. Results
(i) and (ii) show that the mapping introduced in (2) has as
first consequence the possibility of deriving a nontrivial, in the
sense of nonzero, lower bound for VTot (|ψ〉) starting from the
Hamiltonian HTot. While we do not have general results that
allow to establish in the most general case whether the ground-
state energy εgs of HTot is zero or not, the proposition takes
into account both cases. How tight are the bounds described in
proposition 1 depends on the problem at hand. As we shall see
in the example (Sec. III A) εgs �= 0 and it coincides with the
optimal bound lB. On the contrary in the other examples εgs �=
0 and/or ε1(1 − 1

M ) represent a meaningful approximation l̃−
B

of lB when the dimension M of the underlying Hilbert space
is small; while for large M these values may be far from the
actual lB, for example they do not grow with M. To cope with
these situations, and derive state independent lower bounds
that are closer to the optimal one lB, we provide different
strategies that are based on modified versions of HTot.

B. State independent lower bounds from modifications of HTot

We illustrate the strategies in two steps. We start with
proposition 2 and derive a lower bound for the set of states that
have null expectation value for at least one of the operators An.
The method that will allow to include all states in HM will be

described in proposition 3 as an extension of the following
result

Proposition 2. Given the Hamiltonian HTot, then for each
n the Hamiltonian

HTot,n = HTot + An ⊗ An

=
∑
m �=n

Hn + A2
n ⊗ I + I ⊗ A2

n

2
,

(i) is positive definite;
(ii) its ground-state energy εgs,n > 0 provides a nonzero

lower bound of VTot for all the set of states

S0
n = {|φ〉 ∈ HM |〈φ|An|φ〉 = 0};

(iii) the lower bound for the set of states ∪nS0
n ⊆ HM , i.e.,

those states which have null expectation value for at least one
operator An is given by

min
n

εgs,n > 0.

Proof. To prove result (i), we first observe that HTot,n is
obviously definite positive whenever A2

n is. If this is not the
case, since we are dealing with operators with nondegenerate
spectrum, A2

n has a unique eigenstate |an,1〉 corresponding
to the eigenvalue an,1 = 0. Due to the structure of each
kernels Ker(Hm) of the operators Hm, m �= n, Eq. (A1) in
Appendix A, the only product states in any of the Ker(Hm)
have the form |am,i〉|am,i〉; but since we have supposed that the
operators {An}N

n=1 have no common eigenstates |an,1〉|an,1〉 /∈
Ker(Hm), m �= n; therefore it must be HTot,n > 0. Result (ii)
follows from the fact that for all states in S0

n

〈φ|〈φ|HTot|φ〉|φ〉 = 〈φ|〈φ|HTot,n|φ〉|φ〉
− 〈φ|〈φ|An ⊗ An|φ〉|φ〉
= 〈φ|〈φ|HTot,n|φ〉|φ〉
� 〈εgs,n|HTot,n|εgs,n〉.

One can then determine the following lower bound:

min
n

εgs,n > 0

for the union ∪nSn ⊆ HM . Indeed, if εgs,n > εgs,m, n �= m then
εgs,m is a lower bound for both set of states belonging to
Sn and Sm. �

As we shall see in the following, in the specific cases,
it turns out that all εgs,n = l̃−

B are equal ∀n and, thanks
to the symmetries of the problem, finding the ground-state
energy of a single Hamiltonian HTot,n allows to determine
the required lower bound. However, when no such symmetry
properties are available, in general ∪nSn ⊂ HM , i.e., ∪nSn may
only be a proper subset of HM , and the optimization is not
sufficient. Therefore a different procedure must be devised
to find a lower bound for all states in HM . To this aim for
fixed n, we first define the operator Aα

n = An − αI; then ∀α ∈
[an,1, an,M ] one has that �2Aα

n = �2An and one can define the
Hamiltonian

Hα
n =

(
Aα

n

)2 ⊗ I + I ⊗ (
Aα

n

)2

2
− Aα

n ⊗ Aα
n
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and the total Hamiltonian

Hα
Tot =

∑
m �=n

Hm + Hα
n .

Simply by substitution, one can verity that Hα
n = Hn and

HTot = Hα
Tot Therefore ∀α ∈ [an,1, an,M ] if |ψmin〉 minimizes

VTot then

V min
Tot = 〈ψmin|〈ψmin|Hα

Tot|ψmin〉|ψmin〉.
The strategy that allows one to find a state independent lower
bound can now be expressed as follows.

Proposition 3. For each n and for each α ∈ [an,1, an,M ],
define the Hamiltonian Hα

Tot,n = Hα
Tot + Aα

n ⊗ Aα
n with nonzero

ground-state energy εα
gs,n > 0. Then

(i) for fixed n it holds that ∀|φ〉 ∈ HM

VTot (|φ〉) � min
α∈[an,1,an,M ]

εα
gs,n

and minα εα
gs,n provides a state independent lower bound;

(ii) the best lower bound ∀|φ〉 ∈ HM is given by

max
n

min
α∈[an,1,an,M ]

εα
gs,n > 0.

Proof. Since (Aα
n,i )

2 is diagonal in the same basis of

(Aα=0
n,i )2, the positivity of Hα

Tot,n can be demonstrated in
the same way it was shown in proposition 2 for Hα=0

Tot,n.
In order to prove result (i), we first define the set Sα

n =
{|φ〉 ∈ HM |〈φ|An|φ〉 = α}; then ∀|φ〉 ∈ Sα

n 〈φ|Aα
n |φ〉 = 0 and

VTot (|φ〉) = 〈φ|〈φ|HTot|φ〉|φ〉
= 〈φ|〈φ|Hα

Tot,n|φ〉|φ〉 − 〈φ|〈φ|Aα
n ⊗ Aα

n |φ〉|φ〉
= 〈φ|〈φ|Hα

Tot,n|φ〉|φ〉
�

〈
εα

gs,n

∣∣Hα
Tot,n

∣∣εα
gs,n

〉 = εα
gs,n.

For α belonging to the spectrum of An it holds
∪α∈[an,1,an,M ]Sα

n ≡ HM and one obtains (i). Result (ii) is
therefore a simple consequence of the fact that, for each n,
minα εα

gs,n is a lower bound for all states in HM ; and the
maximum of these values gives the highest lower bound
obtainable by means of the above defined Hamiltonians. �

Propositions 1–3 constitute the main general results of our
work. They show that the mapping (2) allows one to reduce the
problem of finding the lower bound for VTot to an eigenvalue
problem. There are at least three different ways of obtaining
the desired lower bound: (a) one can work directly with HTot;
(b) one can use a single Hamiltonian Hα

Tot,n for some specific
n; and (c) in order to further optimize the result one can use the
Hα

Tot,n for all n. Before passing to analyze different examples
we want first discuss the limits and virtues of the outlined
approach.

We start with the possible limits. The procedure is in
the first place based on the evaluation of the ground-state
energy of Hamiltonians acting on HM ⊗ HM and thus have
dimension M2 × M2 that can in principle be very large. Fur-
thermore, in order to obtain the best result (ii) in proposition 3
the procedure outlined requires in general a minimization over
α for each n, that in principle, e.g., when the dimension of the
Hilbert space M or the number of operators N is large, and/or
the intervals [an,1, an,M ] are very large, can be numerically
demanding.

As for the virtues, in the first place the procedure is
based on the evaluation of ground state energies, a task for
which very efficient and stable routines are available, even for
large dimensions, especially if the Hamiltonians have some
simple form (e.g., sparse, banded, etc.). Secondly, in order
to obtain a state independent lower bound one in principle
only need to choose one of the Hamiltonians Hα

Tot,n, i.e.,
choose a specific n, and then only one optimization over
α ∈ [an,1, an,M ] is needed; for example, one could choose
n such that the interval [an,1, an,M ] is the smallest possible.
Furthermore, one can be interested in a lower bound that,
though being strictly speaking state dependent, is very simple
to achieve. For example if for the physical problem at hand
only states with specific average values are relevant, e.g.,
states with fixed average 〈φ|An|φ〉 = α f ix, the optimization
procedure simply requires the evaluation of the single ground-
state energy ε

α f ix
gs,n. The procedure can therefore be flexibly

adapted to various specific needs and/or to obtain partial
results.

The above reasonings are valid for the most general case,
i.e., when there is no structure in the problem, and the An’s are
totally unrelated. However, as we will show in the following
examples, there may be situations where the presence of some
constraints, e.g., symmetries, allow to drastically reduce the
complexity of the problem. This can be solved by either re-
ducing the problem to an equivalent one which has known an-
alytic solution, or by evaluating a single ground-state energy,
instead of minimizing over α. Indeed, suppose, for example,
that VTot (U |ψ〉) = VTot (|ψ〉), where U is a unitary operator
acting on HM that represents a symmetry for VTot. Then one
has immediately that U † ⊗ U †HTotU ⊗ U = HTot, such that
the symmetries of VTot can be translated into symmetries of
HTot and can be exploited in the Hamiltonian framework with
the aim of simplifying the evaluation of the relative lower
bounds. In this respect we now give a result that holds in some
of the examples.

Proposition 4. Given the set of operators {An}M
n=1, suppose

that for some n there exist a unitary operator U such UAnU † =
−An and such that

∑
m �=n Hm is left invariant by the adjoint

action of U ⊗ U , then
(i) the ground-state energy εα

gs,n of the Hα
Tot,n defined in

proposition 3 is an even function of α, i.e., εα
gs,n = ε−α

gs,n;
(ii) εα=0

gs,n is a local minimum for α varying in [an,1, an,M ].
The proof is given in Appendix B. Result (i) allows for

each fixed n to reduce the interval for the search of minα εα
gs,n

to the positive interval α ∈ [0, anM ]. Result (ii) allows to use
proposition 2 as a starting point for the minimization, i.e.,
one could first find εα=0

gs,n > 0 and use it as a first estimate of
the searched lower bound, i.e., an upper bound of the global
minimum.

We finally notice that in principle the mapping (2) allows
to enlarge the set symmetries that can be used to evaluate the
ground state of the specific Hamiltonian. Indeed, while the
symmetries of VTot can obviously be translated into ones of
the corresponding Hamiltonian problem, there may be others
V HTotV = HTot represented by unitary operators V �= U ⊗ U ,
which are not symmetries of VTot, and that may of help in
finding the ground-state energy and thus the desired lower
bound.
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C. Strategy to find a state that (approximately)
saturates the lower bound

In order to complete our discussion, in the following, we
show how it is possible, from the knowledge of the ground
states to extract further relevant information. Indeed, once the
a state independent lower bound l̃−

B has been found in terms
of the ground state energy of the operator under consideration,
on one hand, one is interested in understanding how well l̃−

B
approximate the actual unknown optimal value lB, and on the
other hand, in identifying at least a state |ψsat〉 ∈ HM such
that VTot (|ψsat〉) � lB. In this section, we describe how a state
|ψsat〉 can be, in principle, inferred and we discuss how its
existence also provides a way to check the goodness of the
approximation l̃−

B . As shown above, in general, the (nontrivial)
lower bound will be found in correspondence of the ground
state |εgs〉 of HTot, if εgs �= 0, or in correspondence of the
ground state |εα

gs,n〉 of some modified version Hα
Tot,n for some

fixed α. In the following discussion, we drop for simplicity
all indexes α, n and we refer to a generic operator H and
relative ground state |ε〉 corresponding to ε �= 0. In general
|ε〉 �= |ψ〉|ψ〉, i.e., the ground state is not in a product form
and thus the bound is not saturable. The strategy to find state
|ψsat〉 ∈ HM is based on the Schmidt decomposition |ε〉 =∑

n λn|λn〉|λ′
n〉, where λn � 0 are the Schmidt coefficients. If

the ground state is unique and the Schmidt coefficients are not
degenerate, since all of the above defined Hamiltonians are
symmetric with respect to a swap of the two identical Hilbert
spaces onto which they are defined, then |λn〉 = |λ′

n〉, ∀n, i.e.,
the Schmidt decomposition is given in terms of product of
identical states |λn〉|λn〉. The decomposition can thus be used
to find the desired |ψsat〉. Indeed, if λMax = maxn λn a possible
natural candidate for |ψsat〉 is the state |λMax〉. For such a state,
one has

〈λMax|〈λMax|H |λMax〉|λMax〉

× ελ2
Max +

K∑
n=1

εn|〈λMax|〈λMax|εn〉|2, (5)

where {εn, |εn〉}n�1 are the eigenvalues and eigenstates of
H above the ground state and K = M2 − 1. Unless |ε〉 =
|λMax〉|λMax〉, the sum for n � 1 in (5) is not negligible such
that the average 〈λMax|〈λMax|H |λMax〉|λMax〉 > ε and it can
in general be larger than ε. However, we can upper bound
the sum and to find some conditions on λMax that guarantee
that the average is sufficiently close to ε. Given λMax, since
εn > 0, ∀n then the sum in (5)

K∑
n=1

εn|〈λMax|〈λMax|εn〉|2 � εK
(
1 − λ2

Max

)
is upper bounded by the maximal eigenvalue εK . Therefore
the worst case scenario is given by

〈λMax|〈λMax|H |λMax〉|λMax〉 = ελ2
Max + εK

(
1 − λ2

Max

)
.

Now in order for the state |λMax〉|λMax〉 to give a good approx-
imation of ε, one has to impose that ελ2

Max � εK (1 − λ2
Max)

or

λ2
Max(

1 − λ2
Max

) � εK

ε
. (6)

If one is able to determine λ2
Max and if the previous condition

is satisfied then

〈λMax|〈λMax|H |λMax〉|λMax〉 � ελ2
Max.

In the most favorable case λMax(M ) = O(1) and λMax �
λn, ∀λn �= λMax, i.e., λMax is sufficiently larger than the
other Schmidt coefficients, such that one can identify |ψsat〉 =
|λMax〉.

The existence of |ψsat〉 allows for the desired assessment
of the goodness of the approximation provided by ε. Since
VTot (|ψsat〉) = 〈λMax|〈λMax|H |λMax〉|λMax〉 � ε, the actual un-
known lower bound lB must lie in the interval [ε,VTot (|ψsat〉)];
the smaller this interval the better the approximation. In the
examples described below, we provide evidences that the
above method can indeed be successfully applied.

III. EXAMPLES

The examples that we present are different in many aspects,
and we use each of them to highlight different features of
the scheme proposed and how the latter can, in principle, be
further modified. The first two involve generators of the su(2)
algebra, and their relative bounds have already been obtained
in literature. The other ones are our contributions. The third
example involves su(3) operators; this will also allow us to
compare the results obtainable with our approach with those
obtained with other methods [28]. We finally use the fourth
example to show how the mappings proposed may be used
even in the case unbounded operators.

A. Generators of su(2)

In this first example we show a case in which the initial
mapping provided by HTot is sufficient to obtain the desired
lower bound; and we also show how HTot and Hα

Tot,n are just
starting points and different mappings are possible depending
on the specific problem at hand. We recover the bound for the
sum of the variances of the three generators JX , JY , JZ of the
2 j + 1-dimensional irreducible representation of su(2):

VXY Z = �2JX + �2JY + �2JZ . (7)

The attainable lower bound of lB = j has already be found
with different methods [7,24]. Here, in principle, the operator
HTot one needs to diagonalize is

HTot = ∑
α=X,Y,Z

(
J2
α ⊗ I2 j+1 + I2 j+1 ⊗ J2

α

2
− Jα ⊗ Jα

)
. (8)

It turns out that its ground-state energy εgs = j coincides with
lB and it is attained by the product ground states | j, j〉z ⊗
| j, j〉z and | j,− j〉z ⊗ | j,− j〉z, such that the bound for the
variance is indeed attainable. In order to show how the method
we propose can be flexibly adapted to specific situations we
obtain the same result by means of a different mapping that
makes use of the following property of the su(2) algebra. The
Casimir operator of the su(2) algebra can be expressed as

C = J2
X + J2

Z + J2
Z

= j( j + 1)I2 j+1,
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therefore, by using the previous relation, one can map the
minimization of the sum of variances

VXY Z = j( j + 1) − 〈JX 〉2 − 〈JY 〉2 − 〈JZ〉2

into a new eigenvalue problem based on the operator

H
′
Tot = j( j + 1)I2 j+1 ⊗ I2 j+1 −

∑
α=X,Y,Z

Jα ⊗ Jα,

where again, for every state |ψ〉 ∈ H2 j+1, one has
VXY Z (|ψ〉) = 〈ψ |〈ψ |H ′

Tot|ψ〉|ψ〉. Now the operator
HHeis = −∑

α=X,Y,Z Jα ⊗ Jα is well known since it
represents a Heisenberg isotropic Hamiltonian whose
ferromagnetic ground states are, for example, | j, j〉z ⊗ | j, j〉z

( | j,− j〉z ⊗ | j,− j〉z) and they correspond to a ground-state
energy εHeis

gs = − j2 such that

min VXY Z = 〈 j, j|〈 j, j|H ′
Tot| j, j〉| j, j〉

= j. (9)

The lower bound found is thus nontrivial and, since in this
case, the ground states are product states, it is saturated by
|ψsat〉 = | j, j〉, | − j,− j〉. It is then easy to check that the
states | j, j〉z ⊗ | j, j〉z and | j,− j〉z ⊗ | j,− j〉z are also ground
states of HTot and that they correspond to the ground-state
energy εgs = j.

This first result shows on one hand that the mapping (2)
introduced in the previous section can directly provide the
desired lower bound in terms of εgs. On the other hand, it
shows that by using the information about the relations be-
tween the operators involved in VXY Z , in this case the algebraic
relation provided by Casimir, one can find another mapping
that allows to derive the desired lower bound as the solution
of a known eigenvalue problem.

B. Spin operators and planar squeezing

We now focus on an example that allows us to illustrate
many of the results derived in the previous section. We first
derive the lower bound by selecting the relevant Hamiltonian
on the basis of symmetry arguments. We then discuss how
one can find the state |ψsat〉 able to fairly well approximate
the bound and we show that the |ψsat〉 we identify is, in prin-
ciple, obtainable in the laboratory via two-axis spin squeezing
[9,30].

We focus on a pair of generators of su(2). In order to fix the
ideas and without loss of generality, we choose to work with

VXZ = �2JX + �2JZ . (10)

The minimization of VXZ has been introduced in Ref. [10],
where it was shown that the simultaneous reduction of the
noise VXZ of two orthogonal spin projections in the plane XZ
(e.g., JX , JZ ) can be relevant for the optimization one-shot
phase measurements, since it allows for phase uncertainties
�φ ∼ j−2/3, i.e., a precision beyond the standard quantum
limit that importantly do not depend on the actual value of
the phase φ [20–22]. In Ref. [10], the behavior of VXZ in the
asymptotic limit j → ∞ was obtained by means of analytical
arguments and the overall behavior of V min

XZ ( j) via numerical
fitting such that

V min1
XZ ( j) � 0.595275 j2/3 − 0.1663 j1/3 + 0.0267. (11)

On the other hand, in Ref. [26], the asymptotic behavior was
obtained numerically by means of a seesaw algorithm as

V min2
XZ ( j) ≈ 0.569524 j2/3. (12)

We start our analysis by showing that the Hamiltonian

HTot = ∑
α=X,Z

(
J2
α ⊗ I2 j+1 + I2 j+1 ⊗ J2

α

2
− Jα ⊗ Jα

)

has ground-state energy is zero. Indeed, ∀ j one can write

|εgs〉 = 1√
2 j + 1

j∑
mz=− j

| j, mz〉| j, mz〉

= 1√
2 j + 1

j∑
mx=− j

| j, mx〉| j, mx〉

and check that εgs = 0. One can subsequently use result
(ii) in proposition 1 and evaluate ε1(1 − 1

2 j+1 ). However, in
this case, one can easily check that ε1 = 0.5 for all j and
therefore HTot provides a nonzero lower bound which scales
poorly with j. We are thus led to use the strategy based on
the Hamiltonians Hα

Tot,n described in proposition 3. This is
however a case in which we can apply Proposition 4. Indeed,
one has that U = exp (−iπJZ ) is such that UJXU † = −JX

and the adjoint action of U ⊗ U obviously leaves the whole
Hamiltonian HTot invariant. Therefore one can start by search-
ing for the lower bound among the states belonging to the set
S0

X = {|ψ〉 ∈ H2 j+1|〈ψ |JX |ψ〉 = 0} and use the Hamiltonian

HTot,X =
∑

α=X,Z

(
J2
α ⊗ I2 j+1 + I2 j+1 ⊗ J2

α

2

)
−JZ ⊗ JZ . (13)

The relative lower bound ε0
gs,X provides a local minimum.

Then one should extend the search by using the Hamiltonian
Hα

Tot,X with α ∈ [0, j]. Of course, this strategy is of use when j
is sufficiently small, whereas j becomes large the task would
be quite demanding. However, in this case the search in S0

X is
sufficient to obtain the overall lower bound since the Hamil-
tonian HTot enjoys the same type of continuous symmetry
of VTot. Indeed, VTot[|ψ〉] = VTot[exp (iθJY )|ψ〉] for all |ψ〉
and θ ∈ R and in the same way given UYY = exp (−iθJY ) ⊗
exp (−iθJY )

UYY HTotU
†

YY = HTot

and this allows to limit the minimization over S0
X [10,26]

(see also Appendix C). Furthermore since the role of Z
and X can be exchanged we can focus on HTot,X only. We
notice that, when expressed in the JZ eigenbasis, HTot,X is
banded and sparse and thus efficient algorithms can be used
for its diagonalization. The ground-state energy εgs,X ( j) can
then be numerically evaluated for different values of j, it is
always nonzero and the results are plotted in Fig. 1 (top) and
compared with the two bounds (11) and (12). The result show
that ∀ jεgs,X ( j) � V min1

XZ ( j) � V min2
XZ ( j) and the ground-state

energy of HTot,X provide a fairly good and meaningful lower
bound.

The algorithm implemented requires the diagonalization
process that eventually determines the value of the bound.
However, the structure of the state |ψsat〉 able to approximately
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FIG. 1. (Top) Scaling of the sum of variances VX Z with j =
(1, 100): (green diamonds) lower bound of VX Z provided by
the ground-state energy εgs,X ( j) of the Hamiltonian (13); (blue
squares) V min1

X Z ( j) as in (11); (red circles) V min2
X Z ( j) as in (12);

all quantities are plotted in arbitrary units. (Bottom) Relative er-
rors obtained with the use of |θm〉 = exp (−iθmHTAS)| j, j〉 (see
text) as a function of j = 1, . . . , 100. Upper curve (orange trian-
gles) r2 = |VTot (|θm〉) − εgs,X |/εgs,X ; lower curve (green circles) r1 =
|VTot (|θm〉) − V min1

X Z ( j)|/V min1
X Z ( j).

saturate the bound is not directly apparent from the algorithm
unless the ground state is a product state |εgs,X 〉 = |ψ〉|ψ〉.
In this case, the numerical computations suggest that the
ground state is not in a product form although it provides
values which are pretty close to those evaluated in (11).
The results obtained can be refined in the following way.
For generic j, one has that the numerical found ground-
state energy is doubly degenerate. By fixing j, one can ex-
plore the ground-state manifold in search for a ground state
whose Schmidt decomposition can be written as |εgs,X 〉 =∑

n λn|λn〉|λn〉 and such that the maximum Schmidt coeffi-
cient is sufficiently large. For fixed j, we can identify two
states |λ+

Max〉, |λ−
Max〉 corresponding to two different states

|ε+
gs,X 〉, |ε−

gs,X 〉 both belonging to the ground-state manifold
and for which the largest Schmidt coefficients coincide. For
example, with j = 9/2, one finds sufficiently large values
λ+

Max = λ−
Max = 0.99619. The overlap of the product states

with the respective ground states is equal and large, i.e.,
〈εXZ

gs,+|λ+
Max〉|λ+

Max〉 = 〈εXZ
gs,−|λ−

Max〉|λ−
Max〉 = 0.996191. Similar

results have be obtained for generic values of j � 100,
thus one one hand both states |λ+

Max〉, |λ−
Max〉 constitute good

candidates for |ψsat〉 and for the (approximate) saturation of
the found lower bound, and on the other hand the result is an
indirect confirmation that the lower bound provided by εgs,X

is close to the actual one lB.
In order to estimate the error in determining the lower

bound via εgs,X , i.e., VTot (|ψsat〉) − εgs,X , we now proceed with
a further refined approach to determine |ψsat〉. Indeed, while
the states |λ±

Max〉, which are good candidates for |ψsat〉, are
obtained numerically it would be desirable to find analogous
states that at least in principle can be produced in the lab-
oratory, and that have the same property of |λ±

Max〉, i.e., to
approximately saturate the lower bound. In Appendix D, we
show how starting from the knowledge of the shape of |λ±

Max〉
and by means of further physical insights one can indeed
identify the following candidate:

|θ〉 = exp(−iθHTAS)| j, j〉,
where | j, j〉 is the eigenstate of JZ corresponding to the
eigenvalue j; and

HTAS = −i(J2
+ − J2

−)

is the two-axis squeezing operator [9,30]; the latter having
the property of squeezing the state along the X axis and
simultaneously anti-squeezing it along the Y axis. As shown
in Appendix D, by means of the mapping provided by the
Holstein-Primakoff approximation, it is possible to infer the
optimal value of the squeezing parameter θm = − ln 2+ln j

24 j
such that |ψsat〉 = |θm〉 provides a good approximation of the
lower bound for each j. In Fig. 1 (bottom), we plot r1 =
|VTot (|θm〉) − V min1

XZ ( j)|/V min1
XZ ( j), i.e., the relative error in the

evaluation of VTot with respect to the best bound given by
V min1

XZ ( j). For j � 100, the error is firmly below 3%, thus
showing that the approximation provided by |θm〉 is indeed
quite good.

With the aid of |θm〉 we can then provide an estimate
of the errors in the determination of the lower bound
by means of εgs,X . In Fig. 1 (bottom), we plot r2 =
|VTot (|θm〉) − εgs,X |/εgs,X ; the latter shows that the relative
error is for j � 100 of the order of 6%, such that by choosing
(VTot (|θm〉) + εgs,X )/2 as the estimate of the true lower bound
the relative error is at most 3%, a result that confirms the
goodness of the approximation provided by εgs,X . Similar
results can be obtained directly using |λ+

Max〉, |λ−
Max〉 instead

of |θm〉.
We finally notice that the state |θm〉 is in principle obtain-

able in the laboratory via two-axis squeezing and thus is a
good candidate for the estimation procedure based on Planar
Squeezed states. While the realization of the latter has been
proposed in Ref. [10] as the ground state of a two-mode
Bose-Einstein condensate and in Ref. [20] as the result of
a nondemolition quantum measurement protocol, here we
provide evidence that the same result can be obtained via
two-axis spin squeezing.

C. su(3) operators

We now derive the lower bound for the sum of the vari-
ances of four operators belonging to the su(3) algebra. This
will allow us to show the results of proposition 3 in action.
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FIG. 2. Plot of εα
gs,n as a function of α ∈ [an1,an4,] for the oper-

ators A1 (orange continuous), A2 (dash dotted), A3 (dashed), and A4

(dotted). The best lower bound εα=0.963
gs,1 is attained for Hα=0.963

Tot,1 (black
continuous horizontal); all quantities are plotted in arbitrary units.

Consider the following operators:

A1 =
⎛
⎝0 1 0

1 0 i

0 −i 0

⎞
⎠, A2 =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠,

A3 =

⎛
⎜⎝

1 1 0

1 0 −1

0 −1 −1

⎞
⎟⎠, A4 =

⎛
⎜⎝

1 0 i

0 0 0

−i 0 −1

⎞
⎟⎠.

The bounds for the sum of pair of variances V12 = �2A1 +
�2A2 � 15/32 and V34 = �2A3 + �2A4 � 0.765727 were
found in Ref. [28] on the basis of the (uncertainty) numer-
ical range approach. If we compare these results with the
approximations l̃−

B obtained within our framework we find
that for V12, l̃−

B = 0.4384, which is approximately 6.5% lower
that the value found in Ref. [28]; while for V34, l̃−

B = 0.7281,
which is approximately 5% lower that the value found in
Ref. [28]. As for the lower bound of the sum of the four
variances VTot = �2A1 + �2A2 + �2A3 + �2A4, the ground-
state energy of the corresponding HTot is different from zero
and it provides a first approximation of the searched lower
bound, i.e., εgs = 0.804103. The problem does not appear to
have evident symmetries and in order to check the consis-
tency of εgs and to refine the approximation we then use the
method outlined in proposition 3. In Fig. 2, we plot the values
of the ground states εα

gs,n of the Hamiltonians Hα
Tot,n, n =

1, 2, 3, 4 as a function of α ∈ [an1,an3,], i.e., α varying in
the interval defined by the lowest/highest eigenvalue of each
An. The best lower bound l̃−

B = maxn minα εα
gs,nis obtained

with the Hamiltonian Hα
Tot,1 in correspondence of the value

α = 0.963. The corresponding lower bound l̃−
B = εα=0.963

gs,1 =
1.39932 is higher than εgs = 0.804103, therefore showing that
the method outlined in proposition 3 allows for a significa-
tive refinement of the result. If we now find the Schmidt
decomposition of |εα=0.963

gs,1 〉, we have that the largest Schmidt
coefficient is λMax = 0.941487 and for the corresponding
|λMax〉, the value of VTot (|λMax〉) = 1.5901. Therefore the ac-
tual bound lB will lie in the interval (εα=0.963

gs,1 ,VTot (|λMax〉)] =
(1.39932, 1.5901]. Since the Hilbert space has dimension
3, we have performed a standard minimization procedure
directly on VTot and we have obtained lB ≈ 1.56274 such that

εgs is about half the value lB; εα=0.963
gs,1 results to be smaller for

about 10%; while VTot (|λMax〉) is just 1.6% higher.

D. Harmonic oscillator operators n̂, x̂

While the definition of H = ∑
n Hn was given for bounded

operators, one can use the same definition for unbounded
one and use the same mapping (2), which of course remains
valid, for finding the relative lower bounds. In the following,
we show how the procedure and the results of Sec. II can
be applied by focusing a specific example. We consider the
operators n̂ (number operator) and x̂ (position operator) for a
single bosonic mode and we seek for the lower bound of

Vxn = �2n̂ + �2x̂. (14)

The latter is very much analogous to the bosonic counterpart
of VXZ with j = 1, see Eq. (D1) in Appendix D. The analogy
with the spin case is strengthened by the three variances sum

Vxpn = �2n̂ + �2x̂ + �2 p̂ � 1,

whose lower bound is again attained by the analog of | j, j〉,
i.e., the vacuum |0〉 for which Vxpn = 1 and Vxn = 1/2. If one
is to reduce Vxn, one needs to simultaneously reduce �2x̂ <

1/2 and therefore enhance �2 p̂ > 1/2.
The starting Hamiltonian here is

HTot = 1
2 (n̂2 ⊗ I + I ⊗ n̂2) − n̂ ⊗ n̂

+ 1
2 (x̂2 ⊗ I + I ⊗ x̂2) − x̂ ⊗ x̂

and its approximate ground-state energy can be found by
expressing x̂ = (a + a†)/

√
2 and by truncating the single

mode Fock space, i.e., by expressing HTot in the subspace
HnMax ⊗ HnMax with HnMax = span{|0〉, |1〉, . . . , |nMax〉} where
|n〉 is an n bosons state. By letting the maximum number of
bosons nMax grow, we numerically check that εgs → 0, there-
fore HTot itself does not provide a meaningful lower bound.
However, here we can again resort to the result of proposi-
tion 4 and thus identify the needed modified Hamiltonian.
Indeed, the relevant unitary operator here is Uθ = exp (−iθ n̂);
one has that Uπ x̂U †

π = −x̂, and the adjoint action of Uπ ⊗ Uπ

leaves the Hamiltonian HTot invariant. Therefore, in search
for the lower bound, we can start restricting ourselves to the
states belonging to S0

x̂ = {|ψ〉 ∈ Hbos|〈x̂〉 = 0} and consider
the Hamiltonian

HTot,x̂ = 1
2 (n̂2 ⊗ I + I ⊗ n̂2) − n̂ ⊗ n̂

+ 1
2 (x̂2 ⊗ I + I ⊗ x̂2)

and its ground-state energy ε0
gs,x̂, which is a local mini-

mum. For sufficiently high values of nMax, one has that ε0
gs,x̂

converges to the value ε0
gs,x̂ ≈ 0.412721 < 1/2. The ground

state in this case |ε0
gs,x̂〉 �= |ψ〉|ψ〉 is not in a product form,

however we can again use the argument outlined in Sec. II and
find the Schmidt decomposition |ε0

gs,x̂〉 = ∑
n λn|λn〉|λn〉. For

nMax = 30, we have that the maximum Schmidt coefficient
λMax ≈ 0.99931 such that one is led to consider the corre-
sponding state |λMax〉|λMax〉 as a fairly good approximation
of the ground state. Indeed, |〈ε0

gs,x̂|λMax〉|λMax〉| ≈ 0.99931
and therefore |ψsat〉 = |λMax〉 in this case is a good candidate
for the minimization of (14). This is confirmed by the value
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Vxn(|λMax〉) ≈ 0.415139 such that the relative error of the
approximation |Vxn(|λMax〉) − ε0

gs,x̂|/ε0
gs,x̂ ≈ 0.5% is excellent.

While the previous results have been obtained numerically, the
following arguments allow one to identify a state realizable
in the laboratory that closely approximate |λMax〉. Just as in
the spin case the profile of |λMax〉 = ∑nMax

n=0 ηn|n〉 is such that
only the states with even number of bosons are populated, the
distribution of probability is peaked for n = 0 and it rapidly
decreases with n. As in the JX , JZ case, this again hints to the
preferred tentative choice of the single mode squeezed state

|ξ 〉 = 1√
cosh |ξ |

∞∑
n=0

(− tanh |ξ |)n

√
(2n)!

2nn!
|2n〉

as candidate for the minimization of Vxn. Indeed, in terms of
|ξ 〉, (14) reads

Vxn = 2 sinh2(|ξ |) cosh2(|ξ |) + exp(−2|ξ |)
2

, (15)

its minimum is obtained for ξ = ξm = 0.1665679 and it is
equal to Vxn(|ξm〉) = 0.41591, which is a fairly good approxi-
mation of εgs,x̂ and Vxn(|λMax〉). Indeed, if one evaluates the
fidelity between |ξm〉 and the numerically obtained |λMax〉,
one has 〈ξm|λMax〉 = 0.999927; furthermore |〈ε0

gs,x̂|ξm〉|ξm〉| =
0.999168 such that |ξm〉|ξm〉 also provides a good approxima-
tion of the ground state.

Now, in principle, in order to find whether ε0
gs,x̂ is a proper

and faithful lower bound one should extend the search to the
other sets Sα

x̂ , α ∈ [0,∞], which is of course an impossible
task. We thus opt for a different strategy. In the first place,
the result can be further supported analytically by showing
that |ξm〉 minimizes Vxn over the restricted set of Gaussian
states; this is shown in Appendix E. Since the minimum
corresponds to |ξm〉 with 〈n〉 very small, we further support
our result by using standard numerical minimization routines
and search for the minimum of Vxn in a sub space HnMax =
span{|0〉, |1〉, . . . , |nMax〉} with nMax sufficiently large; the nu-
merical results rapidly converge to the lower bound found
above.

We have thus shown how the method proposed can in prin-
ciple work even with sums of variances involving unbounded
operators. With the analysis of the Schmidt decomposition of
the ground state |ε0

gs,x̂〉, and the subsequent reasonings and
calculations, we have shown that is possible to identify a
state that approximately saturates the bound provided by ε0

gs,x̂.
Therefore, even in this case, the latter can be considered a
good approximation of the actual bound lB.

IV. CONCLUSIONS

In this work, we have addressed the problem of finding
the state independent lower bound lB of the sum of variances
VTot (|ψ〉) = ∑N

1 �2
|ψ〉An for an arbitrary set {An}n=1,..,N of

Hermitian operators acting on an Hilbert space HM with
dimension M. The value lB is the highest positive constant
such that ∀|ψ〉 ∈ HM, VTot (|ψ〉) � lB. In general, the problem
can be solved by finding a sufficiently good approximation
l̃−
B � lB. To this aim we have introduced a method based on a

mapping of the minimization problem into the task of finding
the ground-state energy εgs of specific Hamiltonians acting on

an extended space HM ⊗ HM . This way, we have shown that
εgs = l̃−

B , i.e., εgs provides the required approximation.
In our work, we have first provided the main general results

that characterize the method proposed and then, by means
of different examples, we have described its implementation.
While we have shown an instance where εgs = lB, in general,
the ground state |εgs〉 ∈ HM ⊗ HM corresponding to εgs is not
in a product form, such that the corresponding εgs = l̃−

B < lB
will only be an approximation of the actual lB, and the bound
provided by εgs will not be attainable, even though it will
still be a valid state independent lower bound. In such cases,
we have also proposed and tested a method to identify, from
the knowledge of the ground state |εgs〉 ∈ HM ⊗ HM , a state
|ψsat〉 ∈ HM that allows, at least approximately, to saturate
the bound, i.e., VTot (|ψsat〉) � lB . This procedure provides an
efficient way to assess the quality of the approximations given
by εgs and VTot (|ψsat〉): the true lower bound lB must lie in the
interval (εgs,VTot (|ψsat〉)]. The examples developed show that
the latter can be very small, such that even when εgs �= lB the
approximations are quite good. While the main general results
have been derived for bounded (nondegenerate) operators, we
have also shown by means of an example that the method
can be applied to sum of variances involving unbounded
operators.

The results presented constitute a first attempt to lay down
a general and reliable framework, alternative to the existing
ones, for deriving meaningful state independent lower bounds
for the sum of variances VTot. As such we have discussed
the virtues and limits of the proposed framework. Since the
latter is based on ground-state evaluation, it does not suf-
fer from the caveats of general minimization schemes that
can be numerically demanding and can get trapped in local
minima. On the other hand, it requires the diagonalization of
operators of dimension M2 × M2, that for M very large can
be numerically complex. As we have shown the complexity
of the solution may however be drastically reduced when
the problem presents some symmetries and/or the operator
involved are simple (e.g., sparse). While the examples dis-
cussed show that the method can indeed be effective, several
questions remain open for future research. As we have shown
in the paper, since the mapping is not unique, other possibly
more effective mappings may be found. The extension of
the method to cases involving unbounded operators and the
assessment of its limits require a thorough analysis. It would
also be desirable to devise a procedure allowing one, when
possible, to foresee in advance the achievable precision of
the approximations provided by our approach. On another
level, it would be intriguing to explore the connections, if
any, between the framework proposed and the already existing
ones, e.g., those based on the joint numerical range.

Finally, while in this paper we have not assessed the
problem, our method can be used for entanglement detection
[7,8] and it would be desirable to apply it to relevant problems
in that area of research.
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APPENDIX A: PROPERTIES OF HTot

In the following, we prove point (ii) of proposition 1 by
construction. To this aim, we start by supposing that each
An has a nondegenerate eigenspectrum. This hypothesis is, in
principle, not necessary but we use it to simplify the notations.
We thus notice that given a state |φ〉 ∈ HM ⊗ HM , since each
operator Hn is semidefinite positive one has that 〈φ|Hn|φ〉 = 0
iff |φ〉 ∈ Ker(Hn). Since we assume that the all An’s have non-
degenerate eigenspectrum, one has that ∀n dim[Ker(Hn)] =
M each Ker(Hn) can be written as

Ker(Hn) = span{|an,1〉|an,1〉, |an,2〉|an,2〉, . . . ,

|an,M〉|an,M〉}, (A1)

a fact which is easily derived by looking at the form of the
generic Hn (1): the states {|an,i〉|an,i〉}M

i=1 are mutually orthog-
onal, are all eigenstates of Hn with zero eigenvalue and they
form an orthonormal basis of Ker(Hn). The Hamiltonian HTot

has εgs = 0 iff ∩nKer(Hn) �= � such that |εgs〉 ∈ ∩nKer(Hn),
i.e., if the intersection of the kernels of the Hn operators is
not void and the ground state is a common eigenvector of all
the Hn with zero energy. In order to derive the general form
of |εgs〉, we start by supposing that ∩nKer(Hn) �= � and that
there exist |εgs〉 ∈ ∩nKer(Hn). We then focus on on a specific
Hn, say H1; since by hypothesis |εgs〉 ∈ Ker(H1), we write the
state in terms of the eigenbasis (A1) of Ker(H1)

|εgs〉 =
M∑

i=1

α1,i|a1,i〉|a1,i〉.

Since ∀i one can write α1,i = |α1,i|eiφ1,i and reabsorb the phase
factors in the definitions of the eigenvectors, e.g., |ã1,i〉 =
eiφ1,i/2|a1,i〉 such that

|εgs〉 =
M∑

i=1

|α1,i||ã1,i〉|ã1,i〉.

In this way, the ground state is written in its Schmidt decom-
position in terms of the basis {|ã1,i〉|ã1,i〉}M

i=1. Since |εgs〉 ∈
∩nKer(Hn) and due to the structure (A1) of each Ker(Hn), the
same is true for all Hn such that one has

|εgs〉 =
M∑

i=1

|α1,i||ã1,i〉|ã1,i〉 =
M∑

i=1

|α2,i||ã2,i〉|ã2,i〉

= · · · =
M∑

i=1

|αN,i||ãN,i〉|ãN,i〉 (A2)

This result tells us that the ground state must be unique and
that ∀i, n it must be |αn,i| = 1/

√
M. Indeed, each decompo-

sition of the ground state (A2) represents, in principle, a dif-
ferent inequivalent versions of the Schmidt decomposition of
|εgs〉. But for a pure bipartite state, if the Schmidt coefficients
|αn,i| are not all degenerate, i.e., all equal, than the Schmidt
decomposition is unique up to phase factors [31]. Since by
hypothesis |εgs〉 ∈ ∩nKer(Hn), in order for the relation (A2)
to be true, in the first place it must be |αn,i| = 1/

√
M, ∀n, i.

Therefore if there is a common ground state this must read

|εgs〉 = 1√
M

M∑
i=1

|ã1,i〉|ã1,i〉 = 1√
M

M∑
i=1

|ã2,i〉|ã2,i〉

= · · · = 1√
M

M∑
i=1

|ãN,i〉|ãN,i〉. (A3)

Now depending on the problem, there may or may not be
the possibility of adjusting the phases φi,n in order to have
a single ground state with εgs = 0. In the affirmative case,
the ground state of HTot is unique and it can be written by
using the appropriate phases as |εgs〉 = 1√

M

∑
i |ãn,i〉|ãn,i〉, ∀n.

From which follows the first part of result (ii). It is actually not
important for the next part of the result to determine exactly
the various φi,n. Indeed, the nonzero state-independent lower
bound ε1(1 − 1

M ) can be derived as follows. If εgs = 0, given
the general form of the ground state derived above (A3) i.e.,
that of a maximally entangled one, for any given |φ〉 ∈ HM ,
one can write

|εgs〉 = 1√
M

M∑
i=1

|an,i〉|an,i〉

= 1√
M

(
M∑

i=1

|φn,i〉|φ∗
n,i〉

)
,

where {|φn,i〉}M
i=1 being mutually orthonormal and |φ〉 =

|φn,1〉, while ∀i |φ∗
n,i〉 is the complex conjugate of |φn,i〉

when the latter is expressed in the {|an,i〉} basis. The lat-
est formula allows to infer that max|φ〉∈HM |〈φ|〈φ|εgs〉|2 =
max|φ〉∈HM |〈φ|φ∗〉|2/M = 1/M; the maximum being attained
by any state |φ〉 = ∑

i Uji|an,i〉 with Uji ∈ R. Then, if
{|εn〉}M2−1

n=0 are the eigenstates of HTot corresponding to the
eigenenergies ε0 = εgs = 0 and εn > 0, ∀n = 1, . . . , M2 − 1,
one has that ∀|φ〉 ∈ HM

〈φ|〈φ|HTot|φ〉|φ〉 = 〈φ|〈φ|
M2−1∑
n=0

εn|εn〉〈εn||φ〉|φ〉

� ε1

M2−1∑
n=1

|〈φ|〈φ|εn〉|2

= ε1〈φ|〈φ|(IM2 − |εgs〉〈εgs|)|φ〉|φ〉
= ε1(1 − |〈φ|〈φ|εgs〉|2).

Since

min
|φ〉∈HM

ε1(1 − |〈φ|〈φ|εgs〉|2) = ε1

(
1 − 1

M

)
,

one has that ∀|φ〉 ∈ HM

VTot (|φ〉) = 〈φ|〈φ|HTot|φ〉|φ〉 � ε1

(
1 − 1

M

)
> 0,

which is the second part of result (ii).

APPENDIX B: PROOF OF PROPOSITION 4

We now prove the results of proposition 4. We begin with
(i). Suppose α > 0, the proof is based on the analysis of the
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Hamiltonian

Hα
Tot,n =

∑
m �=n

Hm +
(
Aα

n

)2 ⊗ I + I ⊗ (
Aα

n

)2

2

= HTot,n − α(An ⊗ I + I ⊗ An) + α2I,

where HTot,n = ∑
m �=n Hm + A2

n⊗I+I⊗A2
n

2 is defined as above. If
|εα

gs,n〉 is a ground state of Hα
Tot,n then |ε−α

gs,n〉 = U ⊗ U |εα
gs,n〉

must be a ground state of H−α
Tot,n. Indeed, on one hand, due

to the symmetry properies of
∑

m �=n Hm that extend to HTot,n,
it holds 〈ε−α

gs,n|HTot,n|ε−α
gs,n〉 = 〈εα

gs,n|HTot,n|εα
gs,n〉. Furthermore,

due to the action of U on An〈
ε−α

gs,n

∣∣(An ⊗ I + I ⊗ An)
∣∣ε−α

gs,n

〉
= −〈

εα
gs,n

∣∣(An ⊗ I + I ⊗ An)
∣∣εα

gs,n

〉
such that

ε−α
gs,n = 〈

ε−α
gs,n

∣∣H−α
Tot,n

∣∣ε−α
gs,n

〉 = 〈
εα

gs,n

∣∣Hα
Tot,n

∣∣εα
gs,n

〉 = εα
gs,n.

Then (ii) simply follows from the fact that〈
ε0

gs,n

∣∣(An ⊗ I + I ⊗ An)
∣∣ε0

gs,n

〉
− 〈

ε0
gs,n

∣∣(An ⊗ I + I ⊗ An)
∣∣ε0

gs,n

〉
,

and there for to first order in δα � 1, one has εδα
gs,n = εgs,n +

δα2 � ε0
gs,n.

APPENDIX C: SYMMETRIES FOR SPIN HAMILTONIAN

In this Appendix, we detail the symmetries property of HTot

(8) defined in terms of the two spin operators JX , JZ . One has
that

e−iθJY JZ eiθJY = cos θJZ + sin θJX ,

e−iθJY JX eiθJY = − sin θJZ + cos θJX ,

then, given UYY = e−iθJY ⊗ e−iθJY ,

UYY JZ ⊗ JZU †
YY = cos2 θJZ ⊗ JZ + sin2 θJX ⊗ JX

+ sin θ cos θ (JZ ⊗ JX + JX ⊗ JZ ),

UYY JX ⊗ JXU †
YY = sin2 θJZ ⊗ JZ + cos2 θJX ⊗ JX

− sin θ cos θ (JZ ⊗ JX + JX ⊗ JZ ),

such that

UYY (JZ ⊗ JZ + JX ⊗ JX )U †
YY = (JZ ⊗ JZ + JX ⊗ JX ).

Furthermore by using the Casimir relation j( j + 1)I = J2
X +

J2
Y + J2

Z the Hamiltonian HTot can be expressed as

HTot =
(
J2

Z + J2
X

) ⊗ I + I ⊗ (
J2

Z + J2
X

)
2

− (JZ ⊗ JZ + JX ⊗ JX )

= j( j + 1)I ⊗ I − J2
Y ⊗ I + I ⊗ J2

Y

2
− (JZ ⊗ JZ + JX ⊗ JX ),

such that

UYY HTotU
†

YY = HTot,

therefore ∀|φ〉 ∈ HM if

〈φ|〈φ|HTot|φ〉|φ〉 = c(φ),

then one has also that

〈φ|〈φ|HTot|φ〉|φ〉 = 〈φ|〈φ|UYY HTotU
†

YY |φ〉|φ〉
= 〈φθ |〈φθ |HTot|φθ 〉|φθ 〉
= c(φ).

Therefore one has a certain degrees of freedom in choosing
|φ〉 since all states |φθ 〉 = eiθJY |φ〉,∀θ ∈ R will have the same
variance c(φ). Now

〈φθ |Jx|φθ 〉 = − sin θ〈φ|Jz|φ〉 + cos θ〈φ|Jx|φ〉.
Suppose now |φ〉 is a state which minimizes VXZ . One can
always choose for example θ such that

〈φθ |Jx|φθ 〉 = 0,

i.e., we can choose θ by setting

sin θ〈φ|Jz|φ〉 = + cos θ〈φ|Jx|φ〉,
tan θ = 〈φ|Jx|φ〉

〈φ|Jz|φ〉 ,

θ = arctan

( 〈φ|Jx|φ〉
〈φ|Jz|φ〉

)
.

Therefore even if θ is unknown we can find the lower bound
of VXZ by finding the ground state of the Hamiltonian

HTot,X =
(
J2

Z + J2
X

) ⊗ I + I ⊗ (
J2

Z + J2
X

)
2

− JZ ⊗ JZ .

Indeed, ε0
Tot,X will give a lower bound ∀|φ〉 ∈ S0

X among which
there will be the |φθ 〉, which minimizes VXZ . Then ∀|ψ〉 ∈
HM , one has

VXZ (|ψ〉) � VXZ (|φθ 〉)

� ε0
gs,X .

APPENDIX D: PLANAR SPIN SQUEEZING

In this Appendix, we show how from the knowledge of
|λ+

Max〉, |λ−
Max〉, one can obtain a state |ψsat〉 = |θm〉 that can

in principle realized in the laboratory and that approximately
saturates the bound for planar spin squeezing. For fixed j, one
can study the profile of |λ+

Max〉, |λ−
Max〉; a feature that holds for

all analyzed values of j is that the profile is peaked at mz = j
and mz = − j, respectively, and such that only the states with
mz = − j + 2k have nonzero amplitudes. These numerical
findings will lead us in the search for states |ψsat〉 that on one
hand are a good approximations of |λ+

Max〉, |λ−
Max〉 and on the

other hand are in principle obtainable in the laboratory.
We start by considering the relation (10) which, over the

set of eigenstates of JZ , is minimized by | j,± j〉 and for such
states �2JZ = 0 and VXZ = �2JX = j/2. In order to obtain
a lower bound for VXZ smaller than j/2, one can imagine
to start from the state | j, j〉 for example and to modify it in
such a way that �2JZ � 0 is little changed and at the same
time �2JX is considerably reduced. This heuristic reasoning
suggests the strategy of searching for an operator G such
that |θ〉 = exp (−iθG)| j, j〉Zθ ∈ R is the state required. If
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one analyses V θ
XZ = VXZ (|θ〉) and, in particular, its first order

variation ∂θV θ
XZ in θ = 0 one has

∂θ [�2JZ (θ )]θ=0 = 0,

∂θ [�2JX (θ )]θ=0 = 〈
j, j

∣∣[J2
X , G

]∣∣ j, j
〉

−〈 j, j|JX | j, j〉〈 j, j|[Jx, G]| j, j〉
= 2 Im[〈 j, j − 2|G| j, j〉].

The previous relations thus leads to consider operators for
which 〈 j, j − 2|G| j, j〉z �= 0. The above reasoning heuristi-
cally leads to analyze the action of the two-axis squeezing
operator

HTAS = −i(J2
+ − J2

−),

which is known to have the property of squeezing along the
X axis and simultaneously anti-squeezed along the Y axis.
This latter property is consistent with the relation (7) where
it can be seen that any attempt to squeeze the sum VXZ implies
the enhancement of �2JY . The action of the operator U =
exp (−iθHTAS) on | j, j〉 is not known in an analytical form,
however it has the desirable property of populating only the
basis states | j, j − 2k〉 thus reproducing one of the features of
the states |λ+

Max〉, |λ−
Max〉 discussed above.

Following the previous discussion the goal now is to find
the optimal value θm of the squeezing parameter θ such
that the state |ψsat〉 = |θm〉 = exp (−iθmHTAS)| j, j〉Z approx-
imately saturates the lower bound for VXZ . This, in principle,
requires for each j the numerical search for the optimal value
of θm = θm( j) for which the minimum of V θ

XZ is attained. We
now show how to analytically estimate the optimal value of
θm. As anticipated in the main text we resort to the Holstein-
Primakoff (HP) transformation that allows to map the spin
operators to harmonic oscillators ones. Indeed, as shown in
Refs. [26,32,33], one can write the spin operators in terms of
the bosonic creation and annihilation operators a, a†.

J+ =
√

2 ja†

√
1 − a†a

2 j
, J.− =

√
2 j

√
1 − a†a

2 j
a,

Jz = a†a − j,

such that for states with average number of bosons 〈n̂〉 =
〈a†a〉 � 2 j, one has that J+ = √

2 ja†, J− = √
2 ja. With this

transformation the sum of variances (10) can be written as

V bos
XZ = �2n̂ + j�2x̂, (D1)

where n̂ is the number operator; x̂ = (a + a†)/
√

2 is the
position operator and �2JZ → �2n̂�2JX → j�2x̂. Within
the Holstein-Primakoff representation the spin state | j, j〉 is
mapped into the vacuum |0〉. In general, there is no such map-
ping between the squeezed state |θ〉 and the corresponding
single mode squeezed vacuum state that reads [34]

|ξ 〉 = exp

{
1

2
[ξ (a†)2 − ξ ∗a2]

}
|0〉

with ξ = re−iφ the squeezing parameter. However, this state is
the “natural” counterpart of |θ〉 in the search for a minimum of
V bos

XZ . Within the HP framework two-axis squeezing operator

transforms into the single-mode squeezing operator

e−iθHTAS = exp[−θ (J2
+ − J2

−)] ≈ exp{−θ2 j[(a†)2 − a2]},
such that if we now choose ξ = −4 jθ we can bridge the spin
and the bosonic version of VXZ . With these assumptions V bos

XZ
reads

V bos
XZ (θ ) = 2 sinh2(4 jθ ) cosh2(4 jθ ) + j

exp(8 jθ )

2
. (D2)

The minimization of the latter expression with respect to θ

provides a single real solution for j � 1 can be written as

θm = − ln 2 + ln j

24 j
+ o(1/ j2), (D3)

and for j � 1, one finds

V bos
XZ (θm) ≈ 0.595275 j2/3.

We notice that the scaling obtained in the HP framework
coincides with the dominant part of (11) for large j. The
found approximate solution θm can now be used to compute
the bound for the spin version of the sum of variances (10),
i.e., VXZ (|θm〉). The consequences of this results are described
in the main text.

APPENDIX E: THE BOSONIC CASE: GAUSSIAN STATES

The generic pure Gaussian state reads

D(α)S(ξ )|0〉 = |α, ξ 〉.
The variance of x for such states can thus be written as

�2
|α,ξ〉x = 〈α, ξ |x2|α, ξ 〉 − 〈α, ξ |x|α, ξ 〉2

= 〈ξ |D†(α)xD(α)D†(α)xD(α)|ξ 〉
− 〈ξ |D†(α)xD(α)|ξ 〉2

= �2
|ξ〉xα

with xα = D†(α)xD(α) = x + 2Re[α]I. Since �2[A + cI] =
�2A, one has that �2

|α,ξ〉x̂ = �2
|ξ〉x̂, i.e., the displacement does

not change the variance of x, since it only changes its average
value. We now evaluate the variance of n̂ and find �2

|α,ξ〉n̂ =
�2

|ξ〉n̂α with nα = n + a†α + aα∗ + |α|2. The constant |α|2
again can be dropped and one is left with such that

�2
|ξ〉n̂α = �2

|ξ〉n̂ + 2|α|2�2
|ξ〉x̂arg α

+ |α|[〈n̂x̂arg α〉 + 〈x̂arg α n̂〉 − 2〈n̂〉〈x̂arg α〉],
where x̂arg α = (aei arg α + a†e−i arg α )/

√
2. Since the averages

are taken for the state |ξ 〉, for the property of the latter one
has 〈n̂x̂arg α〉 = 〈x̂arg α n̂〉 = 〈x̂arg α〉 = 0. Overall the previous
results show that, ∀α, ξ , i.e., for all pure Gaussian states |α, ξ 〉

�2
|α,ξ〉n + �2

|α,ξ〉x = �2
|ξ〉n + 2|α|2�2

|ξ〉xarg α + �2
|ξ〉x

� �2
|ξ〉n + �2

|ξ〉x,

such that the minimum of Vxn over the set of Gaussian state
is given by the squeezed vacuum state |ξm〉 that minimizes
�2

|ξ〉n + �2
|ξ〉x.
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